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Applying Bootstrap Methods to System Reliability

Christopher E. MARKS, Andrew G. GLEN, Matthew W. ROBINSON, and Lawrence M. LEEMIS

We present a fully enumerated bootstrap method to find the
empirical system lifetime distribution for a coherent system
modeled by a reliability block diagram. Given failure data for
individual components of a coherent system, the bootstrap em-
pirical system lifetime distribution derived here will be free of
resampling error. We further derive distribution-free expressions
for the bias associated with the bootstrap method for estimating
the mean system lifetimes of parallel and series systems with
statistically identical components. We show that bootstrapping
underestimates the mean system lifetime for parallel systems
and overestimates the mean system lifetime for series systems,
although both bootstrap estimates are asymptotically unbiased.
The expressions for the bias are evaluated for several popular
parametric lifetime distributions. Supplementary materials for
this article are available online.

KEY WORDS: Bias; Bootstrapping; Parametric lifetime
distributions.

1. INTRODUCTION

Bootstrapping as a statistical method is ubiquitous. In most
applications, one is left with two types of error: random sampling
error associated with the dataset and resampling error associated
with the bootstrapping process. Resampling error is generally
contained, but not eliminated, by increasing the number of boot-
strap iterations, B. The “ideal bootstrap” sets B = ∞ (Efron and
Tibshirani 1993), and is sometimes calculable by fully enumer-
ating all possible outcomes of a bootstrap instead of resampling
the data. In this article, we present a fully enumerated bootstrap
method that has this advantage of eliminating resampling er-
ror. We will apply the method to models of a coherent system,
represented by a reliability block diagram (RBD). This fully
enumerated bootstrap produces the distribution function of a
discrete random variable that approximates the system’s contin-
uous lifetime distribution. We show that there is inherent bias
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that can be computed exactly under various parametric assump-
tions. System designers can use these methods to investigate
system parameters to include in the design, for example, the
effect of changing the number of components in series, parallel
or combinations of both to achieve system improvement.

The article is organized as follows. In Section 2, we investi-
gate the simplest forms of RBDs consisting of two components
whose lifetimes are independent and identically distributed (IID)
random variables and the components are placed in parallel (or
series) to illustrate the nature of the underlying mathematics
in the enumerated bootstrap. In Section 3 we present the steps
of a resampled bootstrap and present a simple example of how
bias is induced by the “minimum” and “maximum” operations.
In Section 4, we present the general result for bias for paral-
lel and series systems. We also present some of the difficulties
encountered in generalizing to systems consisting of more than
two components. Section 5 presents some applications of a fully
enumerated bootstrap for an RBD example.

The literature concerning bootstrapping of RBDs is sparse at
best. Leemis (2006) used enumerated bootstrapping of binary
data that represents the availability of components in an RBD
to construct a lower confidence bound for three components in
series. Doss and Chiang (1994) presented a traditional boot-
strap analysis of RBDs to include a comparison of resampling
schemes. There is ample literature on enumerated bootstraps,
but little of it applies to RBD models.

Parallel systems have two or more components operating si-
multaneously that perform identical tasks as backups to each
other. This system configuration occurs quite often in design.
Series systems of IID components are less frequently observed.
Individual fins in a turbine engine could be considered to com-
prise a series system: when the first one fails the system fails.
Clearly, the independence of the fins could be questioned. Con-
sider the RBD in Figure 1, a model of a computer server system
(E-mail or brokerage servers perhaps). The series configuration
could represent the major subsystems of power supply, compu-
tation hardware, and external memory. Each subsystem is made
more resilient by having two components with IID lifetimes op-
erating simultaneously in parallel. Thus, A1 and A2 represent
the IID lifetimes of two power supplies, and the other compo-
nents represent computer and memory subsystems. The system
lifetime S is given by the algebraic relationship

S = min {max {A1, A2} , max {B1, B2} , max {C1, C2}} .

Given the hypothetical case that all lifetime cumulative dis-
tribution functions (CDFs) of the components are known to be
FA(t), FB(t), and FC(t) respectively, the exact CDF of S is

FS(t)=1 − [
1 − F 2

A(t)
] · [

1 − F 2
B(t)

] · [
1 − F 2

C(t)
]

t > 0.
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Figure 1. Block diagram of a series arrangement of parallel subsys-
tems.

Now consider the more common case in which the CDFs
of the components are not known, but life-test data are avail-
able for each component. Let na be the sample size of the
dataset for component A, with similar definitions for nb and
nc. These datasets, {a1, a2, . . . , ana

}, {b1, b2, . . . , bnb
}, and

{c1, c2, . . . , cnc
}, provide the supports for three different discrete

random variables A∗, B∗, and C∗, each having equal probabil-
ity for these support values (assuming that the data values are
distinct). Thus, A∗, B∗, and C∗ represent the random variables
associated with the bootstrap samples from these three datasets.
The discrete CDFs of A∗, B∗, and C∗, denoted by FA∗ (t), FB∗(t),
and FC∗(t), are the same as the empirical distribution func-
tions (EDFs) of their corresponding lifetime datasets. Thus, a
fully enumerated bootstrap of the system can be represented
algebraically by

S∗ = min
{
max{A∗

1, A
∗
2}, max{B∗

1 , B∗
2 }, max{C∗

1 , C∗
2 }} .

The discrete CDF (that approximates the unknown, but true
continuous CDF FS(t)) is

FS∗ (t) = 1 − (
1 − [FA∗(t)]2

) · (
1 − [FB∗(t)]2

) · (
1 − [FC∗ (t)]2

)
t > 0.

It is this CDF that is the fully enumerated bootstrapped distribu-
tion of the system. We will show that such bootstrapped systems
have bias resulting from taking minimums and maximums of
discrete random variables.

We use the following notation in the article:

X A continuous random variable with probability density function
(PDF) fX(t) and CDF FX(t) that represents a component lifetime.

X A random sample of n component lifetimes.
X(i) The ith ordered element of X, i = 1, 2, . . . , n.
S A continuous random variable representing the system lifetime of a

system consisting of two components arranged in parallel, each
with an independent lifetime distributed according to X, that is,
S = max{X1, X2}.

T A continuous random variable representing the system lifetime of a
system consisting of two components arranged in series, each with
an independent lifetime distributed according to X, that is,
T = min{X1, X2}.

X∗ A random variable distributed according to the EDF associated with
X.

S∗ A random variable representing the system lifetime of a system
consisting of two components arranged in parallel, each with an
independent lifetime distributed according to X∗, that is,
S∗ = max{X∗

1 , X∗
2}. The distribution of S∗ is used to approximate

the unknown distribution of S. Also, it is known that S∗ converges
almost surely to S asymptotically by the Glivenko–Cantelli
theorem (see, e.g., Billingsley 1995).

T ∗ A random variable representing the system lifetime of a system
consisting of two components arranged in series, each with an
independent lifetime distributed according to X∗, that is,
T ∗ = min{X∗

1 , X∗
2}.

2. TWO AND m IID COMPONENTS IN PARALLEL
OR IN SERIES

In this section, we present the mathematics underlying sim-
pler systems, setting the foundation for the proof in the Ap-
pendix A. Consider a system with two identical components
in parallel, in other words, a system with two constantly op-
erating components with identically distributed failure times
that act as real-time backups to one another. We assume that
prior testing of n components has produced a failure-time
dataset x = {x1, x2, . . . , xn}, from which we define X∗ with
CDF FX∗ (t) = i/n for t ∈ [x(i), x(i+1)), i = 1, 2, . . . , n and
x(1), x(2), . . . , x(n) are the ordered observations. Knowing only
the failure-time data (with no assumption of an underlying para-
metric failure-time distribution), we can approximate the true
system lifetime using the random variable S∗ = max{X∗

1, X
∗
2}.

The CDF of S∗ is

FS∗ (t) = P (max{X∗
1, X

∗
2} ≤ t)

= P (X∗
1 ≤ t) × P (X∗

2 ≤ t)

= FX∗ (t) × FX∗ (t)

= i2

n2
, for t ∈ [x(i), x(i+1)).

At each support point x(i) the value of the the probability mass
function (PMF) can be found by subtracting the appropriate
CDF values:

pS∗ (t) = FS∗ (t) − FS∗ (x(i−1))

= i2 − (i − 1)2

n2

= 2i − 1

n2
for t = x(i), i = 1, 2, . . . , n.

Note that one must assign x(0) = 0 and FS∗ (x(0)) = 0 for the
indexing to be correct. We note several interesting properties of
the PMF of S∗:

• The PMF of S∗ has the same probability values pS∗ (t) regard-
less of the values xi in the dataset, as long as the data values
are distinct (i.e., there are no repeated or tied values) for a
fixed sample size n.

• The supports of S∗ and X∗ are identical.
• The PMF of S∗ is an increasing function over the val-

ues of its support with initial mass value pS∗ (x(1)) = 1/n2,
constant increments of 2/n2, and final mass value
pS∗ (x(n)) = (2n− 1)/n2 for distinct data values.

Similar methods can be used to derive the empirical system
distribution S∗

m, which is the lifetime of a system of m com-
ponents with IID lifetimes arranged in parallel, using X∗ to
approximate the lifetime distribution of each. The CDF and
PMF of S∗

m are

FS∗
m
(t) = im

nm
, for t ∈ [

x(i), x(i+1)
)
, i = 1, 2, . . . , n

and

pS∗
m
(t) = im

nm
− (i − 1)m

nm
, for t = x(i), i = 1, 2, . . . , n.
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Using a binomial expansion and simplifying, the PMF can be
expressed as

pS∗
m
(t) = n−m

m∑
j=1

(
m

j

)
(−1)j−1im−j , for t = x(i),

i = 1, 2, . . . , n.

The minimum lifetime of IID components can be derived
in a similar fashion. Let T ∗ = min{X∗

1, X
∗
2} be the analogous

discrete random variable for a system of two IID components
in series, given a component failure-time dataset. The CDF and
PMF of T ∗ are

FT ∗ (t) = 1 −
(

1 − i

n

)2

, for t ∈ [x(i), x(i+1)), i = 1, 2, . . . , n

and

pT ∗ (t) = 2n − 2i + 1

n2
, for t = x(i), i = 1, 2, . . . , n.

The PMF of T ∗ is now a decreasing function over its sup-
port, beginning with pT ∗ (x(1)) = (2n − 1)/n2 and ending with
pT ∗ (x(n)) = 1/n2, with decrements of 2/n2 for distinct data val-
ues. An extension for a system of m components in series can
be derived.

3. BOOTSTRAPPING AND BIAS FOR A PARALLEL
SYSTEM

We now illustrate how bias enters into bootstrapping. Con-
sider the case of a two-component parallel system with IID unit
exponential component lifetimes. The interest is in the mean
system lifetime. The analyst is unaware of the true lifetime dis-
tribution, and only has the values of n = 3 component lifetimes.
This small value of n is for enumeration purposes only; boot-
strapping applications usually rely on larger sample sizes. What
is the bias associated with the use of bootstrapping to estimate
the mean system lifetime?

The unit exponential component distribution, represented by
X in our notation, has expected value E(X) = 1 and CDF
FX(t) = 1 − exp(−t), t > 0. In this case, the system lifetime
S has CDF

FS(t) = P (S ≤ t) = (
1 − exp(−t)

)2
t > 0.

So the true expected system lifetime is

E(S) =
∫ ∞

0

(
1 − FS(t)

)
dt = 3

2
,

which uses the technique for calculating the mean of a non-
negative random variable from Meeker and Escobar (1998,
p. 77). The analyst, however, knows only (a) that the com-
ponent lifetimes are independent, (b) that the components have
identical lifetime distributions, and (c) the values of three com-
ponent lifetimes: x1, x2, and x3. Because there is no knowledge
of the true lifetime distribution, the analyst might consider a
simple resample-style bootstrapping, rather than a parametric
approach or our fully enumerated approach. To further simplify

the example we will set the bootstrap resample value artificially
low: B = 3. In this setting, a resampling bootstrap proceeds as
follows:

1. Three values are sampled with replacement from the dataset,
representing three lifetimes from component 1, y1, y2, and
y3.

2. Three additional values are sampled with replacement from
the dataset, representing three lifetimes from component 2,
z1, z2, and z3.

3. Pairwise maximums of the values from the two previous
steps are taken, representing three system lifetimes, s1 =
max{y1, z1}, s2 = max{y2, z2}, and s3 = max{y3, z3}.

4. The three system lifetimes, which approximate three true
system lifetimes, are averaged to estimate the mean system
lifetime.

To illustrate these steps with numerical values, consider the
dataset of the n = 3 component observations 0.8, 1.7, 0.4. The
steps given above might go as follows:

1. The component 1 lifetimes sampled are 0.8, 0.4, 0.8.
2. The component 2 lifetimes sampled are 1.7, 1.7, 0.4.
3. The pairwise maximums representing system lifetimes are

1.7, 1.7, 0.8.
4. The estimate for the mean system lifetime is (1.7 + 1.7 +

0.8)/3 = 1.4.

To calculate the bias in this estimate, consider the more gen-
eral case in which the value sampled for the lifetime of a com-
ponent is equally likely to be one of the data values X1, X2,
or X3. Therefore, there are 3 · 3 = 9 different outcomes by the
multiplication rule, as illustrated below.

Component 1 X(1) X(1) X(1) X(2) X(2) X(2) X(3) X(3) X(3)

Component 2 X(1) X(2) X(3) X(1) X(2) X(3) X(1) X(2) X(3)

Maximum X(1) X(2) X(3) X(2) X(2) X(3) X(3) X(3) X(3)

Since the nine outcomes are equally likely, the probabilities
associated with the first, second, and third order statistic corre-
sponding to the maximum of the two lifetimes in the bootstrap
sample are 1/9, 3/9, and 5/9. Therefore, the expected system
lifetime using bootstrapping is

E
(
S∗) = 1

9
E

(
X(1)

) + 3

9
E

(
X(2)

) + 5

9
E

(
X(3)

)
.

Using the standard order statistic results (see, e.g., Arnold
et al. 2008) for random variables from a continuous population
to calculate these expected values:

E
(
S∗) = 1

9
· 1

3
+ 3

9
· 5

6
+ 5

9
· 11

6
= 4

3
.

So the bootstrapping approach underestimates the true ex-
pected system lifetime of 3/2. Specifically the bias is E(S∗) −
E(S) = 4/3 − 3/2 = −1/6. The next section of this article will
use the previous section’s results to prove a general result that
quantifies this bias for such parallel systems.
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4. BIAS RESULT FOR TWO AND m IID
COMPONENTS IN PARALLEL OR IN SERIES

The example in the previous section has shown that bootstrap-
ping can underestimate the mean system lifetime of a simple par-
allel system. The following theorems indicate that this result is
true in general and that the bootstrap estimate is asymptotically
unbiased. Theorem 1 establishes that bootstrapping underesti-
mates the mean system lifetime for a two-component parallel
system. In fact, since E(S) > E(X), the bias will always be
negative. The result can be interpreted as follows: the bias is
−1/n times the expected improvement of increasing from one
component to two components in parallel. Theorem 2 states
that bootstrapping overestimates the mean system lifetime for
a two-component series system and that the magnitudes of the
two biases are equal.

Theorem 1. For a system consisting of two independent,
statistically identical components with finite population means
arranged in parallel, the bias resulting from the bootstrap esti-
mation of the mean system lifetime is

E(S∗) − E(S) = −E(S) − E(X)

n
.

Theorem 2. For a system consisting of two independent,
statistically identical components with finite population means
arranged in series, the bias resulting from the bootstrap estima-
tion of the mean system lifetime is

E(T ∗) − E(T ) = E(X) − E(T )

n
= −(

E(S∗) − E(S)
)
,

which, as indicated, is the negative of the result for the boot-
strapping bias for a parallel system.

The proof to Theorem 1 is given in Appendix A. The proof to
Theorem 2 is similar to that of the first, and is presented in this
journal’s online supplementary materials section. Both proofs
start with the underlying properties of X∗ and S∗ that were out-
lined in Section 2. The difficult part of the proof is finding E(S∗),
after that the result readily follows. Table 1 contains expressions
for the bias for several popular survival distributions with pos-
itive support, positive scale parameter η, and positive shape
parameter κ . Note that for the gamma distribution, 2F1(·) refers
to the regularized hypergeometric function, which is reviewed
with a bibliography by Weisstein (2013) and can be calculated in
numerous software packages including Mathematica and Maple
(see Wolfram 2011 and Maplesoft 2012). The exact form of
2F1(·) is given in the Appendix B. The gamma distribution bias

Table 1. Bootstrapping bias for parametric survival distributions

Distribution f (t) E(S∗) − E(S)

gamma(η, κ)
xκ−1exp(−t/η)

ηκ�(κ)
− η� (1 + 2κ) 2F1(κ, 1 + 2κ, 2 + κ, −1)

n�(κ)

Weibull(η, κ)
κ

η

(
t

η

)κ−1

exp

[
−

(
t

η

)κ]
− η

(
1 − 2−1/κ

)
� (1 + 1/κ)

n

exponential(η) η−1exp(−t/η) − η

2n

log logistic(η, κ)
κ(t/η)κ−1

η[1 + (t/η)κ ]2
− ηπ

nκ2 sin(π/κ)
, κ > 1

formula when κ = 1 simplifies to the corresponding exponential
distribution bias formula given in the table.

Some distributions do not have closed form expressions for
bias, such as the log-normal distribution. Even in these cases
of no closed form, numerical methods yield bias calculations.
Given that FX(t) is available, the bias can be calculated an-
alytically or numerically with the following application of
Theorem 1:

−1

n

(
E(S) − E(X)

) = −1

n

( ∫ ∞

0

(
1 − F 2

X(t)
)
dt

−
∫ ∞

0

(
1 − FX(t)

)
dt

)
= −1

n

∫ ∞

0
FX(t)

(
1 − FX(t)

)
dt.

This result has a useful graphical interpretation. The integrand
is the multiplication of the individual component’s CDF times
its survivor function (SF) 1 − FX(t). The integrand is plotted
in Figure 2, which also contains the CDF and SF of a typical
lifetime distribution. The area under that integrand, labeled β, is
proportional to the bootstrap bias, specifically, the bias is −β/n.
More importantly, if one substitutes the parametric CDF and SF
with the respective empirical CDF and SF, Fn(t) and 1 − Fn(t),
then an empirical estimate for bias can also be calculated. Thus,
one must estimate E(S) with E(S∗), producing the empirical
estimate of bias as

E(S∗) − E(S) ≈ −1

n

(
E(S∗) − E(X∗)

)
.

This estimate of bias has a smaller bias of order 1/n2, typ-
ically less than one tenth of one percent of a component’s ex-
pected lifetime for reasonable sample sizes. As we shall see, the
empirical bias estimates are within the variability of bias results
for various assumptions of parametric distributions.

We can generalize the results of this section for sys-
tems consisting of m components in parallel (or series),
but the same simplifications do not follow. If we let S∗

m =
max{X∗

1, X
∗
2, . . . , X

∗
m} be the bootstrap estimate of system life-

time for m components in parallel, then, following a similar
approach to the one used in proving Theorem 1, we can find the
exact bootstrap bias for a system consisting of m components in

Figure 2. The CDF and SF of a lifetime distribution with its associated
bias, which is proportional to the area β.
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parallel:

E(S∗
m) − E(Sm) =

∫ ∞

0
tfS∗

m
(t) dt −

∫ ∞

0
tfSm

(t) dt

=
∫ ∞

0

n∑
i=1

im − (i − 1)m

nm
· n!

(n − i)!(i − 1)!

tfX(t)F i−1
X (t)(1 − FX(t))n−i dt

−
∫ ∞

0
tmfX(t)Fm−1

X (t) dt.

For example, substituting m = 3 and following a similar
approach to the one used in Appendix A yields

E(S∗
3 ) − E(S3) = (−3n + 2)E(S3) + 3(n − 1)E(S2) + E(X)

n2
.

(1)

We can produce analogous general expressions for bias re-
lated to bootstrap estimates for series system lifetimes and let-
ting m = 3:

E(T ∗
3 ) − E(T3) = (−3n + 2)E(T3) + 3(n − 1)E(T2) + E(X)

n2
.

(2)

Empirical estimates for m = 3 can be similarly constructed by
substituting E(S∗

m) and E(T ∗
m) for the appropriate E(Sm) and

E(Tm) on the right-hand side of (1) and (2).
Interestingly, assuming different underlying parametric distri-

butions results in fairly consistent bias estimates. Table 2 shows
the effect of assuming different distributional families for each
component in a two-component parallel system. In each case,
the sample size was fixed at n = 25 and the distribution’s pa-
rameters were chosen so that the data had identical population
first and second moments μ and σ 2. In other words the different
distributions are “similar” at least in “center” and “spread.” Note
the empirical estimates of bias are within the range of parametric
biases, making the concern of the bias’ bias less pressing. For the
Weibull and gamma distributions, the third and fourth columns
of the table represent data with an increasing failure rate (IFR)
hazard function, indicative of items that degrade with time, and
the last column corresponds to a decreasing failure rate (DFR),
indicative of items where “used” is better than “new.” In the IFR
case the bias is on the order of about 0.1% of the mean failure
time. In the DFR case, the biases vary significantly. Even in the
worst case (gamma) the bias is about 0.3% of the mean value
of the sample. The exponential distribution with means 62, 3,
and 20 has associated bootstrap biases −1.24, −0.06, and −0.4,
respectively. The exponential distribution lacks the advantage of
a second parameter, causing the bias to be of greater magnitude.
Note in the Weibull cases where m = 3 the bias is greater than
for m = 2. In general, we have observed that bias increases with
m, a conjecture that we have not proven.

5. A PRACTICAL EXAMPLE

In this section we present an example of a fully enumer-
ated bootstrap on the system in Figure 1. The fully enumerated
bootstrap (outlined in Efron and Tibshirani 1993) is generally

Table 2. Bootstrapping bias for parametric survival distributions for
an m-component parallel system for three population parameter settings
and sample size n = 25 with μ and σ 2 as shown

Moments and μ = 62 μ = 3 μ = 20
distribution m σ 2 = 10 σ 2 = 0.1 σ 2 = 2000

empirical 2 −0.0703 −0.0070 −0.6410
gamma 2 −0.0713 −0.0071 −0.6381
log logistic 2 −0.0696 −0.0069 −0.3705
log normal 2 −0.0713 −0.0071 −0.5249
Weibull 2 −0.0693 −0.0070 −0.5992
Weibull 3 −0.0894 −0.0093 −1.4516

untenable for typical operations involving sums of random vari-
ables. Minimum and maximum operations, however, are much
more amenable to a fully enumerated bootstrap. Consider, for
example, S∗ and T ∗. The size of their support is limited from
above by the total number of distinct observations in the sample
X. For more complicated coherent systems, the support size of
the system bootstrap random variable is similarly constrained
because each element in the support of the system lifetime distri-
bution is one of the component lifetimes. The following example
illustrates the limited support of RBD systems. The open source
Maple-based software A Probability Programming Language
(APPL) (Drew et al. 2008) allows for such fully enumerated
bootstraps of RBDs as well as other systems.

Referring to Figure 1, let the three types of components,
A, B, and C, also have previous life test datasets of size
nA = 45, nB = 60, and nC = 45, respectively, for each com-
ponent. The failure times are stored in the Maple lists alist,
blist, and clist. Assume that a system designer wants to
estimate the lifetime distribution of a system with the series
arrangement of parallel subsystems shown in Figure 1. The
fully enumerated bootstrap lifetime distribution for this sys-
tem, S∗ = min{max{A∗

1, A
∗
2}, max{B∗

1 , B∗
2 }, max{C∗

1 , C∗
2 }}, can

be found with the following APPL commands:
A := BootstrapRV(alist);
B := BootstrapRV(blist);
C := BootstrapRV(clist);
Sstar := Minimum(MaximumIID(A, 2),

Minimum(MaximumIID(B, 2),
MaximumIID(C, 2)));

Note the embedded Minimum commands, a necessity since
that command only takes on two arguments. The BootstrapRV
procedure transforms a list into a discrete uniform random vari-
able in APPL’s list-of-lists format. For a specific set of data
(available in the online supplementary materials), the fully enu-
merated bootstrapped system was produced and a portion of the
138-element PMF for S∗ is as follows:

pS∗ (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2025, t = 2.268
1/675, t = 3.678

...
2009/7290000, t = 10.051
3599/810000, t = 11.262

...
10057/20250000, t = 173.620
1157/750000, t = 179.461.
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This PMF and the associated CDF are graphed in Figure 3.
The graph does not include the vertical lines of a typical plot
because they would eclipse some of the points in the plot. Also,
each point in the PMF plot has a unique value on the horizontal
axis, even though the pattern appears to have points on top of
other points. Note how FS∗ (t) approximates a smooth curve,
that of some underlying, but unknown, continuous FS(t). Since
the PMF of S∗ is exactly determined, all the typical character-
istics of S∗ can be calculated, for example, the mean, variance,
skewness, and percentiles. For example E(S∗) = 78.78 and
the 5th percentile of the system lifetime is 31.95. Also, note
that the support size of S∗ is limited above by the total num-
ber of the individual component failure times, that is, nS∗ =
138 ≤ nA + nB + nC = 45 + 60 + 45 = 150. The algorithm to
find FS∗(t) executes quickly, in approximately O(nA + nB + nC)
time. In general, for all m, parallel and series systems will exe-
cute in O(n) time, as minimum and maximum operations only
use the observed failure times. No new values are created that
could become support values in S∗. This is unlike a cold backup
system, with system lifetime T = X1 + X2, in which a fully
enumerated bootstrap would execute very slowly, on the order
of O(n2), since all n × n possible support values would need
to be enumerated. The authors have done extensive research in
these more difficult algebraic structures, creating PMFs with
thousands of support values for relatively simple models.

Estimating bias in S∗ is possible, but it requires simulation
and distributional assumptions. Unlike the case of IID compo-
nents in series or parallel, there are no easily formed analytic
results for non-IID cases, in part due to the innumerable po-
tential configurations of the more complex systems. Using an
“estimate then simulate” approach, one can calculate a bias esti-
mate for the system. Making parametric assumptions is helpful
in this process, as we will outline next.

Consider the lifetime data available for the individual com-
ponents A, B, and C. The “estimate” step of the bias estimation
process is as follows:

1. Assume a Weibull model for each of the three compo-
nent types and calculate the associated maximum likelihood

estimates η̂A, κ̂A, η̂B, κ̂B, η̂C, and κ̂C from each lifetime
dataset.

2. Form the estimated CDF for the system

F̂S(t) = 1 −
[
1 − (

1 − exp(t κ̂A/η̂A)
)2

]

·
[
1−(

1−exp(t κ̂B/η̂B)
)2

]
·
[
1−(

1−exp(t κ̂C/η̂C)
)2

]

for t > 0.
3. Find the expected system lifetime of the estimated system

Ê(S) =
∫ ∞

0

(
1 − F̂S(t)

)
dt.

The “simulate” step of the process is as follows:

1. For each i iteration of the simulation, draw nA simulated
component lifetimes from the Weibull(η̂A, κ̂B) distribution,
and likewise nB and nC lifetimes from the respective distri-
butions for components B and C.

2. Calculate the empirical distribution for S∗
i from these com-

ponent lifetimes using the appropriate APPL Minimum and
Maximum commands outlined earlier in this section.

3. Calculate the mean E(S∗
i ) for the system.

4. Calculate this iteration’s simulated bias, bi = E(S∗
i ) − Ê(S).

5. Repeat this simulation many times, storing each bi .
6. Find the mean and standard deviation of the bias estimates,

b̄ and sb̄.

This simulation was conducted for 2500 iterations using the
values of alist, blist, and clist for the original component
lifetimes. In this case b̄ = −0.3553, sb̄ = 4.513, and a 95%
confidence interval for b was (−0.5323,−0.1783).

To validate that the simulation presents estimates that are rea-
sonable, we have conducted two different evaluations. First, we
simulated this “estimate then simulate” process in its own set of
simulations. In this effort we established true η and κ parameters
for each component. We then simulated 20 sets of life-time data
for each component. For each of the 20 sets of data we conducted
the “estimate then simulate” process 500 times to produce

Figure 3. The PMF (left) and CDF (right) of the estimated lifetime of the complex system.
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20 values of b̄, Ê(S), and 20 confidence intervals. An ANOVA
of the 20 × 500 bias values, versus the factor Ê(S) showed that
the b̂ estimates were statistically similar. We also simulated the
effect of reducing the sample sizes for the lifetime data of some
of the components. As expected, the bias estimates grew both
in expected magnitude and standard deviation when the size of
component failure time datasets decreased. This algorithm could
be altered to fit specific purposes. For example, one could make
the original procedure more robust by averaging over several
parametric model assumptions, should that level of confidence
be necessary.

The second evaluation of the method involved comparing
known bias with simulated bias. We applied this “estimate then
simulate” process to IID components in parallel (the subsystems
in Figure 1) and compared the simulated bias estimates to the
true, analytic biases. In each case the 95% confidence intervals
for simulated bias captured the analytic bias. This gives us ratio-
nale to opine that the two methods produce stochastically similar
bias estimates for these parallel subsystems. Furthermore, the
agreement of the analytic and simulated results argues in fa-
vor of applying the “estimate then simulate” method to the full
system as a way of estimating bias.

In addition to modeling S∗ and estimating its bias, a further
use of the enumerated bootstrap could be exploring the effect
of system design on the system lifetime distribution. Consider
again the system in Figure 1. A system designer might want
to improve that system by investigating how many components
of type A in parallel it would take to increase both the system
mean lifetime and the system 5th percentile by, say, 12%. The
iterative calculations in APPL and Maple (Maplesoft, 2012),
using the code in Appendix C, are used to calculate the an-
swer. It turns out that five components of type A arranged in
parallel produce the desired increase of 12% in both the mean
and 5th percentile, leaving the designers to then conduct a cost-
benefit analysis of the improved system. Further still, one can
investigate the asymptotic benefit of even more components of
type A in parallel. Let target be the desired increase in mean
system lifetime. By changing the value of the variable target
(in Appendix C) in the loop to 1.13, 1.14, 1.15, and 1.16, one
finds that the number of type A components in parallel is re-
quired to be 6, 7, 20, and ∞, respectively. The asymptotic upper
limits of the mean and the 5th percentile are approximately
90.61 and 41.66, respectively, as the number of parallel type A
components approaches infinity.

Clearly, without a fully enumerated bootstrap, the above iter-
ative method of exploring system design would become much
more computationally expensive. Also, multiple resampling er-
ror analyses would have to be conducted at each iteration. In
these situations, increasing the bootstrap iteration value B is
not as simple as it sounds, as one would have iteration within
iteration. One can imagine even more complex optimization
algorithms than those above and the benefits of the enumer-
ated bootstrapping become more apparent. Finally, in further
research, we have also investigated the cold start backup of
components (statistically, distributions of convolutions) using
enumerated bootstrapping. Comparing parallel structures of sys-
tems to cold start backup structures are now possible, each time
getting an exact distribution for the system. In fact all sorts of

algebraic operations are possible for other types of systems as
well as statistics, many of which we are still investigating. Work
on this is also being extended to k-out-of-n type systems as well
as cold backup systems.

6. CONCLUSION

Using bootstrapping on a parallel (or series) systems with
statistically identical components underestimates (or overesti-
mates) the expected system lifetime. An expression for the bias
for all values of n is closed-form. Exact bias results are calcu-
lated for two- and three-component systems. Fully enumerated
bootstraps are possible, and an application of such bootstrapping
is provided.

APPENDIX A

We restate and prove Theorem 1, the bias associated with the
bootstrapping for the two-component parallel case. A similar
proof construction applies for Theorem 2, the series case, and the
more general result for m items in parallel or series. This extra
derivation is available in the online supplementary materials
section of the journal.

Theorem A.1. For a system consisting of two independent,
statistically identical components with finite population means
arranged in parallel, the bias resulting from the bootstrap esti-
mation of the mean system lifetime is

E(S∗) − E(S) = −E(S) − E(X)

n
.

Proof. The conditional CDF of X∗, given a random sample
X, is the EDF

FX∗|X(t |x) =
⎧⎨
⎩

0 t < x(1)

i/n x(i) ≤ t < x(i+1), i = 1, 2, . . . , n − 1
1 t ≥ x(n).

The conditional CDF of S∗ = max{X∗
1, X

∗
2} is

FS∗|X(t |x) = P (max{X∗
1, X

∗
2} ≤ t |X = x)

= P (X∗
1 ≤ t |X = x) × P (X∗

2 ≤ t |X = x)

= F 2
X∗|X(t |x)

=
⎧⎨
⎩

0 t < x(1)

i2/n2 x(i) ≤ t < x(i+1), i = 1, 2, . . . , n − 1
1 t ≥ x(n).

The conditional probability mass function (PMF) of S∗on its
support is

pS∗|X(t |x) = FS∗|X(t |x) − lim
τ→t−

FS∗|X(τ |x) = i2 − (i − 1)2

n2

= 2i − 1

n2
t = x(i), i = 1, 2, . . . , n.

Applying the law of total probability and the result con-
cerning the probability distribution of order statistics associated
with a continuous population, the PDF of the bootstrap system
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lifetime is

fS∗ (t) =
n∑

i=1

pS∗|X(t |x)fX(i) (t) =
n∑

i=1

2i − 1

n2

· n!

(n − i)!(i − 1)!
fX(t)F i−1

X (t)
(
1 − FX(t)

)n−i
(A.1)

on its support. Using the binomial theorem to expand
(
1 −

FX(t)
)n−i

and then reordering the sums, we can rewrite (A.1) as

fS∗ (t) =
n∑

i=1

2i − 1

n2
· n!

(n − i)!(i − 1)!
fX(t)F i−1

X (t)

×
n−i∑
j=0

(
n − i

j

)
(−1)n−i−jF

n−i−j

X (t)

=
n−1∑
j=0

fX(t)n!

j !n2

n−j∑
i=1

(2i − 1)(−1)n−i−j

(n − i − j )!(i − 1)!
F i−1

X (t)Fn−i−j

X (t)

= fX(t)

n

n−1∑
j=0

(n − 1)!(n − j − 1)!Fn−j−1
X (t)

j !(n − j − 1)!

×
n−j∑
i=1

(2i − 1)(−1)n−i−j

(n − i − j )!(i − 1)!

= fX(t)

n

n−1∑
j=0

(
n − 1

j

)
F

n−j−1
X (t)

×
n−j∑
i=1

(
n − j − 1

n − i − j

)
(2i − 1)(−1)n−i−j . (A.2)

Making the substitution α = n − i − j in the right-most sum-
mation,
n−j∑
i=1

(
n − j − 1

n − i − j

)
(2i − 1)(−1)α =

n−j−1∑
α=0

(
n − j − 1

α

)

(
2(n−j−α)−1

)
(−1)α

= −2
n−j−1∑
α=0

(
n−j−1

α

)
α(−1)α

+ (2n − 2j − 1)
n−j−1∑
α=0

(
n−j−1

α

)
(−1)α.

(A.3)

Using the binomial expansion of (1 + t)n−j−1 and its deriva-
tive,

(1 + t)n−j−1 = ∑n−j−1
α=0

(
n−j−1

α

)
tα

(n − j − 1)t(1 + t)n−j−2 = ∑n−j−1
α=0

(
n−j−1

α

)
αtα,

we can simplify the summations for certain values of j in (A.3):

n−j−1∑
α=0

(
n − j − 1

α

)
(−1)α

=
{

1 j = n − 1
(1 − 1)n−j−1 = 0 j = 0, 1, . . . , n − 2,

and

n−j−1∑
α=0

(
n − j − 1

α

)
α(−1)α

= (−1)
n−j−1∑
α=0

(
n − j − 1

α

)
α(−1)α−1

=
{−1 j =n − 2
−(n−j−1)(1−1)n−j−2 =0 j =0, 1, . . . , n−1, n−3.

Substituting these results into (A.3), we have

n−j∑
i=1

(
n − j − 1

n − i − j

)
(2i − 1)(−1)α =

⎧⎨
⎩

1 j = n − 1
2 j = n − 2
0 j = 0, 1, . . . , n − 3.

The PDF of S∗ from (2) therefore simplifies to

fS∗ (t) = fX(t)
(
2(n − 1)FX(t) + 1

)
n

= 2(n − 1)fX(t)FX(t) + fX(t)

n
.

Using the identities

E(X) =
∫ ∞

0
tfX(t) dt,

FS(t) = F 2
X(t),

E(S) =
∫ ∞

0
tF ′

S(t) dt =
∫ ∞

0
2tfX(t)FX(t) dt,

gives a general result for E(S∗):

E(S∗) = (n − 1)
∫ ∞

0 2tfX(t)FX(t) dt + ∫ ∞
0 tfX(t) dt

n

= (n − 1)E(S) + E(X)

n
.

The bias result follows. �

APPENDIX B

The generalized hypergeometric function, 2F1(·) is the following
infinite sum:

2F1(a, b, c, z) =
∞∑

n=0

(a)n(b)n
(c)n

· zn

n!
,

where (·)n is the Pochhammer symbol that is shorthand for

(x)n = �(x + n)

�(x)
.
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This series converges when |z| < 1. Continuity arguments allow
for calculating 2F1(·) at z = −1. For a full explanation of the
function, see Weisstein (2013).

APPENDIX C

The following code, referred to in Section 5, explores the number
of type A components to place in parallel to produce the desired
increase in performance in the system.
n := 2;
target := 1.12;
m := 78.78;
p5 := 31.95;
mux := m;
pct := p5;
while (mux < target * m or pct < target * p5)
do

n := n + 1;
System := Minimum(MaximumIID(A, n),
Minimum(MaximumIID(B, 2),

MaximumIID(C, 2)));
mux := Mean(System);
pct := IDF(System, 0.05);
end do;

print(n);

SUPPLEMENTARY MATERIALS

The first section of the supplement provides the proof of a
series system that is analoguous to the parallel system of the

primary article. The second section provides the data sets
used in the example in Section 5.

[Received May 2012. Revised May 2014.]
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