
INFORMS Journal on Computing
Vol. 24, No. 1, Winter 2012, pp. 10–28
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.1110.0452

© 2012 INFORMS

Transient Queueing Analysis

William H. Kaczynski
Department of Mathematical Sciences, United States Military Academy, West Point,

New York 10996, william.kaczynski@usma.edu

Lawrence M. Leemis, John H. Drew
Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187

{leemis@math.wm.edu, jhdrew@math.wm.edu}

The exact distribution of the nth customer’s sojourn time in an M/M/s queue with k customers initially
present is derived. Algorithms for computing the covariance between sojourn times for an M/M/1 queue

with k customers present at time 0 are also developed. Maple computer code is developed for practical appli-
cation of transient queue analysis for many system measures of performance without regard to traffic intensity
(i.e., the system may be unstable with traffic intensity greater than 1).

Key words : exponential distribution; Poisson process; queueing theory
History : Accepted by Winfried Grassmann, Area Editor for Computational Probability and Analysis; received

October 2009; revised May 2010; accepted January 2011. Published online in Articles in Advance June 17, 2011.

1. Introduction
Many traditional simulation studies analyze queueing
systems in steady state, requiring appropriate warm-
up periods and associated long simulation runs. How-
ever, in many cases, the system being modeled never
reaches steady state; thus steady-state simulation
results do not accurately portray the system behavior.
The ability to analyze transient results associated with
such models is often complicated by intractable the-
ory, leaving simulation as the only method for anal-
ysis. Further complicating the transient analysis is
the effect of initial conditions (Kelton and Law 1985).
Because steady-state results depend on running the
system long enough to negate the impact of initial
conditions, these steady-state results reveal nothing
about the transient behavior of the queueing system.
Our purpose here is to combine new and existing
results in transient queueing analysis with a symbolic
engine in computational probability.

There are many classes of queueing systems in
which a transient analysis is required; e.g., ser-
vice businesses often model queues that never reach
equilibrium. The need to develop theory for tran-
sient results, as opposed to steady-state results, has
resulted in wide literature in this area. Initial work in
transient analysis ironically appeared as an attempt
to measure when a system achieved equilibrium.
Law (1975) notes the consequences of failing to ade-
quately account for the initial transient period, which
led Gafarian et al. (1976) to develop a comprehen-
sive framework for the initial transient problem.
Morisaku (1976) addresses the time to equilibrium

in simulations modeling the M/M/1 queue and pro-
vides schematics for the transition probabilities given
k ≥ 0 customers initially present at time t = 0. Grass-
mann (1977) compares three methods for finding
transient solutions in Markovian queueing systems—
Runge–Kutta, Liou’s method, and randomization—
where randomization is shown as superior for large
sparse transition matrices. Pegden and Rosenshine
(1982) provide a closed-form expression for the prob-
ability of exactly i arrivals and j servicings over
a time horizon of length t in an M/M/1 queue
starting empty and idle; this expression allows the
calculation of certain performance measures for a
specified time period. Odoni and Roth (1983) take
an empirical approach to compare observed and pre-
dicted transient-state queue lengths for the M/M/1
queue, noting that for small values of t, the expected
queue length is strongly influenced by initial con-
ditions, and they provide a good approximation for
an upper bound of the time to steady state. Kelton
and Law (1985) consider the M/M/s 4s ≥ 15 queue
and provide expressions to calculate the probabili-
ties of having up to n + k customers in the system
upon the arrival of the nth customer, where k is the
number of customers in the system at time t = 0.
Kelton and Law then apply these calculations to a
variety of measures of performance with implications
to convergence on steady-state delays, and they offer
methods for choosing queue initialization in simula-
tion. Much of the work in this paper is motivated
by their results. Kelton (1985) extends the previous
work by considering M/Em/1 and Em/M/1 queues.
Parthasarathy (1987) provides a transient solution for
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the probability that there are n customers in the sys-
tem at time t for an M/M/1 queue. Abate and Whitt
(1988) use Laplace transformations to analyze some
transient results of interest in the M/M/1 queue.
Leguesdron et al. (1993) provide transient probabili-
ties for the M/M/1 queue by inverting the generating
function of the uniformized Markov chain describing
the M/M/1 process. Transient distributions of cumu-
lative reward are calculated by de Souza e Silva et al.
(1995) using uniformization, where the distribution
of cumulative reward is over a finite interval with
reward rates represented by Markov model states.
Grassmann (2008) investigates warm-up periods in
simulation and shows that in many cases these warm-
up periods should not be used, especially if the simu-
lation begins in a high probability state. In this paper
we focus on the transient analysis of the M/M/1
and the more general M/M/s queues—specifically, on
the distribution of the nth customer’s sojourn time,
which is the sum of the nth customer’s delay and
service times. Almost all the above-mentioned refer-
ences address measures of performance specified over
a finite time interval and are the results of numer-
ical work. This is in stark contrast to the measures
proposed here, which are based on the exact distribu-
tion of specific customers. Rather than arriving at the
results numerically, a computer algebra system is uti-
lized that offers exact measures of performance based
on a given number of customers.

The M/M/s queue is defined in §2 for a positive
integer s, and a method is given for calculating the
probability distribution of the number of customers
an arriving customer sees upon arrival to an M/M/s
queue. Section 3 describes how the sojourn time dis-
tribution is calculated for a given customer in an
M/M/s queue with k ≥ 0 customers initially present
in the system. Section 4 includes examples using the
implemented procedures to calculate exact sojourn
time distributions, related measures of performance,
and graphical illustrations for varying parameters
such as traffic intensity and number of customers
in the system. Section 5 offers two approaches for
calculating the covariance and correlation among
customers in an M/M/1 queue. Sections 6 and 7
extend the covariance and correlation calculations by
automating the process of finding the joint probabil-
ity density function of two sojourn times, and pro-
vide the exact covariance and correlation calculations
for varying traffic intensities and account for occa-
sions where customers are present at time 0. Section 8
concludes the paper with a review of the content
and offers areas of further study. Commented code is
available for all computations conducted here.

2. Basics of the M/M/s Queue
The M/M/s queue is governed by independent and
identically distributed (iid) exponential interarrival

times (the arrival stream is a Poisson process) with
arrival rate � and iid exponential service times among
s identical servers, each with service rate �. The inter-
arrival times and the service times are mutually inde-
pendent. The traffic intensity of the system is �= �/s�.
The system consists of a single queue with customers
waiting to be serviced by one of the s identical parallel
servers. If an arriving customer finds at least one idle
server, the customer immediately proceeds to service;
otherwise, the customer joins the single queue of those
waiting for service in a first-come, first-served manner.
To achieve classic steady-state results, the traffic inten-
sity must satisfy � < 1. This critical assumption is not
required in transient analysis described here, because
the system of interest never reaches equilibrium.

Let Pk4n1 i5 be the probability that, upon the arrival
of the nth customer, there are i customers in the sys-
tem including the nth customer (in queue or in ser-
vice) given k customers are present at time t = 0.
Using propositions provided by Kelton and Law
(1985), reprinted here for completeness (proofs are
available in the reference) as well as a recursion algo-
rithm, Pk4n1 i5 for i = 1121 0 0 0 1n+ k can be computed.
Using these probabilities, it is possible to find the dis-
tribution of the sojourn time for the nth customer in
an M/M/s queue given k customers are present at
time t = 0. Proposition 1 addresses the case of no exits
prior to the nth customer’s arrival given k ≥ 1. Propo-
sition 2 is identical to Proposition 1 except that the
system is empty and idle at t = 0 (i.e., k = 0). Proposi-
tion 3 addresses the case that the first customer finds
i− 1 other customers present for k > 0. Proposition 4
is the more general case that customer n ≥ 2 finds i
other customers present given k ≥ 0.

Proposition 1. If k ≥ 1, then for n≥ 1,

Pk4n1k+n5=















































6�/4�+ 157n if k ≥ s1

�n
/

n
∏

j=1

6�+ 4k+ j − 15/s7 if k+n≤ s1

�n
/

[

4�+ 15n−s+k
s−k
∏

j=1

6�+ 4k+ j − 15/s7
]

if k < s < k+n0

Proposition 2. For n≥ 1,

P04n1n5=














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





�n
/

n
∏

j=1

6�+4j−15/s7 if n≤s1

�n
/

[

4�+15n−s
s
∏

j=1

6�+4j−15/s7
]

if n>s0
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Proposition 3. If k ≥ 1, then for 2 ≤ i ≤ k,

Pk411i5

=










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
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












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
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
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




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

8�/6�+4i−15/s79

·

k−i+1
∏

j=1

81−�/6�+4k−j+15/s79 if k≤s1

�/4�+15k−i+2 if k>s and i>s1

8�/64�+15k−s+16�+4i−15/s779

·

s−i
∏

j=1

81−�/6�+4s−j5/s79 if i≤s<k0

Proposition 4. For n≥ 2, and 2 ≤ i ≤ k+n− 1,

Pk4n1i5=


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
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


















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k+n−1
∑

j=i−1

61/4�+157j−i+1Pk4n−11j5

if i>s1

8�/6�+4i−15/s79

·

{ s−1
∑

j=i−1

[j−i+1
∏

h=1

81−�/6�+4j−h+15/s79
]

·Pk4n−11j5+
[ s−i
∏

h=1

81−�/6�+4s−h5/s79

]

·

k+n−1
∑

j=s

61/4�+157j−s+1Pk4n−11j5
}

if i≤s0

Using these four propositions, Pk4n115 is calculated
by subtracting the complementary probability from
one. These results can be generated by invoking the
Maple procedure MMsQprob(n,k,s), where

• n is the index of the customer of interest,
• k is the number of customers in the system at

time t = 0, and
• s is the number of identical parallel servers.

The procedure is written in Maple and uses A Prob-
ability Programming Language (APPL), which can
be downloaded for free at http://www.APPLsoftware
.com and is described in Glen et al. (2001). We
choose to calculate the distribution of the sojourn time
because it is a purely continuous random variable that
enables us to exploit associated procedures in APPL.

3. Creating the Sojourn Time
Distribution

Once the necessary Pk4n1 i5, i = 1121 0 0 0 1n + k, prob-
abilities are calculated, the exact sojourn time distri-
bution for the nth customer can be calculated. We
define Xn as the number of customers, including cus-
tomer n, in the system upon the arrival of the nth
customer. The possible values of Xn can vary from a
minimum of 1, which occurs when customer n arrives

to an empty queue with idle servers, to a maximum
of n + k, which occurs when zero exits occur prior
to customer n’s arrival, matching the possible val-
ues for i in the expression for Pk4n1 i5. The mathe-
matical derivations for both the M/M/1 and M/M/s
queues make extensive use of the memoryless prop-
erty, which permits the construction of the distribu-
tion of Tn (the sojourn time of customer n). We present
each case separately.

3.1. Distribution of Tn for the M/M/1 Queue
For an M/M/1 queue starting empty and idle, the
delay time of the first customer is zero because the
customer proceeds directly to service upon arrival.
Therefore, the first customer has an exponential(�)
sojourn time distribution. Conditioning on cus-
tomer 1’s service time, one can calculate the probabili-
ties of customer 2 arriving before and after customer 1
finishes service. These well-known results (Kleinrock
1975, Hillier and Lieberman 2005, Winston 2004) are

Pr4Y <X5=
�

�+�
1 Pr4X < Y 5=

�

�+�
1

where X is an exponential(�) interarrival time and Y
is an exponential(�) service time. The first probability
represents customer 2 proceeding directly to service,
in which case his sojourn time is simply his service
time (exponential(�)). The second probability repre-
sents the likelihood that customer 2 will delay prior
to service. Using the memoryless property, customer 2
delays an exponential(�) time before being serviced
in an additional exponential(�) time. Using these two
probabilities, it is easy to see that customer 2’s sojourn
time distribution is a mixture where the mix probabil-
ities are P04n1 i5 and the distributions are determined
by the orderings of delays and services potentially
encountered. It is well known that for X11X21 0 0 0 1Xn

iid exponential(�) random variables
n
∑

i=1

Xi ∼ Erlang4�1n50 (1)

Using this result, the M/M/1 queue sojourn time dis-
tribution for k = 0 initial customers generalizes very
elegantly to include k > 0, as indicated in Table 1.
Line i of Table 1, where i = 1121 0 0 0 1n+k, occurs with
probability Pk4n1 i5 and lists the distribution of the
sojourn time for the nth customer, conditioned on i
customers being in the system upon his arrival.

Let gi4t5 be the probability density function (PDF)
of an Erlang4�1 i5 random variable. Using the condi-
tional sojourn time distributions for i = 1121 0 0 0 1n+ k
potential customers in the system, each with proba-
bility Pk4n1 i5, the PDF for the nth customer’s sojourn
time Tn is the mixture

fn4t5=

n+k
∑

i=1

Pk4n1 i5gi4t51 t > 00 (2)
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Table 1 Conditional Sojourn Time Distributions for the M/M/1 Queue

Conditional sojourn
Xn Delay Service time distribution

1 0 exponential(�) exponential(�)
2 exponential4�5 exponential(�) Erlang4�125
3 Erlang4�125 exponential(�) Erlang4�135
4 Erlang4�135 exponential(�) Erlang4�145
0
0
0

0
0
0

0
0
0

0
0
0

n+ k Erlang(�1n+ k − 1) exponential(�) Erlang(�1n+ k)

This result is simple in the M/M/1 case because we
can take advantage of (1), which results in a mixture
of n+ k Erlang distributions.

3.2. Distribution of Tn for the M/M/s Queue
Given s > 1 parallel identical servers, the nth cus-
tomer’s sojourn time distribution is still a mixture of
n+k conditional sojourn time distributions. However,
each distribution might be more complicated. For
illustration, consider an M/M/3 queue starting empty
and idle with exponential(�) arrivals and three iden-
tical exponential(�) servers. It is clear that for cus-
tomers 1, 2, and 3, the sojourn time is exponential(�)
because all three customers proceed directly to ser-
vice. Therefore, in the general case, for the number of
customers in the system including customer n (which
we defined as Xn), the conditional sojourn time
distribution is exponential(�) when Xn ≤ s. How-
ever, if Xn > s, then the nth customer experiences a
delay while observing Xn − s service completions.
When s > 1 and Xn > s, the service time distribution
observed by customers in the queue is exponential
with a rate of s�. Using this result, it is apparent that
the delay time for the nth customer is the sum of
Xn−s independent exponential(s�) random variables,
and using (1) is Erlang(s�1Xn−s). To calculate the nth
customer’s sojourn time for a particular value of Xn,
we sum his delay and service times. Table 2 shows the
distributions conditioned on the number of customers
Xn encountered by customer n (including himself) for
the M/M/3 queue, given k = 0 customers present at

Table 2 Conditional Sojourn Time Distributions for the M/M/3 Queue
with k = 0

Conditional sojourn
Xn Delay Service time distribution

1 0 exponential(�) exponential(�)
2 0 exponential(�) exponential(�)
3 0 exponential(�) exponential(�)
4 exponential(3�) exponential(�) exponential(3�)⊕ exponential(�)
5 Erlang(3�, 2) exponential(�) Erlang(3�, 2)⊕ exponential(�)
0
0
0

0
0
0

0
0
0

0
0
0

n Erlang(3�1n− 3) exponential(�) Erlang(3�1n− 3)⊕ exponential(�)

time t = 0. The APPL procedure Convolution calcu-
lates the distribution of a sum of independent random
variables. We use the symbol ⊕ to denote convolution.

Since Xn represents the number of customers in the
system upon arrival of the nth customer (including
himself), the first row in Table 2 corresponds to
customer n arriving to an empty system, and the last
row corresponds to no service completions prior to
customer n’s arrival. The general form for the M/M/s
sojourn time PDF is identical to (2); however, in the
M/M/s case, each gi4t5 can potentially require an
additional step to calculate the distribution of a sum
of random variables.

4. Transient Analysis Applications
It is apparent that calculating (2) for large n is tedious.
Kelton and Law (1985) acknowledge the computa-
tional difficulty in achieving the Pk4n1 i5 probabilities
alone. Conducting the added steps of up to n − s
convolutions for the M/M/s queue and then mixing
the resulting conditional distributions with the appro-
priate probabilities can be complicated to implement.
APPL provides the underlying computational engine
to achieve exact results for such problems. The APPL
procedure Queue(X,Y,n,k,s) returns the exact sojourn
time distribution for customer n. Queue subsequently
calls MMsQprob(n,k,s), which uses recursion to calcu-
late the necessary Pk4n1 i5 probabilities. APPL is capa-
ble of symbolic results, as illustrated in Examples 1
and 2.

Example 1. Consider an M/M/1 queue with an
arrival rate � and a service rate � starting empty and
idle at time t = 0. For the fourth customer, calculate
the probabilities P0441 i5 for i = 1121314.

The APPL command MMsQprob(4,0,1) returns the
exact symbolic probabilities

P044115 =
5�2 + 4�+ 1
4�+ 155

1

P044125 =
�45�2 + 4�+ 15

4�+ 155
1

P044135 =
�243�+ 15
4�+ 154

1

P044145 =
�3

4�+ 153
1

where �= �/�. It is easy to verify that for any � > 0,
∑4

i=1 P0441 i5= 1, as is required. For example, a simple
substitution, letting �= 9/10, yields

P044115=
865000

24760991 P044125=
778500

24760991

P044135=
29970
1303211 P044145=

729
6859 0

Example 2. For the queue described in Example 1,
calculate the fourth customer’s sojourn time distribu-
tion, mean sojourn time, and sojourn time variance.
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The APPL statements
X := ExponentialRV(lambda);
Y := ExponentialRV(mu);
T := Queue(X,Y,4,0,1);
Mean(T);
Variance(T);

calculate the desired results. The first two lines
define the interarrival and service time distributions,
and the third line calculates the fourth customer’s
sojourn time distribution. The last two lines are self-
explanatory. The resulting PDF is

f44t5 =
1

64�+�55
�4e−�t

· 430�2
+ 30�3t + 24��+ 24�2�t + 6�2

+ 6�2�t

+ 9t2�4
+ 12t2�3�+ 3t2�2�2

+ t3�5

+ 2t3�4�+ t3�3�251 t > 00

Using f44t5, the Mean and Variance commands return

E6T47=
�5 + 6��4 + 26�2�3 + 16�3�2 + 17��4 + 4�5

�4�+�55

and

Var6T47 = 4181�2�8
+ 484�3�7

+ 816�4�6
+ 868�5�5

+ 574�6�4
+ 244�7�3

+ 40��9
+ 68�8�2

+ 12�9�+�10
+ 4�105/4�24�+�51050

Substituting � = 1 and � = 10/9, for example, the
results simplify to

f44t5=
5000

66854673e
−10/9t

· 4361t3
+ 2109t2

+ 5190t + 519051 t > 01

E6T47=
23323347
12380495 ≈ 1088391 and

Var6T47=
383506725720906
153276656445025 ≈ 2050210

The CPU time associated with the examples
is negligible. Examples 1 and 2 represent simple
applications of these procedures that circumvent time
intensive hand calculations.

Example 3. Calculate the mean sojourn time of the
30th customer in an M/M/2 queue with an arrival
rate �= 1, a service rate �= 9/20 (�= 10/9), and k = 3
customers initially present.

The mean can be calculated in a single APPL state-
ment by embedding the function calls:
Mean(Queue(ExponentialRV(1),ExponentialRV(9/20),

30,3,2));
which yields

42074703020765530930928383247885331056322365205

26343624731399405569875101728767946601484880

1386412835644747949355488763405

· 421534046672820071947860003352210296689224691

678842510431455073374994143953948660661783359

7075878645126387716456920630535−11

or, to four digits, 9.6345.

The ability to represent the sojourn time distribu-
tion for the nth customer in closed form also pro-
vides valuable information on asymptotic behavior for
queueing systems, including steady-state convergence
rates for different initial conditions. Figure 1 shows
the mean sojourn time for customer n = 1121 0 0 0 1120
in an M/M/1 queue with � = 1, � = 10/9, and
� = 9/10 for several values of k. The points that are
plotted have been connected by lines. As expected,
despite the initial condition, all cases appear to move
toward the steady-state value of 9 with increasing n.
The horizontal axis is only limited to n = 120 for
display purposes, and in fact, identical computations
were carried out for n > 300 customers to verify con-
vergence. However, as shown in the cases where k = 6
and k = 10, the convergence to steady state is not
always monotone. Additionally, in testing various
traffic intensities, the rate of convergence to steady
state increases rapidly with decreasing traffic intensity
for varying values of k.

APPL also has the ability to calculate the closed-
form cumulative distribution function (CDF) for
the nth customer’s sojourn time, which permits CDF
comparisons for varying n as well as distribution
percentiles for a given customer. The procedure call
CDF(T) returns the exact CDF for customer 4 (from
Example 1). Figure 2 displays the sojourn time CDF
for varying n with fixed k = 0 and �= 9/10. The dif-
ferences in CDFs across n correspond to the increasing
mean attributed to the delays experienced by succes-
sive customers; e.g., customer 2 has delay time 0 or
exponential(�), whereas the nth customer (for n> 2)
faces a finite mixture of n potential delay distribu-
tions. The CDF associated with n = � corresponds

120
n

10080604020

2

4

6

8 k = 10

k = 6

k = 3

k = 1

E
[T

n]

0

Figure 1 M/M/1 Mean Sojourn Time for �= 9/10 Given k at t = 0
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10
t

1550

0.0

0.2

0.4

0.6

0.8

1.0

n = 2

n =7

n = 20

n = ∞F
(t

)

Figure 2 M/M/1 Sojourn Time CDFs for Various n Given � = 1,
�= 10/9, �= 9/10, and k = 0

to the steady-state distribution of the sojourn time,
which is exponentially distributed with a mean of 9
(Kleinrock 1975).

Varying k for an M/M/1 queue also provides
another basis for comparison of CDFs. Figure 3
fixes n = 2 and � = 9/10, and it plots the result-
ing CDFs across k. Kelton and Law (1985) make a
similar comparison using convergence to steady-state
delay time. Using the CDF for multiple values of k
allows direct comparison of sojourn time percentiles
for customer n. As depicted, the sojourn time CDF
for customer 2 is extremely sensitive to the initial
condition k. As an illustration, the 80th percentiles for
k = 013, and 6 are

F −1
2 400805≈







10935 k = 01
40432 k = 31
70510 k = 60

These percentiles are achieved using the APPL
statements

108
t

6420

0.0

0.2

0.4

0.6

0.8

1.0

k = 0

k = 3

k = 6

F
(t

)

Figure 3 M/M/1 Sojourn Time CDFs for Customer n = 2 for Various k
Given �= 1, �= 10/9, and �= 9/10

X := ExponentialRV(1);
Y := ExponentialRV(10/9);
Z := Queue(X,Y,2,k,1);
IDF(Z,0.8);

when k = 013, and 6. The last statement, IDF(Z,0.8),
numerically solves FZ4z5= 0080 on the interval 401�5.

Given the complete specification of the sojourn
time distribution, one can use APPL to calculate not
only the mean but also the second, third, and fourth
moments for customer n. This is especially valuable
for steady-state analysis. It is common in simulation
to verify attainment of steady-state behavior by exam-
ining the mean delay or mean sojourn time. Although
some literature exists on estimating transient mean
and variance, we are not aware of any literature
addressing higher moments. Literature addressing the
second moment seems mostly focused on variance
estimation and not necessarily convergence. There-
fore, even when the first moment might acceptably
approximate the steady-state value, there is reason
for further analysis of higher moments. For exam-
ple, Figure 4 displays the first four moments of the
sojourn time for customer n in an M/M/1 queue,
where � = 1, � = 2, and � = 1/2, with the initial con-
dition k = 01418.

The code used to calculate the values plotted in Fig-
ure 4 is
X := ExponentialRV(1);
Y := ExponentialRV(2);
for i from 2 to 60 by 1 do
T := Queue(X,Y,i,k,1):
print(i,evalf(Mean(T)), evalf(Variance(T)),

evalf(Skewness(T)), evalf(Kurtosis(T))):
od:

for k = 014, and 8. The vertical dashed lines give
the smallest customer number for which all three
transient values are within 1% of the steady-state
value. The relatively low traffic intensity �= 1/2 was
selected purposely to allow quick convergence and
easy visual inspection. Even with this somewhat low
traffic intensity, it is apparent that the higher moments
converge more slowly than the lower moments. In
other scenarios where � > 1/2, the higher moments
exhibit an even slower convergence. Each vertical
dashed line in Figure 4 was triggered by the k = 8
curve, which suggests that the moments are more sen-
sitive to a heavily preloaded system. For the cases
k = 014, and 8, the customer numbers for which the
transient results were within 1% of the steady-state
values are listed in Table 3. To verify the initial con-
dition effect on the convergence rate of the first four
moments, k was increasingly incremented beyond 8
and displayed a further slowing of convergence.
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Figure 4 First Four Moments of the M/M/1 Sojourn Time for
Customers 2–60 for �= 1/2 and k = 01418 (the Arrival Rate
Is �= 1 and the Service Rate Is �= 2, Resulting in Steady-
State Values for the Four Measures of Performance of 11112
and 9)

5. Covariance and Correlation in the
M/M/1 Queue

The dependence exhibited in sojourn times of suc-
cessive customers is one reason for the difficulty in
calculating interval estimators for queue measures of
performance. In the simplest case, consider an ini-
tially empty and idle M/M/1 queue with interarrival
and service rates � and �, respectively. Our desire is
to calculate the covariance between the sojourn times
of customers 1 and 2. We outline two approaches to

Table 3 Smallest Customer Number Where the
Sojourn Time Transient Result Is Within 1%
of Steady State for an M/M/1 Queue with
k = 01418 and �= 1/2

k = 0 k = 4 k = 8

E6T 7 19 21 36
√

Var6T 7 27 29 46

E644T −�5/� 537 28 29 50

E644T −�5/� 547 34 35 56

modeling the events in the queue that will be helpful
in the presentation of the analytic result.

5.1. Discrete-Event Simulation Approaches
As previously discussed, customer 1 proceeds directly
to service, and two cases exist for customer 2. In the
first case, customer 2 proceeds directly to service. In
the second case, he delays proceeding to service until
customer 1’s departure. Both cases are shown in Fig-
ure 5. This section introduces two approaches for gen-
erating the first two customers’ sojourn times.

The first approach is a standard discrete-event sim-
ulation model. Without loss of generality, assume
that customer 1 arrives at time 0. In the next-event
approach, customer 1’s service time is distributed
according to the exponential(�) service time distribu-
tion. The arrival time a2 for customer 2 is distributed
according to the exponential(�) time-between-arrivals
distribution. If the arrival occurs after customer 1’s
service completion (case 1), then customer 2 also has
an independent exponential(�) service time, which
in this case is equal to his sojourn time T2. In the
second case where customer 2’s arrival time occurs
before customer 1’s completion of service (a2 < T1),
customer 2 delays for T1 − a2 time units. We then add
the exponential(�) service time to the delay time to
calculate T2.

We define the gap that occurs in case 2 as Y = T1 −

a2. It can be shown analytically that Y ∼ exponen-
tial(�) by computing the distribution of the difference
T1 −A2, where A2 is the random arrival time of the sec-
ond customer and is distributed exponential(�), and
then truncating the result on the left at zero. (Alter-
natively, it can be reasoned that Y ∼ exponential(�)
by the memoryless property for the exponential dis-
tribution because the remaining service time for cus-
tomer 1 after customer 2’s arrival has the same
distribution as an unconditional service time.) There-
fore, by using (1), the sojourn time for customer 2 in
the second case is distributed Erlang(�12).

The second approach is a conditional discrete-event
simulation model, where the initial event, whose occ-
urrence time is denoted as E1 in Figure 6, is either
a completion of service for customer 1 with proba-
bility �/4� + �5 or the arrival of customer 2 with

T2

T1

t

t

Case 1

Case 2

T2T1

a2

a2

Figure 5 Standard Discrete-Event Simulation Approach for
Cases 1 and 2
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T2

T1

a2

a2

E1

T2T1

t

t

Case 2

Case 1

Figure 6 Conditional Discrete-Event Simulation Approach for
Cases 1 and 2

probability �/4� + �5. Since E1 is the minimum of the
arrival time of customer 2 and the service time of cus-
tomer 1, E1 ∼ exponential4�+�5.

5.2. Covariance Calculations
One way to calculate the exact covariance between
customers 1 and 2 requires the joint probability den-
sity function fT11T2

4t11 t25. The method used here for
computing the joint density applies Theorem 1 below.

Theorem 1. Let X1∼exponential4�151X2∼exponen-
tial4�25, and X3 ∼ exponential4�35 be independent ran-
dom variables. The joint probability density function of
4T11T25= 4X1 +X21X1 +X35 is

fT11T2
4t11 t25=











































�1�2�34e
�1t1 − e4�2+�35t15e−�1t1−�2t1−�3t2

�1 −�2 −�3

0 < t1 < t21

�1�2�34e
�1t2 − e4�2+�35t25e−�2t1−�1t2−�3t2

�1 −�2 −�3

0 < t2 < t10

Proof. The joint CDF of T1 and T2 is

FT11T2
4t11 t25 = Pr4T1 ≤ t11T2 ≤ t25

= Pr4X1 +X2 ≤ t11X1 +X3 ≤ t25

= Pr4X2 ≤ t1 −X11X3 ≤ t2 −X15

=

∫ min8t11 t29

0
Pr4X2 ≤ t1 − x11

X3 ≤ t2 − x1 �X1 = x15

· fX1
4x15 dx1

=

∫ min8t11 t29

0
Pr4X2 ≤ t1 − x1 �X1 = x15

· Pr4X3 ≤ t2 − x1 �X1 = x15fX1
4x15 dx1

=

∫ min8t11 t29

0
41 − e−�24t1−x15541 − e−�34t2−x155

·�1e
−�1x1 dx1

=































∫ t1

0
41 − e−�24t1−x15541 − e−�34t2−x155

·�1e
−�1x1 dx1 0 < t1 < t21

∫ t2

0
41 − e−�24t1−x15541 − e−�34t2−x155

·�1e
−�1x1 dx1 0 < t2 < t10

After evaluating the integrals and differentiating,
fT11T2

4t11 t25 is

fT11T2
4t11 t25=











































�1�2�34e
�1t1 − e4�2+�35t15e−�1t1−�2t1−�3t2

�1 −�2 −�3

0 < t1 < t21

�1�2�34e
�1t2 − e4�2+�35t25e−�2t1−�1t2−�3t2

�1 −�2 −�3

0 < t2 < t10 �

Theorem 1 provides the joint PDF of the first two
sojourn times for case 2, which must be weighted
appropriately by the probability that the arrival of
customer 2 occurs prior to customer 1’s comple-
tion of service, or �/4� + �5. Using the conditional
discrete-event model, case 1 consists of independent
sojourn times; thus the joint density can be written
as the product of the densities of the sojourn times
T1 ∼ exponential(� + �) and T2 ∼ exponential(�) and
weighted by �/4�+�5. The resulting joint density is
a mixture of the two possible cases displayed in Fig-
ure 6. We apply Theorem 1 to case 2 because of the
dependence that occurs as a result of the overlap of
the sojourn times. Figure 7 depicts the relationships
between the sojourn times T1 and T2 and the random
variables X1, X2, and X3 used in Theorem 1.

Substituting �1 =�, �2 = �+�, and �3 =� into the
mixture of cases 1 and 2 yields the joint PDF of T1
and T2 as

fT11T2
4t11 t25=











































�24�e−�t2 +�e−�t1−�t1−�t25

�+�

0 < t1 < t21

�24�e−�t1−�t1+�t2 +�e−�t1−�t1−�t25

�+�

0 < t2 < t10

(3)

T1
T2

a2

X2 X1 X3

t

Figure 7 Case 2 for Theorem 1 with X1 ∼ exponential4�15,
X2 ∼ exponential4�25, and X3 ∼ exponential4�35
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Using this joint PDF, the covariance between the
sojourn times of customers 1 and 2 is

Cov4T11T25=
�4�+ 2�5
4�+�52�2

0

Substituting �= 1 and �= 2, for example, produces

Cov4T11T25=
5

36 ≈ 0013890

We now use the results of Theorem 1 in Example 4.

Example 4. Let T1 and T2 be the sojourn times for
customers 1 and 2, respectively, in an initially empty
and idle M/M/1 queue with exponential4�= 15 times
between arrivals and exponential4� = 25 service
times. Find the distribution of the sample mean ±T =

4T1 + T25/2 as well as E6±T 7 and Var6±T 7.
Applying Equation (3) with � = 1 and � = 2, the

joint PDF of T1 and T2 is

fT11T2
4t11 t25=

{ 8
3e

−3t1−2t2 +
4
3e

−2t2 0 < t1 < t21

8
3e

−3t1−2t2 +
4
3e

−3t1+t2 0 < t2 < t10

Define the transformation

U = ±T = 4T1 + T25/2 and V = 4T1 − T25/2

with inverse

T1 =U +V and T2 =U −V 0

It can be shown that the functions U and V define
a one-to-one transformation; thus, using the bivari-
ate transformation technique described in Hogg et al.
(2005), the joint PDF of U and V is

fU1V 4u1v5=

{

fT11T2
4u+ v1u− v5�J � −u≤ v < 01

fT11T2
4u+ v1u− v5�J � 0 <v<u1

where J is the Jacobian of the inverse transformation
defined as

J =

∣

∣

∣

∣

∣

∣

∣

¡t1

¡u

¡t1

dv
¡t2

¡u

¡t2

¡v

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 1

1 −1

∣

∣

∣

∣

∣

= −20

Substituting t1 = u + v, t2 = u − v, J = −2, and inte-
grating out the dummy transformation variable v, the
resulting PDF of U = ±T is

fU 4u5= 4e−4u
+ 2e−2u

− 6e−6u1 u > 00

The mean of U is

E6U7 =

∫ �

0
u · fU 4u5du

=

∫ �

0
u · 44e−4u

+ 2e−2u
− 6e−6u5 du

=
7
12 0

Likewise, the variance of U using Var6U 7 = E6U 27 −

4E6U 752, where

E6U 27 =

∫ �

0
u2

· fU 4u5du

=

∫ �

0
u2

· 44e−4u
+ 2e−2u

− 6e−6u5 du

=
41
721

results in
Var6U 7= 41

72 −
[

7
12

]2
=

11
48 0

Using the Queue(X,Y,n,k,s) procedure for cus-
tomers 1 and 2, the mean sojourn times are E6T17 =

1/2 and E6T27= 2/3, and the corresponding variances
are Var6T17= 1/4 and Var6T27= 7/18, respectively. The
covariance of sojourn times T1 and T2 was identified
as Cov4T11T25 = 5/36. Therefore, the mean sojourn
time for customers 1 and 2 is

E

[

T1 + T2

2

]

=
E6T17+E6T27

2
=

7
12

1

and the variance is

Var
[

T1 + T2

2

]

=
Var6T17+ Var6T27+ 2Cov4T11T25

4
=

11
48

1

confirming the moments of U = ±T given above.

Proceeding in this manner, we now derive simi-
lar expressions for the first three customers arriving
to an initially empty and idle M/M/1 queue. We
could use first principles to derive the trivariate PDF
fT11T21T3

4t11 t21 t35; however, because covariance only
occurs between two customers, it is easier to calculate
each respective paired joint distribution for covari-
ance calculations. When considering n= 3 customers,
there are five possible arrival and departure order-
ings. In general, for n customers, the number of ways
arrivals and departures can occur is given by the nth
Catalan number (Stanley 1999), which is

Cn =
42n5!

n!4n+ 15!
0

Figure 8 shows the five possible arrangements for
n= 3 customers along with the sojourn times T1, T2,
and T3 for each. The arrival and completion times for
the ith customer are denoted by ai and ci, respectively.
The vertical arrows at event times represent ser-
vice completions (pointing up) or arrivals (pointing
down). This competing-event approach parallels the
second discrete-event simulation approach from §5.1.
Using the same conditioning approach as in the proof
of Theorem 1, the joint PDFs for each of the pairs
4T11T25, 4T11T35, and 4T21T35 in each of the five cases
can be determined and then mixed to achieve the
three associated joint PDFs. The mixture probabilities
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c2 c3

c3

Case 5

Case 4

Case 3

Case 2

Case 1

c2
a3

T2

T2
T1

T3

T3

T3

T3

a3

a3
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a1 a2 c3

c2

a3
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T3T2

T2

T2
T1

T1

T1

T1

c2

c3c2
c1

Figure 8 Five Cases for n = 3 Customers’ Sojourn Times in anM/M/1
Queue

are calculated by multiplying the appropriate num-
ber of competing arrivals (with probability �/4�+�5)
or service completions (with probability �/4� + �5).
For example, in case 1 shown in Figure 8, there are
two instances with competing risks, both of which
result in a service completion; thus the probability of
this case is �2/4� + �52. Using these joint densities,
the symmetric variance–covariance matrix for the first
n= 3 customer sojourn times

è=









�2
1 �12 �13

�12 �2
2 �23

�13 �23 �2
3









is depicted in Table 4.
Substituting �= 1 and �= 2, for example, results in

è =









1/4 5/36 29/324

• 7/18 13/54

• • 1451/2916









≈









002500 001389 000895

• 003889 002407

• • 004976









0

The sojourn time variance increases with customer
number down the diagonal of the matrix because
of the nature of the queueing process, where the
sojourn time distribution for each additional customer
is dependent on all the previous customers. On the
other hand, the off-diagonal covariance entries in each
row decrease with customer separation; for example,
�13 <�12.

Table 4 Sojurn Time Variance–Covariance Matrix for the First n = 3
Customers in an M/M/1 Queue

1
�2

�42�+ �5

4�+�52�2

�24�2 + 4��+ 5�25

4�+�54�2

•
2�2 + 4��+�2

4�+�52�2

�42�2 + 8�2�+ 11��2 + 2�35

4�+�54�2

• •
3�6 + 18�5�+ 45�4�2 + 54�3�3 + 30�2�4 + 8��5 +�6

4�+�56�2

6. Extending Covariance Calculations
Consider the n = 3 case, where all three customers
arrive prior to the first customer’s completion of ser-
vice (this is case 5 in Figure 8). Using a “1′′ to rep-
resent an arrival and a “−1” for a departure, this
sequence of arrivals and departures can be repre-
sented by the vector

[

1 1 1 −1 −1 −1
]

0

Figure 9 depicts this case as a path from left to right,
where moving up and right indicates an arrival and
moving down and right indicates a service comple-
tion. Horizontal moves are not permitted. Each of the
five possible sequences of arrivals and departures for
n = 3, shown in Figure 8, can be depicted by a spe-
cific path from the bottom left node to the bottom
right node. The number of customers in the system
is depicted by the height of each node in a path in
Figure 9.

Ruskey and Williams (2008) present an elegant
algorithm that generates all such paths of arrival
and service completions for a given number of cus-
tomers n. The algorithm is based on a simple iterative
successor rule that uses prefix shifts to exhaust the
possible arrival and service completion scenarios. In
Figure 9 these are the 6!/43!4!5 = 5 paths that can be
drawn from the bottom left node to the bottom right
node. The algorithm is “loopless” in that it requires a
constant amount of computation in transforming the
current case to its successor. Define the case matrix C

Arrival

Arrival

Arrival Departure

Departure

Departure

Figure 9 Path for Case 5 of n = 3 Customers Arrival and Departure
Pattern in an M/M/1 Queue
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with dimension 42n5!/4n!4n+15!5 by 2n as the exhaus-
tive list of possible arrival and service completion sce-
narios for n customers. To initiate the matrix, the first
row of C is

C1 =
[

1 −1 1 1 −1 −1
]

0

The first row is always the ordered string created
by an arrival, a service completion, n−1 arrivals, and
n−1 service completions. The iterative successor rule
described by Ruskey and Williams (2008, p. 107) is
“Locate the leftmost 6−11 17 and suppose its 1 is in
position k. If the 4k+ 15-st prefix shift is valid (a pos-
sible arrival/service completion sequence), then it is
the successor; if it is not valid then the k-th prefix
shift is the successor.” The 4k+15st prefix shift for the
sequence

B =
{

B11B21 0 0 0 1Bk−11Bk1Bk+11 0 0 0 1B2n

}

is defined to be

B =
{

B11Bk+11B21 0 0 0 1Bk−11Bk1Bk+21 0 0 0 1B2n

}

3

that is, the 4k+15st element of the sequence is shifted
into the second position, and the relative order of the
other elements is left unchanged. The length of the
sequence is always 2n because the number of arrivals
and departures is balanced at n each. An example of
an invalid sequence is

[

1 −1 −1 1 1 −1
]

because the second service completion occurs prior to
the second arrival. For n= 3, the case matrix C is

C =





















1 −1 1 1 −1 −1

1 1 −1 1 −1 −1

1 −1 1 −1 1 −1

1 1 −1 −1 1 −1

1 1 1 −1 −1 −1





















0

(Note that the order of the five rows does not match
the order of the cases in Figure 8.)

Figure 10 further categorizes each segment of the
path based on whether there exists a competing risk
(competing event), in which case the distribution of
the time until the next event (either an arrival or a
completion) is given by

min8exponential4�51exponential4�59

∼ exponential4�+�51

where the time between arrivals is distributed as
exponential4�5 and the service time distribution is
exponential4�5.

�

�

�

� + �

� + �

Figure 10 Path Segment Distributions for Case 5 for n = 3 Customers

Competing risks can only occur along path seg-
ments that originate inside the dashed triangle
shown in Figure 10. These path segments are
exponential4�+�5 distributed and are correspond-
ingly labeled �+�. Once all customers have arrived,
the only possible events are service completions; thus
each path segment along the rightmost edge of Fig-
ure 10 is distributed exponential4�5 and labeled �.
If the path of interest reaches a node at the bottom
of the figure, the queueing system empties, and the
next event must be an arrival, which occurs in an
exponential4�5 time into the future. While the system
is empty, none of the customers’ sojourn times are
affected; therefore waiting for the next arrival does
not affect customer sojourn time distribution. The
interior triangle in the path diagram also provides
a method to calculate the probability of all possible
paths. For path segments originating inside the tri-
angle, a move right and up occurs with probability
�/4� + �5, and a move right and down occurs with
probability �/4�+�5. For the particular path shown
in Figure 10, there are two segments originating inside
the triangle, both of which are right and up, thus rep-
resenting two successive arrivals. Therefore the prob-
ability of this case is

�

�+�
·

�

�+�
=

�2

4�+�52
0

To capture the structure of the segment distribu-
tions for a given path, represented as a row of the
case matrix C, another vector of length 2n− 1 is cre-
ated where each entry corresponds to the sojourn time
distribution for a particular segment. There are three
possible entries in this vector:

1. exponential4�+�5, which is indicated by a 1;
2. exponential4�5, which is indicated by a 2; and
3. no distribution as a result of an emptied system,

which is depicted as a 0.
The vector is of length 2n − 1 because the first cus-
tomer’s arrival time can be ignored; it does not
affect sojourn time. For the particular path shown
in Figure 10, the corresponding segment distribution
vector is

[

1 1 2 2 2
]

0
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Define the new matrix C ′ with dimension
42n5!/4n!4n+15!5 by 2n−1 as the segment distribution
matrix for each case in C. For n= 3, the matrix C ′ is

C ′
=





















1 0 1 2 2

1 1 1 2 2

1 0 1 0 2

1 1 1 0 2

1 1 2 2 2





















0

The two vectors (which are each the fifth row of the
corresponding matrices),

C5 =
[

1 1 1 −1 −1 −1
]

and

C ′

5 =
[

1 1 2 2 2
]

1

contain the information necessary to calculate the con-
tribution of case 5 to the joint PDF for the sojourn
times of any two customers. Denote Cl as the lth row
vector of case matrix C, and define the 2×2 matrix Rl

with elements

Rl =

[

ris rif

rjs rjf

]

1

where ris and rif are the start and finish indices for
customer i in row l of the case matrix C, respectively.
Define rjs and rjf similarly for customer j . Using C5
above, for customers i = 1 and j = 3,

R5 =

[

1 4

3 6

]

0

Customer 1’s arrival is the first event to occur. Cus-
tomer 1’s departure is the fourth event to occur.
Customer 3’s arrival is the third event to occur. Cus-
tomer 3’s departure is the sixth event to occur.

The Rl matrix provides two critical pieces of infor-
mation. First, for the given case l, if rif < rjs , then
the sojourn times for customers i and j do not over-
lap because customer i departs prior to customer j’s
arrival. Because in each specific case the sojourn time
for each customer comprises a uniquely determined
sequence of independent time segments, consisting of
either service completions distributed exponential(�)
or interarrival times distributed exponential(� + �),
and because the sequences for customers i and j have
no time segments in common, the sojourn times for
customers i and j are independent. Therefore, if rif <
rjs , the contribution of case l to the joint PDF is cre-
ated by simply multiplying the sojourn time PDFs for
customers i and j . Second, by computing rif − ris and
rjf − rjs and then indexing across C ′

l , the appropriate
segment distributions can be combined to form the
joint sojourn time PDF for customers i and j .

c3c2c1

c1

T1

T3

a2

exp(� + �)

exp(� + �)

exp(�) exp(�) exp(�)

a1

a3

Figure 11 Sojourn Time Segments for Customers 1 and 3 in Case 5 for
n = 3 Customers

When rif > rjs , the joint probability distribution is
calculated by conditioning in a similar fashion to the
proof of Theorem 1. However, it is first necessary
to find the independent and overlapping segments
for the customers of interest. For the arrival and ser-
vice completion scenario described by C5, Figure 11
shows sojourn times T1 and T3 for customers 1 and 3.
The independent portion of customer 1’s sojourn time
consists of the two exponential4�+�5 segments. The
independent portion of customer 3’s sojourn time
consists of the two exponential4�5 segments, shown
on the right side of Figure 11. The dependent (over-
lap) portion between customers 1 and 3 consists of
the single exponential4�5 segment falling within the
dashed vertical lines. Using C ′

5 and R5, these segments
can be determined without reference to Figure 11 as
follows: given r1f > r3s , (that is, customer 3 arrives
prior to customer 1 completing service) the indepen-
dent portions of customer 1’s sojourn time distribu-
tion are found by (a) calculating r3s − r1s = 3 − 1 = 2
and then (b) collecting the elements in C ′

5, beginning
at index r1s = 1 and indexing r3s − r1s − 1 = 1 addi-
tional element of the vector. For C ′

5 =
[

1 1 2 2 2
]

, the
first two entries, c′

51 and c′
52, correspond to the two

exponential4� + �5 segments. Likewise, customer 3’s
independent sojourn time segments are found by
(a) calculating r3f − r1f = 6 − 4 = 2 and then (b) col-
lecting the elements in C ′

5, beginning at index r1f = 4
and indexing r3f − r1f − 1 = 1 additional element of
the vector. This amounts to the two exponential4�5
segments in elements 4 and 5 of C ′

5. The depen-
dent portion is identified by starting at the element
r3s = 3 and indexing rif − r3s − 1 = 0 additional ele-
ments, which is the third element of C ′

5, a single
exponential4�5 segment. In this case, calculating the
joint PDF is straightforward because the independent
portions for each customer are iid exponential ran-
dom variables. Defining the independent cumulative
distribution function portions for customers 1 and 3
as X1 ∼ Erlang4�+�125 and X3 ∼ Erlang4�125, respec-
tively, and the dependent (overlap) random variable
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as W ∼ exponential4�5, the contribution of case 5 to
the joint CDF of 4T11T35 = 4X1 + W1X3 + W5, condi-
tioning on the dependent distribution segment W , is

FT11T3
4t11 t35 = Pr4T1 ≤ t11T3 ≤ t35

= Pr4X1 +W ≤ t11X3 +W ≤ t35

= Pr4X1 ≤ t1 −W1X3 ≤ t3 −W5

=

∫ min8t11 t39

0
Pr4X1 ≤ t1 −w1

X3 ≤ t3 −w �W =w5

· fW 4w5dw

=

∫ min8t11 t39

0
Pr4X1 ≤ t1 −w �W =w5

· Pr4X3 ≤ t3 −w �W =w5fW 4w5dw

=

∫ min8t11 t39

0
FX1

4t1 −w5FX3
4t3 −w5�e−�w dw

=







































∫ t1

0
FX1

4t1 −w5FX3
4t3 −w5�e−�w dw

0 < t1 < t31
∫ t3

0
FX1

4t1 −w5FX3
4t3 −w5�e−�w dw

0 < t3 < t10

Because closed-form versions of FX1
4t1 − w5 and

FX3
4t3 −w5 are available, Maple is capable of evalu-

ating this expression; for large n, however, it can be
time consuming.

When the independent distribution segments are
not iid exponential random variables, the calculation
is more problematic because we can no longer use
(1) to easily express FX1

4t1 −w5 and FX3
4t3 −w5. Con-

volution is required, and though capable, Maple, and
subsequently APPL, slow very quickly with increas-
ing n. To overcome this shortfall, let us consider The-
orem 2, which appears to be a faster approach than
the two suggested in Hagwood (2009).

Theorem 2. If S1∼Erlang4�11m5 and S2∼Erlang4�21
n5 are independent random variables, then the PDF of Y =

S1 + S2 is

fY 4y5 =

[

�m
1 �

n
2e

−�2y

4m−15!4n−15!

n−1
∑

x=0

{

4−15x
(

n−1
x

)

yn−1−xe4�2−�15s

·

m−1+x
∑

r=0

4−15r
4m−1+x5!sm−1+x−r

4m−1+x−r5!4�2 −�15
r+1

}]y

s=0
1

y>00

Proof. Since S1 and S2 are independent, the PDF
of Y = S1 + S2 using convolution and the binomial

theorem is

fY 4y5 =

∫ y

0
fS1

4s5fS2
4y−s5ds

=

∫ y

0

�14�1s5
m−1e−�1s

4m−15!
�24�24y−s55n−1e−�24y−s5

4n−15!
ds

=
�m

1 �
n
2

4m−15!4n−15!

∫ y

0
sm−1e−�1s4y−s5n−1e−�24y−s5ds

=
�m

1 �
n
2e

−�2y

4m−15!4n−15!

∫ y

0
sm−14y−s5n−1es4�2−�15ds

=
�m

1 �
n
2e

−�2y

4m−15!4n−15!

·

∫ y

0
sm−1

(n−1
∑

x=0

(

n−1
x

)

yn−1−x4−s5x
)

es4�2−�15ds

=
�m

1 �
n
2e

−�2y

4m−15!4n−15!

n−1
∑

x=0

{

4−15x
(

n−1
x

)

yn−1−x

·

∫ y

0
sm−1+xes4�2−�15ds

}

=

[

�m
1 �

n
2e

−�2y

4m−15!4n−15!

n−1
∑

x=0

{

4−15x
(

n−1
x

)

yn−1−xe4�2−�15s

·

m−1+x
∑

r=0

4−15r
4m−1+x5!sm−1+x−r

4m−1+x−r5!4�2 −�15
r+1

}]y

s=0
1

y>00 �

The APPL procedure Cov(a,b,n) applies Theorem 2
to calculate the covariance between the sojourn times
of customers a and b (a < b) in a system of n cus-
tomers. For computational considerations (i.e., evalu-
ating the fewest cases necessary for a given n), setting
the number of customers n = b provides the fastest
result. Additionally, calling Cov(a,b,n) where n > b
produces a result identical to n= b because customers
arriving after customer b do not affect the covariance
of previous customers.

Rewriting the integral as a sum via Theorem 2
avoids the calls to Convolution(X,Y) in APPL as
well as the need to integrate for each case and
piece. One can always use this approach, even when
the independent part of a particular customer’s
sojourn time contains many independent distribu-
tion segments. The times for these segments can only
be exponential4�+�5 distributed or exponential4�5
distributed, which implies that their sum can always
be written as the sum of two independent Erlang
random variables. This approach speeds computation
time considerably. The symmetric variance–covariance
matrix for n = 10 customers with parameters �= 1,
� = 2, and �= 1/2 is showcased in Table 5; exact val-
ues are provided.

CPU time is a factor in these computations.
Each element in the 10th column of the variance–
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Table 5 Sojourn Time Variance–Covariance Matrix for the First n = 10 Customers in an M/M/1 Queue with �= 1, �= 2 (Exact Values)

1
4

5
36

29
324

181
2916

1181
26244

2647
78732

18191
708588

127111
6377292

2699837
172186884

19319845
1549681956

•
7
18

13
54

239
1458

1543
13122

10303
118098

23485
354294

163493
3188646

3462503
86093442

24719519
774840978

• •
1451
2916

8531
26244

53995
236196

356291
2125764

805705
6377292

5576849
57395628

39197977
516560652

836647331
13947137604

• • •
34514
59049

209794
531441

1357010
4782969

3031606
14348907

20810726
129140163

145390102
1162261467

3088887890
31381059609

• • • •
12525605
19131876

77889229
172186884

170586983
516560652

1156711327
4649045868

8013045911
41841412812

169183999981
1129718145924

• • • • •
551583889
774840978

1162296371
2324522934

7727099083
20920706406

52871149859
188286357654

1106749378225
5083731656658

• • • • • •
10582107143
13947137604

67728246079
125524238436

454382575415
1129718145924

9394007745229
30502389939948

• • • • • • •
225196533287
282429536481

1455144635743
2541865828329

29498588275973
68630377364883

• • • • • • • •
75890492486993
91507169819844

1482244865480580
2470693585135780

• • • • • • • • •
28549065408995300
33354363399333100

Table 6 Sojourn Time Variance–Covariance Matrix for the First n = 10 Customers in an M/M/1 Queue with �= 1, �= 2 (Approximations)

0.2500 0.1389 0.0895 0.0621 0.0450 0.0336 0.0257 0.0199 0.0157 0.0125
• 0.3889 0.2407 0.1639 0.1176 0.0872 0.0663 0.0513 0.0402 0.0319
• • 004976 003251 0.2286 0.1676 0.1263 0.0972 0.0759 0.0600
• • • 005845 0.3948 0.2837 0.2113 0.1611 0.1251 0.0984
• • • • 0.6547 0.4524 0.3302 0.2488 0.1915 0.1498
• • • • • 0.7119 0.5000 0.3694 0.2808 0.2177
• • • • • • 0.7587 0.5396 0.4022 0.3080
• • • • • • • 0.7974 0.5725 0.4298
• • • • • • • • 0.8293 0.5999
• • • • • • • • • 0.8559

Table 7 Sojourn Time Variance–Covariance Matrix for the First n = 10 Customers in an M/M/1 Queue with �= 1, �= 10/9 (Approximations)

0.8100 0.5856 0.4737 0.4040 0.3553 0.3189 0.2904 0.2673 0.2481 0.2318
• 1.3956 1.1097 0.9393 0.8226 0.7363 0.6692 0.6150 0.5702 0.5323
• • 1.9561 1.6298 1.4167 1.2626 1.1441 1.0494 0.9714 0.9057
• • • 2.5021 2.1458 1.8995 1.7142 1.5679 1.4484 1.3485
• • • • 3.0364 2.6565 2.3831 2.1715 2.0009 1.8593
• • • • • 3.5605 3.1614 2.8652 2.6310 2.4389
• • • • • • 4.0754 3.6600 3.3444 3.0904
• • • • • • • 4.5818 4.1524 3.8199
• • • • • • • • 5.0803 4.6386
• • • • • • • • • 5.5713

covariance matrix is calculated from a joint PDF that
is a mixture of C10 = 20!/410!11!5 = 161796 component
distributions, each corresponding to a unique order-
ing of arrivals and departures.

Because these values are difficult to compare in
fractional form, the same matrix is provided again,
with matrix elements rounded to four decimal places;
see Table 6.

As the traffic intensity increases, so do the val-
ues in the variance–covariance matrix. To illustrate,
the same matrix is provided for the increased traffic

intensity parameters � = 1, � = 10/9, and � = 9/10.
The increasing sojourn time variance along the diag-
onal is expected with the increasing traffic intensity.
In addition, the rate that covariance between cus-
tomers decreases as customer separation increases is
less pronounced; see Table 7.

Using this variance–covariance matrix for traffic
intensity � = 9/10, let us consider the following
example.

Example 5. Let Ti, i = 1121 0 0 0 110, be the sojourn
times for the first n = 10 customers in an M/M/1
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Table 8 Sojourn Time Variance–Covariance Matrix for the First n = 10 Customers in an M/M/1 Queue with �= 1, �= 2/3 (Approximations)

2.2500 1.8900 1.7172 1.6135 1.5438 1.4937 1.4558 1.4263 1.4027 1.3835
• 4.1400 3.7368 3.5018 3.3459 3.2344 3.1507 3.0856 3.0337 2.9913
• • 6.0957 5.6825 5.4166 5.2292 5.0896 4.9817 4.8958 4.8261
• • • 8.1312 7.7208 7.4397 7.2332 7.0747 6.9493 6.8479
• • • • 10.2424 9.8410 9.5538 9.3361 9.1652 9.0276
• • • • • 12.4235 12.0342 11.7463 11.5230 11.3444
• • • • • • 14.6687 14.2931 14.0081 13.7828
• • • • • • • 16.9727 16.6115 16.3319
• • • • • • • • 19.3310 18.9846
• • • • • • • • • 21.7397

queue, with arrival rate � = 1 and service rate � =

10/9, that is initially empty and idle. Find the variance
of the average sojourn time for the first 10 customers.

Define the average sojourn time as

±T =
1

10

10
∑

i=1

Ti0

Because the sojourn times are not independent ran-
dom variables, the variance of the average sojourn
time is

Var6±T 7 = Var
[

1
10

10
∑

i=1

Ti

]

=
1

100 Var
[ 10
∑

i=1

Ti

]

=
1

100

[ 10
∑

i=1

Var6Ti7+ 2
∑∑

i<j

Cov4Ti1Tj5
]

0

The result is the sum of all elements in the variance–
covariance matrix in Table 7 multiplied by the con-
stant 1/100. The sum of the variance–covariance
matrix rounded to four significant digits is 177.6642;
therefore the variance of ±T is

Var6±T 7≈ 1077660

To verify the calculation a Monte Carlo simulation
was conducted five times, using one million replica-
tions each time. The resulting 95% confidence interval
for the variance of ±T was ±T ∈ 4107731107815, which
agrees with the analytic result.

Traditional steady-state queueing theory and anal-
ysis lacks the insight provided in these transient
variance–covariance matrices. For businesses where
the number of customers in a day is so small that
true steady state is never achieved, routine queue-
ing measures of performance are not representative of
reality. Additionally, consider a system where the traf-
fic intensity exceeds 1. For such a system, an analyst
might be interested in customer covariance. Increas-
ing the traffic intensity so that � > 1 does not pre-
clude covariance calculations using this method and
therefore allows transient analysis of such systems.

A variance–covariance matrix for � = 1, � = 2/3, and
� = 3/2 is presented in Table 8. Given this traffic
intensity, the system is unstable, and the expected
sojourn times for successive customers increase with-
out bound. Along the main diagonal the customer
variance is clearly increasing, and the covariance
decreases as the separation occurs between customers.
This decrease is monotonic, and although not studied
in detail here, it appears that the rate of covariance
decrease might be of interest for an unstable traffic
intensity.

7. Sojourn Time Covariance with k
Customers Initially Present

When k customers are present in the M/M/1 queue
at time 0, the approach used to compute sojourn
time covariance between customers becomes more
difficult. When the two customers of interest possess
indices larger than k (i.e., Ti where i > k), then the
approach is similar to that derived in §6. However,
there are two other possibilities. The first possibility
is that the first customer has an index of k or less,
and the second customer has an index larger than k.
In this instance, the only difference in deriving the
joint CDF is that the lower-indexed customer begins
his sojourn time at time 0. In the second possibility,
both customers have an index of k or below. If these
indices are i and j , where i < j ≤ k, the time intervals
for sojourn times Ti and Tj begin at 0. It is obvious that
Ti ≤ Tj , because the completion time for customer i
must occur prior to the completion time for cus-
tomer j . For each of these possibilities, the covariance
derivation that follows will mirror the empty and idle
covariance derivation in §6. To illustrate the calcula-
tions, consider an M/M/1 queue with k = 2 customers
initially present at time 0 and a single additional cus-
tomer, n = 1. The transition diagram where the first
event (not including the k customers initially present
at time 0) is an arrival, which is analogous to Fig-
ures 9 and 10, is given in Figure 12. The total number
of customers passing through the system is n+ k = 3.
Using a “1” to denote an arrival and a “−1′′ to denote
a departure, each arrival/departure ordering instance
for n+k = 3 customers must contain exactly three −1s
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Arrival

Arrival

Arrival Departure

Departure

Departure

Figure 12 Transition Diagram for n + k = 1+ 2 = 3 Customers When
the First Event Is an Arrival

(completions of service) and a single 1 (arrival). The
algorithm presented by Ruskey and Williams (2008)
does not facilitate the listing of all orderings for an
unbalanced system, where the number of departures
is greater than the number of arrivals (as opposed to
an empty and idle queue at time 0). However, we
can produce all possible arrival/departure sequences
with a simple manipulation of the algorithm as well
as count the number of possible sequences. The num-
ber of possible orderings, denoted by C4n � k5, follows,
where n represents the number of customers passing
through the system that arrive after time 0, and k is
the number of customers present at time 0:

C4n � k5=

�k/2�
∑

j=0

4−15j
(

k− j

j

)

Cn+k−j

for k = 011121 0 0 0 and n= 1121 0 0 0 1 where �·� denotes
the greatest integer function. The case matrix C is
found by applying the Ruskey and Williams (2008)
algorithm for n + k customers and then deleting the
instances where the first k events do not correspond
to arrivals. As seen previously, the case matrix for
n+ k = 1 + 2 = 3 customers is

C =





















1 −1 1 1 −1 −1

1 1 −1 1 −1 −1

1 −1 1 −1 1 −1

1 1 −1 −1 1 −1

1 1 1 −1 −1 −1





















0

Rows 2, 4, and 5 correspond to the first k = 2 events
being arrivals. Rows 1 and 3 must be deleted from
the case matrix, because for each row, a completion of
service occurs prior to the first two arrivals. Deleting
these rows results in the case matrix

C =









1 1 −1 1 −1 −1

1 1 −1 −1 1 −1

1 1 1 −1 −1 −1









1

with the remaining rows representing all possible
arrival/departure sequences. We can further simplify

c2c1

c1

a1 a3

a3

a2

a3

c3

T3

T3

T1

T2

T3

T1

T1

T2

T2 c3

c3

c2

c2

Case 3

Case 2

Case 1

Figure 13 Three Cases for k = 2 Initial Customers and a Single n = 1
Additional Customer in an M/M/1 Queue

the case matrix by deleting the first k columns, result-
ing in

C =





−1 1 −1 −1
−1 −1 1 −1

1 −1 −1 −1



 0

The rows of the case matrix correspond to the three
cases shown in Figure 13.

The algorithm for computing the joint PDF, and
subsequently the covariance, of the sojourn times
of any two customers does not differ significantly
from the algorithm presented in §6. However, for the
sojourn times T1 and T2 in Figure 13, a new theorem
is introduced.

Theorem 3. LetX ∼ exponential4�15 and Y ∼ expon-
ential4�25 be independent random variables. The joint PDF
of 4T11T25= 4X1X +Y 5 is

fT11T2
4t11 t25= �1�2e

−�2t1−�1t2+�1t1 0 < t1 < t20

Proof. The joint CDF of T1 and T2 is

FT11T2
4t11 t25

= Pr4T1 ≤ t11T2 ≤ t25

= Pr4X ≤ t11X +Y ≤ t25

= Pr4X ≤ t11Y ≤ t2 −X5

=

∫ t1

0

∫ t2−x

0
fX4x5 · fY 4y5dy dx

=

∫ t1

0

∫ t2−x

0
4�1e

−�1x5 · 4�2e
−�2y5 dy dx

=
�1 −�2 +�2e

−�1t2 +�2e
−�2t1 −�1e

−�2t1 −�2e
−�2t1−�1t2+�1t1

�1 −�2
1

for 0 < t1 < t2. Taking partial derivatives, fT11T2
4t11 t25 is

fT11T2
4t11 t25 = �1�2e

−�2t1−�1t2+�1t1 0 < t1 < t20 �
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Theorem 3 provides the joint PDF for the sojourn
times T1 and T2 of the first two customers initially
present at time 0. It may be more complicated to
calculate the joint PDFs for the sojourn times of
other pairs of customers who were initially present
at time 0. This is because if 4i1 j5 6= 41125 and i <
j ≤ k, where k is the number of customers present
at time 0, the time intervals of duration X and Y
during which customers i and j , respectively, are
served may each be composed of multiple indepen-
dent, exponentially distributed time segments. Each
of these multiple segments is limited to only one of
two possibilities, an exponential4�+�5 segment or an
exponential4�5 segment. In this more complicated sit-
uation, we let 4Ti1Tj5 = 4X1X + Y 5, as in Theorem 3,
and apply Theorem 2 to find the PDFs of X and Y
(using the procedure conv(m,n)); we then let Maple
handle the sojourn time joint PDF calculation. When
the second customer of interest has an index greater
than or equal to k, the sojourn time joint PDF follows
an application of Theorem 1 as described in §6, when
cases exist with dependence.

Using the final case matrix C above, the associated
segment distribution matrix C ′ is

C ′
=





1 1 2 2
1 1 0 2
1 2 2 2



 1

where the possible elements are the same as defined
in §6. The probability vector associated with the case
matrix C is

[

2
9

4
9

1
3

]

for arrival rate �= 1 and service rate �= 2.
Using the case matrix C and the segment distribu-

tion matrix C ′, the joint PDFs for each case are created
by selecting the appropriate segments for a given pair
of customers, where the segments are identified by
the Rl matrix discussed in §6. Once the joint PDFs are
created for each case, they are mixed with the proba-
bility vector to determine the sojourn time joint PDF
for covariance calculations. These calculations are
coded in Maple as the procedure kCov(X,Y,a,b,n,k).
The first two arguments X and Y are the distribu-
tion of time between arrivals, exponential4�5, and the
service time distribution, exponential4�5, respectively.
They are entered in the APPL list-of-lists format. The
arguments a and b are the customers of interest for the
covariance calculation, where a < b. The argument n
is the number of customers processing through the
system not including those present at time 0, which
is indicated by the last argument k. Therefore, the
total number of customers processing through the
system is n+ k, and a covariance calculation between
any two of these customers can be achieved with the
appropriate function call. For example, the function
call kCov(ExponentialRV(1), ExponentialRV(2), 1,2,
1,3) calculates the covariance between customers 1

and 2 in an M/M/1 queue with an arrival rate �= 1,
service time rate � = 2, three customers present at
time 0, and a single additional customer processing
through the system. The variance–covariance matrix
for an M/M/1 queue with an arrival rate �= 1 and
service rate � = 2, where k = 4 customers are present
at time 0 and an additional n = 6 customers process
through the system, is presented in Table 9.

Unlike the previous variance–covariance matrices,
some row elements—in particular, those elements
associated with customers who are initially present—
do not decrease monotonically. To explain these
entries, consider Theorem 4.

Theorem 4. If X11X21 0 0 0 1Xn are iid exponential4�5
random variables and

Ts =

s
∑

r=1

Xr s = 1121 0 0 0 1n1

then Var4Ti5= Cov4Ti1Tl5, 0 < i < l ≤ n.

Proof. Note that E6Tk7= k/� for k = 1121 0 0 0 1n and
that Ti and Xr are independent for 1 ≤ i < r ≤ n:

Cov4Ti1Tl5 = E

[(

Ti−
i

�

)(

Tl−
l

�

)]

= E

[(

Ti−
i

�

){(

Ti−
i

�

)

+

l
∑

r=i+1

(

Xr −
1
�

)}]

= E

[(

Ti−
i

�

)2]

+E

{ l
∑

r=i+1

[(

Ti−
i

�

)(

Xr −
1
�

)]}

= Var6Ti7+
l
∑

r=i+1

E

[

Ti−
i

�

]

E

[

Xr −
1
�

]

= Var6Ti70 �

We can apply Theorem 4 to those customer
pairs where both indices i1 j ≤ k. Therefore, the
entries in the variance–covariance matrix for customer
pairs 41125, 41135, and 41145 are

Var6T17= Cov4T11T25= Cov4T11T35= Cov4T11T45=
1
4 0

Likewise, for the customer pairs 42135 and 42145,

Var6T27= Cov4T21T35= Cov4T21T45=
1
2 0

Furthermore, it can be shown that, in general,

Var6Ti7= Cov4Ti1Tj5=
i

�2

for i < j ≤ k, where k customers are present at
time 0. For example, consider a single-server box
office with exponential4�5 service times that will be
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Table 9 Sojourn Time Variance–Covariance Matrix for the First n = 6 Customers in an M/M/1 Queue with k = 4 Customers Initially
Present and �= 1, �= 2 (Exact Values)

1
4

1
4

1
4

1
4

211
972

1579
8748

11651
78732

28553
236196

630131
6377292

4646155
57395628

•
1
2

1
2

1
2

211
486

1579
4374

11651
39366

28553
118098

630131
3188646

4646155
28697814

• •
3
4

3
4

211
324

1579
2916

11651
26244

28553
78732

630131
2125764

4646155
19131876

• • • 1
211
243

1579
2187

11651
19683

28553
59049

630131
1594323

4646155
14348907

• • • •
37289
26244

271153
236196

1966777
2125764

1588153
2125764

34755203
57395628

763875281
1549681956

• • • • •
1629655
1062882

11663887
9565938

9353743
9565938

203800469
258280326

4465399991
6973568802

• • • • • •
263490131
172186884

208262483
172186884

4506205633
4649045868

98323535707
125524238436

• • • • • • •
63939878
43046721

1359189250
1162261467

29402061622
31381059609

• • • • • • • •
179260456277
125524238436

379721786263
3389154437772

• • • • • • • • •
62708955663745
45753584909922

offering tickets to a popular concert the next day. If
1,000 patrons, each buying one ticket, camp out the
night before to get the best seats for the concert, these
k = 11000 customers are present at time 0, and there-
fore we can predetermine the covariance between the
sojourn times of any two of the customers. Addition-
ally, Theorem 4 presents the counterintuitive result
that Cov4T11T25 = Cov4T11T110005. As expected, the
correlation decreases with increasing lag because of
the diminishing effect of the intermediate customer
sojourn times reflected in the denominator of the
defining formula for correlation.

8. Conclusion
Previous transient analysis results for the M/M/1
and M/M/s queues have been combined with the
functionality of the Maple computational engine (and
subsequently APPL) to develop both symbolic and
numeric exact sojourn time PDFs that can be manipu-
lated to compute and study various measures of per-
formance. A complete variance–covariance matrix for
the first n= 10 customers and varying traffic inten-
sity is calculated, which illustrates this approach’s
ability to determine the joint PDF between two
customer sojourn times. The results offer a frame-
work for describing how the well-known M/M/s
queue steady-state results occur as the queue pro-
gresses toward steady state. When possible, results

are checked against corresponding Monte Carlo sim-
ulation and/or previous literature. The first princi-
ple’s derivation suggests that a viable alternative for
future research would be to apply the approaches
provided in this work to a G/G/1 queue. Compu-
tational considerations take priority as n increases.
Making use of other computational formulae (such
as Hagwood 2009) may offer significant time savings
and is another interesting avenue for future work.
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