
INFORMS Journal on Computing
Vol. 24, No. 1, Winter 2012, pp. 1–9
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.1100.0416

© 2012 INFORMS

Automating Bivariate Transformations
Jeff X. Yang, John H. Drew, Lawrence M. Leemis

Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187
{jxyang@gmail.com, jhdrew@math.wm.edu, leemis@math.wm.edu}

We automate the bivariate change-of-variables technique for bivariate continuous random variables with
arbitrary distributions. This extends the algorithm for univariate change-of-variables devised by Glen et al.

[Glen, A. G., L. M. Leemis, J. H. Drew. 1997. A generalized univariate change-of-variable transformation tech-
nique. INFORMS J. Comput. 9(3) 288–295]. Our transformation procedure handles one–to–one, k–to–one, and
piecewise k–to–one transformations for both independent and dependent random variables. We also present other
procedures that operate on bivariate random variables (e.g., calculating correlation and marginal distributions).

Key words : computational probability; computer algebra systems; continuous random variables; transformation
of random variables

History : Accepted by Winfried Grassmann, Area Editor for Computational Probability and Analysis; received
March 2009; revised November 2009, July 2010; accepted July 2010. Published online in Articles in Advance
December 2, 2010.

1. Introduction
Probability theory addresses a variety of problems
that are both tedious and impractical to work by
hand. The advent of computer algebra systems,
such as Maple and Mathematica, has facilitated the
development of probability packages. These pack-
ages are implementations of algorithms that can
quickly perform the required tedious calculations.
One such package, A Probability Programming Lan-
guage (APPL), coded in Maple, performs standard
probability operations on univariate random variables
(Glen et al. 2001). Many problems that would have
taken hours to solve by hand can be quickly com-
puted in APPL via a few lines of code.

Consider the following example. Let X11X21 0 0 0 1X10
be independent and identically distributed (iid)
U40115 random variables. Find

P

(

4 <
10
∑

i=1

Xi < 6
)

0

The distribution of the sum of 10 iid U40115 random
variables can be calculated by hand, but the process
would be both tedious and time consuming. APPL
solves this problem with the commands

> X := UniformRV(0, 1);
> Y := ConvolutionIID(X, 10);
> CDF(Y, 6) - CDF(Y, 4);

which yield the exact solution

655177
907200

0

Although the solution to this problem can be approx-
imated by the central limit theorem or Monte Carlo

simulation, APPL computes the exact solution in just
three lines of code.

APPL contains a univariate transformation of vari-
ables procedure that takes the probability density
function (PDF) of a continuous random variable X and
the transformation Y = g4X5 as input and returns the
PDF of Y as output. APPL currently lacks procedures
to handle bivariate distributions. The most relevant
software we found to automate bivariate transforma-
tions is Mathematica’s statistical package, mathStat-
ica (Rose and Smith 2002). Their examples appear to
be limited to one–to–one transformations and inde-
pendent random variables X and Y . We present an
addendum to APPL that handles one–to–one trans-
formations, k–to–one transformations, and piecewise
k–to–one transformations for both dependent and
independent continuous random variables X and Y .

The bivariate transformation technique calculates
the distribution of U = g4X1Y 5 from the joint distri-
bution of two continuous random variables X and Y
with joint PDF fX1Y 4x1y5 defined on the support set
A in the xy-plane. In the simplest case, an auxiliary
dummy function V = h4X1Y 5 can be found so that the
two functions U = g4X1Y 5 and V = h4X1Y 5 define a
one–to–one transformation from the set A in the xy-
plane onto a set B in the uv-plane. Denote the inverse
transformation from B to A by X = r4U1V 5 and Y =

s4U1V 5. The formula (Hogg et al. 2005)

fU1V 4u1v5= fX1Y 4r4u1v51 s4u1v55�J � for 4u1v5 ∈B

gives the joint PDF of U and V , where

J =

∣

∣

∣

∣

∣

∣

∣

∣

dx

du

dx

dv

dy

du

dy

dv

∣

∣

∣

∣

∣

∣

∣

∣

1

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
2 INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS

is the Jacobian. The marginal PDF of U is then calcu-
lated by integrating v out of the joint PDF

fU 4u5=
∫ �

−�

fU1V 4u1v5dv=

∫

D4u5
fU1V 4u1v5dv for u∈U1

where D4u5 = 8v � 4u1v5 ∈ B9 and U is the support
of U .

Next, we present a bivariate transformation algo-
rithm used to handle such one–to–one transforma-
tions, and, more generally, k–to–one transformations
and piecewise k–to–one transformations for the joint
continuous random variables X and Y . The algorithm
is modeled after the theorem by Glen et al. (1997) for
univariate transformations.

2. Algorithm
The purpose of the algorithm is to find the PDF of
U = g4X1Y 5, where X and Y are bivariate continu-
ous random variables with joint PDF fX1Y 4x1y5. Let
the support of X and Y in the xy-plane be denoted
by A, which is partitioned into a finite number of
disjoint components. Denote the ith component of A
by Ai and the associated PDF on Ai by fi4x1y5 for
i = 1121 0 0 0 1n. The purpose of this partitioning might
be to accommodate a distribution that is defined
piecewise, a transformation that is defined piecewise,
a transformation that is many-to-one, or any combina-
tion of these situations. Because the Ai might include
some of their boundary points on which the transfor-
mation could be badly behaved, we consider the inte-
rior of each Ai, denoted by A�

i , which is an open set.
Let 4U1V 5 = w4X1Y 5 = 4g4X1Y 51h4X1Y 55 be a func-
tion from �2 to �2 whose domain includes

⋃n
i=1 A

�
i .

The following assumptions must hold:
1. The PDF fi4x1y5 is continuous for all 4x1y5 ∈A�

i

for i = 1121 0 0 0 1n.
2. The function w is a one–to–one transforma-

tion from A�
i onto a set Bi in the uv-plane, for

i = 1121 0 0 0 1n. Denoting the inverse of this transfor-
mation from A�

i onto Bi by 4X1Y 5 = w−1
i 4U1V 5 =

4ri4U1V 51 si4U1V 55, we require that the Jacobian

Ji =

∣

∣

∣

∣

∣

∣

∣

∣

¡ri4u1v5

¡u

¡ri4u1v5

¡v

¡si4u1v5

¡u

¡si4u1v5

¡v

∣

∣

∣

∣

∣

∣

∣

∣

is nonvanishing on Bi for i = 1121 0 0 0 1n and that
the partial derivatives are everywhere defined and
continuous.

Because the Bis are not necessarily pairwise dis-
joint, we find the contribution to the joint PDF of U
and V over the component Bi that results from A�

i ,
which is (Hogg et al. 2005)

fi1U1V 4u1v5= fi4ri4u1v51 si4u1v55 �Ji� for 4u1v5 ∈Bi

for i = 1121 0 0 0 1n. Then, fU1V 4u1v5 =
∑

fi1U1V 4u1v5,
where the sum is taken over all those is for which
4u1v5 ∈ Bi. To calculate the marginal PDF fU 4u5, we
define the following additional notation. For those
values of u that can occur for points 4u1v5 in Bi,
denote the contribution of the component Ai to the
marginal PDF of U by

fUi
4u5=

∫ �

−�

fi1U1V 4u1v5dv =

∫

Di4u5
fi1U1V 4u1v5dv1

where Di4u5 = 8v � 4u1v5 ∈ Bi9. To automate the inte-
gration over Di4u5, we have made the additional
assumption that, for each value of u realizable in the
interior of Bi, Di4u5 is a single line segment (that is,
each vertical line segment spanning Bi is entirely con-
tained in Bi) and that the end points of the closure of
Di4u5 are determined by two different constraints. For
some transformations defined on A, these assump-
tions can only be satisfied by a judicious partitioning
of A. Because the boundary of Bi typically consists
of many distinct constraint curves, and the limits of
integration for v depend on which constraint curves
are relevant for a particular value of u, the function
fUi

4u5 is defined in a piecewise fashion with mi pieces,
where mi is a positive integer. Then proceed as fol-
lows to find the PDF of U .

• For j = 1121 0 0 0 1 mi, denote the jth piece of fUi
4u5

by fUij
4u5, which is defined on an interval denoted by

uij <u<ui4j+15.
• Let U ∗ =

⋃n
i=18uij � j = 1121 0 0 0 1 mi + 19.

• Order the elements of U ∗ without repeats and
relabel them using the notation u∗

i so that u∗
1 <

u∗
2 < · · · < u∗

l+1, where l = �U ∗� − 1, and � · � denotes
cardinality.

• Let Ik = 84i1 j5 �uij ≤ u∗

k and u∗

k+1 ≤ ui4j+159 for
k = 1121 0 0 0 1 l.

Then for u ∈ 4u∗

k1u
∗

k+151 the PDF of U is given by

fU 4u5=
∑

4i1 j5∈Ik

fUij
4u5

for k = 1121 0 0 0 1 l.

3. Data Structure
To implement the algorithm, we will use a data struc-
ture for the distribution of the bivariate random vari-
able that expands on the list-of-sublists format used in
APPL. The distribution of the bivariate random vari-
able is presented in a list-of-three-sublists format. The
first sublist contains the ordered two-variable PDF
expressions fi4x1y5 of the distribution, corresponding
to the components Ai into which the support of X and
Y has been partitioned. The second sublist describes

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS 3

each component of Ai by using a list of constraints for
that component. The third sublist contains the strings
"Continuous" and "PDF" to specify the type of distri-
bution and meaning of the function in the first sublist.
For proper implementation of our algorithms, each
component described in the second sublist must be a
simply connected set (i.e., contains no holes) whose
boundary can be formed by consecutive segments of
curves that satisfy equations of the form p4x1y5 = 0.
In addition, the constraints listed in the second sub-
list for each component must satisfy the following
conditions:

• The constraints must be entered in adjacent
order; clockwise or counterclockwise is acceptable.

• The constraints must completely enclose a
region.

• The constraints must be entered as strict
inequalities.

• Except for constraints of the form x < a or x > a,
each constraint, when written as an equality, must
pass the vertical line test; i.e., only a single value of
y corresponds to each value of x. For example, use
y <

√
1 − x2 or y >−

√
1 − x2, rather than x2 + y2 < 1.

• If the component is unbounded, a less than � or
greater than −� constraint must be included.

See Online Supplement A (available at http://joc
.journal.informs.org/) for further discussion of this
data structure and for examples illustrating its use.

4. Implementation
The bivariate transformation procedure BiTransform(Z,
g, h) takes up to three arguments as input. The
first two arguments are required and the third is
optional. The first required argument is the joint
distribution of X and Y , which is given in the list-
of-three-sublists format. If U = g4X1Y 5 is a k–to–one
transformation or defined in a piecewise fashion, or
both, then the user must partition the support of X
and Y such that g4X1Y 5 is one–to–one and is not
defined in a piecewise fashion on each component
of the partition. The second required argument is
the transformation of interest U = g4X1Y 5, given in
the Maple function format [(x, y)→ g(x, y)]. If
only one transformation is provided, then g(x, y)
is applied to all components of the support of X
and Y . Otherwise, the user must supply a number of
transformations equal to the number of components,
where the first transformation corresponds to the first
component, the second transformation corresponds
to the second component, and so on. The third
optional argument is the transformation V = h4X1Y 5,
which is described using the same Maple function
format and conventions used when describing U . The
default transformation is the dummy transformation
V = h4X1Y 5= Y for all values in A.

We give detail in this paragraph concerning the
automatic determination of the inverse. Each com-
ponent Ai of the support of X and Y is associated
with a corresponding transformation U = gi4X1Y 5
and V = hi4X1Y 5 for i = 1121 0 0 0 1n. The algorithm
adapts to the case in which the inverse trans-
formation 4X1Y 5 = 4ri4U1V 51 si4U1V 55 found by
the Maple solve procedure returns multiple solu-
tions, and the correct inverse must be chosen. For
example, the two–to–one function 4U1V 5 = 4X21Y 5
yields inverses 4X1Y 5 = 4

√
U1V 5 and 4X1Y 5 =

4−
√
U1V 5. The BiTransform procedure finds the cor-

rect inverse by selecting the inverse that satisfies xi =
ri4gi4xi1 yi51hi4xi1 yi55 and yi = si4gi4xi1 yi51hi4xi1 yi55
where 4xi1 yi5 ∈ A�

i . An algorithm for determining
such a point 4xi1 yi5 in Ai follows. Let Wi denote the
set of x-values for all intersections of adjacent con-
straint equalities that define Ai. Let ti be the minimum
of Wi, and let Ti be the maximum of Wi. If Wi contains
more than two elements, let t̂i be the second-smallest
element of Wi, and let ºTi be the second-largest ele-
ment of Wi.

1. If ti = −� and Ti = �, then xi = 0 and yi is the
average of the y-values for the two constraint equal-
ities associated with xi = 0 that maximize the differ-
ence of the y-values.

2. If ti = −� and Ti is finite, then xi = 4Ti + ºTi5/2
and yi is the average of the two y-values that corre-
spond to xi on the two constraint equalities associated
with xi.

3. If ti is finite, then xi = 4ti + t̂i5/2 and yi is the
average of the two y-values that correspond to xi on
the two constraint equalities associated with xi.

Each constraint that defines Ai is an inequality of
the form p4x1y5 < 0, where p is a real-valued contin-
uous function. The corresponding constraint for Bi is
found by substituting the appropriate inverse trans-
formations determined by the algorithm described in
the previous paragraph to get p4ri4u1v51 si4u1v55 <
0. One difficulty arises when the number of con-
straints for Ai is greater than the number of con-
straints for Bi. In other words, at least one of the
corresponding constraints for Bi has been deleted
as redundant. The following example illustrates this
problem.

Consider the bivariate random variables X and Y
with support on the open unit square 0 < x < 1,
0 <y < 1. The transformation U = XY with dummy
transformation V = Y is a one–to–one transformation
from A to B (shown in Figure 1 where the bound-
aries of A and B are not a part of the support) with
inverse X = U/V , Y = V . Substituting X = U/V and
Y = V into the linear constraints x > 0, y > 0, x < 1,
y < 1 gives the linear constraints u > 0, v > 0, u < v,
v < 1. The second constraint, v > 0, is redundant and

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
4 INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

�

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

u

v

�

Figure 1 Transformation from A to B Given by 4U1 V 5= 4XY 1 Y 5

Note. The constraint equality y = 0 of A is mapped to a point on the boundary of B.

should not be included in the description of the sup-
port of UV .

The support of X and Y is bounded by four linear
constraints whose corresponding equalities intersect
at the adjacent points 40105, 41105, 41115, 40115. These
points on the boundary of A are mapped to 40105,
40105, 41115, 40115, respectively, on the boundary
of B. The BiTransform procedure checks for equal-
ity between adjacent intersections for B and deletes
redundant constraints. In this case, the first and sec-
ond intersections for A map to the same point, 40105,
for B, so v > 0 is deleted.

There are cases where Maple functions do not oper-
ate as desired. The most troublesome of these func-
tions is solve. In particular, the input solve({x = a,
y = infinity}) returns NULL for a = 0 but returns
{x = a, y =�} for all a 6= 0. The solve procedure is used
primarily to find the intersection points between adja-
cent constraints associated with the support. Because
joint distributions constrained to the first quadrant are
fairly common, “if” statements in the code handle the
a = 0 case. However, it is impossible to add condi-
tional statements for all problems of this type (e.g.,
solve({x = y ∗ y, y = infinity}) also returns NULL).
Thus, the capability of our transformation procedure,
BiTransform, is limited in handling distributions with
infinite support. The scope of problems that can be
solved by BiTransform is limited to those whose adja-
cent constraint equalities can be solved analytically by
the solve function.

5. Examples
This section illustrates the use of the bivariate trans-
formation procedure BiTransform for a variety of dis-
tributions and transformations. Example 1 illustrates
the use of BiTransform on independent random vari-
ables. Example 2 illustrates transforming dependent

random variables. Example 3 illustrates piecewise
transformations. Example 4 illustrates k–to–one trans-
formations. Example 5 illustrates piecewise k–to–one
transformations. Example 6 illustrates a method for
working around a support that is not a simply con-
nected set.

Example 1 (Independent X and Y ). The joint
PDF of the independent continuous random variables
X ∼ U40115 and Y ∼ U40115 is

fX1Y 4x1y5= fX4x5fY 4y5= 11 0 < x < 11 0 <y < 10

The distribution of U =XY is found using the trans-
formation technique as follows:

u= g4x1y5= xy1 x = r4u1v5= u/v1

v = h4x1y5= y1 y = s4u1v5= v1

J =

∣

∣

∣

∣

∣

1/v −u/v2

0 1

∣

∣

∣

∣

∣

= 1/v1

fU1V 4u1v5= 1 ·

∣

∣

∣

∣

1
v

∣

∣

∣

∣

=
1
v
1 0 <u< v1

fU 4u5=

∫ 1

u

1
v
dv = 6lnv71

u = − lnu1 0 <u< 10

The commands to assign data structures and
apply the bivariate transformation technique are as
follows:

> XY := [[(x, y) -> 1], [[y > 0, x > 0, y < 1,
x < 1]], ["Continuous", "PDF"]];

> g := [(x, y) -> x ∗ y];
> h := [(x, y) -> y];
> U := BiTransform(XY, g, h);

which return

66u→ − ln4u571 601171 6“Continuous”, “PDF”77

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS 5

as the PDF of U as expected. Leaving out the third
line of code and the third argument in BiTransform
results in identical output.

Example 2 (Dependent X and Y ). The joint PDF of
dependent continuous random variables X and Y is

fX1Y 4x1y5= 21 x > 01 y > 01 x+ y < 10

The distribution of U = X + Y is found using the
transformation technique as follows:

u= g4x1y5= x+ y1 x = r4u1v5=
u+ v

2
1

v = h4x1y5= x− y1 y = s4u1v5=
u− v

2
1

J =

∣

∣

∣

∣

∣

1
2

1
2

1
2 −

1
2

∣

∣

∣

∣

∣

= −
1
2
1

fU1V 4u1v5= 2 ·

∣

∣

∣

∣

−
1
2

∣

∣

∣

∣

= 11 0 <u< 11 −u< v < u1

fU 4u5=

∫ u

−u
1dv = 2u1 0 <u< 10

The commands to assign data structures and apply
the bivariate transformation technique are as follows:

> XY := [[(x, y) -> 2], [[x > 0, y > 0,
x + y < 1]], ["Continuous", "PDF"]];

> g := [(x, y) -> x + y];
> h := [(x, y) -> x - y];
> U := BiTransform(XY, g, h);

which correctly return

66u→ 2u71 601171 6“Continuous”, “PDF”77

as the PDF of U .

Example 3 (Piecewise Transformation). The joint
PDF of the independent continuous random variables
X ∼ U40115 and Y ∼ U40115 is

fX1Y 4x1y5= fX4x5fY 4y5= 11 0 < x < 11 0 <y < 10

0.0 0.5 1.0

0.0

0.5

1.0

x

y

�1 �2

0.0 0.5 1.0 1.5

–1.0

–0.5

0.0

0.5

1.0

u

v

�1

�2

Figure 2 Piecewise Transformation from A1 to B1 and A2 to B2

Let U be a piecewise transformation with U =X +Y
for 0 < x < 1/2, 0 <y < 1, and U =XY for 1/2 < x < 1,
0 <y < 1. The transformation is illustrated in Figure 2,
using V =X −Y on 0 <X < 1/2, 0 <Y < 1 and V = Y
on 1/2 < X < 1, 0 < Y < 1. For A1 with 0 < x < 1/2,
0 <y < 11

u= g14x1y5= x+ y1 x = r14u1v5=
u+ v

2
1

v = h14x1y5= x− y1 y = s14u1v5=
u− v

2
1

J1 =

∣

∣

∣

∣

∣

1
2

1
2

1
2 −

1
2

∣

∣

∣

∣

∣

= −
1
2
1

f11U1V 4u1v5=1·

∣

∣

∣

∣

−
1
2

∣

∣

∣

∣

=1/21 0<u+v<11 0<u−v<21

fU1
4u5=































∫ u

−u
1/2dv 0 <u< 1/21

∫ 1−u

−u
1/2dv 1/2 <u< 11

∫ 1−u

u−2
1/2dv 1 <u< 3/21

=















u 0 <u< 1/21

1/2 1/2 <u< 11

43 − 2u5/2 1 <u< 3/20

For A2 with u = g24x1y5 = xy, v = h24x1y5 = y1 we
have J2 = 1/v from Example 1 and

f21U1V 4u1v5= 1 ·

∣

∣

∣

∣

1
v

∣

∣

∣

∣

=
1
v
1 v/2 <u< v1 0 <v< 11

fU2
4u5=















∫ 2u

u
1/v dv = ln425 0 <u< 1/21

∫ 1

u
1/v dv = − ln4u5 1/2 <u< 10

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
6 INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS

Using the algorithm for bivariate transformations,

fU 4u5= fU1
4u5+ fU2

4u5=























u+ ln425 0 <u< 1/21

1/2 − ln4u5 1/2 <u< 11

43 − 2u5/2 1 <u< 3/20

The commands to assign data structures and apply
the bivariate transformation technique are as follows:

> XY := [[(x, y) -> 1, (x, y) -> 1],
[[y > 0, x < 0, y < 1, x < 1/2],
[y > 0, x > 1/2, y < 1, x < 1]],
["Continuous", "PDF"]];

> g := [(x, y) -> x + y, (x, y)-> x ∗ y];
> h := [(x, y) -> x - y, (x, y)-> y];
> U := BiTransform(XY, g, h);

which return the correct PDF of U in the APPL list-
of-sublists format as

66u→ u+ ln4251u→ − ln4u5+ 1/21u→ −u+ 3/271

6011/21113/271 6“Continuous”, “PDF”770

Example 4 (Two–to–One Transformation). The
joint PDF of the independent continuous random
variables X and Y is

fX1Y 4x1y5= 1/41 −1 < x < 11 −1 <y < 10

The distribution of U under the two–to–one transfor-
mation U = X2 − Y and V = Y is found using the
algorithm described in §2. Partition the support of X
and Y such that the transformation is one–to–one in
each component. Let A1 be the component bound by
−1 < x < 01 −1 <y < 1; and let A2 be the component
bound by 0 < x < 11 −1 < y < 1. Both components
map onto B under the transformation U =X2 −Y and
V = Y , as illustrated in Figure 3.

–1 0 1

–1

0

1

x

y

�1 �2

–1.0 0.0 1.0 2.0

–1.0

–0.5

0.0

0.5

1.0

u

v

�

Figure 3 Two–to–One Transformation from A=A1 ∪A2 to B

For A1,

u= g14x1y5= x2
− y1 x = r14u1v5= −4u+ v51/21

v = h14x1y5= y1 y = s14u1v5= v1

J1 =

∣

∣

∣

∣

∣

−
1
2 4u+ v5−1/2 −

1
2 4u+ v5−1/2

0 1

∣

∣

∣

∣

∣

= −
1
2 4u+ v5−1/21

f11U1V 4u1v5=
1
4 ·
∣

∣−
1
2 4u+ v5−1/2

∣

∣=
1
8 4u+ v5−1/21

−v < u< 1 − v1 −1 <v< 11

fU1
4u5=



































∫ 1

−u

1
8 4u+ v5−1/2 dv −1 <u< 01

∫ 1−u

−u

1
8 4u+ v5−1/2 dv 0 <u< 11

∫ 1−u

−1

1
8 4u+ v5−1/2 dv 1 <u< 21

=















√
u+ 1/4 −1 <u< 01

1/4 0 <u< 11

−
√
u− 1/4 + 1/4 1 <u< 20

For A2,

u= g24x1y5= x2
− y1 x = r24u1v5= 4u+ v51/21

v = h24x1y5= y1 y = s24u1v5= v1

J2 =

∣

∣

∣

∣

∣

1
2 4u+ v5−1/2 1

2 4u+ v5−1/2

0 1

∣

∣

∣

∣

∣

=
1
2 4u+ v5−1/21

f21U1V 4u1v5= 1
4 ·
∣

∣

1
2 4u+ v5−1/2

∣

∣=
1
8 4u+ v5−1/21

−v < u< 1 − v1 −1 <v< 11

fU2
4u5=



































∫ 1

−u

1
8 4u+ v5−1/2 dv −1 <u< 01

∫ 1−u

−u

1
8 4u+ v5−1/2 dv 0 <u< 11

∫ 1−u

−1

1
8 4u+ v5−1/2 dv 1 <u< 21

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS 7

=















√
u+ 1/4 −1 <u< 01

1/4 0 <u< 11

−
√
u− 1/4 + 1/4 1 <u< 20

Using the algorithm for bivariate transformations,

fU 4u5 = fU1
4u5+ fU2

4u5

=























√
u+ 1/2 −1 <u< 01

1/2 0 <u< 11

−
√
u− 1/2 + 1/2 1 <u< 20

The commands to assign data structures and apply
the bivariate transformation technique are as follows:

> XY := [[(x, y) -> 1/4, (x, y) -> 1/4],
[[y > -1, x > -1, y < 1, x < 0],
[y > -1, x > 0, y < 1, x < 1]],
["Continuous", "PDF"]];

> g := [(x, y) -> x ∧ 2 - y];
> h := [(x, y) -> y];
> U := BiTransform(XY, g, h);

which return the correct PDF of U in the APPL list-
of-sublists format as

66u→
√
u+ 1/21u→ 1/21u→ −

√
u− 1/2 + 1/271

6−110111271 6“Continuous′′1“PDF′′770

Example 5 (Piecewise Two–to–One Transforma-
tion). The joint PDF of independent continuous ran-
dom variables X and Y is

fX1Y 4x1y5= 1/61 −2 < x < 11−1 <y < 10

The transformation U = X2 − Y and V = Y is two–
to–one on −1 < x < 1, −1 < y < 1 and one–to–one on
−2 < x < −1, −1 < y < 1. Partition the support of X
and Y such that the transformation U = X2 − Y and

–2.0 –1.0 0.0 1.0

–1.0

–0.5

0.0

0.5

1.0

x

y

�1 �2

–1 0 1 2 3 4 5

–1.0

–0.5

0.0

0.5

1.0

u

v

�1 �2

Figure 4 Piecewise Two–to–One Transformation
Note. The region A1 maps onto B1 ∪B2, whereas A2 only maps to B2.

V = Y is one–to–one in each component. Let A1 be the
component bound by −2 < x < 01−1 < y < 1; and let
A2 be the component bound by 0 < x < 11−1 < y < 1,
as illustrated in Figure 4.

The marginal PDF of U is

fU 4u5=



















































√
u+ 1/3 −1 <u< 01

√
u+ 1/6 + 1/6 0 <u< 11

−
√
u− 1/3 + 1/6 +

√
u+ 1/6 1 <u< 21

−
√
u− 1/6 +

√
u+ 1/6 2 <u< 31

−
√
u− 1/6 + 1/3 3 <u< 50

The commands to assign data structures and apply
the bivariate transformation technique are as follows:

> XY := [[(x, y) -> 1/6, (x, y) -> 1/6],
[[y > -1, x > -2, y < 1, x < 0],
[y > -1, x > 0, y < 1, x < 1]],
["Continuous", "PDF"]];

> g := [(x, y) -> x ∧ 2 - y, (x, y) -> x ∧ 2 - y];
> h := [(x, y) -> y, (x, y) -> y];
> U := BiTransform(XY, g, h);

Note that g and h each contain two functions instead
of one as in the previous example. Declaring the same
transformation for each component achieves the same
result as declaring the transformation once. The cor-
rect PDF of U is returned in the APPL list-of-sublists
format as

66u→
√
u+ 1/31u→

√
u+ 1/6 + 1/61

u→ −
√
u− 1/3 + 1/6 +

√
u+ 1/61u→ −

√
u− 1/6

+
√
u+ 1/61 u→ −

√
u− 1/6 + 1/371

6−1101112131571 6“Continuous′′1“PDF′′770

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
8 INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS

Example 6 (Nonsimply Connected Support for
U and V ). Let X and Y be uniformly distributed on
41125× 4−�1�5 with transformations

U =X cosY 1 V =X sinY 0

The joint density of U and V is

fU1V 4u1v5=
1

2�
√
u2 + v2

1 1 <u2
+ v2 < 41

and the marginal PDF of U is

fU 4u5=















�−1 sinh−1
√

4u−2 − 1 1 < �u�< 21

�−14sinh−1
√

4u−2 − 1 − sinh−2
√
u−1 − 15

�u�< 10

The commands to assign data structures and apply
the bivariate transformation technique are as follows:

> X := UniformRV(1, 2);
> Y := UniformRV(-Pi, Pi);
> XY := JointPDF(X, Y);
> g := [(x, y) -> x ∗ cos(y)];
> h := [(x, y) -> x ∗ sin(y)];
> BiTransform(XY, g, h);

which displays the joint density of 4U1V 5 as
[[

4u1v5→ 1/2
1

�
√

�v2 +u2�

]

1

[[

1 <
√

v2 +u21
√

v2 +u2 < 21

arctan
(

v
√
v2 +u2

1
u

√
v2 +u2

)

<�

]]

1

6“Continuous”, “PDF”7
]

0

The marginal PDF is calculated by manually dividing
the support of 4U1V 5 into six regions using u = −1,
v = 0, and u= 1, as illustrated in Figure 5.

The Maple commands

> UV := [[(u, v) -> 1 / (2 ∗ Pi ∗ sqrt(u ∧ 2 + v ∧ 2)),
(u, v) -> 1 / (2 ∗ Pi ∗ sqrt(u ∧ 2 + v ∧ 2)),
(u, v) -> 1 / (2 ∗ Pi ∗ sqrt(u ∧ 2 + v ∧ 2)),
(u, v) -> 1 / (2 ∗ Pi ∗ sqrt(u ∧ 2 + v ∧ 2)),
(u, v) -> 1 / (2 ∗ Pi ∗ sqrt(u ∧ 2 + v ∧ 2)),
(u, v) -> 1 / (2 ∗ Pi ∗ sqrt(u ∧ 2 + v ∧ 2))],

[[v < sqrt(4 - u ∧ 2), u < -1, v > 0],
[v < sqrt(4 - u ∧ 2), u > -1,
v > sqrt(1 - u ∧ 2), u < 1],

[v < sqrt(4 - u ∧ 2), u > 1, v > 0],
[v > -sqrt(4 - u ∧ 2), u < -1, v < 0],
[v > -sqrt(4 - u ∧ 2), u > -1,
v < -sqrt(1 - u ∧ 2), u < 1],
[v > -sqrt(4 - u ∧ 2), u > 1, v < 0]],
["Continuous", "PDF"]];

> MarginalPDF(UV, u);

–2 –1 0 1 2

–2

–1

0

1

2

•

u

v

Figure 5 Support of U and V

correctly return

[[

u→−
−1/2ln4

√
−u2 +4+25+1/2ln4−

√
−u2 +4+25

�
1

u→
1
�

·4−1/2ln4
√

−u2 +1+15−1/2ln4
√

−u2 +4+25

+1/2ln4−
√

−u2 +4+25−1/2ln4−
√

−u2 +1+1551

u→−
−1/2ln4

√
−u2 +4+25+1/2ln4−

√
−u2 +4+25

�

]

1

6−2001−10011001200716“Continuous”, “PDF”7
]

as the marginal PDF of U . [Recall that sinh−14x5 =

ln4x+
√
x2 + 15.]

6. Conclusions and Further Research
Calculating the distribution of a transformation of two
random variables by hand can be tedious, especially
when working with piecewise joint distributions or
piecewise transformations. An automated method
for computing bivariate transformations saves the
user time and prevents calculation errors. The algo-
rithm and BiTransform procedure we developed
allows for one–to–one, k–to–one, and piecewise
k–to–one transformations for both independent
and dependent continuous random variables. In
the future, we hope to see computer-based algo-
rithms for bivariate discrete transformations, as
well as multivariate transformations involving three
or more random variables. There are numerous
applications of BiTransform in stochastic opera-
tions research (one from queuing theory is given in
Online Supplement F). The algorithm described in
this paper has been implemented in approximately
1,300 lines of code and is available at http://
www.math.wm.edu/∼leemis/BiVarAPPL.txt. The APPL
code can be downloaded at http://www.APPLsoftware.com.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yang, Drew, and Leemis: Automating Bivariate Transformations
INFORMS Journal on Computing 24(1), pp. 1–9, © 2012 INFORMS 9

Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://joc.journal
.informs.org/.

Acknowledgments
The authors thank Area Editor Winfried Grassmann, an
associate editor, and two referees for their helpful comments
and for suggesting two examples that are included in the
paper.

References
Glen, A. G., D. L. Evans, L. M. Leemis. 2001. APPL: A probability

programming language. Amer. Statistician 55(2) 156–166.

Glen, A. G., L. M. Leemis, J. H. Drew. 1997. A generalized univari-
ate change-of-variable transformation technique. INFORMS J.
Comput. 9(3) 288–295.

Hogg, R. V., J. W. McKean, A. T. Craig. 2005. Introduction to Mathe-
matical Statistics, 6th ed. Prentice Hall, Upper Saddle River, NJ.

Rose, C., M. D. Smith. 2002. Mathematical Statistics with Mathematica.
Springer-Verlag, New York.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


