
This article was downloaded by: [College of William & Mary], [Lawrence Leemis]
On: 13 January 2012, At: 10:01
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Simulation and
Computation
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lssp20

Bivariate Nonparametric Random Variate Generation
Using a Piecewise-Linear Cumulative Distribution
Function
W. Kaczynski a , L. Leemis b , N. Loehr c & J. McQueston b
a Department of Mathematical Sciences, United States Military Academy, West Point, New
York, USA
b Department of Mathematics, The College of William & Mary, Williamsburg, Virginia, USA
c Department of Mathematics, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, USA

Available online: 20 Dec 2011

To cite this article: W. Kaczynski, L. Leemis, N. Loehr & J. McQueston (2012): Bivariate Nonparametric Random Variate
Generation Using a Piecewise-Linear Cumulative Distribution Function, Communications in Statistics - Simulation and
Computation, 41:4, 469-496

To link to this article: http://dx.doi.org/10.1080/03610918.2011.594532

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/lssp20
http://dx.doi.org/10.1080/03610918.2011.594532
http://www.tandfonline.com/page/terms-and-conditions

Communications in Statistics—Simulation and Computation®, 41: 469–496, 2012
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0918 print/1532-4141 online
DOI: 10.1080/03610918.2011.594532

Bivariate Nonparametric Random Variate
Generation Using a Piecewise-Linear Cumulative

Distribution Function

W. KACZYNSKI1, L. LEEMIS2, N. LOEHR3,
AND J. McQUESTON2

1Department of Mathematical Sciences, United States Military Academy,
West Point, New York, USA
2Department of Mathematics, The College of William & Mary,
Williamsburg, Virginia, USA
3Department of Mathematics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, USA

An extension of the univariate case of nonparametric random variate generation
using a piecewise-linear cumulative distribution function is developed. The method
is a blackbox variate generation technique requiring only data pairs from the
modeler. The technique is a novel nonparametric approach to density estimation,
and generating variates for simulation is accomplished without explicitly computing
the estimated joint density, thereby speeding up random point generation. The
method presented effectively captures marginal distributions with multiple modes.
The algorithm presented uses the convex hull of the observed data as a preliminary
support, then generates the first element of the two-dimensional random vector
via inversion of the marginal piecewise-linear cdf, and the second element from a
conditional weighted piecewise-linear cdf created from selected values of the second
variable.

Keywords Density estimation; Marginal distributions; Modeling; Piecewise-
linear functions.

Mathematics Subject Classification 62-04; 62-07; 62G99.

1. Introduction

Univariate random variate generation from parametric distributions is a well-
established methodology providing the modeler dozens of distribution choices
having a variety of statistical properties (Banks et al., 2001; Law, 2007; Leemis
and Park, 2006). For parametric bivariate distributions, however, the number of

Received November 9, 2010; Accepted May 25, 2011
Address correspondence to W. Kaczynski, Department of Mathematical Sciences,

United States Military Academy, West Point, NY 10996, USA; E-mail: william.kaczynski@
usma.edu

469

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

470 Kaczynski et al.

distribution choices is much more limited. Additionally, the ability to generate
observations from some bivariate distributions relies on the acceptance–rejection
method, casting out the preferred inversion method. Recent literature in copula-
based approaches indicates improvement in this area. Copula-based approaches
have often been applied to finance and are becoming more prevalent in other areas
such as actuarial science and hydrology. We did not consider these approaches
as candidates for comparison because recent literature suggests that the method
of model selection is not universally accepted (Genest and Rëmillard, 2006).
Additionally, this approach is a two-stage estimation process (1. marginals,
2. copula function). There is promising recent work in nonparametric copula-based
approaches, overcoming the two-stage estimation issue. Biller (2009), for example,
used the copula-based approach for simulation input modeling. However, we do not
compare the proposed algorithm to this work.

Kernel density estimation (KDE) is another popular method for density
estimation. Hörmann and Leydold (2000) presented algorithms that generate
variates directly from a sample via KDE for both the univariate and bivariate cases.
In their approach, resampling occurs from a multivariate normal distribution with
a covariance matrix that matches that of the observed data. In the univariate case,
Bratley et al. (1987) and Law (2007) described variate generation methods using the
linear interpolation of the empirical distribution function. Generating variates from
KDE offers the advantages (Devroye and Györfi, 1985; Devroye, 1986; Silverman,
1986) of simplicity and well-established theory of density estimation. However, KDE
requires the arbitrary (but necessary) step of fine tuning a smoothing parameter as
well as choosing the appropriate kernel function. Hörmann and Leydold (2000) also
noted that generating variates from KDE results in the “variance of the empirical
distribution always being larger than the variance of the observed sample,” and
furthermore, since generating from KDE is not an inversion method, correlation
induction for variance reduction is lost. Silverman (1986) presented an algorithm
that corrects the KDE variance difference by forcing it to equal the sample variance.

Since the focus of this article is modeling bivariate dependencies in input data
for simulation, we now review the literature in this area. In the parametric case,
Devroye (1986) and Johnson (1987) devised strategies for generating from several
multivariate distributions including the multivariate-normal and the multi-variate
Johnson family. Wagner and Wilson (1995) developed techniques for the bivariate
Bezier distribution. Taylor and Thompson (1986) formulated a semi-nonparametric
method that comprises samples from a combination of a nearest neighbor technique
and KDE. Matching moments occasionally occurs as an appropriate method
for density estimation. Because the majority of these published methods assume
a known population distribution, they are coupled with potentially unrealistic
distribution properties such as the support, moments, etc. Additionally, many of
these methods rely on the acceptance–rejection technique for variate generation,
and thus are not synchronized. This loss in synchronization sacrifices the ability to
implement variance reduction through the use of common random numbers, and
carries the added expense of wasted U�0� 1�’s. All of the methods reviewed in the
literature model a unimodal distribution well, but often fail to consistently model a
bimodal distribution correctly. We were unable to find a flexible family capable of
greater than two modes, therefore generating variates according to some parametric
family may not be possible for data with more than two modes.

In this article, we intend to show three differences between the proposed
bivariate nonparametric random variate generation and KDE. The differences are:

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 471

(1) no reliance on the selected kernel density function; (2) no reliance on the selected
smoothing parameter; and (3) no production of unrealistic variates (i.e., negative
values from a service time distribution). The notable strengths of the proposed
algorithm are that it is synchronized and cannot produce unrealistic variates.

The article is organized as follows. Section 2 introduces a piecewise-linear
cumulative distribution function (cdf) and explains how to sample from this cdf.
It follows with a discussion of how to manipulate this estimator so that the first
two moments of the estimator match the corresponding moments of the observed
data. The section concludes with the proposed bivariate random variate generation
algorithm, an applied example, and an interesting variant of the algorithm for
selected data sets. Section 3 compares the proposed algorithm to KDE for bivariate
data with unknown underlying bivariate densities, along with data generated
from known bivariate densities. Where possible, the comparisons include visual
representations, marginal means and variances, covariances, and squared error
between the known and estimated cdfs. Section 4 describes limitations of the
proposed generator. The last section summarizes the results and provides areas for
future study on the topic.

2. Generating Variates from Bivariate Data

One obvious and simple technique for generating variates from a data set
��x1� y1�� �x2� y2�� � � � � �xn� yn�� is to sample from the empirical cdf, F̂ �x� y� =
1
n
I�x� y�� where I�x� y� is a function that counts the number of �xi� yi� pairs in the

data set satisfying xi ≤ x and yi ≤ y (i.e., F̂ �x� y� is the fraction of the data pairs
falling to the southwest of �x� y�). An algorithm for generating from the empirical
cdf is equivalent to sampling with replacement from the data pairs �xi� yi�:

1. Generate U ∼ U�0� 1�.
2. I ← �nU�.
3. Return �xI� yI�.

This random variate generation technique is fast and conceptually straightforward.
The drawback with this method is that the random variates are limited to the data
pairs—which is particularly problematic for a small sample size.

2.1. The Piecewise-Linear cdf

In the univariate case, the interpolation problem is easily solved by using a
piecewise-linear approximation to the empirical cdf. The n− 1 gaps between the
data values result in n− 1 piecewise-linear segments for the estimated cdf. If
extrapolation in one or both tails is an issue, then the modeler can use Marsaglia’s
tail algorithm (Bratley et al., 1987) or kernel density estimation (Silverman, 1986).

In the bivariate case, the delineation of the support is less clear than in the
univariate case. Using the rectangular support

min�x1� x2� � � � � xn� ≤ x ≤ max�x1� x2� � � � � xn��

min�y1� y2� � � � � yn� ≤ y ≤ max�y1� y2� � � � � yn��

for example, is likely to include regions of support that a modeler would want
to exclude. In the method developed here, we use the convex hull of the data

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

472 Kaczynski et al.

values as a preliminary support. (This support can be modified using techniques
described subsequently.) We define the convex hull traditionally as the minimum
convex set containing the data set of interest in the two-dimensional plane. The
variate generation algorithm (Law, 2007, p. 467) relies on conditioning:

1. Generate U1 ∼ U�0� 1�.
2. X0 ← F−1

X �U1�.
3. Generate U2 ∼ U�0� 1�.
4. Y0 ← F−1

Y �X0=x�U2�.
5. Return �X0� Y0�.

For a derivation of the joint density, see Devroye (1986).
The challenge associated with the development here is to find a reasonable

nonparametric approximation to F−1
Y �X=x�·�. To illustrate the justification in using

F−1
Y �X=x, consider the scatterplot shown in Fig. 1 with x = 8. The data indicate a

wide range of potential values to generate for the second element of the random
pair, y. Depending on the unknown bivariate population distribution this might
be acceptable. However, given the observed data, it appears the associated y value
should not potentially occupy this entire range of the y values, and might more
appropriately be represented by the limits naturally occurring at the lower and
upper intersections of x = 8 and the convex hull.

2.2. A Nonparametric Bivariate Generation Algorithm

By combining strategies used in the univariate case, an algorithm is devised to
generate bivariate random variates from observed data pairs using a nonparametric
heuristic approach. This algorithm requires a random sample of bivariate data
drawn from an unknown continuous population distribution. A good algorithm
produces variate pairs that adequately mimic the distribution associated with the
observed data. If appropriate, the marginal data are moment matched at the
beginning of the algorithm. The moment-adjusted vectors are created by first
stretching the marginal data so that the variance of the piecewise linear cdf estimator
matches that of the sample data variance, and then shifting the resulting marginal

Figure 1. Intersection of a randomly generated x = 8 and the convex hull.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 473

data values to match the marginal means. This process is only suitable in cases
where the adjusted marginal values do not result in unrealistic data points, e.g.,
when service times are close to zero and adjusting them could produce impossible
negative service times. The advantage of adjusting the data (when possible) is that
the first two moments are conserved by the estimator, whereas, when the data is not
adjusted, it is well known that the piecewise-linear cdf estimator’s variance is less
than the sample data variance. Matching the variances is important in computing
the denominator in the correlation expression

Corr�X� Y� = Cov�X� Y�√
V�X�V�Y�

�

Using the expressions derived in Kaczynski et al. (2012), reprinted here, the ordered
moment-adjusted vector values x′�j� are calculated as

x′�j� = x�1� − �+ w
i−1∑
j=1

g′j�

where � is the appropriate stretching parameter, w is the width of the support of
the adjusted piecewise-linear cdf, and g′j is a normalized gap value between sorted
elements of the x vector. This calculation accomplishes matching the variance of the
piecewise-linear cdf estimator to the sample data variance. We then match means
by shifting each data value by

x′′�i� = x′�i� −
[
x′�i� + 2x′�2� + · · · + 2x′�n−1� + x′�n�

2�n− 1�
− x̄

]
�

The S-Plus/R code for this moment matching process (designated as the mm(x)
procedure) is provided in Appendix A. For a more detailed explanation on matching
the estimator’s moments to the data, see Kaczynski et al. (2012).

The algorithm is separated into a setup portion, and a generation portion. The
terms xi and yi represent the observed data pairs, x′i and y′i are the moment-adjusted
data pairs, and, �x′′� y′′� is the generated variate pair produced by the algorithm. The
corresponding vectors are set in boldface.

Setup

1. x′ ← mm�x�� y′ ← mm�y� (optional stretching step).
2. hull ← convex hull (x′, y′).

Generation

1. Generate U ∼ U�0� 1�.
2. x′′ ← F−1

X �U� (F−1
X is the inverse cdf of the piecewise linear estimator).

3. ylo ← minimum�hull�x′′�� (the height of lower intersection of the line x = x′′ and
the convex hull).

4. yhi ← maximum�hull�x′′�� (the height of upper intersection of the line x = x′′ and
the convex hull).

5. A ← �i � ylo < y′i < yhi�, i = 1� 2� � � � � n (the index set of interior points).
6. wk ← 1

1+��xk−x′′�/s�2 for k ∈ A, where s is the sample standard deviation of xA, the
set of interior points (weights for ylo and yhi arbitrarily set to 1; all weights then
normalized to sum to 1).

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

474 Kaczynski et al.

7. FY �X=x ← weighted piecewise-linear cdf conditioned on x = x′′ (see Kaczynski
et al., 2012, for details on creating the weighted piecewise-linear cdf).

8. Generate U ∼ U�0� 1�.
9. y′′ ← F−1

Y �X=x�U�.

In step 6 of the generation portion of the algorithm, we include s to standardize
the weight calculation. Data pairs with xi values closer to the line x = x′′ receive
higher weight. Dividing the absolute difference xi − x′′ by s scales the factors in
terms of standard deviation units.

This algorithm is non conventional in the sense that it translates the data
pairs directly into a variate generation algorithm, rendering the calculation of
the estimated joint density unnecessary. There is, of course, an underlying joint
probability density function associated with the algorithm.

2.3. Examples

Example 2.1. Consider the bivariate data set of size n = 14 random observations
drawn from a continuous population: (4.1, 1.5), (6.2, 3.4), (8.3, 5.1), (7.8, 6.4), (5.2,
7.8), (2.0, 4.5), (1.9, 1.3), (2.7, 2.1), (3.5, 3.9), (4.0, 4.3), (3.6, 2.2), (4.4, 5.2), (5.0, 3.1),
(5.3, 5.3).

Setup

1. Compute moment-matched adjusted x and y vectors, denoted as x′

and y′ for the data. Using the S-Plus/R mm(x) function, the adjusted
vectors, to two decimal places, are: x′ = �4�08� 6�48� 8�89� 8�32� 5�34� 1�67�
1�56� 2�47� 3�39� 3�96� 3�50� 4�42� 5�11� 5�45� and y′ = �1�15� 3�35� 5�32� 6�82� 8�44�
4�63� 0�92� 1�85� 3�93� 4�39� 1�96� 5�44� 3�01� 5�55�.

2. Find the convex hull of x′ and y′.

Generation

The S-Plus/R code provided in Appendix A combines the univariate strategies for
generating from bivariate data using the proposed algorithm. Figure 2 presents the
adjusted bivariate data and associated convex hull. Using the piecewise-linear cdf

Figure 2. Plot of x′ vs. y′ and the convex hull.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 475

created from the moment-matched x′ vector, the variate x′′ is generated at x′′ = 8.
The vertical dashed line at x′′ = 8 intersects the convex hull in exactly two places,
denoted as ylo and yhi in the algorithm. The horizontal lines at these intersection
points establish the lower and upper limits capturing the interior original y data
values used to create the weighted conditional piecewise-linear cdf for Y . The �A� = 5
interior values are the solid circles in Fig. 2. These corresponding y values are
weighted by wk based on their respective horizontal distance from the vertical
dashed line associated with x′′. One instance of wk is shown in Fig. 2. Using
the marginal piecewise-linear cdf created by the weighted interior y values, y′′ is
generated. Using this methodology, Fig. 3 displays 50 variates from the original
n = 14 data values where both the mean and variance for the piecewise-linear cdf’s
of x and y match that of the data.

The previous example illustrates the workings of the algorithm and associated
results. Figure 3 shows (and the algorithm requires) that generated variates must
lie within the convex hull created by the original data (if the data is adjusted to
match moments, we can generate slightly outside the original convex hull since
matching moments requires stretching each endpoint by a positive distance �, and
the interior points by a corresponding proportional distance). Additionally, if the
user desires bivariate data for a certain region not encompassed by the observed
data, it is only necessary to adjust the convex hull as desired. This feature allows
significant advantages for studying specific aspects of a data set. For example, the
user could easily develop cases for data analysis that include regions of interest
while also including observed data. The next example illustrates the algorithm’s
ability to replicate multi-modal data in terms of means, variances, and correlation.
Hörmann and Leydold (2000) discussed KDE’s difficulty in accurately estimating
multi-modal data, which places adequate variate generation in question for such
distributions. Although not studied in detail here, one open area of study for the
proposed algorithm is the theoretical analysis of error bounds. Subsequent examples
will show that in certain cases the estimated density converges to the true density
when the size of the random data set increases and in other cases it may not.

Figure 3. Plot of the convex hull and 50 random variates from x and y.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

476 Kaczynski et al.

Figure 4. Plot of n = 299 waiting vs. duration times (minutes) for the Old Faithful Geyser.

Example 2.2. The Old Faithful geyser eruptions in Yellowstone Park are a
commonly analyzed phenomenon. A data set from Weisberg (1980) consists of
n = 299 data pairs, the waiting time between eruptions (xi) and the eruption
duration (yi), and is displayed in Fig. 4, along with the convex hull. Although not
easily visually distinguishable from the scatterplot, the data is tri-modal. Using a
standard bivariate distribution to model this data set, such as the bivariate normal
distribution, would not provide an adequate fit. For this data, it is appropriate to
match the first two moments as doing so does not significantly change waiting nor
duration times due to the large sample size. Additionally, matching the moments
does not create any negative times.

Figure 5 shows the adjusted data and associated convex hull side-by-side with
the 299 random variate pairs generated by our algorithm. The first numerical
column of Table 1 provides the sample statistics associated with the data, and the
second column shows that the first and second moments, and the covariance are
adequately conserved in the generated variates. The third column provides p-values

Figure 5. Sample adjusted observed data (left) and generated random variates (right) for
waiting vs. duration times (minutes), for n = 299.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 477

Table 1
Sample statistics for observed and generated data

n = 299
observed data

n = 299
generated data p-value

avg waiting 72�31 73�24 0.407
avg duration 3�46 3�39 0.465
var waiting 192�94 183�18 0.654
var duration 1�32 1�42 0.529
covariance −10�28 −9�07

Figure 6. Plot of n1 = 105 and n2 = 194 waiting vs. duration times (minutes).

for the two-sided hypothesis tests with t-tests used for the means and F -tests for the
variances.

It is apparent that the algorithm will occasionally generate variates in “white-
space” (areas of the convex hull not represented by observed sample data values)
of the convex hull as is expected. If this is problematic, we could fine-tune the
appearance of the hull to avoid the possibility of these variates without significantly
altering the algorithm. Alternatively, we could create two convex hulls as shown in
Fig. 6, with n1 = 105 data values in the lower hull and n2 = 194 data values in the
upper hull. The algorithm is modified so that a bivariate pair is generated from the
lower hull with probability 105/299 and the upper hull with probability 194/299.
The algorithm’s run time change for this adjustment is negligible. A pathological
example is provided in Appendix B where the proposed algorithm performs poorly
due to the nature of the underlying population distribution.

3. Kernel Density Estimate Comparison

3.1. Generating Variates via Kernel Density Estimation

Perhaps the most widely accepted method of univariate density estimation is kernel
density estimation (KDE). The kernel density approximation of the underlying true
distribution is defined as f̂X�x� = 1/�nb�

∑n
i=1 K ��x − xi/b�, where K is the kernel

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

478 Kaczynski et al.

function, n is the sample size, and b is the bandwidth (smoothing) parameter. While
several kernel functions exist in the literature, the most commonly used kernel
function is the Gaussian kernel, K�x� = 1/�

√
2�� e−

1
2 x

2
�−
 < x <
, with mean

zero and unit variance. These estimators provide a smooth density estimate with
proven theoretical properties, making their choice of estimation a sound one. This
estimator does require the additional step of calculating a smoothing parameter.
We reference Hörmann and Leydold (2000) for use of kernels (and selection of a
smoothing parameter) in generating bivariate data from an observed sample. They
provide an efficient algorithm for sampling from a multi-dimensional kernel density
estimate. Using their algorithm with a normal kernel function, generating variates
is very fast. The algorithm is divided into a setup and generation portion.

Setup
For a random sample X1�X2� � � � �Xn of d length vectors, compute:

1. the mean vector X ,
2. the estimated covariance matrix 	,
3. the Cholesky factor l of 	,
4. the smoothing parameter b,
5. the variance correction factor cb.

Generation

1. Generate a random integer I uniformly distributed on �1� 2� � � � � n�.
2. Generate a random vector W of d independent standard normal variates.
3. Return Y = X + �XI − X + l�bW��cb.

In this algorithm a full covariance matrix is specified from the observed data.
Using the Old Faithful geyser data (Weisberg, 1980), the estimated covariance
matrix, 	, is

	 =
[
192�94 −10�28
−10�28 1�32

]
�

The joint probability density function is estimated as a sum of n = 299 translated
versions of the chosen kernel function (bivariate normal in this case) multiplied by
1
nb
. Although there are many accepted versions of calculating b for the univariate

case, the multidimensional case is more challenging. Silverman (1986) suggested a
simple calculation for b as

b =
(

4
�d + 2�n

)1/�d+4�

�

where d is the dimension of the data. The bivariate case results in b = n−1/6.
Additionally, a variance-correction factor is included because the variance of

the empirical distribution is always larger than the variance of the observed data
(Silverman, 1986). Hörmann and Leydold (2000) defined the variance correction
as cb, where, cb =

√
1+ b2. For relatively large data sets, the choice of the kernel

function only influences the tails of the estimated distribution. In the proposed
algorithm the tails are always zero outside the convex hull, thus the Gaussian kernel
should be advantageous for the KDE algorithm.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 479

3.2. Comparisons for Unknown Joint Densities

To compare the two variate generation methods, 100 replications were made for
each method, each of size n = 299 variates, using the geyser data introduced earlier.
Prior to the study it was determined that a single replication is considered acceptable
if it successfully captures the tri-modal KDE density appearing in Fig. 7. This
density was computed directly from the n = 299 data pairs using S-Plus/R as
described in Bowman and Azzalini (1997) for a normal kernel function and a
normal optimal smoothing parameter. These estimated joint density plots are only
used as a visual tool for comparing variate generation methods. The methods
compared are: (1) nonparametric algorithm for unadjusted waiting and duration
times; (2) nonparametric algorithm for adjusted waiting and duration times; and
(3) Hörmann and Leydold’s variance-corrected KDE algorithm. For each method
the resulting three-dimensional estimated joint density plots, like the one shown
in Fig. 7, was inspected for a tri-modal density. Methods one and two (those
proposed in this paper) always captured the tri-modal appearance, while the KDE
algorithm plots failed to capture the tri-modal density 35 times out of 100. An
example of a failure instance is depicted in Fig. 8. Recognizing that the chosen
smoothing parameter in the KDE algorithm is “oversmoothing” due to the multi-
modality of the distribution, the parameter value was reduced by half as suggested
in Hörmann and Leydold (2000) and the experiment was repeated. Doing so resulted
in six failures out of 100 replications. This reduction in failures is evidence of the
estimated density’s sensitivity to the smoothing parameter selection. Using a more
sophisticated parameter such as Bowman and Azzalini (1997) was purposefully not
conducted, the reason being that the intent of the study was to compare a simple
version of KDE to the proposed algorithm.

Figure 7. Joint density estimate of Old Faithful geyser data. (color figure available online)

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

480 Kaczynski et al.

Figure 8. KDE joint density estimate failure for Old Faithful geyser data. (color figure
available online)

The next example consists of warranty claim data provided by General Motors
for model year 2000 cars sold in the month of December 2000. The bivariate data
values are the mileage and the age of the vehicle at warranty claim. All vehicles
share a three-year (1095 day), 36,000 mile warranty. This data set is unique because
it is bounded below at zero and above at three years/36,000 miles. Given the lower
and upper bounds on the data, it is inappropriate to stretch the data and match
moments as on the geyser data. A scatterplot of the data is provided in Fig. 9,
and the corresponding three-dimensional density estimate in Fig. 10. The figures

Figure 9. Scatterplot of miles vs. age (days) at warranty claim, n = 259.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 481

Figure 10. KDE joint density estimate of miles vs. age. (color figure available online)

depict a pronounced mode close to the origin and a less prevalent mode near the
mileage axis upper bound. This is logical because a buyer might not recall when
a three-year warranty will expire, but can easily notice the approaching 36,000
mile warranty limit. General Motors might be interested in the impact of adjusting
warranty durations. Using the same type study as the geyser data, we test the
proposed variate generation algorithm against both the variance-corrected KDE
and reduced smoothing parameter variance-corrected KDE sampling techniques.
Figure 11 depicts one resulting joint density comparison instance. Once again,
it is apparent that variance-corrected KDE “oversmooths,” while the reduced
smoothing parameter KDE performs better in estimating the observed warranty

Figure 11. Variate generation for the proposed algorithm vs. variance-corrected KDE.
(color figure available online)

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

482 Kaczynski et al.

Figure 12. Variate generation for the proposed algorithm vs. reduced smoothing KDE.
(color figure available online)

data as depicted in Fig. 12. A scatterplot of the KDE variance-corrected results,
shown in Fig. 13, displays the tendency of KDE to generate more densely at the
pronounced mode, further accentuating the possibility of variates outside of the
support rectangle when the mode is close to zero, as is the case in this example. In
addition, variates are also produced that lie outside the upper bounds for mileage
and age. This behavior can be corrected by resorting to some type of acceptance–
rejection or thinning method, however, both of these options ruin synchronization,
which might be needed if a variance-reduction technique is employed.

The range of variates produced by the two approaches further accentuates
their differences. Table 2 lists the minimums and maximums for each approach,
along with the percentage of realizations falling outside the allowable warranty
bounds. Given that all the generated variates for the proposed algorithm must
(by construction) fall within the allotted bounds, impossible variates cannot occur.
Consequently, using the KDE sampling method requires discarding impossible

Figure 13. Scatterplot of variates generated via KDE.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 483

Table 2
Range and percentage of variates outside allowable bounds

min
miles

max
miles

min
age(days)

max
age(days)

percent
<0

percent
>3/36K

Observed data 8 35993 0 1056 0�0 0.0
Proposed algorithm 14 35983 0 1047 0�0 0.0
var. corr. KDE (standard b) −11093 53178 −156 1104 18�5 7.0
var. corr. KDE (reduced b) −2907 39984 −34 1179 8�5 6.2

variates. Finally, in 100 joint density visual comparisons the proposed algorithm was
more successful than KDE in capturing the original data’s depiction of customer
warranty claims.

Using the normal kernel poses difficulty in modeling bounded data in two
dimensions, as well as capturing multi-modal behavior. In months where sales
numbers are higher, the upper limits of mileage and age are even more densely
covered, further exhibiting multi-modal behavior.

In the proposed variate generation algorithm, the modeler has the choice
between using the convex hull associated with the data pairs or using the rectangle
with opposite corners �0� 0� and �36000� 1095�. Figure 9 shows that there will be a
significant difference between these two choices.

3.3. Comparisons for Known Joint Densities

We will now compare KDE and the proposed algorithm for two known joint
densities, the first of which has infinite support and the second with bounded
support.

The first example is an equiprobable mixture of three bivariate normal
distributions, with parameters as indicated in Table 3.

Using this mixture as the underlying density, n = 150 variates were generated
for use as the observed sample data. We then compare standard KDE with a
Gaussian kernel (smoothing parameter is b = n−1/6) and the proposed algorithm for
150 generated variates. Figure 14 illustrates the observed data in the left-hand plot,
the KDE generated estimate on the right and the proposed algorithm’s estimate in
the center. A visual inspection indicates oversmoothing in the KDE case, a situation
that could be remedied through manipulation of the smoothing parameter. Further
work with the smoothing parameter did refine the KDE estimate suitably, and as

Table 3
Parameters for three equiprobable bivariate normals

Bivariate normal parameters

X 2 4 8

Y 1 8 4
�X 1 1 2
�Y 2 1 2
� 1/5 −1/5 −1/3

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

484 Kaczynski et al.

Figure 14. Observed data (left) and density estimate comparisons for KDE (right) and the
proposed algorithm (center). (color figure available online)

expected, given a mixture of bivariate normals, KDE does well with proper selection
of the smoothing parameter. As a second example, consider a uniform bivariate
distribution with uniform support on the unit square. We will use this example to
illustrate how our algorithm performs in the limit with regard to the marginals,
which in this case are bounded by �0� 1�. The experiment consists first of generating
k = 20� 50� 100 data pairs from the bivariate uniform. Using these k data pairs, we
then exercise the proposed algorithm and KDE, generating a single two-dimensional
random variate pair for each. We repeat this experiment 100� 000 times and check
the resulting marginal densities which we would like to converge to the theoretical
marginals, each U�0� 1�. Figure 15 shows the resulting marginal densities for the
proposed algorithm using k = 50 observed data pairs. The left-hand plot indicates
that the density appears to converge to U�0� 1� as desired. However, the conditioned
density clearly does not. This result occurs because of the algorithm’s tendency to
designate more mass where the generated x value intersects the convex hull of the
observed data. So there is the tendency to not adequately cover the vertical axis
toward the upper and lower limits. A suitable manipulation of the algorithm allows
us to partially correct this shortcoming by spreading the error equally between x and
y. Since the vertical axis suffers in marginal estimation, we can modify the algorithm
by alternating the roles of x and y on each subsequent �x� y� pair generated.
Figure 16 depicts the estimated marginal densities for k = 50 observed data pairs
after manipulating the algorithm. In the General Motors example, the support is
rectangular, and furthermore, known. In this case we could have artificially created

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 485

Figure 15. Estimated marginal densities for the unit square bivariate uniform distribution
using the proposed algorithm.

the convex hull limits since the minimum and maximum for each marginal is known
and fixed. For this example, we now fix the support as the unit rectangle, thus the
convex hull is �0� 1�× �0� 1�. We ran two cases for the fixed support, the proposed
algorithm and the alternating algorithm. Given that the hull is fixed for both cases,
the corresponding results do not differ significantly. Figure 17 shows the marginals
for the first case, the proposed algorithm. Finally, we perform the same experiment
for KDE, again using a Gaussian kernel and the same smoothing parameter used
earlier. Figure 18 shows that although KDE does well over most of the support,
it has the same trouble at the lower and upper end of the support. Furthermore,
the KDE method generates impossible variates. Table 4 displays the squared error
between the cdf and N = 100� 000 generated data points, calculated as

1
N

N∑
i=0

�F̂ �xi�− F�xi��
2�

Figure 16. Estimated marginal densities for the unit square bivariate uniform distribution
using the alternating algorithm.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

486 Kaczynski et al.

Figure 17. Estimated marginal densities for the unit square bivariate uniform distribution
with fixed support �0� 1�× �0� 1�.

where F̂ �xi� is the estimated marginal cdf value at xi and F�xi� is the theoretical cdf
value at xi. As another measure, we could include a quantile comparison, however,
other than the lower and upper quantile discrepancies for KDE, there does not
seem to be much difference across the board. As expected, KDE performs well
throughout, except for the impossible variates generated. We could also change
the kernel to a distribution with fixed support, which would reduce the extremity
to which KDE produces impossible variates. However, the inclusion of such a
comparison does not substantially change the overall results.

Since it is impossible to generate variates exactly from some data set without
knowing the underlying distribution, questioning the quality of the variates
generated from some known parametric distribution is justified. These hypothetical
examples show that using the proposed algorithm exhibits quality at least as good
as KDE. In terms of generation speed, KDE has the advantage over the proposed
algorithm. In testing the vectorized version of the proposed algorithm’s code versus
KDE, excluding setup, we find that KDE runs about twice as fast, and given that

Figure 18. Estimated marginal densities for the unit square bivariate uniform distribution
using KDE.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 487

Table 4
Marginal cdf squared error for the estimates of the bivariate uniform distribution

X error Y error Correlation

n = 20
Proposed algorithm 3�7× 10−5 3�3× 10−3 0�007
Alternating algorithm 6�8× 10−4 6�7× 10−4 0�008
Fixed support algorithm 1�3× 10−3 2�2× 10−3 0�022
Alternating fixed support algorithm 3�9× 10−4 4�1× 10−4 0�012
KDE algorithm 5�7× 10−4 5�3× 10−4 −0�002

n = 50
Proposed algorithm 1�1× 10−5 3�8× 10−3 0�001
Alternating algorithm 9�0× 10−4 8�5× 10−4 −0�001
Fixed support algorithm 2�8× 10−4 2�2× 10−3 0�015
Alternating fixed support algorithm 3�3× 10−4 3�0× 10−4 0�009
KDE algorithm 3�7× 10−4 3�6× 10−4 0�004

n = 100
Proposed algorithm 3�2× 10−6 3�8× 10−3 −�001
Alternating algorithm 8�9× 10−4 9�1× 10−4 −9�2× 10−5

Fixed support algorithm 7�7× 10−5 2�6× 10−3 −6�6× 10−4

Alternating fixed support algorithm 4�7× 10−4 4�8× 10−4 −7�1× 10−4

KDE algorithm 2�6× 10−4 2�5× 10−4 −0�006

the proposed algorithm’s run time is a function of n, KDE’s advantage is more
pronounced for large sample sizes.

4. Limitations

There are limitations associated with the proposed algorithm which we outline in
this section. The two limitations discussed here are the algorithm’s performance
relative to KDE and the speed of the algorithm.

The first limitation is the algorithm’s performance compared with that of KDE.
There are few bivariate parametric distributions where variate generation is easy.
We use the bivariate normal distribution to compare the impact of correlated
random variables on the proposed algorithm and KDE. We expect KDE to perform
extremely well since the underlying distribution is bivariate normal. The infinite tails
associated with the bivariate normal distribution give an advantage to KDE, just
as a bounded region, such as in the General Motors warranty data case, gives an
advantage to the proposed algorithm. For the study, the underlying distribution
is given by the parameters,
X = 1,
Y = 2, �X = 4, �Y = 3, � = 0�01, 0.99, where
� varies from extremely low to high correlation. In addition to these two extreme
values of �, the same study considered intermediate values of �, however including
them here is not informative. For each value of �, we chose n = 100 and n = 200 as
the observed sample sample sizes from the bivariate normal distribution. For each of
the observed sample sizes, N = 10 and N = 40 variates were generated using KDE
and the proposed algorithm (with and without moment matching). These variates
were then used to calculate confidence intervals for the means, standard deviations,

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

488 Kaczynski et al.

Table 5
Confidence interval count for bivariate normal parameters and � = 0�01

n N
X
Y �X �Y � Algorithm

100 10 9413 9304 9496 8722 9513 moment-matched proposed algorithm
9384 9285 9514 8468 9503 proposed algorithm
9392 9403 9112 9097 9396 KDE

100 40 9041 8652 9188 4921 9213 moment-matched proposed algorithm
9038 8638 9089 3937 9204 proposed algorithm
9113 9097 8068 8109 9079 KDE

200 10 9438 9418 9528 8879 9554 moment-matched proposed algorithm
9421 9390 9552 8752 9523 proposed algorithm
9445 9447 9205 9230 9400 KDE

200 40 9291 9111 9382 5331 9451 moment-matched algorithm
9251 9100 9391 4759 9390 proposed algorithm
9298 9300 8650 8568 9313 KDE

and correlation. The experiment for each �n� N� pair combination was conducted
10� 000 times and the count of the 95% confidence intervals containing each of the
five parameters were tallied. Using the F distribution associated with the Clopper–
Pearson confidence interval considered not significantly different from 9500 and
 = 0�01, the confidence interval counts are in the interval �9443� 9555�. Tables 5
and 6 contain the results of the simulation study, where boldface numbers are in
�9443� 9555�.

For low correlation, where we expected KDE to perform extremely well, the
results do not indicate KDE dominating the proposed algorithm for producing
variates that properly mimic the five distribution parameters. On the contrary, KDE
performs rather poorly; in several instances it is outperformed by the proposed
algorithm, regardless of whethermoments arematched. Oneweakness of the proposed
algorithm is apparent in the �Y column. This weakness can be partially overcome by
implementing the alternating algorithm described in the previous section. There is no
surprise that KDE had trouble inducing extremely high correlation, however, we did

Table 6
Confidence interval count for bivariate normal parameters and � = 0�99

n N
X
Y �X �Y � Algorithm

100 10 9407 9388 9483 9463 9399 moment-matched proposed algorithm
9400 9394 9493 9468 9393 proposed algorithm
9420 9401 8711 9386 861 KDE

100 40 9063 9051 9161 9121 7801 moment-matched proposed algorithm
9010 9001 9088 9033 7682 proposed algorithm
9123 9034 7132 9106 0 KDE

200 10 9458 9443 9549 9531 9344 moment-matched proposed algorithm
9432 9431 9539 9521 9347 proposed algorithm
9450 9466 8967 9478 1304 KDE

200 40 9291 9255 9382 9334 7094 moment-matched proposed algorithm
9224 9212 9336 9294 7082 proposed algorithm
9319 9285 7756 9261 0 KDE

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 489

expect KDE to perform better in capturing the other distribution parameters. The
proposed algorithm performs well in inducing correlation.

The second limitation noted for the proposed algorithm is generation speed.
While generating the first element of the random variate pair is fast, generating the
second element requires creating the conditional piecewise-linear cdf, which slows
for large n. However, the algorithm benefits when high correlation exists in the
observed variate pairs. High correlation results in a tight convex hull where once the
first element of the random pair is generated, the conditional piecewise-linear cdf
may involve only a small number of data points, or in the most extreme case, may
be uniformly distributed between the points where the x variate intersects the convex
hull. Additionally, it is possible to store ylo, yhi, A, and the conditional piecewise-
linear cdf for efficiency if many pairs of random variates are required.

A more detailed study of each portion of the algorithm is now reviewed for
complexity. Assume the input consists of n data points. The moment-matching
function mm(x), has running time ��n log n� where the logarithmic factor comes
from sorting the entries in the vector x. The setup portion has running time
��n log n� where the logarithm comes from computation of the convex hull. The
work to generate one simulated variate is either ��n� or ��n log n�, depending on
whether the code needs to do any additional sorting of the points to calculate the
weighted piecewise-linear cdf. This is because the code (as written) scans through all
n data points to determine which ones are in the set A. Although not investigated in
detail here, there are other methods available to speed up the proposed algorithm
to include using a compiled language such as C, as well as the use of guide tables
(Devroye, 1986).

5. Conclusions and Further Work

A nonparametric method of generating bivariate data was presented with examples.
The method is blackbox, synchronized, and effectively captures multi-modal
two-variable dependencies for most data sets. The method does not require
any assumptions about the underlying distribution of the empirical data, nor
does it ever compute an explicit formula for the estimated joint density as an
intermediate step for variate generation. Thus, given an appropriate observed
bivariate data set, a researcher or practitioner is capable of generating variates
without the risk of introducing error associated with generating from some incorrect
parametric distribution. Given continuous bivariate data, this method is capable
of producing variates efficiently, and, in the case of observed data falling into
recognizable groups, the algorithm can be easily altered for suitable employment.
In a comparison study, the method performs at least as well as an accepted
KDE generation algorithm in terms of estimation quality for selected data sets.
Three significant contributions of the proposed algorithm are: (1) it is completely
nonparametric and requires no parameters from the modeler; (2) it is simple to
implement; and (3) it is a one-to-one (synchronized) variate generation algorithm
whose resulting random vectors are capable of representing multi-modal bivariate
distributions and will not produce impossible variates for fixed supports. In
summary, the differences between the proposed algorithm and sampling from a
KDE algorithm with a normal kernel are no reliance on selected kernel density
function, no reliance on selected smoothing parameter, and no production of
unrealistic variates (e.g., negative times from a service time distribution).

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

490 Kaczynski et al.

Three decisions are required from the modeler that are dependent on the data
set. First, the modeler must decide if the data should be stretched in order to
match moments. Second, the modeler must decide whether to use the convex hull
associated with the (stretched or raw) data, or use a rational convex hull as in the
case of the warranty data. Finally, the modeler must decide whether a single convex
hull, as in Fig. 4, or multiple convex hulls, as in Fig. 6, is appropriate.

Five interesting potential areas of further work for the proposed algorithm are
immediately evident. The first deals with studying how changes in the weighting
function, wk, of the interior points, xA, affect the resulting random pairs produced
by the algorithm. Varying this same weighting function might also be explored to
provide for asymptotic consistency for the estimator. The second area concerns
the use of non convex hulls that allow for “dents” in the support. The third area
concerns a two-dimensional extension of Marsaglia’s tail algorithm. The fourth area
concerns generation speed. The current algorithm generates the first element of the
bivariate pair quickly and the second element slowly. The setup portion of the
algorithm can be modified so as to generate both variates quickly by storing a set
of conditional probability density functions. The fifth area concerns how a similar
algorithm might be extended to higher dimensions.

As an illustration of the first area of further work, an extensive parallel study
could be done with some manipulation of the weighting formula appearing in step 6
of the variate generation algorithm. Consider adding the smoothing parameter, b,
to step 6 as

wk ←
1

1+ ��xk − x′′�b/s�2
�

The proposed algorithm sets b = 1, which satisfies the authors’ intent to create
a nonparametric, blackbox variate generation algorithm. The performance of the
algorithm for b = 1 has been shown to be adequate. However, a separate study
of the algorithm’s performance vs. KDE for b �= 1 deserves attention. This study
should address optimization of the parameter b against an optimal smoothing
parameter for KDE, as well as addressing error bounds associated with the
proposed algorithm. Adding this new parameter, b, removes the blackbox property
from the algorithm and may be expensive in execution, but might improve results
just as Bowman and Azzalini’s (1997) methods for the smoothing parameter and
kernel selection improve KDE.

Appendix A

The R/S-Plus function mm(x) transforms the single argument x, which is a vector,
such that the returned vector values create a piecewise-linear cdf with a mean and
variance equal to the unbiased sample mean and variance of the x argument vector.

mm <- function(x) {
x <- sort(x)
n <- length(x)
xbar <- mean(x)
xvar <- var(x)
r <- (2 * x - x[n] - x[1]) / (x[n] - x[1])

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 491

rlo <- r[1:(n - 1)]
rhi <- r[2:n]
rmid <- r[2:(n - 1)]

xlo <- x[1:(n - 1)]
xhi <- x[2:n]
xmid <- x[2:(n - 1)]

aa <- 1 / (3 * (n - 1)) * (sum(rlo * rlo) + sum(rlo * rhi)
+ sum(rhi * rhi))

- 1 / (n - 1) ˆ 2 * (sum(rmid) ˆ 2)
bb <- 1 / (3 * (n - 1)) * (sum(2 * xlo * rlo)

+ sum(xlo * rhi + xhi * rlo)
+ sum(2 * xhi * rhi)) - 1 / (n - 1) ˆ 2 * sum(rmid) * (x[1] + x[n]
+ 2 * sum(xmid))

cc <- 1 / (3 * (n - 1)) * (sum(xlo ˆ 2) + sum(xlo * xhi)
+ sum(xhi ˆ 2))

- 1 / (4 * (n - 1) ˆ 2) * ((x[1] + x[n] + 2 * sum(xmid)) ˆ 2) - xvar

del <- (-bb + sqrt(bb ˆ 2 - 4 * aa * cc)) / (2 * aa)
xp <- x + r * del
xpp <- xp - ((sum(xp) - xp[1] / 2 - xp[n] / 2) / (n - 1) - xbar)
xpp

}

The R/S-Plus code below contains all the elements necessary to generate random
bivariate pairs given the x and y vectors consisting of the observed data. The code is
separated into three portions, setup, generation, and the main program. Indentation
denotes nesting.

SETUP PORTION
xnew <- mm(x)
ynew <- mm(y)

orderxnew <- order(xnew)
xnewlength <- length(xnew)

x <- xnew[orderxnew]
y <- ynew[orderxnew]

hullindex <- chull(x,y)
m <- length(hullindex)
xhull <- x[hullindex]
yhull <- y[hullindex]
hullorder <- order(xhull,yhull)
indexmin <- hullorder[1]
indexmax <- hullorder[m]

determine the line separating the upper and lower hull
slope <- (yhull[indexmax] - yhull[indexmin]) / (xhull[indexmax]

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

492 Kaczynski et al.

- xhull[indexmin])
intercept <- yhull[indexmax] - slope * xhull[indexmax]
count <- 0

find length (segments) of upper and lower hulls
count <- length(which(yhull[hullorder]

> slope * xhull[hullorder] + intercept))

VARIATE GENERATION FUNCTIONS

generate x from the piecewise-linear CDF from original
(or moment matched)

x vector

xpwl <- function(x) {
u <- runif(1)
i <- ceiling((xnewlength - 1) * u)
x[i] + ((xnewlength - 1) * u - (i - 1)) * (x[i + 1] - x[i])

}

generate y from the weighted piecewise-linear CDF created
by conditioning

on the x value generated

ywtpwl <- function(xgen) {

find segments of hull lower and upper intersection with xgen,
determine

intersecting y values

for (i in 1:length(upperx)) {
if ((xgen >= upperx[i]) && (xgen <= upperx[i + 1])) {
upperslope <- (uppery[i] - uppery[i+1]) /
(upperx[i] - upperx[i + 1])

upperint <- uppery[i + 1] - upperslope * upperx[i + 1]
ymax <- upperslope * xgen + upperint
}

}

for (i in 1:length(lowerx)) {
if ((xgen >= lowerx[i]) && (xgen <= lowerx[i + 1])) {
lowerslope <- (lowery[i] - lowery[i + 1])/
(lowerx[i] - lowerx[i + 1])

lowerint <- lowery[i + 1] - lowerslope * lowerx[i + 1]
ymin <- lowerslope * xgen + lowerint

}
}

collect y values between ymin and ymax forming the set A

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 493

j <- 0
ybetweenindex <- 0
for (i in 1:xnewlength) {
if (y[i] <= ymax & y[i] >= ymin) {
j <- j + 1
ybetweenindex[j] <- i

}
}

create x and y vectors for interior points, augment with
ymin, ymax

ybetween <- y[ybetweenindex]
xbetween <- x[ybetweenindex]
ybetweenorder <- order(ybetween)
yvec <- c(ymin, ybetween[ybetweenorder], ymax)
xvec <- c(xgen, xbetween[ybetweenorder], xgen)

weight y values by distance from xgen, w(i)
= 1 / (1 + ((x(i) - xgen) /

sqrt(var(xvec))) ˆ 2)
yweight <- 0
for (i in 1:length(yvec)) {
yweight[i] <- 1 / (1 + ((xvec[i] - xgen) / sqrt(var(xvec))) ˆ 2)

}

normalize weights
ynmwt <- 0
for (i in 1:length(yvec)) {
ynmwt[i] <- yweight[i] / sum(yweight)

}

find new y knot points of the weighted piecewise-linear CDF
yknots <- matrix(0:0, length(yvec))
yknots[1] <- 0
for (i in 2:length(yvec)) {
yknots[i] <- sum(ynmwt[1:(i - 1)]) + (i - 1) * (ynmwt[i]) /

(length(yvec) - 1)
}

generate y value pwl from knot point y values
u1 <- runif(1)
i <- 1
while (u1 > yknots[i + 1]) {
i <- i + 1

}
yvec[i] + (u1 - yknots[i]) * (yvec[i + 1] - yvec[i]) /
(yknots[i + 1] - yknots[i])

}

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

494 Kaczynski et al.

MAIN PROGRAM

set N to the desired number of random variates here
Generated <- matrix(0:0, N, 2) collects the resulting
random variate pairs.

for (i in 1:N) {
xgen <- xpwl(x)
ygen <- ywtpwl(xgen)
Generated[i, 1] <- xgen
Generated[i, 2] <- ygen

}

Appendix B

We now present an isolated example where the proposed algorithm performs
poorly due to the nature of the underlying population distribution. To support the
illustration, a plausible formula for the limiting conditional density of fY �X=x0

when
the number n of data points goes to infinity is

f ∗
Y �X=x0

�y� = 1
C

∫

−

f�x� y�

1+ ��x − x0�/��
2
dx�

where �2 = Var�X�, f�x� y� = fX�Y �x� y� is the true joint density of the underlying
population, and C is chosen so that

∫
f ∗�y� dy = 1. The formula above for the

conditional density f ∗
Y �X=x0

is a weighted average of the conditional densities at all x-
coordinates, using the “damping” function 1/�1+ ��x − x0�/��

2� to give less weight
to x-coordinates that are at a greater distance from x0. However, the densities for
such x-coordinates still receive some weight. Thus, if fY �X=x is very different from
fY �X=x0

for faraway x’s (it’s unlikely to be different for close x’s, by the assumed
continuity of the joint density f), then the estimate for f ∗

Y �X=x0
can be wrong.

One way this can happen is if the width of the support region varies significantly as
y ranges from ymin�x0� to ymax�x0�. Intuitively, the extra data points in the wider
part are misrepresented in the proposed algorithm giving more density to those y-
coordinates.

Consider an L-shaped region with vertices �0� 0�, �0� 1�, �1/M� 1�, �1/M� 1/M�,
�1� 1/M�, and �1� 0�, where M is some very large positive integer. The underlying
joint density will pick �X� Y� uniformly from this shape. This L-shaped region
has f�x� y� = M2/�2M − 1�, so fX�x� = M2/�2M − 1� for 0 < x < 1/M and fX�x� =
M/�2M − 1� for 1/M < x < 1. One can then compute Var�X� ≈ 5/48 ≈ 0�1 for
large M . For definiteness, we take M = 100 to illustrate the behavior of the
proposed algorithm. Assume we generate the x-coordinate x0 = 0. Then f ∗

Y �X=0�y� is
proportional to

∫ 1

0

1
1+ 10x2

dx ≈ 0�40 for 0 < y < 0�01�

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

Bivariate Nonparametric Random Variate 495

Figure 19. Joint density f�x� y� for the L-shaped region with vertices �0� 0�, �0� 1�, �1/M� 1�,
�1/M� 1/M�, �1� 1/M�, and �1� 0�.

whereas f ∗
Y �X=0�y� is proportional to

∫ 0�01

0

1
1+ 10x2

dx ≈ 0�01 for 0�01 < y < 1�

So, the algorithm will think that y-values less than 0�01 are 40 times more likely than
y-values above 0�01 on the line x = 0. But, the true conditional distribution given
x = 0 should be uniform on �0� 1�. By taking M larger and larger, we can create
arbitrarily bad behavior that results from the difference in width in the two parts
of the L in Fig. 19. It could be assumed that this behavior only occurs for 0 < x0 <
0�01, but that the proposed algorithm would get the conditional distribution correct
for x0 > 0�01. This would be the case if the simulation knew that the support of the
density was the (non-convex) L-shape. In reality, the algorithm will draw the convex
hull by connecting �1/M� 1� to �1� 1/M�, and this will lead to other problems where
variates can be generated outside the true support region.

Acknowledgments

We thank Jeff Robinson from the General Motors Research and Development
Center for providing the data for this article and Bruce Schmeiser for his help
on describing the two-dimensional empirical cdf. We acknowledge support for this
research from the NSF via grant DUE-0123022 and the Omar Nelson Bradley
Foundation.

References

Banks, J., Carson, J. S., Nelson, B. L., Nicol, D. M. (2001). Discrete-Event System Simulation.
3rd ed. New Jersey: Prentice Hall, Upper Saddle River.

Biller, B. (2009). Copula-based multivariate input models for stochastic simulation. Operation
Research 57:878–892.

Bowman, A. W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. Oxford:
Oxford University Press.

Bratley, P., Fox, B. L., Schrage, L. E. (1987). A Guide to Simulation. 2nd ed. New York:
Springer Verlag.

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer Verlag.
Devroye, L., Györfi, L. (1985). Nonparametric Density Estimation: the L1 View. New York:

John Wiley.
Genest, C., Rëmillard, B. (2006). Discussion of “Copulas: Tales and Facts,” by Thomas

Mikosch. Extremes 9:27–36.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

496 Kaczynski et al.

Hörmann, W., Leydold, J. (2000). Automatic random variate generation for simulation
input. In: Joines, J. A., Barton, R. R., Kang, K., Fishwick, P. A., eds. Proceedings of the
2000 Winter Simulation Conference. Pistacaway, NJ: IEEE Press, pp. 675–682.

Johnson, M. E. (1987). Multivariate Statistical Simulation. New York: John Wiley.
Kaczynski, W. H., Leemis, L. M., Loehr, N. A., Taber, J. G. (2012). Nonparametric

random variate generation using a piecewise-linear cumulative distribution function.
Communications in Statistics—Simulation and Computation 41:449–466.

Law, A. (2007). Simulation Modeling and Analysis. 4th ed. New York: McGraw–Hill.
Leemis, L. M., Park, S. K. (2006). Discrete-Event Simulation: a First Course. Upper Saddle

River, NJ: Prentice Hall.
Silverman, B. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman

and Hall.
Taylor, M. S., Thompson, J. R. (1986). A data based algorithm for the generation of random

vectors. Computational Statistics & Data Analysis 4:93–101.
Wagner, M. A. F., Wilson, J. R. (1995). Graphical interactive simulation input modeling

with bivariate Bezier distributions. ACM TOMACS 5:163–189.
Weisberg, S. (1980). Applied Linear Regression. New York: Wiley.

D
ow

nl
oa

de
d

by
 [

C
ol

le
ge

 o
f

W
ill

ia
m

 &
 M

ar
y]

, [
L

aw
re

nc
e

L
ee

m
is

]
at

 1
0:

01
 1

3
Ja

nu
ar

y
20

12

