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The standard approach to solving the interpolation problem for a trace-driven
simulation involving a continuous random variable is to construct a piecewise-linear
cdf that fills in the gaps between the data values. Some probabilistic properties of
this estimator are derived, and three extensions to the standard approach (matching
moments, weighted values, and right-censored data) are presented, along with
associated random variate generation algorithms. The algorithm is a nonparametric
blackbox variate generator requiring only observed data from the user.

Keywords Lifetime distributions; Modeling; Piecewise-linear functions;
Simulation.

Mathematics Subject Classification 62-04; 62-07; 62G99.

1. Introduction

Simulation practitioners often advocate a “trace-driven” approach to input
modeling, in which data values are sampled with equal probability. In the
univariate case, this approach is equivalent to generating variates from the empirical
cumulative distribution function (cdf)

F̂ �x� = N�x�

n
−� < x < ��

where n is the sample size, N�x� is the number of data values less than or equal to
x, and x1� x2� � � � � xn denote the data values. We limit the discussion here to the case
of raw data, rather than grouped data.
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450 Kaczynski et al.

The advantages to the trace-driven approach are that (a) it avoids any error
that might be introduced by fitting the data with an approximate parametric model,
and (b) the sampling technique is identical to bootstrapping (Efron and Tibshirani,
1993) and, hence, has well-established statistical properties.

The disadvantages to the trace-driven approach are that (a) no random variate
can be generated between the data values, known as the interpolation problem, and
(b) no random variate can be generated that is smaller than the smallest data value
or larger than the largest data value, known as the extrapolation problem.

A standard technique for overcoming the interpolation problem is to replace
the empirical cdf with a cdf which is piecewise linear between the data values (Banks
et al., 2001, pp. 296–300; Law, 2007, pp. 309–310, 458; Leemis and Park, 2006,
pp. 409–411). Since the n− 1 gaps between the data values should assume equal
weighting, the piecewise-linear cdf has the form

F̃ �x� =



0 x < x�1�

i− 1
n− 1

+ x − x�i�

�n− 1��x�i+1� − x�i��
x�i� ≤ x < x�i+1�� i = 1� 2� � � � � n− 1

1 x ≥ x�n��

where x�1�� x�2�� � � � � x�n� are the order statistics, i.e., the data values sorted into
ascending order. This cdf passes through the points

�x�1�� 0��
(
x�2��

1
n− 1

)
�

(
x�3��

2
n− 1

)
� � � � � �x�n�� 1��

which we refer to as “knot points.”

Example 1.1. Consider the univariate data set of n = 6 observations:

1 2 5 7 8 9�

We assume that these data values are drawn from a continuous population. The
empirical cdf and piecewise-linear cdf are shown in Fig. 1. The piecewise-linear cdf
strikes the risers of the empirical cdf; the first intersection occurs 1/5 of the way up
the riser at x = 2 and the second intersection occurs 2/5 of the way up the riser at
x = 5. This pattern continues until the piecewise-linear cdf strikes the top of the last
riser at x = 9.

The probability density function (pdf) associated with the piecewise-linear cdf
is constant between the data values:

f̃ �x� = 1
�n− 1��x�i+1� − x�i��

x�i� ≤ x < x�i+1�� i = 1� 2� � � � � n− 1�

and it can be shown that the mean of this distribution is

E�X� = x�1� + 2x�2� + 2x�3� + · · · + 2x�n−1� + x�n�

2�n− 1�
�
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Nonparametric Univariate Random Variate Generation 451

Figure 1. Empirical and piecewise-linear cdfs.

This weighted average of the data values places less weight on the extreme
values, and equals x̄, the sample mean of the data values, in only rare cases (e.g.,
a symmetric data set, where x̄ − x�i� = x�n+1−i� − x̄ for i = 1� 2� � � � � ��n+ 1�/2�).
The value of E�X� approaches the sample mean x̄ = 1

n

∑n
i=1 xi in the limit as n → �.

(The match between the coefficients in the expression for E�X� and the coefficients in
the trapezoidal rule is discussed in Appendix A.) Likewise, a closed-form expression
for the second moment is

E�X2� =
n−1∑
i=1

x2�i� + x�i�x�i+1� + x2�i+1�

3�n− 1�
�

which can be utilized for computing the variance of the distribution. For the data
set from Example 1.1, the mean and variance of the piecewise-linear estimate are
E �X� = 16/3 and Var �X� = 71/9.

Random variates can be generated efficiently by inverting the piecewise-linear
cdf. Given x�1�� x�2�� � � � � x�n� and a random number generator, an O�1� variate
generation algorithm is:

Generate U ∼ U�0� 1�

i ← 	�n− 1�U

Return

(
x�i� + ��n− 1� U − �i− 1��

(
x�i+1� − x�i�

))
The index i, which assumes one of the integers 1� 2� � � � � n− 1 with equal likelihood,
determines which linear segment to invert. Although this O�1� algorithm is
synchronized, monotone, and fast, there are four potential weaknesses that are
described in the paragraphs below.

One potential weakness that arises with the piecewise-linear cdf F̃ �x� occurs
when there are tied values in the data set. These tied values result in a discontinuity
in F̃ �x�. More specifically, d tied values at x�i� results in a discontinuity of height
d/�n− 1� at x�i�. The associated random variable is mixed (i.e., part discrete and part
continuous), and the random variate generation algorithm will generate x�i� with
probability d/�n− 1�. If the modeler requires an absolutely continuous distribution,
then it might be reasonable to use the midpoint of the discontinuity at F̃ �x�i�� as the
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452 Kaczynski et al.

knot point for the modified cdf. The variate generation algorithm would need to be
modified appropriately.

A second weakness of the piecewise-linear approach is that data values that are
close together (a common occurrence) lead to high peaks in the estimated density
and an associated clustering of random variates near these particular data values.
Two ways to overcome this weakness are to (a) use kernel density estimation, and
(b) use the piecewise-linear approach on order statistics selected by discarding those
with, for example, even indices. The pros and cons on these two alternative methods
are addressed later in this article.

A third weakness is the extrapolation problem. Due to the finite endpoints of
the piecewise-linear cdf, generating a variate below the first order statistic, x�1�, and
above the last order statistic of the sample, x�n�, is impossible. Bratley et al. (1987)
offered Marsaglia’s tail algorithm as an elegant way to generate from the tail of a
distribution. This approach proves useful in extending possible variate generation
beyond just the sample range of a data set.

A fourth weakness of the standard piecewise linear approach is that it can
only be applied to a complete data set. Right-censored data sets are commonly
encountered in survival analysis; there is not an established technique for adapting
the estimator to this type of data set.

In this article, we present three alternatives that overcome these weaknesses. The
alternatives to the piecewise-linear cdf are nonparametric, thus avoiding potential
error associated with a parametric model. They also allow some extrapolation below
the minimum and maximum data values by stretching and translating observed data
values such that the estimator’s mean and variance match the sample mean and
variance. Section 2 develops these variants in detail and Sec. 3 compares resulting
estimators with estimates based on kernel density estimation. Section 4 gives a
piecewise-linear survivor function associated with the Kaplan–Meier estimate.

2. Moment Matching and Weighted Observations

We consider two variations on the piecewise-linear cdf as a probabilistic model
for a data set drawn from a continuous population. The first variation adjusts
the knot points horizontally in the piecewise-linear cdf so that its first and second
moments match those from the data set. The second variation adjusts the knot
points vertically in the piecewise-linear cdf by allowing different weights for each of
the data values.

2.1. Matching Moments

Occasions might arise when a modeler would like to (a) maintain the piecewise-
linear nature of the cdf, (b) maintain the heights of the knot points at 0,
1

n−1 �
2

n−1 � � � � � 1 (which implies fast variate generation), and �c� match the mean and
variance of the piecewise-linear cdf to the sample mean and sample variance of the
observations. This can only be achieved by adjusting the horizontal values of the
knot points.

The expansion of the support of the piecewise-linear cumulative distribution
function beyond the outermost data values may not be appropriate for all modeling
situations. If the data values collected are service times in a queuing model, for
instance, spreading the observations might result in a support that includes negative
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Nonparametric Univariate Random Variate Generation 453

service times. For the occasions when matching means and variances is appropriate,
we derive the values of the knot points below. This derivation will maintain the
ratios of the gaps between the data values so that their spreading is accomplished
in the same way a bellows is spread on an accordion. We stretch the data to match
variances first, then shift the data to match the means.

Let x�1�� x�2�� � � � � x�n� be the ordered raw data values as before and let gi =
x�i+1� − x�i� for i = 1� 2� � � � � n− 1 be the ith gap between the observations. Let g′i =
gi/
∑n−1

j=1 gj = gi/
(
x�n� − x�1�

)
for i = 1� 2� � � � � n− 1 be the normalized gap values. If

x�1� is shifted to x′�1� = x�1� − � and x�n� is shifted to x′�n� = x�n� + �, the width of the
support of the adjusted piecewise-linear cdf is w = x�n� − x�1� + 2�. To maintain the
ratios of the normalized gap values, the adjusted data values are

x′�i� = x�1� − �+ w
i−1∑
j=1

g′j

for i = 1� 2� � � � � n. The root finding problem now reduces to finding the value � such
that the unbiased sample variance of the original data values x1� x2� � � � � xn matches
the variance of the piecewise-linear cdf associated with the adjusted data values.

Once the variances have been matched, the means are easily matched by shifting
each adjusted data value

x′′�i� = x′�i� −
[
x′�i� + 2x′�2� + · · · + 2x′�n−1� + x′�n�

2�n− 1�
− x̄

]
for i = 1� 2� � � � � n. So finally, the knot points of the piecewise-linear cdf that
matches first and second moments with the data are(

x′′�1�� 0
)
�

(
x′′�2��

1
n− 1

)
�

(
x′′�3��

2
n− 1

)
� � � � �

(
x′′�n�� 1

)
�

Random variate generation via inversion is performed by the algorithm given
in the introduction using the x′′�i�. Since the differences between the heights of
adjacent knot points is constant, variate generation is fast. The stretching and
shifting partially solves the extrapolation problem by allowing random variates to
be generated outside of the range of the data values. Additionally, in the limit as
n → �, the sample variance s2 approaches the population variance 	2. Therefore,
with increasing n, the value of � is decreasing and as n → �, � → 0. Additionally, �
must exist since it is well known that the variance of the piecewise-linear estimator
is always less than the variance of the sample data, and therefore, by construction,
there exists � > 0 such that the adjusted data points equate the variance of the
piecewise linear estimator and the sample variance of the data.

Example 2.1. Consider again the n = 6 data values 
1� 2� 5� 7� 8� 9�.
Find the piecewise-linear cdf knot values with matching means and
variances. In order to match both the mean and variance, we first
match the variances by stretching the data, then apply a shift that
matches the means. For the ordered data values x�1� = 1, x�2� = 2,
x�3� = 5, x�4� = 7, x�5� = 8, x�6� = 9, with gaps, g1 = 1, g2 = 3, g3 = 2,

D
ow

nl
oa

de
d 

by
 [

U
ni

te
d 

St
at

es
 M

ili
ta

ry
 A

ca
de

m
y]

, [
W

ill
ia

m
 K

ac
zy

ns
ki

] 
at

 0
5:

26
 1

7 
Ja

nu
ar

y 
20

12
 



454 Kaczynski et al.

g4 = 1, g5 = 1, and associated normalized gaps, g′1 = 1/8, g′2 = 3/8, g′3 = 2/8,
g′4 = 1/8, g′5 = 1/8, the adjusted data values are

x′�1� = 1− �

x′�2� = 1− �+ �8+ 2��
1
8
= 2− 3�

4

x′�3� = 1− �+ �8+ 2��
4
8
= 5

x′�4� = 1− �+ �8+ 2��
6
8
= 7+ �

2

x′�5� = 1− �+ �8+ 2��
7
8
= 8+ 3�

4
x′�6� = 1− �+ �8+ 2�� = 9+ ��

The sample mean of the data is

x̄ = 1+ 2+ 5+ 7+ 8+ 9
6

= 16
3

and the unbiased sample variance of the data is

s2 = 1
5

[(
1− 16

3

)2

+
(
2− 16

3

)2

+ · · · +
(
8− 16

3

)2

+
(
9− 16

3

)2
]
= 32

3
�

When the adjusted data values are used as arguments in the formula for the variance
of the piecewise-linear cdf, the value of � must satisfy the quadratic equation[

�1− ��2 + �1− ���2− 3�/4�+ 2�2− 3�/4�2 + · · · + �8+ 3�/4��9+ ��+ �9+ ��2

�3��5�

]
−
[
�1− ��+ 2�2− 3�/4�+ · · · + 2�8+ 3�/4�+ �9+ ��

�2��5�

]2
= 32

3

which reduces to

518
75

+ 259�
75

+ 259�2

600
= 32

3
�

This quadratic equation has positive root

� = −4+ 80
259

√
259  0�9710�

Selecting the negative root still matches the variance to that of the piecewise-linear
cdf. However, selecting the negative root of the quadratic equation projects each of
the original ordered data values about �x�1� + x�n��/2, which is only harmless for a
symmetric data set. Finally, to match means,

x′′�1� =
16
3

− 88
259

√
259  −0�1347
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Nonparametric Univariate Random Variate Generation 455

x′′�2� =
16
3

− 68
259

√
259  1�1080

x′′�3� =
16
3

− 8
259

√
259  4�8362

x′′�4� =
16
3

+ 32
259

√
259  7�3217

x′′�5� =
16
3

+ 52
259

√
259  8�5645

x′′�6� =
16
3

+ 72
259

√
259  9�8072

are the x-values associated with the knot points.

An algorithm for adjusting the data values so that the first two moments of
the piecewise-linear model match those of the raw data is given below (indentation
denotes nesting).

Input data values x1� x2� � � � � xn

x̄ ← 1
n

n∑
i=1

xi

s2 ← 1
n− 1

n∑
i=1

�xi − x̄�2

Sort the data values yielding x�1�� x�2�� � � � � x�n�

w ← x�n� − x�1� + 2�

for i ← 1 to n− 1

gi ← x�i+1� − x�i�

g′i ← gi/�x�n� − x�1��

for i ← 1 to n

x′�i� ← x�1� − �+ w
i−1∑
j=1

g′j

Find the positive root � of the quadratic equation

n−1∑
i=1

�x′�i��
2 + x′�i�x

′
�i+1� + �x′�i+1��

2

3�n− 1�
−
[
x′�1� + 2

∑n−1
i=2 x

′
�i� + x′�n�

2�n− 1�

]2

= s2

for i ← 1 to n

x′′�i� ← x′�i� −
[
x′�1� + 2

∑n−1
i=2 x

′
�i� + x′�n�

2�n− 1�
− x̄

]

This piecewise-linear model associated with data values x′′�1�� x
′′
�2�� � � � � x

′′
�n� has a mean

and variance that matches the mean and variance of the original data values.
Appendix B in Kaczynski et al. (2012) contains an algorithm and associated S-
Plus/R code for computing � and x′′�1�� x

′′
�2�� � � � � x

′′
�n�.
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456 Kaczynski et al.

2.2. Weighted Data Values

An algorithm in the companion article Kaczynski et al. (2012), which concerns
the generation of bivariate observations, requires a variant of the univariate
piecewise-linear cdf approach which allows for the data values to be weighted. For
x�1�� x�2�� � � � � x�n�, let w�1�� w�2�� � � � � w�n�, where

∑n
i=1 w�i� = 1, be the corresponding

positive-valued weights. Any estimated cdf should collapse to F̃ �x� when w�i� = 1/n,
i = 1� 2� � � � � n. Although there is no claim made to the uniqueness of the estimator
presented here, one approach is to first draw the empirical cdf associated with a
discrete random variable X with support values x�1�� x�2�� � � � � x�n� and corresponding
mass values w�1�� w�2�� � � � � w�n�. Points on each of the risers can be connected to
form a piecewise-linear estimated cdf. The only question that remains is what the
heights of these points should be. One reasonable approach is to place the first knot
point at �x�1�� 0�, the second knot point 1

n−1 of the way up the second riser (which is
associated with x�2�), the third knot point 2

n−1 of the way up the third riser (which
is associated with x�3�), and so on. Using this approach is equivalent to connecting
the points

(
x�1�� 0

)
�
(
x�2�� w�1� +

w�2�

n− 1

)
�

(
x�3�� w�1� + w�2� +

2w�3�

n− 1

)
� � � � �

(
x�n�� 1

)
to form the piecewise-linear cdf. Define

y�i� = w�1� + w�2� + · · · + w�i−1� +
�i− 1�w�i�

n− 1
i = 1� 2� � � � � n�

as the height of each knot point. The piecewise-linear cdf for the weighted data
values is

F ∗�x� =



0 x < x�1�

y�i� +
�y�i+1� − y�i���x − x�i��

x�i+1� − x�i�
x�i� ≤ x < x�i+1�� i = 1� 2� � � � � n− 1

1 x ≥ x�n��

This cdf reduces to F̃ �x� in the equal-weighting case when w�i� = 1/n, for i =
1� 2� � � � � n. Using the associated pdf, it can be shown that E�X� and E�X2� are

E�X� = 1
2

n−1∑
i=1

(
w�i� +

iw�i+1� − �i− 1�w�i�

n− 1

) (
x�i+1� + x�i�

)
E�X2� = 1

3

n−1∑
i=1

(
w�i� +

iw�i+1� − �i− 1�w�i�

n− 1

)(
x2�i+1� + x�i+1�x�i� + x2�i�

)
�

To formulate an algorithm for variate generation, first sort the data, yielding the
x�i� and w�i� values. Then, at the beginning of a simulation, calculate the y�i� values.
The O�n� algorithm for generating random variates given below also uses inversion.

Generate U ∼ U�0� 1�

i ← 1
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Nonparametric Univariate Random Variate Generation 457

while �U > y�i+1��

i ← i+ 1

return
(
x�i� +

(
U − y�i�

) (
x�i+1� − x�i�

) / (
y�i+1� − y�i�

))
As expected, this algorithm collapses to the equally weighted algorithm given in
Sec. 1 because y�i� = �i− 1�/�n− 1�, for i = 1� 2� � � � � n in the equally weighted case.
This algorithm can easily be modified to a O�log n� algorithm by employing a binary
search rather than the linear search presented here.

Occasions might arise in which the weights need to be calculated from data.
Consider the previous example. The data values 1� 2� 5� 7� 8� and 9 were stretched
and translated so that the sample mean and variance matched the mean and
variance of the piecewise-linear estimate. This resulted in the lowest data value
x�1� = 1 being shifted to x′′�1� = −0�1347. For certain types of data sets (e.g., service
times), generating a negative service time might be unacceptable. So the only
recourse for a modeler who wants to (a) keep the x-coordinates of the knot points at
the data values and (b) match moments, is to adjust the weights w�1�� w�2�� � � � � w�n�

to values other than the usual equally likely weights 1/n. As seen earlier, the effect of
moving from a data set to the piecewise-linear estimator is to decrease the variance.
Thus, adjusting the weights will place increased weight on the extreme values (and
therefore less weight on the middle values) so as to increase the variance.

One problem that arises from this approach to matching moments is that there
will typically not be a unique solution for the weights that will match moments. We
therefore introduce the objective function∏n

i=1 w�i�∏n
i=1 1/n

from the empirical likelihood literature (Owen, 2001) to achieve a unique solution.
Thus, the optimization problem is nonlinear and is written with constraints as:

maximize nn
n∏

i=1

w�i�

subjectto
1
2

n−1∑
i=1

(
w�i� +

iw�i+1� − �i− 1�w�i�

n− 1

) (
x�i+1� + x�i�

) = x̄

1
3

n−1∑
i=1

(
w�i� +

iw�i+1� − �i− 1�w�i�

n− 1

)(
x2�i+1� + x�i+1�x�i� + x2�i�

)

−
(
1
2

n−1∑
i=1

(
w�i� +

iw�i+1� − �i− 1�w�i�

n− 1

) (
x�i+1� + x�i�

))2

= s2

n∑
i=1

w�i� = 1

w�i� ≥ 0�
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458 Kaczynski et al.

This method is advantageous for certain types of positive data that might be
close to zero, ensuring that negative x values are not created by stretching the data
(e.g., positive service times). By choosing this method the xi values are not affected.

Example 2.2. Consider again the univariate data set of n = 6 observations

1� 2� 5� 7� 8� 9�. Just as in Example 2.1, we assume that these data values are drawn
from a continuous population. The sample mean and sample variance of the data
are x̄ = 16/3 and s2 = 32/3. Find the corresponding weights, wi, for i = 1� 2� � � � � 6
that solve the above nonlinear program.

This problem was solved in Microsoft Excel and Matlab, yielding the optimal
weights w�1� = 0�3721, w�2� = 0�0519, w�3� = 0�0391, w�4� = 0�0444, w�5� = 0�0761,
and w�6� = 0�4165. These weights maximize the objective function and match the
sample mean and variance of the data to the mean and variance of the weighted
piecewise-linear cdf. The small sample size results in heavy weights being placed on
the extreme values in order to match the moments.

Because this is a nonlinear optimization program, the solution achieved is
quite sensitive to the solver chosen and starting point provided. As expected, as
the number of observations n increases, the optimization problem becomes more
difficult to solve. The next example uses a common data set from survival analysis.

Example 2.3. Consider the univariate data set of n = 23 ball bearing failure times
in millions of revolutions (Lieblein and Zelen, 1956):

17�88� 28�92� 33�00� 41�52� 42�12� 45�60� 48�48� 51�84� 51�96� 54�12� 55�56� 67�80�

68�64� 68�64� 68�88� 84�12� 93�12� 98�64� 105�12� 105�84� 127�92� 128�04� 173�40�

We assume that these data values are drawn from a continuous population. Find
the corresponding weights, w�i� for i = 1� 2� � � � � 23 that solve the above nonlinear

Figure 2. Piecewise-linear and optimal weighted piecewise-linear cdfs.
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Nonparametric Univariate Random Variate Generation 459

program. This problem was again solved in Microsoft Excel and Matlab, yielding
the optimal weights w�1� = 0�0665� w�2� = 0�0552� � � � � w�22� = 0�0471� w�23� = 0�0850�

Figure 2 shows the piecewise-linear cdf for this data and is overlaid with the
optimal weighted piecewise-linear cdf matching the sample means and variances.

3. Comparing Estimates

Thus far, four estimates have been suggested for generating from a given continuous
data set. They are (a) the piecewise-linear cdf, (b) the piecewise-linear cdf with a
mean and variance matched to the data, (c) the weighted piecewise-linear cdf, and
(d) the piecewise-linear cdf created by order statistics associated with discarding
even indices. These methods all provide a means for variate generation via inversion,
thus are fast, synchronized, and exact. Their main competitor in the literature is
variate generation from an estimated density known as the kernel density. For a
detailed discussion of this method, see Silverman (1986). To compare results for
these estimates, a Monte Carlo simulation study was conducted in which estimates
were created from six parametric distributions. These distributions were selected
to adequately cover decreasing failure rate (DFR), increasing failure rate (IFR),
increasing/decreasing failure rate (IFR/DFR), bathtub (BT), and upside-down
bathtub (UBT) hazard functions. A sample was generated from each distribution,
and the corresponding estimates were created. The metric developed for comparing
the cdfs is

1
nb

b∑
j=1

n∑
i=1

∣∣F (x�i�)− F̈j

(
x�i�
)∣∣ �

where F
(
x�i�
)
is the cdf for the known population distribution at x�i�, F̈j

(
x�i�
)
is

the corresponding jth cdf estimate at x�i� for one of the estimates listed below, n
is the sample size, and b is the number of simulation replications. The average
absolute errors for various sample sizes are given in Table 1, each for b = 1� 000� 000
replications. Common random numbers were used in the simulation experiments.
The results can be replicated using the S-Plus/R set.seed(123) command. The
smallest metric in each column is set in boldface type. The four estimators that
are compared are: (a) the piecewise-linear estimator F̃ �x�; (b) the moment matching
piecewise-linear estimator F ∗�x�; (c) the selected order statistic estimator Fg�x�; and
(d) the kernel estimator Fk�x�.

The selected order statistic estimator breaks up the clumping that occurs with
random sampling by deleting every order statistic with an even index and using the
piecewise-linear estimator on the remaining order statistics. This is why the sample
sizes are chosen to be odd. The weighted piecewise-linear cdf method is not included
in the study due to the CPU time required to solve multiple replications of the
optimization problem. Two kernel functions were selected for the study: (a) the
standard normal and (b) U�−1� 1�. The bandwidth parameter used for each kernel
density estimate is the optimal bandwidth parameter (Silverman, 1986) described
by b = ��k�1�364min�s� R/1�34�n−1/5, where ��k� = 0�776 for the Gaussian kernel,
��k� = 1�351 for the uniform kernel, s is the sample standard deviation, and R is
the sample range. The results for the uniform kernel density were not included
because the estimates had gaps in their support. As expected, the kernel density
estimate dominates for distributions with a pronounced non-zero mode. However,
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460 Kaczynski et al.

Table 1
Average absolute error

class F̃ �x� F ∗�x� Fg�x� Fk�x�

n = 9
Uniform�0� 1� IFR 0.112 0.105 0.110 0.091
Weibull�1� 1/2� DFR 0.238 0.229 0.250 0.213
Exponential�1� IFR/DFR 0.112 0.118 0.110 0.110
Weibull�1� 2� IFR 0.112 0.099 0.110 0.092
Exponential Power�1� 1/2� BT 0.158 0.169 0.143 0.170
Arctan�1� 1� UBT 0.190 0.164 0.201 0.161

n = 21
Uniform�0� 1� IFR 0.070 0.068 0.069 0.061
Weibull�1� 1/2� DFR 0.219 0.216 0.222 0.208
Exponential�1� IFR/DFR 0.070 0.094 0.069 0.088
Weibull�1� 2� IFR 0.070 0.066 0.069 0.062
Exponential Power�1� 1/2� BT 0.141 0.150 0.134 0.151
Arctan�1� 1� UBT 0.164 0.150 0.168 0.151

n = 45
Uniform�0� 1� IFR 0.047 0.046 0.047 0.043
Weibull�1� 1/2� DFR 0.211 0.210 0.212 0.206
Exponential�1� IFR/DFR 0.047 0.082 0.047 0.073
Weibull�1� 2� IFR 0.047 0.046 0.047 0.043
Exponential Power�1� 1/2� BT 0.136 0.142 0.133 0.141
Arctan�1� 1� UBT 0.152 0.135 0.154 0.146

n = 71
Uniform�0� 1� IFR 0.037 0.037 0.037 0.035
Weibull�1� 1/2� DFR 0.208 0.208 0.209 0.205
Exponential�1� IFR/DFR 0.037 0.076 0.037 0.067
Weibull�1� 2� IFR 0.037 0.037 0.037 0.035
Exponential Power�1� 1/2� BT 0.134 0.140 0.132 0.138
Arctan�1� 1� UBT 0.148 0.125 0.149 0.144

n = 101
Uniform�0� 1� IFR 0.031 0.031 0.031 0.030
Weibull�1� 1/2� DFR 0.207 0.207 0.208 0.205
Exponential�1� IFR/DFR 0.031 0.072 0.031 0.062
Weibull�1� 2� IFR 0.031 0.031 0.031 0.030
Exponential Power�1� 1/2� BT 0.134 0.138 0.132 0.137
Arctan�1� 1� UBT 0.146 0.118 0.146 0.143

the arctangent, exponential, and bi-modal exponential power distributions are more
accurately estimated by one of the piecewise-linear cdfs. The matching moments
estimator F ∗�x� for the exponential distribution deserves further explanation. When
stretching values to match variances, negative values are possible, causing the excess
error in the metric. We decided to leave this result as is in Table 1 with explanation
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Nonparametric Univariate Random Variate Generation 461

for emphasis. In conclusion, though we boldface only one error value for each row
of the table (except where ties occur), in many cases the average error differences
between methods appear to be negligible.

4. Generating Variates From Lifetime Data

Two distinguishing characteristics of lifetime data are a non negative response and
the presence of right censoring. An example of right censoring in biostatistics is a
cancer patient in remission, in which the time to recurrence is the lifetime of interest;
an example of right censoring in reliability engineering is a spare part that has not
failed, in which the time to failure is the lifetime of interest. This section develops
a piecewise-linear estimate of the survivor function for a data set that contains
right-censored observations. In lifetime data analysis, analysts often work with the
survivor function (SF) rather than the cdf. The SF is the probability of survival
to time x, written as S�x� = P�X > x� for x ≥ 0, and is complimentary to the cdf
because S�x� = 1− F�x� for continuous populations (Meeker and Escobar, 1998).
We use x rather that the more traditional t (for time) used in lifetime data analysis
to be consistent with the notation used earlier in the article. The cases of complete
and right-censored data sets are considered separately in the subsections that follow.

4.1. Complete Data

A complete data set contains no censored observations. Similar to the construction
described in Sec. 1 for the empirical cdf, the empirical SF is

Ŝ�x� = 1− N�x�

n
−� < x < ��

The empirical SF is a nonparametric estimate of the population SF. Generating
variates from this estimate is accomplished by randomly sampling the data values
with replacement, resulting in the same advantages and disadvantages of sampling
from the empirical cdf defined in Sec. 1. The piecewise-linear SF is constructed in a
similar manner to the piecewise-linear cdf presented in Sec. 1. The knot points for
this SF estimate are:

�x�1�� 1��
(
x�2�� 1−

1
n− 1

)
� � � � �

(
x�i�� 1−

i− 1
n− 1

)
� � � � �

(
x�n−1��

1
n− 1

)
� �x�n�� 0��

Random variates can be generated efficiently by the O�1� inversion algorithm given
below, which requires the sorted data values x�1�� x�2�� � � � � x�n� and a random number
generator.

Generate U ∼ U�0� 1�

i ← n− 	�n− 1�U

Return

(
x�i� + ��n− 1� �1− U�− �i− 1��

(
x�i+1� − x�i�

))
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462 Kaczynski et al.

4.2. Right-Censored Data

We now consider the more difficult case of a right-censored data set. The most
common nonparametric SF estimator when censoring is present is the Kaplan–
Meier step function estimator, also known as the product-limit estimator (Kaplan
and Meier, 1958). The estimator is defined as

Ŝ�x� = ∏
j � yj<x

(
1− dj

nj

)
�

where lifetimes are observed at times y1 < y2 < · · · < yk, dj denotes the number of
lifetimes observed at time yj , j = 1� 2� � � � � k, and nj denotes the number of subjects
on test just prior to time yj , j = 1� 2� � � � � k. This SF estimator takes downward steps
at times y1� y2� � � � � yk. Censored observations between the downward steps in Ŝ�x�

result in a larger subsequent downward step due to the associated decrease in nj .
In the special case when dk = nk (the largest data value is an observed lifetime),

the SF estimator drops to S�x� = 0 at its last step because 1− dk
nk

= 0. In this case,
no special treatment of the right-hand tail of the distribution is necessary for the
piecewise-linear SF estimate.

The remaining problems associated with determining the piecewise-linear SF
estimate for a right-censored data set are:

1. Where should the estimator strike the risers of the Kaplan–Meier SF estimate?
2. What should be done with the right-hand tail of the distribution when dk < nk?

We answer these questions in order.
The simplest approach to determine where the piecewise-linear SF estimate

strikes the risers of the Kaplan–Meier SF estimate is to treat the heights of the
downward steps in the Kaplan–Meier estimate as weights w�1�� w�2�� � � � � w�k�. The
desire is to have the first knot point of the piecewise-linear SF estimate at �y1� 1�,
and the last knot point at �yk� Ŝ�yk��. Each subsequent knot point after the first will
strike the associated riser an additional 1/�k− 1� of the way down the riser, that is,
the knot points occur at

�y1� 1� �
(
y2� 1− w�1� −

w�2�

n− 1

)
�

(
y3� 1− w�1� − w�2� −

2w�3�

n− 1

)
� � � � �(

yk� 1− w�1� − w�2� − · · · − w�k�

)
�

This approach is consistent with the weighted observation approach in Sec. 2, and
is illustrated in the following example.

Example 4.1. Consider the remission times from the treatment group of the 6–MP
data set with n = 21 patients on test and k = 7 distinct observed remission times
(Cox and Oakes, 1984). The data values, in weeks, are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗�
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Nonparametric Univariate Random Variate Generation 463

Table 2
Product-limit calculations for 6–MP treatment case

j yj dj nj 1− dj
nj

1 6 3 21 1− 3
21

2 7 1 17 1− 1
17

3 10 1 15 1− 1
15

4 13 1 12 1− 1
12

5 16 1 11 1− 1
11

6 22 1 7 1− 1
7

7 23 1 6 1− 1
6

where ∗ denotes a right-censored observation. Table 2 gives the values of yj , dj ,
nj , and 1− dj/nj for j = 1� 2� � � � � 7. The knot points for the piecewise-linear SF
estimate are

�6� 1� �
(
7�

101
119

)
�

(
10�

1408
1785

)
�

(
13�

184
255

)
�

(
16�

496
765

)
�

(
22�

592
1071

)
�

(
23�

160
357

)
�

The product–limit SF estimate for all x values is plotted in Fig. 3, along with the
knot points for the piecewise-linear SF estimate. Downward steps occur only at the
k = 7 observed remission times. The vertical hash marks on the Kaplan–Meier SF
estimate highlight censored values that occur between observed failure times; these
occur at times 9, 11, 17, 19, and 20 in Fig. 3. If there is a tie between an observed
failure time and censoring time (as there is at time 6 in this example) our convention
of including the censored value(s) in the risk set means that there will be a larger
downward step in the SF estimate following this tied value. The SF estimate is
truncated at time 23, because that is the last observed failure time.

The remaining question concerns how to estimate the right-hand tail of the
survivor function, that is, how should S�x� be estimated for x values exceeding yk

Figure 3. Product–limit survivor function estimate for the 6-MP treatment group.
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464 Kaczynski et al.

when extrapolation is reasonable and required. Three possibilities for modeling the
right-hand tail when dk < yk follow.

• If the slopes of the piecewise-linear segments are nearly the same, it might be
reasonable to use a linear segment that passes through the points �y1� 1� and
�yk� Ŝ�yk�� which is a line with slope

1−∏k
i=1

(
1− dj/nj

)
y1 − yk

�

This method effectively appends the additional knot point(
y1 −

y1 − yk

1−∏k
i=1

(
1− dj/nj

) � 0) �

• If the linear segment for the right-hand tail does not seem reasonable,
an exponential right-hand tail can be appended to the piecewise-linear SF
estimate. The rate parameter for the exponential distribution is estimated by
maximum likelihood as the ratio of the number of observed failures to the
total time on test. The survivor function for the tail needs to be adjusted
vertically or horizontally (both methods are equivalent by the memoryless
property) so that it intersects the right-most knot point.

• Any lifetime distribution (for example, the Weibull distribution) can be fitted
to the data set and used as a right-hand tail. The adjustment of the right-
hand tail of the distribution should be done with care because the vertical
and horizontal adjustments result in different tail distributions.

Modeling occasions might arise when it is advantageous to have the support of
the piecewise-linear SF begin at 0 (or more generally some arbitrary warranty period
w, where 0 < w < y1). The easiest way to proceed is to artificially add the data value
0 or w to the data set, although this will induce a significant bias, particularly for
small values of n.

5. Conclusions & Further Work

The standard solution to the interpolation problem for Monte Carlo or discrete-
event simulation uses a piecewise-linear cdf as a model. The variate generation
algorithm is fast and trivial to implement. We have suggested three modifications
to the original model: (a) stretching and shifting the original data values so that the
mean and variance of the piecewise-linear cdf model matches the mean and variance
of the sample values; (b) a modification to the model and variate generation
algorithm to account for weighted observations; and (c) a modification to the model
to account for right-censored data sets. These modifications could prove to be
useful in further work associated with the generation of bivariate samples. Another
important consideration is how these modifications are conducted. The first is to
adjust the knot points horizontally so as to match the first and second moments.
The second is to adjust the knot points vertically by weighting the data so as to
match the first and second moments and solve an optimization problem. These
two approaches can be combined so that the knot points can be adjusted both
horizontally and vertically so as to match moments and optimize some measure
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Nonparametric Univariate Random Variate Generation 465

of interest (e.g., the minimum absolute area between the standard piecewise-linear
cdf estimator and the adjusted cdf estimator). Although this may require solving
a high-dimensional optimization problem, heuristics exist to solve these problems
and the problem only needs to be solved once to develop a probability model. Once
the model is developed, an O�log n� algorithm could be utilized to generate random
variates.

We conclude with a summary of piecewise-linear and kernel density estimation
pros and cons. The advantages to using the piecewise-linear estimator for variate
generation include: (a) no decisions from the modeler, completely nonparametric;
(b) easily extended to match sample mean and variance; (c) easily smoothed to
minimize the effect of clustering of data values; and (d) extends to bivariate
data without the assumptions and requirements demanded if using kernel density
estimation.

As shown in Sec. 3, kernel density estimation performs better than the
piecewise-linear estimators, but not universally so. The drawbacks encountered
when using kernel density estimation were: (a) the arbitrary decisions left to the
modeler; kernel density functional form; variance of kernel densities (smoothing
parameter); (b) normal kernel density function implies an infinite left-hand tail
(obviously inappropriate for certain types of data, e.g., survival times); and (c) the
uniform density may leave undesired gaps and extend to negative values.

One way to overcome the clustering problem associated with the piecewise
linear estimates is to delete even-numbered order statistics from the data set or
to group the data into cells. The drawbacks associated with these approaches are:
(a) grouping involves arbitrary decisions/parameters from the modeler; and (b) too
much grouping may mask the shape of the distribution.

While we recognize the approach presented in this article “not ideal” in density
estimation, our goal is not density estimation. The goal is nonparametric variate
generation, thus density estimation can be considered as an unnecessary step. The
method proposed is a turnkey operation, requiring only the observed data from
the modeler. The extension to these methods to the bivariate case are considered in
Kaczynski et al. (2012).

Appendix A. Relationship to the Trapezoidal and Simpson’s Rule

Suppose that F = FX  � → �0� 1� is an unknown continuous cumulative distribution
function (CDF) and X1� X2� � � � � Xn are i.i.d. random variables with this distribution.
Let

x�1� ≤ x�2� ≤ · · · ≤ x�n� (1)

denote the particular values obtained in a given random sample, sorted into weakly
increasing order. Our goal is to use this sample to estimate F , which will then be
used to simulate further observations. (We additionally assume that the support of
the population is positive for simplicity. If the lower bound of the support happens
to be a finite negative value, the results given in this appendix can be achieved by
shifting the data values and adjusting the associated moments.)

For convenience, assume that F is strictly increasing on some (unknown)
interval of possible values �a� b�. Thus, F  �a� b� → �0� 1� is an invertible function
with inverse F−1  �0� 1� → �a� b�. Letting U ∼ U�0� 1�, the probability integral
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466 Kaczynski et al.

transformation (Fishman, 2006, page 77) states that X and each Xi have the same
distribution as F−1�U�. In particular,

E�Xk� =
∫ 1

0
F−1�u�k du�

Furthermore, to simulate random observations from the distribution of X, we need
only use a random number generator to generate random numbers u ∈ �0� 1�, and
then compute F−1�u�.

Let y�i� = �i− 1�/�n− 1� for i = 1� 2� � � � � n. Given the input data (1), symmetry
suggests that we estimate F by a piecewise-linear function for which F0�x�i�� =
y�i� for i = 1� 2� � � � � n. This is equivalent to estimating F−1 by a piecewise-linear
function F−1

0 such that F−1
0 �y�i�� = x�i� for i = 1� 2� � � � � n.

More generally, we might postulate that F−1 is some continuous function
(not necessarily piecewise linear) such that F−1�y�i�� = x�i� for i = 1� 2� � � � � n. We
can then use numerical integration techniques to estimate integrals involving the
unknown function F−1. This is easy to do, since the y�i�’s form a partition of �0� 1�
into n− 1 subintervals of equal length. For example, using the trapezoidal rule to
estimate E�X� gives

E�X� = E�F−1�U��

=
∫ 1

0
F−1�u� du

≈ 1− 0
2�n− 1�

(
F−1
0 �y�1��+ 2F−1

0 �y�2��+ 2F−1
0 �y�3��+ · · · + F−1

0 �y�n��
)

= x�1� + 2x�2� + 2x�3� + · · · + 2x�n−1� + x�n�

2�n− 1�
�

Of course, this is exactly the formula obtained by using a piecewise-linear
approximation in Section 2.1. Similarly, the trapezoidal estimate of E�X2� is

E�X2� =
∫ 1

0
F−1�u�2 du ≈ x2�1� + 2x2�2� + · · · + 2x2�n−1� + x2�n�

2�n− 1�
�

We remark that this expression does not necessarily equal
∫ 1
0 F−1

0 �u�2 du, but it is
certainly one reasonable way to estimate E�X2�. Note that both of our formulas give
unbiased estimators for the mean and second moment of X, although these are not
the usual unbiased estimators commonly employed in statistics.

The simplest approach to simulating observations from X is to use the
piecewise-linear estimate F−1

0 for F−1. One more advanced approach is to replace
F−1
0 by some affine transformation F−1

1 = cF−1
0 + d, for suitable constants c� d. One

way to proceed is to choose c and d so that E�F−1
1 �U�� equals the sample mean

of the x�i�’s, and Var�F−1
1 �U�� equals the unbiased sample variance of the x�i�’s. A

related approach (which is a bit simpler computationally) is to choose c and d so
that the trapezoidal estimates of E�X� and E�X2� (computed with respect to F−1

1 )
equal the corresponding sample moments (computed using the x�i�’s). In more detail,
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let m1 =
∑

i x�i�, m2 =
∑

i x
2
�i�,

t1 =
x�1� + 2x�2� + · · · + 2x�n−1� + x�n�

2�n− 1�
� t2 =

x2�1� + 2x2�2� + · · · + 2x2�n−1� + x2�n�

2�n− 1�
�

Then we can choose c and d to satisfy

m1 = ct1 + d� m2 = c2t2 + 2cdt1 + d2�

We then simulate random observations from X by generating random numbers u ∈
�0� 1�, and computing simulated values cF−1

0 �u�+ d.
The preceding discussion suggests some tantalizing extensions. What if we used

more advanced numerical integration techniques to estimate integrals involving the
unknown function F−1? For example, when n− 1 is even, we could use Simpson’s
Rule to estimate E�X� and E�X2�, which amounts to using piecewise-quadratic
estimates of the functions F−1�y� and F−1�y�2. This leads to formulas such as

E�X� = E�F−1�U�� ≈ x�1� + 4x�2� + 2x�3� + 4x�4� + · · · + 4x�n−1� + x�n�

3�n− 1�
�

One could then try to modify the associated piecewise-quadratic functions by affine
transformations to attain a closer match to the sample mean and unbiased sample
variance.
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