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We present two moment-ratio diagrams along with guidance for their interpretation. The first moment-

ratio diagram is a graph of skewness versus kurtosis for common univariate probability distributions. The

second moment-ratio diagram is a graph of coefficient of variation versus skewness for common univariate

probability distributions. Both of these diagrams, to our knowledge, are the most comprehensive to date. The

diagrams serve four purposes: (1) they quantify the proximity between various univariate distributions based

on their second, third, and fourth moments; (2) they illustrate the versatility of a particular distribution

based on the range of values that the various moments can assume; and (3) they can be used to create

a short list of potential probability models based on a data set; (4) they clarify the limiting relationships

between various well-known distribution families. The use of the moment-ratio diagrams for choosing a

distribution that models given data is illustrated.
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Introduction

T
HE MOMENT-RATIO DIAGRAM for a distribution
refers to the locus of a pair of standardized mo-

ments plotted on a single set of coordinate axes (Kotz
and Johnson (2006)). By standardized moments we
mean the coefficient of variation (CV),

γ2 =
σX

μX
,
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the skewness (or third standardized moment)

γ3 = E

[(
X − μX

σX

)3
]

,

and the kurtosis (or fourth standardized moment)

γ4 = E

[(
X − μX

σX

)4
]

,

where μX and σX are the mean and the standard de-
viation of the implied (univariate) random variable
X. The classical form of the moment-ratio diagram,
plotted upside down, shows the third standardized
moment γ3 (or sometimes its square γ2

3) plotted as
abcissa and the fourth standardized moment γ4 plot-
ted as ordinate. The plot usually includes all possible
pairs (γ3, γ4) that a distribution can attain. Because
γ4 − γ2

3 − 1 ≥ 0 (see Stuart and Ord (1994), Exercise
3.19, p. 121), the moment-ratio diagram for a dis-
tribution occupies some subset of the shaded region
shown in Figure 1.
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FIGURE 1. The Shaded Region Represents the Set of

Attainable Pairs of Third and Fourth Standardized Moments

(γ3, γ4) for Any Distribution. The solid line is the limit γ4

= 1 + γ2
3 for all distributions.

Moment-ratio diagrams, apparently first intro-
duced by Craig (1936) and later popularized by John-
son et al. (1994), especially through the plotting of
multiple distributions on the same axes, have found
enormous expediency among engineers and statisti-
cians. The primary usefulness stems from the dia-
gram’s ability to provide a ready “snapshot” of the
relative versatility of various distributions in terms
of representing a range of shapes. Distributions oc-
cupying a greater proportion of the moment-ratio
region are thought to be more versatile owing to
the fact that a larger subset of the allowable mo-
ment pairs can be modeled by the distribution. Ac-
cordingly, when faced with the problem of having to
choose a distribution to model given data, model-
ers often estimate the third and fourth standardized
moments (along with their standard error estimates)
and plot them on a moment-ratio diagram to get a
sense of which distributions may be capable of rep-
resenting the shapes implicit in the provided data.
In this sense, a modeler can compare several “candi-
date” distributions simultaneously in terms of their

moments. Another use for these diagrams has been in
getting a sense of the limiting relationships between
distributions, and also between various distributions
within a system. An excellent example of the latter is
the Pearson system of frequency curves where the re-
gion occupied by the various distributions comprising
the system neatly divides the (γ2

3 , γ4) plane (Johnson
et al. (1994)).

Since Craig (1936) published the original moment-
ratio diagram, various authors have expanded and
published updated versions. The most popular of
these happen to be the various diagrams appearing
in Johnson et al. ((1994), pp. 23, 390). Rodriguez
(1977), in clarifying the region occupied by the Burr
Type XII distribution in relation to others, provides
a fairly comprehensive version of the moment-ratio
diagram showing several important regions. Tadika-
malla (1980) provides a similar but limited version
in clarifying the region occupied by the Burr Type
III region.

More recently, Cox and Oakes (1984) have popu-
larized a moment-ratio diagram of a different kind—
one that plots the CV (γ2) as the abcissa and the
third standardized moment (γ3) as the ordinate. Ad-
mittedly, this variation is location and scale depen-
dent, unlike the classical moment-ratio diagrams in-
volving the third and fourth standardized moments.
Nevertheless, the diagram has become unquestion-
ably useful for modelers. A slightly expanded ver-
sion of this variation appears in Meeker and Escobar
(1998).

Contribution

Our contributions in this paper are threefold,
stated here in order of importance. First, we provide
a moment-ratio diagram of the CV versus skewness
(γ2, γ3) involving 36 distributions, four of which oc-
cupy two-dimensional regions within the plot. To our
knowledge, this is the most comprehensive diagram
available to date. Furthermore, it is the first time the
entire region occupied by important two-parameter
families within the CV versus skewness plot (e.g.,
generalized gamma, beta, Burr Type XII) has been
calculated and depicted. The CV versus skewness
plot first appeared in Cox and Oakes (1984) and later
in Meeker and Escobar (1998). The diagrams appear-
ing in both these original sources either depict only
families with a single shape parameter (e.g., gamma)
or vary only one of the shape parameters while fixing
all others. Second, we provide a classical moment-
ratio diagram (γ3, γ4) that includes 37 distributions,
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four of which occupy two-dimensional regions within
the plot. While such diagrams are widely available,
the diagram we provide is the most comprehensive
among the sources we know and seems particularly
useful due to its depiction of all distributions in the
same plot. In constructing the two moment-ratio di-
agrams, we have had to derive the limiting behavior
of a number of distributions, some of which seem to
be new. Expressions for γ2, γ3, and γ4 for some of
these distributions are listed in the Appendix. We
also host the moment-ratio diagrams in a publicly
accessible website where particular regions of the di-
agram can be magnified for clearer viewing. Third,
using an actual data set, we demonstrate what a
modeler might do when having to choose candidate
distributions that “model” given data.

Organization of the Paper
The rest of the paper is organized as follows. We

present the two moment-ratio diagrams along with
cues for interpretation in the next section. Follow-
ing that, we demonstrate the use of the moment-
ratio diagrams for choosing a distribution that mod-
els given data. Finally, we present conclusions and
suggestions for further research. This is followed by
the Appendix, where we provide analytical expres-
sions for the moment-ratio locus corresponding to
some of the distributions depicted in the diagrams.

Reading the Moment-Ratio Diagrams
Two moment-ratio diagrams are presented in this

paper. The first, shown in Figure 2, is a plot contain-
ing the (γ3, γ4) regions for 37 distributions. Figure 3
is a plot containing the (γ2, γ3) regions for 36 distri-
butions. For convenience, in both diagrams, we have
chosen to include discrete and continuous distribu-
tions on the same plot. In what follows, we provide
a common list of cues that will be useful in reading
the diagrams correctly.

(i) Distributions of which moment-ratio regions
correspond to single points (e.g., normal) are
represented by black solid dots, curves (e.g.,
gamma) are represented by solid black lines,
and areas (e.g., Burr Type XII) are represented
by colored regions.

(ii) The names of continuous distributions occupy-
ing a region are set in sans serif type; the names
of continuous distributions occupying a point or
curve are set in roman type; the names of dis-
crete distributions occupying a point or curve
are set in italic type.

(iii) The end points of curves, when not attained by

the distribution in question, are represented by
an unfilled circle (e.g., logistic exponential).

(iv) When the boundary of a moment-ratio area is
obscured by another area, we include a dotted
line (Figure 2) or an arrow (Figure 3) to clarify
the location of the obscured boundary.

(v) When a distribution represented by points in
one of the moment-ratio diagrams converges
as one of its parameters approaches a limiting
value (e.g., a t random variable as its degrees of
freedom approaches infinity), we often decrease
the font size of the labels to minimize interfer-
ence.

(vi) The parameterizations used for the distribu-
tions are from Leemis and McQueston (2008)
unless indicated otherwise in the paper.

The Skewness-Kurtosis Diagram

Whether the locus corresponding to a distribu-
tion in Figure 2 is a point, curve, or region usually
depends on the number of shape parameters. For ex-
ample, the normal distribution has no shape parame-
ters and its locus in Figure 2 corresponds to the point
(0, 3). By contrast, because the gamma distribution
has one shape parameter, its locus corresponds to the
curve γ3 = 1.5γ2

2 + 3. An example of a distribution
that has two shape parameters is the Burr Type XII
distribution. It accordingly occupies an entire region
in Figure 2. In all, Figure 2 has 37 distributions with
4 continuous distributions represented by regions, 19
distributions (15 continuous and 4 discrete) repre-
sented by curves, and 14 distributions (13 continuous
and 1 discrete) represented by one or more points. A
list of other useful facts relating to Figure 2 follows.

• The “T” plotted at (γ3, γ4) = (0, 9) corre-
sponds to the t-distribution with five degrees
of freedom, which is the smallest number of de-
grees of freedom where the kurtosis exists.

• The chi-square (S) and Erlang (X) distributions
coincide when the chi-square distribution has
an even number of degrees of freedom. This ac-
counts for the alternating pattern of “S” and
“SX” labels that occur along the curve associ-
ated with the gamma distribution.

• Numerous distributions start at (or include) the
locus of the normal distribution and end at (or
include) the locus of the exponential distribu-
tion. Two examples of such are the gamma dis-
tribution and the inverted beta distribution.

• Space limitations prevented us from plotting
the values associated with the discrete uniform-
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FIGURE 2. Skewness (γ3) Versus Kurtosis (γ4). (See the supplementary material at http://www.asq.org/pub/jqt/ for a

full-color version of this figure.)
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FIGURE 3. CV (γ2) Versus Skewness (γ3). (See the supplementary material at http://www.asq.org/pub/jqt/ for a full-color

version of this figure.)
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distribution between its limits as a two-mass
value with (γ3, γ4) = (0, 1) and its limiting
distribution (as the number of mass values in-
creases) with (γ3, γ4) = (0, 1.8). It is plotted as
a thick line.

• The regime occupied by the inverted beta dis-
tribution has the curves corresponding to in-
verted gamma and the gamma distributions as
limits.

• The regime occupied by the generalized gamma
distribution has the curves corresponding to the
power distribution and the log gamma distribu-
tion as partial limits.

• The regime occupied by the Burr Type XII dis-
tribution has the curve corresponding to the
Weibull distribution as a partial limit.

• Barring extreme negative skewness values, vir-
tually all of the regime occupied by the gener-
alized gamma distribution is subsumed by the
beta distribution.

• The beta and the Burr Type XII distributions
seem complementary in the sense that the beta
distribution occupies the “outer” regions of the
diagram while the Burr Type XII distribution
occupies the “inner” regions of the diagram.
Furthermore, the collective regime of the beta
and Burr Type XII distributions, with a few ex-
ceptions (e.g., Laplace), encompasses all other
distributions included in the plot.

The CV-Skewness Diagram

Unlike in the skewness-kurtosis diagram (Figure
2), the locus of a distribution in the CV-skewness
diagram (Figure 3) depends on the distribution’s lo-
cation and scale parameters. For this reason, in Fig-
ure 3, there are fewer distributions (compared with
Figure 2) for which the locus is a singleton. Figure 3
represents a total of 36 distributions with 4 contin-
uous distributions represented by regions, 24 distri-
butions (19 continuous and 5 discrete) represented
by curves, and 8 distributions (7 continuous and 1
discrete) represented by one or more points. A list of
other useful facts relating to Figure 3 follows.

• Distributions that are symmetric about the
mean have γ3 = 0. Because CV can be adjusted
to take any value (by controlling the location
and scale), symmetric distributions, e.g., error,
normal, uniform, logistic, have the locus γ3 = 0
in Figure 3.

• The regime occupied by the beta family has
the gamma curve γ3 = 2γ2, γ2 ∈ (0, 1) and the

Bernoulli curve γ3 = γ2 − 1/γ2 as limits.

• The regime occupied by the inverted beta dis-
tribution has the gamma curve γ3 = 2γ2,
γ2 ∈ (0, 1) and the inverted gamma curve
γ3 = 4γ2/(1 − γ2

2), γ2 ∈ (0, 1) as limits.

• The regime occupied by the generalized gamma
distribution has the curves corresponding to the
power distribution and the Pareto distribution
as partial limits.

• The regime occupied by the Burr Type XII dis-
tribution has the curves corresponding to the
Weibull and Pareto distributions as limits.

Application

The moment-ratio diagrams can be used to iden-
tify likely candidate distributions for a data set, par-
ticularly through a novel use of bootstrapping tech-
niques, e.g., Cheng (2006) and Ross (2006). Toward
illustrating this, we first formally set up the problem.
Let X1, X2, . . . , Xn be i.i.d. observations of a random
variable having an unknown cumulative distribution
function (CDF) F (x). Suppose θ is some parame-
ter concerning the population distribution (e.g., the
coefficient of variation γ2), and let θ̂ be its estima-
tor (e.g., the sample coefficient of variation γ̂2 con-
structed from X1, X2, . . . , Xn). Also let Fn(x) denote
the usual empirical CDF constructed from the data
X1, X2, . . . , Xn, i.e.,

Fn(x) =
1
n

n∑
i=1

I{Xi ≤ x}.

A lot is known about about how well Fn(x) approxi-
mates F (x). For example, the Glivenko–Cantelli the-
orem (Billingsley (1995)) states that Fn → F uni-
formly in x as n → ∞. Furthermore, the deviation of
Fn(x) from F (x) can be characterized fully through
Sanov’s theorem (Dembo and Zeitouni (1998)) under
certain conditions.

We are now ready to demonstrate how the above
can be used toward identifying candidate distribu-
tions to which a given set of data X1, X2, . . . , Xn

might belong. As usual, the sample mean and sam-
ple standard deviation are calculated as

X=
1
n

n∑
i=1

Xi and S =

√√√√ 1
n − 1

n∑
i=1

(Xi− X)2.

In order to obtain a nonzero standard deviation, we
assume that at least two of the data values are dis-
tinct. The point estimates for the CV, skewness, and
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kurtosis are

γ̂2 =
S

X
,

γ̂3 =
1
n

n∑
i=1

(
Xi− X

S

)3

,

γ̂4 =
1
n

n∑
i=1

(
Xi− X

S

)4

,

for X �= 0. The points (γ̂3, γ̂4) and (γ̂2, γ̂3) can be
plotted in Figures 2 and 3 to give a modeler guidance
concerning which distributions are potential para-
metric models for statistical inference. Probability
distributions in the vicinity of the point estimates
are strong candidates for probability models. Unfor-
tunately, these point estimates do not give the mod-
eler a sense of their precision, so we develop an ap-
proximate interval estimate in the paragraph below.

Bootstrapping can be used to obtain a measure
of the accuracy of the point estimates (γ̂3, γ̂4) and
(γ̂2, γ̂3). Let B denote the number of bootstrap sam-
ples (a bootstrap sample consists of n observations
drawn with replacement from the original data set).
For each bootstrap sample, the two parameters of
interest (e.g., skewness and kurtosis) are estimated
using the procedure described in the previous para-
graph and stored. After the B bootstrap samples
have been calculated, the bivariate normal distribu-
tion is fitted to the B data pairs using standard tech-
niques. Two of the five parameters of the bivariate
normal distribution, namely, the two sample boot-
strap means, are replaced by the point estimators
to assure that the bivariate normal distribution is
centered about the point estimators that were calcu-
lated and plotted in the previous paragraph. Finally,
a concentration ellipse is plotted around the point
estimate. The tilt associated with the concentration
ellipse gives the modeler a sense of the correlation
between the two parameters of interest.

Example

Consider the n = 23 deep-groove ball-bearing fail-
ure times (measured in 106 revolutions)

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40

from Lieblein and Zelen (1956), which is discussed in
Caroni (2002). For brevity, we consider the plotting
of the point and associated concentration ellipse for
only the CV versus skewness moment ratio diagram

(Figure 3). The first step is to calculate and plot the
point (γ̂2, γ̂3) ∼= (0.519, 0.881). We then take B = 200
bootstrap samples of n = 23 failure times with re-
placement from the data set. (The value of B was
chosen arbitrarily.) The bivariate normal distribution
is fitted to the B data pairs and a concentration el-
lipse is then overlaid on the plot of the CV versus
skewness as a visual aid to identify likely candidate
distributions for modeling the ball-bearing lifetimes.
The results of this process are displayed in Figure
4, which provides a close-up view of the concentra-
tion ellipse. In terms of candidate distributions, the
following conclusions can be drawn.

• Because ball-bearing lifetimes are inherently
continuous, all of the discrete distributions
should be eliminated from consideration.

• The position of the concentration ellipse im-
plies that several distributions associated with
regions in the (γ2, γ3) graph are candidate dis-
tributions: the gamma distribution (and its spe-
cial cases), and the Weibull distribution (and
the Rayleigh distribution as a special case) are
likely to be models that fit the data well.

• The gamma and Weibull distributions both
have shape parameters that are greater than
1 within the concentration ellipse, confirming
the intuition that an appropriate model is in
the increasing failure rate (IFR) class (Cox and
Oakes (1984)) of survival distributions (i.e., the
ball bearings are wearing out). Consistent with
this conclusion, notice that the point for the
exponential distribution is far away from the
concentration ellipse.

• Distributions that are close to the concentra-
tion ellipse should also be included as candi-
dates. For this data set, the log-normal distri-
bution is just outside of the concentration el-
lipse, but provides a good fit to the data (see
Crowder et al. (1991), pp. 37–38 and 42–43 for
details). Any distribution in or near the con-
centration ellipse should be considered a can-
didate distribution. This is confirmed by the
four graphs in Figure 5, which show the fitted
Weibull, gamma, log-normal, and exponential
distributions, along with the empirical CDF as-
sociated with the ball-bearing failure data. The
three distributions that are inside of or close to
the concentration ellipse provide reasonable fits
to the data; the exponential distribution, which
is far away from the concentration ellipse, pro-
vides a poor fit to the data.
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FIGURE 4. Using the CV-Skewness Diagram to Choose a Candidate Distribution (for Modeling Given Data) Through

Estimation and Bootstrapping.

The size of the concentration ellipse also gives
guidelines with respect to sample size. If the con-
centration ellipse is so large that dozens of probabil-
ity distributions are viable candidates, then a larger
sample size is required. As expected, there is gener-
ally more variability on the higher-order moments.

Also, the eccentricity and tilt of the concentration
ellipse provide insight on the magnitudes of the vari-
ances of the point estimates and their correlation. For
the ball-bearing failure times, the standard error of
the skewness is almost an order of magnitude larger
than the standard error of the coefficient of variation.
The slight tilt of the concentration ellipse indicates
that there is a small positive correlation between the
coefficient of variation and the skewness.

If point estimates and concentration ellipses are
plotted on both of the moment-ratio diagrams in Fig-
ures 2 and 3, the candidate distributions might not
be consistent. The authors believe that the coeffi-
cient of variation versus the skewness plot is more
reliable because it is based on lower order moments.
The moment-ratio diagrams can be used in tandem
when using any one diagram still leaves a large num-
ber of candidate distributions.

Conclusions and Further Research

The two moment-ratio diagrams presented in Fig-
ures 2 and 3 are useful for insight concerning univari-
ate probability distributions and for model discrim-
ination for a particular data set. Plotting a concen-
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FIGURE 5. Empirical and Fitted CDFs for the Weibull, Gamma, Log-Normal, and Exponential Distributions.

tration ellipse associated with bootstrap samples on
either chart provides guidance concerning potential
probability distributions that provide an adequate
fit to a data set. These diagrams are one of the few
ways that data analysts can simultaneously evaluate
multiple univariate distributions.

Data sets associated with actuarial science, bio-
statistics, and reliability engineering often contain
censored observations, with right-censored observa-
tions being the most common. Plotting the vari-
ous moments is problematic for censored observa-
tions. Block and Leemis (2008) provide techniques
for overcoming censoring that are based on kernel
density function estimation and competing risks the-
ory. These techniques can be adapted to produce
point estimators and concentration ellipses.

Further research work associated with these dia-
grams would include a Monte Carlo study that eval-
uates the effectiveness of the concentration ellipse in
identifying candidate distributions. This study would
indicate which of the two moment-ratio diagrams is
better for model discrimination.

Appendix

In this section, we provide exact expressions for
the CV, skewness, and kurtosis for the four distribu-
tions that occupy (two-dimensional) regions in Fig-
ures 2 and 3.

Beta

The beta family (Johnson et al. (1995), p. 210)
has two shape parameters, p, q > 0, with

γ2 =
√

q√
p2 + pq + p

, p, q > 0;

γ3 =
2(q − p)

√
1/p + 1/q + 1/pq

p + q + 2
, p, q > 0;

γ4 = 3(p + q + 1)
2(p + q)2 + pq(p + q − 6)
pq(p + q + 2)(p + q + 3)

,

p, q > 0.

The regime in the (γ2, γ3) plane is bounded above
by the line γ3 = 2γ2 corresponding to the gamma
family, and below by the curve γ3 = γ2 − 1/γ2. The
regime in the (γ3, γ4) plane is bounded below by the
limiting curve γ4 = 1 + γ2

3 for all distributions and
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above by the curve γ4 = 3 + (3/2)γ2
3 corresponding

to the gamma family.

Inverted Beta

The beta-prime or the Pearson Type VI fam-
ily (Johnson et al. (1995), p. 248), also known as
the inverted beta family, has two shape parameters,
α, β > 0, with

γ2 =

√
α + β − 1
α(β − 2)

, β > 2;

γ3 =

√
4(β − 2)

(α + β − 1)α
· 2α + β − 1

β − 3
, β > 3;

γ4 =
3(α − 2 + 1

2 (β − 3)γ2
2)

β − 4
, β > 4.

The regime in the (γ2, γ3) plane is bounded above by
the curve γ3 = 4γ2/(1 − γ2

2), γ2 ∈ (0, 1) and below
by the curve γ3 = 2γ2 corresponding to the gamma
family. The regime in the (γ3, γ4) plane is bounded
above by the curve

γ3 =
4
√

α − 2
α − 3

, γ4 = 3+
30α − 66

(α − 3)(α − 4)
, α > 4

corresponding to the inverse gamma family and be-
low by the curve γ4 = 3 + 3

2γ2
3 corresponding to the

gamma family.

Generalized Gamma

The generalized gamma family (Johnson et al.
(1994), p. 388) has two shape parameters, α, λ > 0,
with the rth raw moment μ′

r = Γ(α+ rλ)/Γ(α). The
regime in the (γ2, γ3) plane is bounded below by the
curve

γ2 =
1√

p(p + 2)
, γ3 =

1 − p

p + 3
· 2√

1 + 2/p
, p > 0

corresponding to the power family and above by the
curve

γ2 =
1√

p(p − 2)
, γ3 =

1 + p

p − 3
· 2√

1 − 2/p
, p > 3

corresponding to the Pareto family. The regime in
the (γ3, γ4) plane is bounded above by the curve

γ3 =
1 + p

p − 3
2√

1 − 2/p
,

γ4 =
3(1 + 2/p)(3p2 − p + 2)

(p + 3)(p + 4)
, p > 0

corresponding to the power family, bounded below
to the right by the curve corresponding to the gener-
alized gamma family with λ = −0.54, and bounded

below to the left by the curve corresponding to the
log gamma family. (Recall that the log gamma family
with shape parameter α > 0 has the rth cumulant
κr = Ψ(r)(α), where Ψ(r)(z) is the (r + 1)th deriva-
tive of ln Γ(z).)

Burr Type XII

The Burr Type XII family (Rodriguez (1977)) has
two shape parameters, c, k > 0, with the rth raw
moment μ′

r = Γ(r/c + 1)Γ(k − r/c)/Γ(k), c > 0, k >
0, r < ck. The regime in the (γ2, γ3) plane is bounded
below by the curve corresponding to the Weibull fam-
ily (rth raw moment μ′

r = Γ(r/c + 1), where c > 0
is the Weibull shape parameter), and above by the
curve

γ2 =
1√

p(p − 2)
, γ3 =

1 + p

p − 3
· 2√

1 − 2/p
, p > 3

corresponding to the Pareto family. The regime in the
(γ3, γ4) plane is bounded below by the curve corre-
sponding to the Weibull family, bounded above to the
right by the curve corresponding to the Burr Type
XII family with k = 1, and bounded above to the
left by the curve corresponding to the Burr Type
XII family with c = ∞.
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