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Observed data values are typically assumed to come from an infinite population of items in reliability and survival analysis applications.
The case of a finite population of items with exponentially distributed lifetimes is considered here. The data set consists of the lifetimes
of a large number of items that are known to have exponentially distributed failure times with a failure rate that is known with high
precision. Failure of the items is not self-announcing, as is the case with a smoke detector. A significant fraction of the items are
sampled periodically, and the items that have failed are repaired to a like-new condition with respect to their survival distribution.
The goal is to assess the impact of this periodic sampling and repair on the overall finite population reliability over time.

Keywords: Exponential distribution, finite population, reliability estimation, survivor function

1. Introduction

Consider a finite population of n identical repairable items
that operate continuously until failure. We assume that each
item has an exponential (λ) time to failure, where the failure
rate λ > 0 is assumed to be a known fixed constant. This
assumption is based on a long history of testing and the
fact that the items consist mainly of electrical components
arranged in series. If there is no intervention (e.g., periodic
testing and repair) in the finite population of items, the
population survivor function S(t) is (Ross, 2007, p. 282):

S(t) = e−λt, t > 0.

Assume that failure can only be detected by testing. At or-
dered times t1, t2, . . . , tk, select n1, n2, . . . , nk items at ran-
dom and without replacement at each sampling time from
the finite population, and observe Y1, Y2, . . . , Yk of these
items that pass the test. Testing is instantaneous. Any item
that fails a test undergoes a perfect repair with no time
delay, and is immediately returned to the population with
those that pass the test. We consider the estimation of the
population survivor function at time t under this periodic
sampling scheme by presenting a series of models of in-
creasing complexity by progressively relaxing conditions in
order to arrive at a general model for survivor function
estimation for finite populations.

2. Models

The goal of each of the four models presented in this sec-
tion is to give the survivor function for a finite popula-

tion of items, each with exponential (λ) times to failure.
The first model considers a single (k = 1) sampling time.
The second model considers two (k = 2) sampling times.
The third model considers the general case of k sampling
times. Finally, the fourth model considers the case of a
varying population size.

2.1. Single sampling time

Assume that there is only a single (k = 1) sampling time.
The number of passing items Y1 (out of the n1 items sam-
pled at time t1) has the hypergeometric distribution with
conditional probability mass function:

fY1 | G1=g1 (y | G1 = g1) =
(g1

y

)(n−g1
n1−y

)
( n

n1

) , y = 0, 1, 2, . . . , n1.

This probability mass function is conditioned on G1 = g1
good items and n − g1 bad items in the population at time
t1. Note that (

r
s

)
= 0,

by convention, whenever s < 0 or s > r , which allows the
support of the random variable Y1 to be written in the
simple fashion presented above. The random variable G1
has the binomial distribution with parameters n and e−λt1 ,
and probability mass function:

fG1 (g) =
(

n
g

)
(e−λt1 )g(1 − e−λt1 )n−g, g = 0, 1, 2, . . . , n.

Hence, the number of items Y1 that pass the test at
time t1 has a “binomial–hypergeometric” distribution with

0740-817X C© 2010 “IIE”

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
l
l
e
g
e
 
o
f
 
W
i
l
l
i
a
m
 
&
 
M
a
r
y
]
 
A
t
:
 
2
1
:
0
3
 
9
 
M
a
r
c
h
 
2
0
1
0



318 Leemis

unconditional probability mass function:

fY1 (y) =
n∑

g=0

fY1 | G1=g(y | G1 = g) fG1 (g)

=
n∑

g=0

(g
y

)( n−g
n1−y

)
( n

n1

) (
n
g

)
(e−λt1 )g(1 − e−λt1 )n−g,

y = 0, 1, 2, . . . , n1.

Example 1. Assume that: (i) the single sampling time
occurs at time t1 = 1; (ii) the population failure rate is
λ = − ln(2/3); (iii) there are n = 5 items in the population;
and (iv) there are n1 = 3 items sampled at time t1 = 1.

In this case, the conditional probability mass function of
Y1 is

fY1 | G1=g1 (y | G1 = g1) =
(g1

y

)(5−g1
3−y

)
(5

3

) , y = 0, 1, 2, 3,

for g1 = 0, 1, 2, 3, 4, 5. The probability mass function of G1
is

fG1 (g) =
(

5
g

)(
2
3

)g (
1
3

)5−g

, g = 0, 1, 2, 3, 4, 5.

The unconditional probability mass function of the number
of passing items Y1 is

fY1 (y) =
5∑

g=0

(g
y

)(5−g
3−y

)
(5

3

) (
5
g

) (
2
3

)g (
1
3

)5−g

, y = 0, 1, 2, 3,

which simplifies to

fY1 (y) =

⎧⎪⎨
⎪⎩

1/27 for y = 0,

2/9 for y = 1,

4/9 for y = 2,

8/27 for y = 3.

Now consider the effect of the sampling, testing, and
possible repairs that occur at time t1 on the population
survivor function at time t, which is denoted by S(t). Prior
to time t1, the survivor function is

S(t) = e−λt, 0 < t ≤ t1.

After the test that occurs at time t1, the population is a finite
mixture of the tested group of n1 items and the untested
group of n − n1 items, so the population survivor function
is

S(t) = n − n1

n
e−λt + n1

n
e−λ(t−t1), t > t1.

The (t − t1) term accounts for the renewal of the n1 items
that were tested at time t1. Those items that were found
to be failed are assumed to be repaired to a good-as-new
condition; those items that were found to be operating are
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Fig. 1. Survivor function for k = 1 testing time t1 = 1.

as good as new because of the memoryless property associ-
ated with the exponential distribution. The testing results
in a discontinuous increase in S(t) at the testing time t1.

Example 2. As before, let t1 = 1, λ = − ln(2/3), n = 5,
n1 = 3.

The survivor function is

S(t) =
⎧⎨
⎩

eln(2/3)t for 0 < t ≤ 1,

2
5

eln(2/3)t + 3
5

eln(2/3)(t−1) for t > 1,

or

S(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
2
3

)t

for 0 < t ≤ 1,(
2
5

)(
2
3

)t

+
(

3
5

)(
2
3

)t−1

for t > 1,

which is plotted in Fig. 1. The upward jump at time 1
accounts for the benefit (i.e., reliability growth) associated
with the testing that occurs at time t1 = 1.

2.2. Two sampling times

When there are n1 and n2 items sampled at times t1 and
t2, the survivor function is identical to the previous case
up to time t2, and is a mixture of the mixture for t values
exceeding t2:

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−λt for 0 < t ≤ t1,
n − n1

n
e−λt + n1

n
e−λ(t−t1) for t1 < t ≤ t2,

n−n2

n

(
n − n1

n
e−λt+n1

n
e−λ(t−t1)

)
for t > t2.

+ n2

n
e−λ(t−t2)
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Fig. 2. Survivor function for k = 2 testing times t1 = 1 and t2 = 2.

Example 3. Let t1 = 1, t2 = 2, n = 5, n1 = 3, n2 = 1, λ =
− ln(2/3). The survivor function

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

eln(2/3)t for 0 < t ≤ 1,

2
5

eln(2/3)t + 3
5

eln(2/3)(t−1) for 1 < t ≤ 2,

4
5

(
2
5

eln(2/3)t + 3
5

eln(2/3)(t−1)
)

for t > 2,

+1
5

eln(2/3)(t−2)

or

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2
3

)t

for 0 < t ≤ 1,

2
5

(
2
3

)t

+ 3
5

(
2
3

)t−1

for 1 < t ≤ 2,

4
5

((
2
5

)(
2
3

)t

+
(

3
5

)(
2
3

)t−1
)

for t > 2,

+1
5

(
2
3

)t−2

is plotted in Fig. 2. This result, and the results in Examples 1
and 2, have been verified by Monte Carlo simulation. The
upward jump at t1 = 1 accounts for the increase associated
with the testing of n1 = 3 items that occurs at time t1 = 1;
the smaller upward jump at t2 = 2 accounts for the increase
associated with the testing of just n2 = 1 item that occurs at
time t2 = 2. The jump in S(t) at t1 = 1 brings the survivor
function n1/n = 3/5 of the vertical distance to one; the
jump in S(t) at t2 = 2 brings the survivor function n2/n =
1/5 of the vertical distance to one.

2.3. The general case: k sampling times

The general case (any positive integer k) is a simple exten-
sion of the k = 2 case, although a recursive formula will be

used to define S(t) for compactness. The survivor function
S(t) assumes a piecewise form Si (t), for i = 1, 2, . . . , k + 1,
due to the testing that occurs at times t1, t2, . . . , tk. For time
values less than or equal to t1, the first testing time, the
survivor function is

S1(t) = e−λt, 0 < t ≤ t1.

The survivor function on each subsequent time interval is
defined recursively as

Si (t)=n − ni−1

n
× Si−1(t) + ni−1

n
× e−λ(t−ti−1), ti−1 < t ≤ ti ,

for i = 2, 3, . . . , k + 1, where tk+1 ≡ ∞. Even for moder-
ate values of k, calculation of the survivor function becomes
unwieldy since there are k terms in the kth piecewise seg-
ment. The following result, alluded to in the example with
k = 2 testing times, will be used to decrease the computa-
tional time required to calculate S(t).

Result 1. For the piecewise survivor function S(t) defined
above:

S(t+
i ) − S(ti )

1 − S(ti )
= ni

n
, i = 1, 2, . . . , k,

where t+
i is a time value that is an infinitesimal amount larger

than ti .

The proof of a generalization of this result (Result 2) is
given in the Appendix. The intuition associated with this
result is that the height of the discontinuity in the survivor
function at time ti is a recovery fraction ni/n toward one,
for i = 1, 2, . . . , k. In the extreme case of ni = n, the
survivor function resets to one, as it should, because the
entire population has been sampled at time ti .

2.4. Varying population size

Instances might arise when the population size does not
remain constant because items might be expended, dis-
carded or right censored. We again assume that each item
has an exponential(λ) time to failure, where the failure rate
λ > 0 is assumed to be a fixed constant determined from
a long history of testing. Just prior to the testing times
t1 < t2 < · · · < tk, there are r1, r2, . . . , rk items “at risk” and
n1, n2, . . . , nk of these items are selected at random and
without replacement at each sampling time from the finite
population and tested, where ni ≤ ri , i = 1, 2, . . . , k. The
testing and the return to the population are again instanta-
neous. The net effect of the testing is to perform a perfect
repair on any failed items. As before, for time values less
than or equal to t1, the survivor function is

S1(t) = e−λt, 0 < t ≤ t1.
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Fig. 3. Testing and right-censoring times.

The survivor function on each subsequent time interval is
defined recursively as

Si (t) = ri−1 − ni−1

ri−1
× Si−1(t) + ni−1

ri−1
× e−λ(t−ti−1),

ti−1 < t ≤ ti ,

for i = 2, 3, . . . , k + 1, where tk+1 ≡ ∞. An analogous re-
sult (proven in the Appendix) to the fixed population size
case is given below.

Result 2. For the piecewise survivor function S(t) defined
above:

S(t+
i ) − S(ti )

1 − S(ti )
= ni

ri
, i = 1, 2, . . . , k,

where t+
i is a time value that is an infinitesimal amount larger

than ti .

Example 4. Figure 3 shows the testing and right-censoring
history for a finite population of items, where time is mea-
sured in months. The × symbols correspond to testing times
and the o symbols correspond to right-censoring times. The
× symbols in Fig. 3 correspond to the k = 6 distinct testing
times. There are q = 11 distinct testing and right-censoring
times. The numbers given to the right of each line segment
are the multiplicities of each observation. If these multiplic-
ities are added, one can conclude that there are 25 unique
items in the population. The goal here is to estimate the
survivor function associated with this sequence of testing
times and right-censoring times for a fixed failure rate λ.
The right-censored values might correspond to expended

items, discarded items or items currently in use. Thus, right
censoring effectively corresponds to altering the population
size. For each item, t = 0 corresponds to the purchase date.

Since each item is renewed upon testing (either by passing
the test or by failing the test and being repaired), the data
set can be reduced to these 25 ordered values:

4.3, 26.6∗, 26.6∗, 26.6∗, 26.6∗, 27.2∗, 27.2∗, 27.2∗, 29.7,

29.7, 29.7, 29.7, 39.0, 41.5∗, 43.2, 43.2, 43.2, 45.8∗,
45.8∗, 56.8, 61.7∗, 61.7∗, 62.6, 62.6, 62.6,

where an unmarked data value denotes a time to testing
and the * superscript denotes a time to right censoring.

Let xi be the testing or right-censoring time, δi = 0 if the
i th data value is right censored, δi = 1 if the i th data value
is a testing time, and mi be the multiplicity of the number
of distinct (xi , δi ) pairs. By convention, the primary sorting
criterion is in ascending values of xi (chronological) with
δi used as a secondary sorting criterion (censored obser-
vations placed first for tied time values). This convention
is necessary for the algorithm (which follows) to process
the data properly. In the case of a tied censoring time and
testing time, the censored items are included in the number
at risk just prior to the testing time. Using this notation,
the number at risk at time 0 is

∑q
i=1 mi because each test-

ing time corresponds to a renewal. The (xi , δi , mi ) triplets
for the data set in this example are given in Table 1, for
i = 1, 2, . . . , q.

The algorithm given below is used to plot the survivor
function S(t) associated with a data set similar to the
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Table 1. Test data (k = 6, q = 11)

i xi δi mi

1 4.3 1 1
2 26.6 0 4
3 27.2 0 3
4 29.7 1 4
5 39.0 1 1
6 41.5 0 1
7 43.2 1 3
8 45.8 0 2
9 56.8 1 1

10 61.7 0 2
11 62.6 1 3

one given in the previous example. Indentation is used to
denote nesting. The algorithm assumes the existence of two
generic high-level plotting functions: Plot, for plotting
a curve, and PlotPoint, for plotting a point. A point is
plotted rather than the conventional hash mark associated
with the Kaplan–Meier product–limit estimate (Kaplan
and Meier, 1958) so as not to obscure the discontinuities
in S(t). By convention, the survivor function is not plotted
after the last observed failure time. The assumption that
m0 = 0 is made in order to make the first pass through
the loop correctly. The algorithm relies on Result 2 for
the adjustment of the survivor function associated with a
testing time.

Input: The failure rate λ, the number of data triplets q, and
the (xi , δi , mi ) triplets, for i = 1, 2, . . . , q.

Algorithm:
m0 ← 0 initialize m0 for first pass through loop
t0 ← 0 initialize time
S ← 1 initialize S(0)
r ← ∑q

i=1 mi initialize the number at risk at time 0
for i from 1 to q loop through data triplets

Plot(Se−λ(t−t0), t0 < t ≤ xi ) plot survivor function segment
S ← Se−λ(xi −t0) update S(t)
if (δi = 0) if right censored

PlotPoint(xi , S) plot a point at censoring time
else else test time (δi = 1)

if (xi = xi−1) simultaneous testing and right censoring

S ← S + mi

r + mi−1
(1 − S) update S(t)

else distinct testing time

S ← S + mi

r
(1 − S) update S(t)

t0 ← xi update time
r ← r − mi decrement the number at risk

Example 5. When this algorithm is applied to the sample
data from Table 1 with λ = 0.0016, the result is the plot in
Fig. 4 showing the survivor function S(t) on 0 < t ≤ 62.6.

0 10 20 30 40 50 60

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.96 ••

•

•

•

t

S(t)

Fig. 4. Survivor function for k = 6 distinct testing times.

The survivor function consists of k = 6 piecewise segments.
Although the survivor function is cut off after time 62.6,
the survivor function would reset to one due to the fact
that all three of the surviving items were tested at time 62.6.
Survivor functions of this type will characteristically have
smaller jumps in S(t) for smaller values of t (e.g., t = 4.3 in
Fig. 4) since there are more items at risk.

The data set used in the previous example can be ap-
proached from a second perspective. This new perspective
allows us to consider the estimation of the finite population
reliability over time.

Example 6. Figure 5 shows the testing and right-censoring
history for a finite population of 12 items. There are 25 line
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Fig. 5. Testing history for 12 repairable items.

segments shown in Fig. 5, 12 of which correspond to a right-
censoring time and 13 of which correspond to a testing
time. This data set, although set in a repairable context,
produces the same data as that in Table 1 and the same
survivor function as in Fig. 4.

3. Case study

We conclude with an analysis of the data set of testing and
right-censoring times (in months) that first prompted the
development of the model presented here. A long history of
data collection indicates an exponential time to failure with
λ = 0.0015 for a population of items. The data set consists
of q = 1094 records with

∑q
i=1 mi = 2174 distinct events

(right censorings and testings). In addition:∑q
i=1 δi mi∑q

i=1 mi
= 0.226,

which indicates that 22.6% of the events were associated
with testings; the remainder were right censorings.

Figure 6 is a plot of two survivor functions—the lower
survivor function S(t) = e−λt associated with no testing of
the items in the population and the upper survivor function
computed by the algorithm associated with the reliability
growth accrued with the testing. The upper survivor func-
tion cuts off at the largest observed data value, 195.8, where
an increase in reliability of about 0.06 has accrued due to
the testing and subsequent repair of failed items in the
population. The periodic testing has resulted in a signif-
icant increase in the stockpile (i.e., the finite population)
reliability. The survivor function associated with the peri-
odic testing exhibits increasing variability for larger values
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Fig. 6. Survivor function with and without testing.

of t due to the fact that the sample size is smaller in the
right-hand tail of the distribution.

A second question that arose concerning this stockpile
of items was to determine the frequency and fraction of
items tested in order to achieve a stockpile reliability that
exceeds a prescribed threshold p, where 0 < p < 1. As-
sume that some fraction q of the stockpile will be sampled
periodically, where 0 < q < 1. Again assuming that λ is a
known fixed constant, a stockpile of new items does not
need to be tested for the first t0 = −(1/λ) ln p time units
(found by solving p = e−λt0 for t0). At time t0, some frac-
tion q of the population is sampled (and failed items are
immediately repaired as before), which instantaneously in-
creases the stockpile reliability to p + q(1 − p). The time
of the next required test (to keep the stockpile reliability at
or above p) can be found by solving:

[p + q(1 − p)]e−λ(t−t0) = p,

for t. This yields a time between tests c = t − t0:

c = −1
λ

ln
(

p
p + q(1 − p)

)
.

The pattern of testing a fraction q of the population every
c time units continues indefinitely and results in a stockpile
reliability that exceeds p. In some situations, the frequency
of sampling may be dictated by the problem setting. This
equation can be solved for the fraction of items sampled q
yielding:

q = p(eλc − 1)
1 − p

.

Both cases are illustrated numerically in the next paragraph.
Returning to the stockpile of items with exponential

times to failure with a known failure rate λ = 0.0015 fail-
ures per month, we consider the calculation of c and q
when the other parameter is specified for a stockpile reli-
ability threshold p = 0.85. First, assume that there is the
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Fig. 7. Stockpile reliability at time t for λ = 0.015, p = 0.85 and
q = 0.05.

ability to sample only 5% of the items at a time (q = 0.05);
the first sampling of a group of new items should occur at

t0 = −1
λ

ln p ∼= 109

months, then every

c = −1
λ

ln
(

p
p + q(1 − p)

)
∼= 5.9

months thereafter. The survivor function associated with
these parameters is graphed on 0 < t < 200 in Fig. 7, where
the stockpile reliability always remains above p = 0.85. Sec-
ond, consider the occasion when the sampling time is con-
strained. Assume again a failure rate λ = 0.0015 failures
per month and a reliability threshold p = 0.85. If sampling
can only occur annually (c = 12), then a larger proportion
q of the population must be tested in order to maintain the

0 5 10 15

0.0

0.1

0.2

0.3

0.4

•

• p = 0.85

p = 0.90

p = 0.95p = 0.98

c

q

Fig. 8. Fraction tested q versus time between tests c for λ = 0.015.

reliability threshold:

q = p
(
eλc − 1

)
1 − p

∼= 0.10.

Hence, 10% of the population must be tested annually to
maintain a long-term stockpile reliability that exceeds 0.85.
Figure 8 gives a graph showing level surfaces of q and c
for several values of p associated with a failure rate of
λ = 0.0015 failures per month. The points considered ear-
lier in this paragraph are plotted on the p = 0.85 curve.
The curves match the intuition associated with the process;
in order to achieve a high reliability threshold, one must
sample a large fraction of the population frequently.

4. Conclusions

The model and associated algorithm presented here yield
a survivor function that reflects the reliability growth over
time associated with periodic testing and repair for a finite
population of statistically identical repairable items having
exponential failure times with known failure rate λ. If a
significant fraction of the population is tested periodically
for failure, this procedure can be an effective means for
keeping the stockpile reliability at a prescribed threshold.
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Appendix

This Appendix contains a proof of the result concerning the
heights of the discontinuities in the survivor function for the
case of a finite population of varying size with associated
periodic testing.

Result. Let the piecewise survivor function S(t) be defined by

S1(t) = e−λt, 0 < t ≤ t1,

and

Si (t) = ri−1 − ni−1

ri−1
× Si−1(t) + ni−1

ri−1
× e−λ(t−ti−1),

ti−1 < t ≤ ti ,
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for i = 2, 3, . . . , k + 1, where tk+1 ≡ ∞. Just prior to the
testing times t1 < t2 < · · · < tk when n1, n2, . . . , nk items are
tested, there are r1, r2, . . . , rk items at risk (ni ≤ ri for i =
1, 2, . . . , k). Then

S(t+
i ) − S(ti )

1 − S(ti )
= ni

ri
, i = 1, 2, . . . , k,

where t+
i is a time value an infinitesimal amount larger than

ti .

Proof. Let t+
i = ti + �. The quantity of interest is

S(t+
i ) − S(ti )

1 − S(ti )
= lim

�→0

Si+1(ti + �) − Si (ti )
1 − Si (ti )

= lim
�→0

((ri−ni )/ri ) · Si (ti + �)+(ni/ri )e−λ(ti +�−ti ) − Si (ti )
1 − Si (ti )

= lim
�→0

(ni/ri )
[
e−λ� − Si (ti + �)

] + Si (ti + �) − Si (ti )
1 − Si (ti )

= (ni/ri ) [1 − Si (ti )] + Si (ti ) − Si (ti )
1 − Si (ti )

= ni

ri
,

for i = 1, 2, . . . , k, which proves the result. �
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