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Algorithms to Calculate the Distribution of the Longest
Path Length of a Stochastic Activity Network with
Continuous Activity Durations

Lawrence M. Leemis, Matthew J. Duggan, John H. Drew, Jeffrey A. Mallozzi, Kerry W. Connell
Department of Mathematics, The College of William & Mary, Williamsburg, VA 23187

We develop algorithms to calculate the probability distri-
bution of the longest path of an arbitrary stochastic activ-
ity network with continuous activity durations by three
techniques: recursive Monte Carlo simulation, series-
parallel reduction, and conditioning. Examples illustrate
the use of the three techniques. © 2006 Wiley Periodicals,
Inc. NETWORKS, Vol. 48(3), 143–165 2006
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1. INTRODUCTION

Activity networks are used to plan projects by showing
precedence relationships between the various activities that
constitute such projects [1]. An activity network is a special
case of a directed graph in which the nodes (or vertices) repre-
sent points in time and the arcs (or edges) represent activities
with time values modeling activity durations. Figure 1 showsF1

an example of a stochastic activity network, where the pos-
itive random variable Yij denotes the time to complete the
activity associated with the arc from node i to node j. The
Yijs are assumed to be mutually independent. Common-cause
delays, for example, rain delays on an outdoor project, are not
considered here. Activity start times are constrained in that no
activity emanating from a given node can start until all activ-
ities that enter that node have been completed. We consider
three techniques for calculating the distribution of the time
to complete an activity network: simulation, series-parallel
reduction, and conditioning. In some cases we are also able
to calculate the probability that a path through the network
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has the greatest length, and the probability that an arc is on
the path of greatest length.

The notation used to describe a stochastic activity network
is introduced in Section 2. A recursive Monte Carlo sim-
ulation algorithm for estimating measures of performance
associated with a stochastic activity network is described
in Section 3. Two algorithms for finding exact values of
these performance measures are developed and illustrated in
Section 4; one for series-parallel networks, and one for more
general networks. The algorithm for more general networks
requires two additional restrictions on the network: each node
has at most two incoming arcs, and each arc duration has
a probability density function that is described by a single
function on (0, ∞). The final section outlines conclusions
and further work.

2. NOTATION AND ASSUMPTIONS

Activity networks have n nodes and m arcs, with a single
source node (labeled node 1), a single terminal node (labeled
node n), and no loops. Nodes are labeled 1, 2, . . . , n in topo-
logical order [7] so that if there is an arc aij from node i to
node j, then i is less than j. Thus, the nodes along each path
occur in ascending order.

For each node j, the “backward” set B(j) is the set of all
nodes that are immediately before node j on some path, that
is, B(j) is the set of all nodes i for which there is an arc from
i to j. Similarly, for each node j, the “forward” set A(j) is
the set of all nodes that are immediately after node j on some
path, that is, A(j) is the set of all nodes k for which there is
an arc from j to k.

For each arc aij, there is a continuous random activity
duration Yij with positive support. The distribution of Yij

is determined by its cumulative distribution function (CDF)
FYij (t) or its probability density function (PDF) fYij (t). For
each node j there is a random time value Tj, which is the time
of completion of all activities entering node j. The quantity
Tn is therefore the time of completion of the entire network.
Shier ([12], pp. 122–123) gives an example of an activity
network with discrete activity durations.
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FIG. 1. A six-node, nine-arc stochastic activity network.

For each network, there will typically be several paths
leading from node 1 to node n. Let M be the set of all paths,
with the paths labeled π1, π2, . . . , πr , where r = |M| is the
number of paths. A path may be viewed as an ordered set of
arcs leading in succession from node 1 to node n. The length
of path πk , denoted Lk , is the sum of all Yij corresponding to
the arcs aij ∈ πk .

For each realization of a stochastic network, the critical
path πc is the path with the greatest length, Lc = max{L1,
L2, . . . , Lr}. The length of the critical path determines the time
to complete the entire network. For a stochastic network, a
path in M is the critical path with some probability p(πk) =
Pr(Lk = Lc), k = 1, 2, . . . , r. Some arcs may be along more
than one path. The probability that arc aij is along the critical
path, also called the arc’s criticality, denoted by ρij, is the
sum of all p(πk) where aij ∈ πk . The criticality of arc aij can
be calculated by

ρij =
r∑

k=1

p(πk)δ
k
ij,

where δk
ij is 1 if aij ∈ πk and 0 otherwise.

2.1. Matrix Representation of the Network

The first step in building a model is defining a mathemat-
ical representation of a network. Matrices are well suited for
this task because (a) each node and arc in the network can
be designated by using the rows and columns of a matrix,
and (b) matrices are easily instantiated in most computer lan-
guages. A node-arc incidence matrix was chosen due to its
suitability for the algorithms developed here.

The node-arc incidence matrix associated with a network
is an n × m matrix N , where each row represents a node and
each column represents an arc. Let

N[i, k] =

⎧⎪⎨⎪⎩
1 if arc k leaves node i

−1 if arc k enters node i

0 otherwise.

Using the arc indexing given in Table 1 (which follows),T1

the node-arc incidence matrix that describes the network

in Figure 1 is

N =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 0 0 0 0 0 0

−1 0 0 1 1 0 0 0 0
0 −1 0 0 −1 1 1 0 0
0 0 −1 0 0 0 −1 0 1
0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The only limitation of this representation is that it cannot
show an arc that leaves and enters the same node. This ability
will not be necessary, because feedback is not allowed by our
definition of a stochastic activity network.

3. SIMULATION

We first consider the development of a simulation algo-
rithm for estimating the distribution of the time to complete
the network, the probability that a path is the critical path,
and the criticality of an arc. Point and interval estimators for
these measures of performance are discussed prior to pre-
senting the algorithm. The simulation algorithm is presented
to highlight the use of recursion and to check the subsequent
analytic algorithms.

3.1. Point Estimators

If T1 is assumed to be 0 (without loss of generality), then

Tj = max
i∈B(j)

{Ti + Yij},

for j = 2, 3, . . . , n, and Tn is the time to complete the entire
network. The point estimator for E[Tj] is the sample mean
of the Tjs. A Tj value is generated via the expression above
in the Monte Carlo simulation algorithm to follow. The point
estimator for the probability that path πk is the critical path
p(πk) is the fraction of the networks generated that have πk

as the critical path, k = 1, 2, . . . , r. The criticality ρij of some
arc aij is estimated by

ρ̂ij =
r∑

k=1

p̂(πk)δ
k
ij,

where δk
ij is 1 if aij ∈ πk and 0 otherwise.

TABLE 1. Arc-duration distributions for the network shown in Figure 1.

Arc index Arc Distribution of Yij

1 a12 Triangular(1, 3, 5)
2 a13 Triangular(3, 6, 9)
3 a14 Triangular(10, 13, 19)
4 a25 Triangular(3, 9, 12)
5 a23 Triangular(1, 3, 8)
6 a36 Triangular(8, 9, 16)
7 a34 Triangular(4, 7, 13)
8 a56 Triangular(3, 6, 9)
9 a46 Triangular(1, 3, 8)

144 NETWORKS—2006—DOI 10.1002/net



J_ID: Z8U Customer A_ID: 1241 Cadmus Art: NET0483 — 2006/7/20 — page 145 — #3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Interval Estimators

An approximate (1 − α) · 100% confidence interval for
E[Tj] is

t̄j − tn∗−1,α/2
sj√
n∗ < E[Tj] < t̄j + tn∗−1,α/2

sj√
n∗ ,

for any node j = 2, 3, . . . , n, where n∗ is the number of replica-
tions of the simulation, t̄j is the sample mean of the simulated
Tjs, sj is the sample standard deviation of the simulated Tjs,
and tn∗−1,α/2 is the 1 − α/2 fractile of a t distribution with
n∗ − 1 degrees of freedom. It will often be the case that the
distribution of Tj will be closer to Gaussian (via the Central
Limit Theorem) as one moves from the source node to the
terminal node in a stochastic activity network, resulting in
improved actual coverage for this confidence interval. The
approximately bell-shaped distribution of Tj associated with
a node j that is close to the terminal node of the network will be
more pronounced for (a) large n, (b) networks that have more
series-type arrangements than parallel-type arrangements, so
that sums dominate maximums (see Section 4.1), and (c) Yij

with bell-shaped PDFs. In the extreme case of an entirely
series network with independent and identically distributed
(IID) stochastic activity durations, for example, the Central
Limit Theorem can be applied directly to assure approximate
normality because Tn is a sum of IID random variables. In the

extreme case of an entirely parallel network with IID stochas-
tic activity durations, a skewed distribution for the network
completion time occurs because Tn is a maximum of IID
random variables.

To determine an approximate (1 − α) · 100% confidence
interval for the probability estimates of p(πk) and ρij, denoted
generically below by p, we use [8]

1

1 + n∗ − y + 1
yF2y,2(n∗−y+1),1−α/2

< p <
1

1 + n∗ − y
(y + 1)F2(y+1),2(n∗−y),α/2

,

where y is the number of occurrences of some event out of
n∗ independent replications and Fa,b,c is the 1 − c fractile of
an F distribution with a and b degrees of freedom.

3.3. Algorithm

The recursive algorithm below generates a single time to
completion Tj for some node j given that the network is repre-
sented by the node-arc incidence matrix N and the stochastic
activity durations Yij associated with arcs aij are generated
prior to the call to procedure T . In most cases, this algorithm
is called with argument n so that a realization of the time
to complete the entire network Tn is generated. Loops and
conditions are indicated by indentation. An implementation
of this algorithm in C is available from the first author.

Parameters: One realization of m activity durations Yij, n × m node-arc incidence matrix N , n-array
tlong (with entries initialized to −1), which will contain the Tj values.

Procedure name: T

Argument: node j

int i index for the rows of N
int k ← 1 index for the columns of N
int l ← 0 index for the predecessors to node j
float t completion time of arc aij

float tmax ← 0.0 longest time of all possible paths to node j
while (l < |B(j)|) loop through predecessor nodes to node j

if (N[j, k] = −1) if column k of N corresponds to an arc entering node j
i ← 1 begin search for predecessor node
while (N[i, k] �= 1) while i does not correspond to the predecessor index

i ← i + 1 increment i
if (tlong[i] �= −1) if tlong to predecessor node is already stored

t ← tlong[i] + Yij add current arc duration to longest duration of predecessor
else

t ← Ti + Yij recursive call: t is the current completion time to node j
if (t > tmax) if t exceeds previous maximum completion time to node j

tmax ← t set tmax to the longest completion time
l ← l + 1 increment predecessor index

k ← k + 1 increment column index
tlong[j] ← tmax store longest time to node j
return (tlong[j]) return completion time Tj

Because the use of straight recursion (similar to Hagstrom
[6]) can cause redundant calls to nodes whose longest path
has already been determined, our algorithm stores the longest

time to each node once it has been calculated. After a prede-
cessor node has been identified, if the longest time to that
node has already been calculated and stored, it adds the

NETWORKS—2006—DOI 10.1002/net 145



J_ID: Z8U Customer A_ID: 1241 Cadmus Art: NET0483 — 2006/7/20 — page 146 — #4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2. Paths πk for the network shown in Figure 1.

k Node sequence πk

1 1 → 3 → 6 {a13, a36}
2 1 → 2 → 3 → 6 {a12, a23, a36}
3 1 → 2 → 5 → 6 {a12, a25, a56}
4 1 → 4 → 6 {a14, a46}
5 1 → 3 → 4 → 6 {a13, a34, a46}
6 1 → 2 → 3 → 4 → 6 {a12, a23, a34, a46}

current duration to the predecessor’s time and calculates the
maximum time of all paths entering the current node. The
modified algorithm given above using dynamic programming
performed roughly 11% faster than straight recursion for the
simple network example that follows. For larger networks,
the speed increase should be considerably greater.

3.4. Example

The simulation approach was tested on an activity network
described by Pritsker ([11], pp. 216–221), shown in Figure 1.
The distribution of the duration of each arc aij is given in
Table 1. The three parameters of the triangular distribution
are the minimum, mode, and maximum. The triangular distri-
bution is often used for stochastic activity networks because
the three parameters model the optimistic, most likely, and
pessimistic times to complete an activity. An algorithm for
parameter estimation using maximum likelihood when data
is available can be found in van Dorp and Kotz [13]. The
r = 6 paths through the network are given in Table 2.T2

The simulation was run for one million replications of
the network using the multiplicative linear congruential gen-
erator xi+1 = 48271xi mod (231 − 1) described in [10] with
initial seed 8641. When the algorithm is called to generate
one million T6s, the order of the recursive calls associated
with the node-arc incidence matrix given above, following
the initial call to T6, is T3, T1, T2, T5, T4. For each replication,
the time to completion Tj was calculated for each node in the
network according to the algorithm in Section 3.3. Some sam-
ple statistics for Tj are given in Table 3, where the columnsT3

show the the sample means of the times to completion, the
sample standard deviations of the times to completion, and
the 95% confidence interval half-widths. Table 4 shows pointT4

estimates and 95% confidence interval half-widths for p(πk).
The point estimates total 1.001, rather than 1, due to roundoff.

TABLE 3. Sample statistics for Tj based on one million replications of the
network shown in Figure 1 with arc durations from Table 1, where ĥ is the
estimated 95% confidence interval half-width.

j Ê[Tj]
√

V̂ [Tj] ĥ

1 0.000 — —
2 3.001 0.817 0.002
3 7.419 1.388 0.003
4 16.037 1.971 0.004
5 10.997 2.041 0.004
6 20.754 2.087 0.004

TABLE 4. Estimated critical path probability p̂(πk) for path πk and
estimated 95% confidence interval half-width ĥ for one million replications
for the network shown in Figure 1 with arc durations from Table 1.

k p̂(πk) ĥ

1 0.074 0.0005
2 0.170 0.0007
3 0.129 0.0007
4 0.198 0.0008
5 0.130 0.0007
6 0.300 0.0009

Table 5 shows point estimates and 95% confidence interval T5

half-widths for ρij. Table 5 also shows the paths that contain
each arc aij, using the path indices in Table 2.

Figure 2 shows the empirical CDF of the time to complete F2

the network for the one million replications. The random vari-
able T6 has support on 11 < t6 < 34, where the lower limit
corresponds to minimum activity durations on the paths π1

and π4 and the upper limit corresponds to maximum activ-
ity durations on path π6. Due to memory limitations, the
empirical CDF was drawn by counting the number of net-
work completion times that fell in 23,000 equal-width cells
on 11 < t6 < 34, that is, (11.000, 11.001), [11.001, 11.002),
. . . , [33.999, 34.000).

4. ANALYTICAL APPROACHES

Although straightforward to apply, the simulation
approach has a distinct drawback. Each additional digit of
accuracy in the estimate of E[Tn], for example, requires
approximately a 100-fold increase in replications due to the
square root in the denominator of the confidence interval for-
mulas for E[Tn]. The next two subsections outline efforts
to derive the various performance measures analytically,
eliminating the need for simulation.

4.1. Series-Parallel Networks

A series-parallel activity network is a special case of an
activity network that can be simplified by a sequence of
reductions to a simple network consisting of one arc and

TABLE 5. Estimated criticality ρ̂ij for one million replications and 95%
confidence interval half-width ĥ for the network shown in Figure 1 with arc
durations from Table 1.

Arc Paths ρ̂ij ĥ

a12 π2, π3, π6 0.600 0.0010
a13 π1, π5 0.203 0.0008
a14 π4 0.198 0.0008
a25 π3 0.129 0.0007
a23 π2, π6 0.469 0.0010
a36 π1, π2 0.244 0.0008
a34 π5, π6 0.429 0.0010
a56 π3 0.129 0.0007
a46 π4, π5, π6 0.627 0.0010
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FIG. 2. Empirical CDF of T6 for one million replications for the network
shown in Figure 1 with arc durations from Table 1.

two nodes. Reductions consist of taking two arcs, either in
series or in parallel, and replacing them with a single arc
that has a random duration whose distribution is calculated
in the algorithm. Once the network is completely reduced, the
distribution of the single remaining arc is the distribution of
the time Tn to complete the original network. The recursive
algorithm then reconstructs the network to determine the crit-
ical path probabilities and arc criticalities. Parallel and series
reductions and reconstructions are described below. Our algo-
rithm will use these operations to simplify a series-parallel
network, and then, by determining the distribution of Tn and
reconstructing the network, determine the critical path prob-
abilities and the criticalities. The earliest work on the exact
analysis of series-parallel networks is Martin [9].

4.1.1. Parallel Reduction. The algorithm described in
Section 4.1.5 is capable of processing two arcs in parallel,
as illustrated in Figure 3. A parallel reduction is the processF3

of combining these two arcs into a single arc. Let Xij and Yij

denote the random arc durations. Without loss of generality,
if Ti = 0, then Tj = max{Xij, Yij}. So

FTj (t) = Pr[Tj ≤ t] = Pr[Xij ≤ t and Yij ≤ t] = FXij (t)FYij (t)

on the support of Tj. The portion of the algorithm given
in Section 4.1.5 prior to the second recursive call uses this
formula to reduce two arcs in parallel to a single arc.

FIG. 3. Two arcs in parallel.

4.1.2. Parallel Reconstruction. Consider the single arc aij

resulting from a parallel reduction. If the probability ρij that
this arc is on the critical path is known, then this probability
can be allocated to the two original parallel arcs x and y based
on each arc’s activity duration CDF:

ρx = Pr[Xij > Yij] · ρij = Pr[Xij − Yij > 0] · ρij

and
ρy = ρij − ρx.

This calculation involves determining the distribution of the
difference between the two random variables. The portion of
the algorithm given in Section 4.1.5 after the second recursive
call calculates the distribution of Xij −Yij and the probability
that this random variable is positive.

4.1.3. Series Reduction. The algorithm described in this
subsection finds the CDF of the time to complete two arcs
in series, as illustrated in Figure 4. Let Yij and Yjk denote F4

the durations of the two arcs with CDFs FYij (t) and FYjk (t).
Without loss of generality, if Ti = 0, then Tk = Yij +Yjk . The
CDF of Tk is ([2], p. 215)

FTk (t) = Pr[Tk ≤ t] =
∫ t

0
FYij (t − yjk)fYjk (yjk) dyjk .

4.1.4. Series Reconstruction. Consider the single arc aik

resulting from a series reduction. For any two arcs aij and ajk

that have been reduced into a single arc aik , ρij = ρjk = ρik .
If two arcs in series are along the critical path, then so is the
respective arc resulting from the reduction.

4.1.5. Algorithm. Two arcs in series are detected by
searching the rows of the node-arc incidence matrix N for
the first row containing exactly two nonzero elements whose
sum is 0. Such a row represents a single arc entering and a
single arc exiting the given node. To reduce a series of two
arcs to a single arc, the algorithm

(1) zeros out the row of N corresponding to the deleted
middle node,

(2) links the first node of the series directly to the last node
of the series, and

(3) computes the distribution of the sum of the durations of
the two arcs.

Two arcs in parallel are identified by two identical nonzero
columns of N , which represent two arcs linking the same two
nodes. The algorithm iterates through each column and if
parallel arcs are found, the algorithm

(1) computes the distribution of the maximum of the two arc
durations, and

(2) zeros out the column of N corresponding to the elimi-
nated arc.

FIG. 4. Two arcs in series.
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The following recursive algorithm reduces a series-
parallel network, where N is the node-arc incidence matrix of
the network. The PDFs for the activity durations of each arc
are stored in a vector f (indexed in the same way that the arcs
are indexed to correspond to the columns of the matrix N),
and the criticalities of each arc are stored in a vector C. This
algorithm recursively performs one arc reduction at a time,
arbitrarily giving priority to series reductions over parallel

reductions, until the network consists of just one arc. At this
point, the value of C for that one arc is set to one and then the
network is reconstructed on the return calls in reverse order,
determining values of C for each pair of series or parallel arcs
based on the value of C for the reduced arc. The algorithm
returns the distribution of the time to complete the network
and the final value of C, which contains ρij for each arc aij in
the network.

Parameters: n × m node-arc incidence matrix N , PDFs of m activity durations Yij stored in the vector
f , number of nodes n, number of arcs m, number of arcs to be reduced arcsremaining (initialized to m)

Procedure name: GetCriticalities

local C, i, j, rowsum, absrowsum, negidx, posidx, c, d, l, k, empty, numdifference
if (arcsremaining = 1) if network reduced to one arc

for (i ← 1; i ≤ n; i ← i + 1) loop through rows of N
for (k ← 1; k ≤ m; k ← k + 1) loop through columns of N

if (N[i, k] �= 0) if true then arc k is the last existing arc
C[k] ← 1 set criticality to 1
print(CDF(f [k])) print CDF of project completion time
return(C) return criticalities

for (i ← 1; i ≤ n; i ← i + 1) begin series reduction
rowsum ← 0 initialize rowsum
absrowsum ← 0 initialize sum of absolute values in a row
for (k ← 1; k ≤ m; k ← k + 1) loop through columns of N

rowsum ← rowsum + N[i, k] sum values in the ith row of N
absrowsum ← absrowsum + abs(N[i, k]) sum absolute values of ith row of N
if (N[i, k] = −1) if arc k enters node i

negidx ← k store the index of arc k
if (N[i, k] = 1) if arc k leaves from node i

posidx ← k store the index of arc k
if (rowsum = 0 and absrowsum = 2) if only one arc enters and leaves ith node

c ← f [negidx] save PDF of first arc for reconstruction
d ← f [posidx] save PDF of second arc for reconstruction
f [negidx] ← Convolution(c, d) combine the arcs into a single arc
for (j ← 1; j ≤ n; j ← j + 1) loop through rows of N

N[j, negidx] ← N[j, negidx] + N[j, posidx] change node that arc enters
N[j, posidx] ← 0 delete middle node

arcsremaining ← arcsremaining − 1 decrement number of arcs in network
C ← GetCriticalities(N , f , n, m, arcsremaining) recursive call with new network
for (j ← 1; j ≤ n; j ← j + 1) begin series reconstruction

if (N[j, negidx] = −1) if arc negidx enters node j
N[j, negidx] ← 0 delete arc made previously by reduction
N[j, posidx] ← −1 delete arc made previously by reduction

N[i, negidx] ← −1 reconstruct node deleted previously by reduction
N[i, posidx] ← 1 reconstruct node deleted previously by reduction
f [negidx] ← c reconstruct arc duration
f [posidx] ← d reconstruct arc duration
C[posidx] ← C[negidx] reconstruct arc criticality
return(C) return criticalities

for (l ← 1; l ≤ m; l ← l + 1) begin parallel reduction
for (k ← l + 1; k ≤ m; k ← k + 1) loop through columns of N

empty ← 0 initialize empty
numdifference ← 0 initialize numdifference
for (i ← 1; i ≤ n; i ← i + 1) loop through rows of N

if (N[i, l] �= N[i, k]) if column difference found
numdifference ← 1 set boolean variable numdifference

148 NETWORKS—2006—DOI 10.1002/net
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if (N[i, l] �= 0) if a column is not empty
empty ← 1 set boolean variable empty

if (numdifference = 0 and empty �= 0) if columns l and k are identical and nonzero
c ← f [l] save PDF of arc l for reconstruction
d ← f [k] save PDF of arc k for reconstruction
f [l] ← Maximum(c, d) store PDF of the maximum
for (i ← 1; i ≤ n; i ← i + 1) loop through rows of N

N[i, k] ← 0 zero out column of removed arc
arcsremaining ← arcsremaining − 1 decrement number of arcs in network
C ← GetCriticalities(N , f , n, m, arcsremaining) recursive call with new network
for (i ← 1; i ≤ n; i ← i + 1) begin parallel reconstruction

N[i, k] ← N[i, l] reinsert arc k by copying column l
f [l] ← c rebuild distribution
f [k] ← d rebuild distribution
C[k] ← CDF(Difference(f [l], f [k]), 0) · C[l] calculate Pr[Xil − Yil > 0] · ρil

C[l] ← C[l] − C[k] calculate ρy = ρil − ρx

return(C) return criticalities
return(C) return criticalities

This algorithm requires symbolic processing capability to
calculate the distribution of the maximum of two independent
random variables for parallel reduction and the distribution
of the sum of two independent random variables for series
reduction. The Maple-based APPL language [5] has proce-
dures Maximum and Convolution that can be used for
these operations. The algorithm has been implemented in
APPL and is available from the first author.

4.1.6. Example. Figure 5 shows an example of a series-F5

parallel network from Elmaghraby ([3], p. 261). The net-
work can be reduced and reconstructed as illustrated in
Figure 6.F6

According to the algorithm in Section 4.1.5, if the duration
of each arc Yij is an exponential(b) random variable, where
1/b is the mean, then the CDF of the time to complete the
network (T5) is

FT5(t) = 1 − 3bte−bt − b2t2

2
e−bt − 3e−2bt + 5b2t2

2
e−2bt

+ b3t3

2
e−2bt + 2e−3bt + 3bte−3bt + b2t2e−3bt

for t > 0. This CDF is plotted in Figure 7 for b = 2.F7

FIG. 5. Series-parallel network from Elmaghraby.

FIG. 6. Reduction and reconstruction of the series-parallel network shown
in Figure 5.

FIG. 7. CDF of T5 for the series-parallel network shown in Figure 5 with
b = 2.
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The r = 3 paths in the network are listed in Table 6,T6
along with the critical path probabilities. Table 7 contains theT7
criticalities for the m = 6 arcs when b = 2. (Fisher, Saisi, and
Goldstein [4] determine criticalities when activity durations
are IID gamma random variables.)

This example has a small number of nodes and arcs
along with simple distributions for the arc durations so as to

make the final CDF for the project duration simple. If, how-
ever, the arc durations are each independent Triangular(0,
1, 2) random variables, then the problem of determining the
distribution of T5 becomes much more tedious. The arc criti-
calities for this example with Triangular(0, 1, 2) arc durations
are shown in Table 8. The CDF of the project completion T8

time is

FT5(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ 0
1

64512 t12 0 < t ≤ 1

− 1
21504 t12 + 5

4032 t11 − 1357
120960 t10 + 1553

30240 t9 − 2431
17280 t8 + 15389

60480 t7

− 5531
17280 t6 + 1237

4320 t5 − 44039
241920 t4 + 607

7560 t3 − 13
560 t2 + 59

15120 t − 17
60480 1 < t ≤ 2

− 5
21504 t12 + 5

672 t11 − 1813
17280 t10 + 8693

10080 t9 − 556873
120960 t8 + 1018271

60480 t7

− 749309
17280 t6 + 89059

1120 t5 − 8332907
80640 t4 + 156139

1680 t3 − 414913
7560 t2 + 57587

3024 t − 176249
60480 2 < t ≤ 3

− 1
21504 t12 + 25

12096 t11 − 499
12096 t10 + 703

1440 t9 − 556873
120960 t8 + 1018271

60480 t7

− 672253
8640 t6 + 699347

3360 t5 − 2587009
6720 t4 + 197879

420 t3 − 376261
1080 t2 + 94931

756 t − 68353
7560 3 < t ≤ 4

1
144 t6 − 1

5 t5 + 19
8 t4 − 89

6 t3 + 409
8 t2 − 1829

20 t + 7969
120 4 < t ≤ 5

− 1
720 t6 + 1

20 t5 − 3
4 t4 + 6 t3 − 27 t2 + 324

5 t − 319
5 5 < t ≤ 6

1 t > 6.

4.2. Nonseries-Parallel Networks

Now consider the case of a nonseries-parallel network.
Determining the distribution of the time to complete the
network is complicated by the fact that the network cannot
be reduced as in the series-parallel case. We begin with an
example that illustrates the difficulty.

TABLE 6. Paths πk and critical path probabilities p(πk) for the series-
parallel network shown in Figure 5 with exponentially distributed arc
durations with b = 2.

k Node sequence πk p(πk)

1 1 → 2 → 5 {a12, a25} 115/432 ∼= 0.266
2 1 → 3 → 5 {a13, a35} 317/1728 ∼= 0.183
3 1 → 3 → 4 → 5 {a13, a34, a45} 317/576 ∼= 0.550

TABLE 7. Criticalities ρij for the series-parallel network shown in Figure 5
with exponentially distributed arc durations with b = 2.

Arc Paths ρij

a12 π1 115/432 ∼= 0.266
a13 π2, π3 317/432 ∼= 0.734
a25 π1 115/432 ∼= 0.266
a35 π2 317/1728 ∼= 0.183
a34 π3 317/576 ∼= 0.550
a45 π3 317/576 ∼= 0.550

4.2.1. Example 1: Bridge-Plus Network. Elmaghraby
([3], p. 305) considers the network shown in Figure 8. The F8

activity durations are exponentially distributed with means

TABLE 8. Criticalities ρij for the series-parallel network shown in Figure 5
with Triangular(0, 1, 2) arc durations.

Arc Paths ρij

a12 π1 30233/237600 ∼= 0.127
a13 π2, π3 207367/237600 ∼= 0.873
a25 π1 30233/237600 ∼= 0.127
a35 π2 6013643/85536000 ∼= 0.070
a34 π3 68638477/85536000 ∼= 0.802
a45 π3 68638477/85536000 ∼= 0.802

FIG. 8. A four-node, six-arc stochastic activity network.
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of 5 (for Y12, Y24, Y34) and 10 (for Y13, Y14, Y23). There are
four paths through the network, with random durations

L1 = Y12 + Y24,

L2 = Y12 + Y23 + Y34,

L3 = Y13 + Y34,

L4 = Y14.

Because only Y12 and Y34 correspond to arcs that lie on more
than one path, the conditional CDF of the time to complete
the network T4, given Y12 = y12 and Y34 = y34, is

FT4(t|y12, y34)

= FL1(t|y12, y34)FL2(t|y12, y34)FL3(t|y12, y34)FL4(t|y12, y34)

because, when Y12 = y12 and Y34 = y34 are fixed,

Pr(T4 ≤ t) = Pr(max{L1, L2, L3, L4} ≤ t)

= Pr(L1 ≤ t, L2 ≤ t, L3 ≤ t, L4 ≤ t)

= Pr(L1 ≤ t) Pr(L2 ≤ t) Pr(L3 ≤ t) Pr(L4 ≤ t).

The CDFs for

L1 = y12 + Y24,

L2 = y12 + Y23 + y34,

L3 = Y13 + y34,

L4 = Y14,

conditioned on Y12 = y12 and Y34 = y34, are

FL1(t|y12, y34) =
{

0 t < y12

1 − e−(t−y12)/5 t ≥ y12,

FL2(t|y12, y34) =
{

0 t < y12 + y34

1 − e−(t−y12−y34)/10 t ≥ y12 + y34,

FL3(t|y12, y34) =
{

0 t < y34

1 − e−(t−y34)/10 t ≥ y34,

FL4(t|y12, y34) =
{

0 t < 0

1 − e−t/10 t ≥ 0.

FIG. 9. Original activity network.

FIG. 10. Activity network from Figure 9 after reduction.

Thus, the unconditional CDF of T4 is given by

FT4(t) =
∫ t

0

∫ t−y12

0
FT4(t|y12, y34)fY12(y12)fY34(y34) dy34 dy12,

where the limits are chosen to satisfy y34 ≤ t − y12 from the
second portion of the support of L2. This integral yields

FT4(t) = 1 − 7e−t/10 + 12e−t/5 + 2t

5
e−t/5

− 16e−3t/10 + 19e−2t/5 − 9e−t/2 − 2t

5
e−t/2

for t > 0.
The Maple code for evaluating the double integral in this

example is given in Appendix A. Although this example was
particularly easy because all of the activity durations had
support on (0, ∞), it leads to the development of a more
general algorithm for the nonseries-parallel case.

4.2.2. Algorithm. The difficulty with nonseries-parallel
networks lies in the inability to reduce the network to a
single arc. Conditioning must be used to create a general
algorithm to solve for the distribution of the time to com-
plete a nonseries-parallel stochastic activity network with
continuous activity durations. Any such network should first
be processed by the series-parallel algorithm, thereby either
finding the distribution of the time to complete the network
or leaving a nonseries-parallel network that would then go
through the conditioning steps.

A conceptual presentation of the algorithm for the case of
arc distributions with support (0, ∞) is given by the five steps
shown below. Each step is illustrated with the network from
Pritsker (Fig. 1), which is given without the activity durations
in Figure 9. F9

Step 1: Series-parallel reduction. Perform all possible
series-parallel reductions. One series reduction is possible,
which eliminates node 5 by using the convolution formula
described earlier, as illustrated in Figure 10. F10

Step 2: Determine arc multiplicities. For each arc, the
multiplicity is the number of paths that contain that arc, as
illustrated in Figure 11. F11
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FIG. 11. Activity network from Figure 10 with arc multiplicities.

Step 3: Condition on the arc durations associated with
multiplicities greater than one. The random variables L1,
L2, . . . , Lr denote the random path lengths associated with
paths π1, π2, . . . , πr . The duration of an arc aij is random, and
is denoted by the upper-case Yij, if the arc has a multiplicity
of one. The arc duration is conditioned on, and is denoted by
the lower-case yij, if the arc aij has a multiplicity greater than
one. For the example,

L1 = y12 + Y26, L2 = y12 + y23 + y36,

L3 = y12 + y23 + y34 + y46, L4 = y13 + y36,

L5 = y13 + y34 + y46, L6 = Y14 + y46.

Step 4: Determine integration region associated with the
CDF of Tn. Let Q be the set of arcs with multiplicities
greater than one and q = |Q|. Here, q = 6. The CDF of Tn

is given by the q-fold integral

FTn(t) = Pr(Tn ≤ t)

=
∫ ∫

· · ·
∫

FTn(t|yij ∈ Q)
∏

(i,j)|aij∈Q

fYij (yij)dyij.

The integration region, given by the following constraints,
depends on the conditional arc durations in the definitions of
the random path lengths L1, L2, . . . , Lr defined in Step 3:

y12 ≤ t, y12 + y23 + y36 ≤ t, y12 + y23 + y34 + y46 ≤ t,

y13 + y36 ≤ t, y13 + y34 + y46 ≤ t, y46 ≤ t.

After eliminating redundant constraints, the integration
region associated with T6 ≤ t is described by

y12 + y23 + y36 ≤ t, y12 + y23 + y34 + y46 ≤ t,

y13 + y36 ≤ t, y13 + y34 + y46 ≤ t.

Step 5: Perform the integration. Because there is more
than one constraint, determining the limits of integration
can be complicated. The procedure GetDistribution
returns the CDF of the network by conditioning the com-
pletion time for the network on the duration of arcs whose
multiplicities exceed one. The algorithm examines all r paths,
keeping track of the arcs on each path by using a matrix Paths
passed to the algorithm. Paths is an r × m matrix with rows
corresponding to paths and columns corresponding to the
arcs along the respective paths. The first 0 entry in any row
of Paths means that there are no more arcs along that path. For
the network in Figure 10, where arcs correspond to columns
1 through 8 in the node-arc incidence matrix in the order a12,
a13, a14, a23, a34, a26, a36, a46, the matrix Paths is

Paths =

⎡⎢⎢⎢⎢⎢⎢⎣
1 6 0 0 0 0 0 0
1 4 7 0 0 0 0 0
1 4 5 8 0 0 0 0
2 7 0 0 0 0 0 0
2 5 8 0 0 0 0 0
3 8 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Determining the integration limits is complicated because
the geometry of the integration region is complex. The limits
must be handled in a case-by-case manner. Each path may or
may not have an arc with multiplicity one, although there is
at most one string of consecutive arcs with multiplicity one
along each path. The limits of the integral must be hard-coded
into the program for each particular case. The development
of an algorithm for automatic determination of the limits is
addressed in Section 4.3. We assume that the network has
been passed through series-parallel reduction (Step 1). In this
algorithm, f stores the PDFs of the arc durations, F stores the
CDFs of the arc durations, frequency stores the number of
paths each arc is on, count stores the number of arcs on each
path, amtmultiple stores the number of multiple-use arcs on
each path, multiple stores the multiple-use arcs on each path,
and single stores the single-use arcs, if any exist, on each path.

Parameters: The number of paths r through the reduced network, the number of arcs m, an r × m array
Paths that holds the ordered arcs for each path, fYij (yij) and FYij (yij) for all arcs aij.

Procedure name: GetDistribution

local k, l, frequency[m], count[r], amtmultiple[r], multiple[r, m], single[r], q, g
for (l ← 1; l ≤ r; l ← l + 1) loop through all paths of network

count[l] ← 0 initialize count
single[l] ← 0 initialize single
amtmultiple[l] ← 0 initialize amtmultiple
for (k ← 1; k ≤ m; k ← k + 1) loop through all arcs of network
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multiple[l, k] ← 0 initialize multiple
for (k ← 1; k ≤ m; k ← k + 1) loop through all arcs of network

frequency[k] ← 0 initialize frequency
for (l ← 1; l ≤ r; l ← l + 1) loop through all paths of network

k ← 1 begin Step 2
while (Paths[l, k] �= 0) while more arcs on path

frequency[Paths[l, k]] ← frequency[Paths[l, k]] + 1 number of paths arc is on
k ← k + 1 move to next arc along path

count[l] ← k − 1 store number of arcs on path l
for (l ← 1; l ≤ r; l ← l + 1) loop through all paths of network

for (k ← 1; k ≤ count[l]; k ← k + 1) loop through all arcs on path l
if (frequency[Paths[l, k]] > 1) if arc is on multiple paths

amtmultiple[l] ← amtmultiple[l] + 1 number of multiple-use arcs on path l
multiple[l, amtmultiple[l]] ← Paths[l, k] store arcs on multiple paths

if (frequency[Paths[l, k]] = 1) if arc is on only one path
single[l] ← Paths[l, k] store arc on one path

q ← 0 initialize the number of arcs on multiple paths in whole network
g ← 1 initialize the integrand g
for (k ← 1; k ≤ m; k ← k + 1) loop through all arcs

if (frequency[k] > 1) if arc is on multiple paths
q ← q + 1 increment number arcs on multiple paths
g ← g ∗ f [k](yk) multiply PDFs into integrand

for (l ← 1; l ≤ r; l ← l + 1) begin Step 3: loop through all paths of network
if (single[l] �= 0) if an arc with multiplicity one is present on path

g ← g ∗ F[single[l]](t − ∑
multiple[l,k]>0 ymultiple[l,k]) multiply CDFs into integrand

return(
∫ ∫

. . .
∫

g
∏

k | frequency[k]>1 dyk) begin Steps 4 and 5: evaluate q-fold integral

To execute GetDistribution for the network in
Figure 11, it is called with r = 6, m = 8, Paths given previ-
ously, the PDF fYij (t) of each arc, and the CDF FYij (t) of each
arc. The order of the eight arc durations in the data structure is
y12, y13, y14, y23, y34, y26, y36, y46. The value of the integrand
after the code is executed is

g = fY12(y12)fY13(y13)fY23(y23)fY34(y34)

× fY36(y36)fY46(y46)FY26(t − y12)FY14(t − y46).

The values in the data structures after the code is executed
are

frequency = (3, 2, 1, 2, 2, 1, 2, 3)′.
count = (2, 3, 4, 2, 3, 2)′,

amtmultiple = (1, 3, 4, 2, 3, 1)′,
single = (6, 0, 0, 0, 0, 3)′,

multiple =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0
1 4 7 0 0 0 0 0
1 4 5 8 0 0 0 0
2 7 0 0 0 0 0 0
2 5 8 0 0 0 0 0
8 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The problem of determining the exact distribution of the
completion time of a stochastic activity network has now
been reduced to setting up the limits of integration associated

with a set of linear constraints. Although algorithms exist to
determine the extreme points of the integration region, we
are not aware of any existing algorithm for converting the
constraints to integration limits.

We conclude this subsection with an example of activ-
ity durations that have finite support, which illustrates the
problems associated with setting the integration limits.

4.2.3. Example 2: Bridge Network. Consider the net-
work in Figure 12, where all Yij are U(0, 1) random variables. F12

As in Example 1, we again condition on the values of y12 and
y34, yielding the CDFs for

L1 = y12 + Y24, L2 = y12 + Y23 + y34, L3 = Y13 + y34

as

FL1(t|y12, y34) =

⎧⎪⎨⎪⎩
0 t < y12

t − y12 y12 ≤ t ≤ y12 + 1

1 t > y12 + 1,

FL2(t|y12, y34)

=

⎧⎪⎨⎪⎩
0 t < y12 + y34

t − y12 − y34 y12 + y34 ≤ t ≤ y12 + y34 + 1

1 t > y12 + y34 + 1,

FL3(t|y12, y34) =

⎧⎪⎨⎪⎩
0 t < y34

t − y34 y34 ≤ t ≤ y34 + 1

1 t > y34 + 1.
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FIG. 12. The bridge network.

Procedure GetDistribution returns the CDF of T4:

FT4(t) =
∫ ∫

FL1(t|y12, y34)FL2(t|y12, y34)

× FL3(t|y12, y34)fY12(y12)fY34(y34) dy34 dy12.

The support of T4 is 0 < t4 ≤ 3. The limits of integration are
more complicated than in Example 1. For 0 < t ≤ 1,

FT4(t) =
∫ t

0

∫ t−y12

0
(t − y12)

× (t − y12 − y34)(t − y34) · 1 · 1 dy34 dy12,

similar to Example 1. For 1 < t ≤ 2, five separate integrals
are required. Figure 13 illustrates regions in the (y12, y34)F13

coordinate system in which the form of the integrand remains
fixed for t = 1.8 ∈ (1, 2]. Expanding the integral yields

FT4(t) =
∫ t−1

0

∫ t−1−y12

0
1 · 1 · 1 · 1 · 1 dy34 dy12 I

+
∫ t−1

0

∫ t−1

t−1−y12

1 · (t − y12 − y34) · 1 · 1 · 1 dy34 dy12 II

+
∫ t−1

0

∫ 1

t−1
1·(t−y12−y34)(t−y34)·1·1 dy34 dy12 III

+
∫ 1

t−1

∫ t−1

0
(t−y12)(t−y12 −y34)·1·1·1 dy34 dy12 IV

+
∫ 1

t−1

∫ t−y12

t−1
(t−y12)(t−y12−y34)(t−y34)·1·1 dy34 dy12 V

for 1 < t ≤ 2. The Roman numerals at the right of each
double integral denote the corresponding region in Figure 13.
Finally, for 2 < t ≤ 3,

FT4(t) = 1 − (1 − t + 2)2/2

+
∫ 1

t−1

∫ 1

t−1−y12

1 · (t − y12 − y34) · 1 · 1 · 1 dy34 dy12,

which yields

FT4(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ 0
11

120 t5 0 < t ≤ 1

− 1
120 t5− 1

6 t4 + 2
3 t3− 1

3 t2− 1
6 t + 1

10 1 < t ≤ 2
1
6 t3 − 3

2 t2 + 9
2 t − 23

6 2 < t ≤ 3

1 t > 3.

This result can be computed by integrating directly as in
Example 1 (the code is given in Appendix B) or it can be com-
puted by using Maple’s piecewise capability (the code is
given in Appendix C).

4.3. A General Algorithm

The remainder of this article is devoted to the development
of a general algorithm, including integration limits, that can
be used to find the distribution of the time to complete a
stochastic activity network by conditioning on the duration
of activities that appear on multiple paths. Because of the
manipulations involved in solving for the distribution, it is
necessary to place two additional restrictions on the networks
being considered: first, all nodes, except the terminal node,
have at most two incident arcs; second, each activity duration
must be described by a PDF expressed as a single function
defined on (0, ∞), as opposed to a function that is defined in a
piecewise manner. As long as these requirements are met by
a network, the algorithm described here can be used to find
the distribution of the time needed to complete that network.
We begin with some additional notational conventions.

In the algorithm, arcs appearing on multiple paths
(multiple-use arcs) are distinguished from arcs appearing
on only one path (single-use arcs). Because the durations of
activities appearing on multiple paths are conditioned upon,
such durations must be denoted by variables. For conve-
nience, these variables are used as the names of the arcs as

FIG. 13. Integration regions associated with t = 1.8.
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well, namely x1, x2, . . . , xk , where k is the number of arcs
appearing on multiple paths. This new notation for multiple-
use arcs and their activity durations will be used instead of
the previous designations aij and Yij to simplify expressions
that follow and facilitate the use of certain ordering principles
that will be required for the algorithm.

Three separate phases occur in the algorithm. The first
phase sets up the limits of integration of several k-fold inte-
grals. The second phase constructs the integrand that will be
used in all of the k-fold integrals. The final phase evaluates
the integrals. Because the limits of integration are determined
before the integrand is constructed, when the k-fold inte-
grals are shown, the symbol I(x) will be used initially for
the integrand and dx for the product of the differentials, e.g.,
dx = dx1 dx2 dx3 dx4.

4.3.1. Sample Networks. Before developing an algorithm
to find the completion-time distribution for a stochastic activ-
ity network, the distributions for two specific networks will
be derived below, based on the derivations in Section 4.2.
After finding the conditional CDF of the completion time for
each network, conditioned on the durations of its multiple-
use arcs, the CDFs will be integrated over the appropriate
range of values for each such arc.

4.3.2. Pritsker Network. The Pritsker network ([11], pp.
216–221) from Figure 1 is given in Figure 14 with the asso-F14

ciated new notation. The arcs labeled x1, x2, x3, x4, x5, and
x6, which denote the probabilistic activity durations, appear
on multiple paths. The paths through this network are listed
below, where a generic “1” represents an arc that appears on
only one path:

x1 → 1 → 1, x1 → x3 → x5, x1 → x3 → x4 → x6,

x2 → x5, x2 → x4 → x6, 1 → x6.

If t is the completion time for the network, then the fol-
lowing inequalities state the relationships between the arcs
being conditioned on and t:

x1 + x3 + x5 ≤ t, x1 + x3 + x4 + x6 ≤ t,

x2 + x5 ≤ t, x2 + x4 + x6 ≤ t.

FIG. 14. Pritsker network with multiple-use arcs labeled.

The trivial inequalities, x1 ≤ t and x6 ≤ t, which result from
the first and last paths listed above, have been omitted because
they are implied by the other inequalities.

The completion-time distribution for the network is found
by integrating the product of the conditional CDFs of the
single-use arcs and the PDFs of the multiple-use arcs over
all possible durations the multiple-use arcs can attain. How-
ever, because of conditioning, the limits of integration must
be set up carefully to avoid negative limits or cases where
the lower limits exceed the upper limits. The algorithm deter-
mines appropriate limits as it progresses from the source node
to the terminal node. The lower limit of integration for each
variable is zero because the minimum possible duration for
an arc is zero. The upper limit of integration is the highest
possible duration for an arc. Because t is the maximum dura-
tion for the entire network, no arc may have a duration larger
than t, but if other arcs are on a path that precedes a given
arc, the maximum possible value of the later arc is t minus
the sum of the durations of all preceding arcs. If multiple
paths precede a given arc, the maximum duration of the arc
is the difference between t and the largest sum of preceding
arc durations. Using this approach, one possible order for
the limits of integration is x1, x2, x3, x4, x5, x6. By combining
this order with the inequalities found above, the following
integral results:

FT6(t) =
∫ t

x1=0

∫ t

x2=0

∫ t−x1

x3=0

∫ t−max{x2,x1+x3}

x4=0

×
∫ t−max{x2,x1+x3}

x5=0

∫ t−x4−max{x2,x1+x3}

x6=0
I(x)dx,

where I(x) will be determined in the next step.
Because maximum expressions appear in the limits of

integration, separate cases must be considered:

• Case 1: x1 < x2

— Subcase 1: x2 > x1 + x3. This implies 0 < x3< x2 − x1.
— Subcase 2: x2< x1 + x3. This implies x2− x1< x3< t − x1.

• Case 2: x2 < x1. This implies 0 < x3 < t − x1.

The CDF FT6(t) must be expressed as the sum of several
multiple integrals to account for these cases. The common
integrand I(x) for these integrals is formed by multiplying the
product of the conditional CDFs of those paths through the
system containing at least one single-use arc times the product
of the PDFs of the (multiple-use) arcs being conditioned on.
For simplicity it is assumed that the duration of each arc in
the system has an exponential(1) distribution.

This network has two paths that contain single-use arcs.
One path consists of x1 followed by two single-use arcs,
which can be replaced by one arc whose duration has an
Erlang(1, 2) distribution. The other path consists of x6 and
one single-use arc. The conditional CDFs corresponding to
these paths are

F26(t|x1) = 1 − (t − x1)e
−(t−x1) − e−(t−x1) t > x1,

F14(t|x6) = 1 − e−(t−x6) t > x6.
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Because we are assuming that the arcs have exponential(1)
activity durations, the PDFs of the arcs on which we are
conditioning are simply e−x1 , e−x2 , e−x3 , e−x4 , e−x5 , and e−x6 .

Combining, we find

FT6(t) =
∫ t

x1=0

∫ x1

x2=0

∫ t−x1

x3=0

∫ t−x1−x3

x4=0

×
∫ t−x1−x3

x5=0

∫ t−x4−x1−x3

x6=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=x1

∫ x2−x1

x3=0

∫ t−x2

x4=0

∫ t−x2

x5=0

∫ t−x4−x2

x6=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=x1

∫ t−x1

x3=x2−x1

∫ t−x1−x3

x4=0

×
∫ t−x1−x3

x5=0

∫ t−x4−x1−x3

x6=0
I(x)dx,

for t > 0, where

I(x) = (1 − (t − x1)e
−(t−x1) − e−(t−x1))

× (1 − e−(t−x6))e−x1−x2−x3−x4−x5−x6 .

Using Maple (the code is given atwww.math.wm.edu/
∼leemis/2006networks.prit.code) to evaluate
these integrals, the CDF of the network completion time is

FT6(t) = 1 + 107

4
e−2t − 71

4
e−4t − 8e−2t t2 − 45

2
e−2t t

− 1

6
e−2t t3 − 1

6
e−t t3 − 2e−t t2 − 2e−4t t2

− 71

2
e−3t t + 1

8
e−2t t4 − 1

8
e−3t t4 − 9e−3t t2

+ 2

3
e−3t t3 − 12e−4t t − 85

4
e−3t + 45

4
e−t ,

FIG. 15. Graph of FT6 (t) for the Pritsker network with exponential(1)
activity durations.

for t > 0. A graph of this CDF is given in Figure 15. The F15

mean network completion time is

E[T6] =
∫ ∞

0
(1 − FT6(t)) dt = 4213

864
≈ 4.8762,

which has been verified by a simulation using one million
replications that yielded 4.8767.

4.3.3. Wheatstone Bridge Network. The network depicted
in Figure 16 is the Wheatstone bridge network ([3], p. 114). F16

The paths through this system are listed below, where a
generic “1” represents a single-use arc:

x1 → 1 → x3, x1 → 1 → x4,

x2 → 1 → x3, x2 → 1 → x4.

Assuming that t is the network completion time, the following
inequalities result:

x1 + x3 ≤ t, x1 + x4 ≤ t, x2 + x3 ≤ t, x2 + x4 ≤ t.

Working from the source node to the terminal node yields
an acceptable order of integration: x1, x2, x3, x4. With an order
of integration established, it is now possible to determine the
limits of integration. Both x1 and x2 can attain any value
from 0 to t. The arcs x3 and x4 do not both appear on any
path, but each appears after either x1 or x2 on every possible
path through the network. The maximum duration on x3 or
x4 is the difference between t and the larger of x1 and x2. As
a result,

FT6(t) =
∫ t

x1=0

∫ t

x2=0

∫ t−max{x1,x2}

x3=0

∫ t−max{x1,x2}

x4=0
I(x)dx,

where I(x) will be determined shortly.
Considering the two cases x2< x1 and x1< x2 yields

FT6(t) =
∫ t

x1=0

∫ x1

x2=0

∫ t−x1

x3=0

∫ t−x1

x4=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=x1

∫ t−x2

x3=0

∫ t−x2

x4=0
I(x)dx

for t > 0. The integrand I(x) is determined as in the previous
example, again assuming that the duration of each activity is

FIG. 16. Wheatstone bridge network with multiple-use arcs labeled.
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an exponential(1) random variable. The conditional CDFs of
the single-use arcs are given by

F24(t|x1, x3) = 1 − e−(t−x1−x3) t > x1 + x3,

F25(t|x1, x4) = 1 − e−(t−x1−x4) t > x1 + x4,

F34(t|x2, x3) = 1 − e−(t−x2−x3) t > x2 + x3,

F35(t|x2, x4) = 1 − e−(t−x2−x4) t > x2 + x4.

Combining the above facts yields

FT6(t) =
∫ t

x1=0

∫ x1

x2=0

∫ t−x1

x3=0

∫ t−x1

x4=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=x1

∫ t−x2

x3=0

∫ t−x2

x4=0
I(x)dx

for t > 0, where I(x) = (1−e−(t−x1−x3))(1−e−(t−x1−x4))(1−
e−(t−x2−x3))(1 − e−(t−x2−x4)). Using Maple to compute these
integrals,

FT6(t) = 1 + 20e−3t + 1

3
e−2t t4 − 12e−2t t2 − 42e−2t

+ 20e−t + 4e−3t t − 2e−3t t2 + e−4t − 2e−t t2 − 4e−t t

for t > 0. This function is plotted in Figure 17. The codeF17

to evaluate this integral is given at www.math.wm.edu/
∼leemis/2006networks.wheat.code. The mean
time to complete the network is

E[T6] =
∫ ∞

0
(1 − FT6(t)) dt = 245

54
≈ 4.5370,

which has been verified by a simulation using one million
replications that yielded 4.5372.

The tedious nature of setting up the integrals for FTn(t)
and eliminating the maximums in their limits for processing
by a computer algebra system (CAS) prompted us to develop
an algorithm for the automated processing of a network.

FIG. 17. Graph of FT6 (t) for the Wheatstone bridge network shown in
Figure 16 with exponential(1) activity durations.

4.3.4. Algorithm Development. We now develop an algo-
rithm for determining the distribution of the time to complete
a stochastic activity network. The 11 steps listed below are
incorporated in both the algorithm given at www.math.
wm.edu/∼leemis/2006networks.algor.pdf and
the Maple implementation given at www.math.wm.edu/
∼leemis/2006networks.code.

Step 1. List all paths through the system.

Step 2. List the arcs that appear on only one path. If
successive single-use arcs appear on one path, combine them
into one arc whose PDF is the convolution of the original
PDFs (i.e., a series reduction).

Step 3. Denote by k the number of multiple-use arcs.

Step 4. Label the arcs counted in Step 3 with variable
names, as follows:

(a) First label each multiple-use arc that is the initial arc
on some path, using x1, x2, x3, etc., until all such initial
arcs are labeled. The initial arcs may be labeled in any
order, using the label x1 first and then using consecutively
subscripted labels.

(b) After eliminating all arcs previously labeled and each
single-use arc that is now the first arc on some path, next
label a multiple-use arc that is the first such arc appearing
on one of the remaining paths. If the arc appears on more
than one of the remaining paths, it must be the initial arc
on each such remaining path to be chosen. If there are
several arcs that meet this criterion simultaneously, any
one may be chosen as the next arc to be labeled. This step
is repeated until all k multiple-use arcs are labeled.

Step 5. Choose x1 as the outermost variable of integra-
tion, followed by x2, then x3 through xk .

Step 6. Set the limits of integration. All lower limits of
integration will be zero. To set the upper limits of integration,
use the following rules:

(a) For all variables of integration corresponding to initial
arcs found in Step 4(a), the upper limit of integration is t.

(b) For all subsequent arcs, find all paths containing them.
For each such arc, list the sequence(s) of multiple-use
arcs that precede that arc. The upper limit of integra-
tion for the variable corresponding to that arc is then the
difference of t and the maximum of the sums of the vari-
ables corresponding to each sequence of arcs in the list
of preceding arcs.

Step 7. To use a CAS to evaluate the integral, it is nec-
essary to eliminate the maximums from the upper limits by
considering many cases. But first, if the same arc appears in
every summation within a particular maximum expression,
bring that variable outside of the expression to simplify it.

Step 8. Now the maximums are eliminated using the
following rules:
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(a) Starting with the left-most integral symbol and moving
to the right, find the first limit of integration where a
maximum occurs.

(b) Examine all variables in the maximum expression and
select the variable with the highest subscript.

(c) Split the range of integration for the variable selected
in Step 8(b) into two subintervals in such a way that on
each subinterval the value of the maximum is evident.
(Note: The breakpoint between the two subintervals may
itself involve a maximum expression.) In this way split
the original k-fold integral into the sum of two k-fold
integrals.

Step 9. For each k-fold integral produced by Step 8 that
has a maximum in one or more of its limits of integration,
repeat Step 8.

Step 10. The common integrand for all of the k-fold
integrals generated above is found by taking the product of
PDFs and conditional CDFs:

(a) For each path through the system containing at least one
single-use arc, find its CDF when conditioned on the
duration of the arcs that appear on multiple paths. The
product of all such CDFs is the first part of the integrand.

(b) Find the PDF for each arc that is conditioned on, that is,
all arcs appearing on multiple paths. The product of all
such PDFs is the second part of the integrand.

(c) Multiply the product from part (a) and the product from
part (b) together to form the final integrand.

Step 11. Evaluate all the k-fold integrals that have been
generated and sum the resulting expressions to yield the CDF
of the time to complete the network.

4.3.5. Applying the Algorithm. The algorithm developed
in the previous section will now be applied to the eight-path
network ([12], p. 53) shown in Figure 18, with its multiple-F18

use arcs labeled. It is assumed that the distribution of the time

FIG. 18. The 8-path network with multiple-use arcs labeled.

to traverse each arc is an exponential(1) random variable. The
11 steps are listed below by number.

Step 1. The paths through the system are given in Table 9. T9

Step 2. The arcs that are used on only one path are
a13, a15, a23, a26.

Step 3. Because there are seven multiple-use arcs, set
k = 7.

Step 4. Label the arcs.

(a) The initial arc in the paths through the system are
a12, a13, a14, a15. However, only a12 and a14 are multiple-
use arcs, so they are the only arcs labeled. Let x1 = a14

and x2 = a12.
(b) The arcs a24 and a36 are the next multiple-use arcs that

appear first on the remaining paths after removing a12,
a14, and the resulting initial single-use arcs a13, a15, and
a36. Let x3 = a24 and x4 = a36. After eliminating the
four arcs already labeled and the three single-use arcs,
the arcs that are now at the beginning of the paths through
the network are a45 and a46. Let x5 = a45 and x6 = a46.
The only remaining multiple-use arc left in the network
is a56, so x7 = a56. Figure 18 shows the network with the
appropriate labels added.

Step 5. The order of integration is now set by arranging
the variables to yield the integral∫ ∫ ∫ ∫ ∫ ∫ ∫

I(x) dx7 dx6 dx5 dx4 dx3 dx2 dx1.

The integrand I(x) will be determined later.

Step 6. Set the limits of integration. All lower limits of
integration are initially set to 0.

(a) The upper limits of integration for the arcs x1 and x2

found in Step 4(a) are set to t.
(b) To find the upper limit of integration for all other vari-

ables, the paths through the system must be examined.
Table 10 shows the paths through the network with regard T10
to multiple-use arcs. This table represents the same paths
as Table 9 except expressed by the names of the multiple-
use arcs. For convenience, these arc names are also used

TABLE 9. Paths for the network shown in Figure 18.

Node sequence Path

1 → 2 → 6 {a12, a26}
1 → 2 → 3 → 6 {a12, a23, a36}
1 → 2 → 4 → 6 {a12, a24, a46}
1 → 2 → 4 → 5 → 6 {a12, a24, a45, a56}
1 → 3 → 6 {a13, a36}
1 → 4 → 6 {a14, a46}
1 → 4 → 5 → 6 {a14, a45, a56}
1 → 5 → 6 {a15, a56}
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TABLE 10. Paths through the network shown in Figure 18.

Multiple-use arc sequences

x2 → 1
x2 → 1 → x4

x2 → x3 → x6

x2 → x3 → x5 → x7

1 → x4

x1 → x6

x1 → x5 → x7

1 → x7

for the duration associated with each arc. Recall that the
single-use arcs are designated (or labeled) as “1.” In all
paths on which it appears, x3 is always preceded by x2,
so the upper limit for x3 is t −x2. When x4 is preceded by
another multiple-use arc, it is also always x2, so like x3,
the upper limit of integration for x4 is t − x2. Arc x5 is
preceded by x1 on one path and by x2 and x3 on another
path. Because x2 and x3 appear before x5 on the same path,
the upper limit of integration for x5 is t−max{x1, x2+x3}.
The variable x6 is similar to x5 because it is preceded by
x1 or by x2 and x3. Therefore, its upper limit of integration
is also t − max{x1, x2 + x3}. The final arc, x7, is preceded
either by the sequence of x2, x3, x5 or by the sequence
x1, x5. The upper limit of integration is formed in the
same way as those of x5 and x6, so the upper limit of inte-
gration for x7 is t−max{x1+x5, x2+x3+x5}. The integral
that represents the CDF of the network completion time,
FT6(t), can now be written as

FT6(t) =
∫ t

x1=0

∫ t

x2=0

∫ t−x2

x3=0

∫ t−x2

x4=0

∫ t−max{x1,x2+x3}

x5=0

×
∫ t−max{x1,x2+x3}

x6=0

∫ t−max{x1+x5,x2+x3+x5}

x7=0
I(x)dx

for t > 0.

Step 7. Because the upper limit of integration for x7

contains x5 in both arguments of the maximum, the upper
limit of integration can be simplified, giving the following
integral for FT6(t):

FT6(t) =
∫ t

x1=0

∫ t

x2=0

∫ t−x2

x3=0

∫ t−x2

x4=0

∫ t−max{x1,x2+x3}

x5=0

×
∫ t−max{x1,x2+x3}

x6=0

∫ t−x5−max{x1,x2+x3}

x7=0
I(x)dx

for t > 0.

Step 8. Eliminating the maximums.

(a) Beginning on the left with x1, the first variable of inte-
gration encountered with a maximum in its limits of
integration is x5.

(b) The expression that appears in this limit of integration is
max{x1, x2 + x3}. Of the variables in this expression, the
one with the highest subscript is x3, which can range in
value from 0 to t − x2.

(c) There are two cases to consider because of this maximum:

x1 < x2 + x3 and x2 + x3 < x1.

Because the range of x3 is being split, it is necessary to
isolate it in the inequalities above yielding

x1 − x2 < x3 and x3 < x1 − x2.

From these inequalities, it is easy to see that the point
where the range of x3 is divided is x1 − x2. However, if
x1 − x2 is negative, then there is no split in the range of
x3, because x3 can only assume nonnegative values. This
possibility is addressed by rewriting the inequalities as:

max{0, x1 − x2} < x3 < t − x2 and

0 < x3 < max{0, x1 − x2},

which takes into account the fact that the range of the
variable x3 is from 0 to t − x2.

These two inequalities are used to set up two new
sevenfold integrals, the sum of which is equal to the orig-
inal sevenfold integral. It is important to note that the
maximum that was eliminated for variable x5 is the same
one that appeared in the limits of x6 and x7, and thus these
are also eliminated. The new integrals are

FT6(t) =
∫ t

x1=0

∫ t

x2=0

∫ max{0,x1−x2}

x3=0

×
∫ t−x2

x4=0

∫ t−x1

x5=0

∫ t−x1

x6=0

∫ t−x5−x1

x7=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=0

∫ t−x2

x3=max{0,x1−x2}

∫ t−x2

x4=0

∫ t−x2−x3

x5=0

×
∫ t−x2−x3

x6=0

∫ t−x5−x2−x3

x7=0
I(x)dx

for t > 0.

Step 9. Repeat Step 8 until all maximums are eliminated.

(a) In the first seven-fold integral, a maximum occurs in the
upper limit of x3.

(b) In max{0, x1 − x2}, x2 is the variable with the highest
subscript.

(c) There are two cases to consider:

0 < x1 − x2 and x1 − x2 < 0.

By isolating the variable x2 in these inequalities and
incorporating the range of x2, they can be rewritten as:

0 < x2 < x1 and x1 < x2 < t.

It is clear that the point where the range of x2 is to be
split is x1. This splits the first integral from Step 8 into
two more seven-fold integrals; however, when x1 < x2,
max{0, x1 − x2} = 0, so both limits of integration for x3

are 0, and thus the second seven-fold integral evaluates
to 0. This means that only one integral is created, and
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TABLE 11. Conditional CDFs of single-use arcs for the network in
Figure 18 with exponential(1) arc durations.

Multiple-use arc sequence Conditional CDF Support

x2 → 1 1 − e−(t−x2) t > x2

x2 → 1 → x4 1 − e−(t−x2−x4) t > x2 + x4

1 → x4 1 − e−(t−x4) t > x4

1 → x7 1 − e−(t−x7) t > x7

thus we still have two seven-fold integrals:

FT6(t) =
∫ t

x1=0

∫ x1

x2=0

∫ x1−x2

x3=0

∫ t−x2

x4=0

∫ t−x1

x5=0

×
∫ t−x1

x6=0

∫ t−x5−x1

x7=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=0

∫ t−x2

x3=max{0,x1−x2}

∫ t−x2

x4=0

∫ t−x2−x3

x5=0

×
∫ t−x2−x3

x6=0

∫ t−x5−x2−x3

x7=0
I(x)dx

for t > 0.

(a) The second sevenfold integral still has a maximum in the
lower limit of x3.

(b) As in the previous example, the variable with the highest
subscript is x2.

(c) As before, there are two cases to consider:

0 < x1 − x2 and x1 − x2 < 0,

which lead to the following intervals for x2:

0 < x2 < x1 and x1 < x2 < t.

Unlike the previous step, two new integrals are pro-
duced, and neither is equal to 0. The second seven-fold
integral immediately below corresponds the case where

0 < x1 − x2, and the third corresponds to the case where
x1 − x2 < 0. The final expression is

FT6(t) =
∫ t

x1=0

∫ x1

x2=0

∫ x1−x2

x3=0

∫ t−x2

x4=0

∫ t−x1

x5=0

×
∫ t−x1

x6=0

∫ t−x5−x1

x7=0
I(x)dx

+
∫ t

x1=0

∫ x1

x2=0

∫ t−x2

x3=x1−x2

∫ t−x2

x4=0

∫ t−x2−x3

x5=0

×
∫ t−x2−x3

x6=0

∫ t−x5−x2−x3

x7=0
I(x)dx

+
∫ t

x1=0

∫ t

x2=x1

∫ t−x2

x3=0

∫ t−x2

x4=0

∫ t−x2−x3

x5=0

×
∫ t−x2−x3

x6=0

∫ t−x5−x2−x3

x7=0
I(x)dx

for t > 0.

Step 10. Constructing the integrand.

(a) Four paths contain single-use arcs. The paths are listed in
Table 11 with their conditional CDFs. As stated before, T11
all arcs are assumed to have exponential(1) durations.

(b) There are seven multiple-use arcs. Because each arc dura-
tion is assumed to be an exponential(1) random variable,
their PDFs are e−xk for xk > 0, where k = 1, 2, . . . , 7.

(c) Taking the product of the conditional CDFs from part (a)
and the PDFs from part (b) gives

I(x) = (1 − e−(t−x2))(1 − e−(t−x2−x4))(1 − e−(t−x4))

× (1 − e−(t−x7)) · e−x1−x2−x3−x4−x5−x6−x7 .

Step 11. The integrals found by the preceding algorithm
can be evaluated using a CAS such as Maple, yielding the
following CDF:

FT6(t) = 1 + 11

4
e−3t t3 − 1

8
e−3t t4 + e−6t t + e−2t t3 − 147

4
e−2t t − 2e−t t + 63

8
e−3t t2

− 553

48
e−3t + 443

24
e−4t t2 − 10e−2t t2 + 103

6
e−5t t − 1

6
e−t t3 − 639

8
e−3t t

+ 11

4
e−5t t2 − 3

4
e−4t t3 − 677

72
e−4t t + 1

8
e−4t t4 + 43

12
e−6t + 53

36
e−5t

− 21217

432
e−4t + 5431

144
e−2t + 7285

432
e−t + 1

4
e−2t t4 − 2e−t t2

for t > 0. The graph of the function FT6(t) is shown in
Figure 19. The code to evaluate the above three inte-F19

grals is given at www.math.wm.edu/∼leemis/2006
networks.8path.code. The mean time to complete the
network is

E[T6] =
∫ ∞

0
(1 − FT6(t)) dt = 51822023

10368000
≈ 4.9983,

which has been verified by a simulation using one million
replications that yielded 4.9985.

4.3.6. Implementation. A Maple procedure is used for
the computer implementation of this algorithm because
of the mathematical functions and data structures present
within the Maple CAS. Pseudocode for the program is given
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FIG. 19. Graph of FT6 (t) for the 8-path network in Figure 18 with
exponential(1) arc durations.

at www.math.wm.edu/∼leemis/2006networks.
algor.pdf for readers wishing to implement the program
in another language.

The primary data structures used for the implementation
of this algorithm are matrices, arrays, and sets. Matrices are
used to store the paths through the network, the upper and
lower limits of integration, and the node-arc incidence matrix.
Arrays are used to distinguish multiple-use arcs from single-
use arcs, to store the order of integration and the durations
of each activity. Sets are mainly used for data manipulation,
such as combining different groups of data, or finding the
overlap between two groups of numbers. In Maple, sets do
not allow for repeated elements and can be manipulated using
the set operations of intersection, union, and minus.

4.3.7. Preprocessing data. The implementation first reads
in the network representation, that is, the node-arc incidence
matrix N and the activity duration distributions. These can
be stored in text files outside of the program and read into
Maple using the read function. Using Maple, the number of
nodes and arcs are determined by invoking the rowdim(N)
and coldim(N) functions, respectively. It would also be
possible to read in the values of n and m directly.

Once the data is read in, there is some preprocessing to
be done. For the algorithm to process the matrix N correctly,
the columns are sorted in such a way that they are ordered
by the node from which their corresponding arcs exit. Then
all arcs that exit the same node are ordered by the node they
enter. In Maple, this ordering is done using two nested-for-
loops and the swapcol(N, col1, col2) function that
interchanges column col1 and column col2. To find the
paths through the system, it is necessary to determine how
many arcs enter each node and the source node for each arc.
This data is stored in two one-dimensional arrays. One array
will have an entry for each node that stores the number of
incoming arcs. The other array stores the source node for

each arc. If the language being used supports columns and
rows of index 0, then the data for incoming arcs can be stored
in the 0th column and source node data can be stored in the
0th row.

Step 1. The program finds all of the paths through the
network. An upper bound on the number of paths is esti-
mated, say at most MaxPaths. A MaxPaths× n matrix is
set up to store the paths. Each row of this matrix will store
one path through the network, with the row’s ith entry being 1
if arc xi lies on the path and 0 otherwise. The function used to
find paths is a function called GetPaths. This function also
counts the number of paths through the system. If the number
of paths is less than MaxPaths, excess rows are deleted by
the Maple function delrows(Paths, numPaths + 1
.. MaxPaths). It is necessary to reverse the order of the
nodes on each path because the function GetPaths reads
in the paths by starting at the terminal node and working
backward.

Steps 2 and 3. The algorithm distinguishes multiple-
use arcs from single-use arcs and counts the number of
multiple-use arcs. This is done by following each path and
incrementing a counter for each arc whenever that arc is
encountered. At the end of the process, any counter exceeding
1 identifies a multiple-use arc.

Steps 4 and 5. The order of integration is determined.
Integration only occurs over multiple-use arcs, so they are the
only ones the program examines. The first arc on each path
is determined and placed into a set S1; then all subsequent
arcs are placed in a second set S2. The arcs that are eligible
to be first in the new array for the order of integration appear
in the first set and not the second. All such arcs are added to
the array. This procedure is repeated as the program traverses
each path, ignoring the single-use arcs. These operations are
performed by utilizing Maple’s intersect and minus
operations for sets.

Steps 6 and 7. At this point, the most complex portion
of the procedure begins, setting up the limits of integration.
The upper and lower limits of integration are stored in sepa-
rate matrices. The matrices for the upper limits, upperi, have
dimension 4 × k and the matrices for lower limits, loweri,
have dimension 3 × k. Initially i = 1, because there is cur-
rently only one k-fold integral. Every entry in the lower1

matrix is initialized to 0 as are all entries in upper1, with the
exception of the first row of upper1 whose entries are initial-
ized to t. The program then traverses the integration order
matrix and adjusts the upper limit matrix. The jth column of
upper1 is filled in as follows, for j = 1, 2, . . . , k: there are
at most two paths leading to arc xj. If there is exactly one
path leading to arc xj, then the variables for all arcs on that
path preceding xj are summed and placed in row 2 of the
jth column of upper1. If there are two such paths, the vari-
ables for one of the paths are summed and placed in row 3 of
the jth column of upper1 and the variables for the other path
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are summed and placed in row 4. These entries in rows 3
and 4 correspond to the arguments in the maximum of the
upper limit of integration for xj. Any variables appearing in
both paths are deleted from both row 3 and row 4, summed,
and placed in row 2 of the jth column. Once the third and
fourth rows are zeroed out, which is the terminal condition
for Step 9 of the algorithm, the upper limits of integration are
the differences between the elements in the first row and the
corresponding elements in the second row. The initial matrix
upper1, corresponding to the eight-path network analyzed in
Section 4.3.5, is given in Figure 20.F20

Steps 8 and 9. After upper1 and lower1 have been initial-
ized, the program enters a while-loop in which maximums are
eliminated from all limits of integration according to the pro-
cedure outlined in the algorithm. The program first scans the
upper limit matrices to see if there are any nonzero entries
in the third or fourth rows. If there are, the current matrix
is copied along with the corresponding lower limit matrix.
These two matrices will correspond to the limit of integra-
tion being broken up; one will have the third row entry as
the new upper limit and the other will have the fourth row
entry. To find the point at which the range splits for the xi

being examined, the two arguments in the maximum expres-
sion must be set equal to each other. If the point splitting
the range is a quantity that contains more than one variable,
for example, x2 − x1, then when the limits of integration are
changed to reflect this, the quantity must go into third row of
one upper limit matrix and the second row of the other lower
limit matrix; this is because the quantity results in another
maximum that must be eliminated, because x2 − x1 can be
negative, and that is not allowed. If only one variable is in
the splitting point, then that variable goes into the first row of
both matrices. It is possible to check the number of variables
in a quantity by using the nops(quantity) function in
Maple, which returns the number of operations in a set.

After the function makes a pass through the upperi matri-
ces, it then passes through the loweri matrices because
sometimes when a maximum in an upper limit of integration
is eliminated, a new maximum is introduced in another upper
limit of integration and in a lower limit of integration. Thus,

the program must repeat the maximum elimination process
on the lower limit matrices. Upon completing that, the pro-
gram checks to see if all maximums have been eliminated,
that is, the bottom two rows of all matrices have only zero
entries. If all maximums are eliminated, the loop is broken;
otherwise, the program starts the loop over by examining the
upper limits of integration again.

Step 10. The program constructs the integrand that will
be used in all of the k-fold integrals. This entails finding
each single-use arc and integrating its PDF from 0 up to the
maximum possible arc duration, which is t minus the sum
of all other arc variables on that path. This is the conditional
CDF of the arc given the duration of all other arcs on the path.
The integrand is then the product of the PDFs of all multiple-
use arcs and the conditional CDFs of all the single-use arcs
that were just found.

Step 11. The final step in finding the completion-time
distribution is to evaluate all of the integrals. This consists of
an outer loop that processes each k-fold integral and an inner
loop that evaluates each of the k integrations. The integrations
are performed using Maple’s int(integrand, xi =
lowerLimit .. upperLimit) command. At the con-
clusion of these last two loops, the CDF of the time needed
to complete the network is returned.

4.3.8. Examples. We will use our program to find the
completion-time distributions for the four networks presented
earlier.

4.3.9. Bridge-Plus Network. The bridge-plus network,
shown in Figure 21 with its multiple-use arcs appropriately F21

labeled, was originally addressed in Section 4.2.1 The activ-
ity durations are independent exponential random variables
with PDFs

f12(x) = f24(x) = f34(x) = 1

5
e−x/5 x > 0

and

f13(x) = f14(x) = f23(x) = 1

10
e−x/10 x > 0.

FIG. 20. The initial matrix upper1 for the network discussed in Section 4.3.5.
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FIG. 21. Bridge-plus network with multiple-use arcs labeled.

With this information, the array of PDFs can be con-
structed:

dist =
[

1

5
e−x/5,

1

10
e−x/10,

1

10
e−x/10,

1

10
e−x/10,

1

5
e−x/5,

1

5
e−x/5

]
.

Using the array and matrix as input to the program, the
cumulative distribution function returned by the program is

FT4(t) = 1 − 7e−t/10 + 12e−t/5 + 2t

5
e−t/5

− 16e−3t/10 + 19e−2t/5 − 9e−t/2 − 2t

5
e−t/2

for t > 0. This is the same result as in Section 4.2.1.

4.3.10. Pritsker Network. The Pritsker network is shown
in Figure 14 and discussed in Section 4.3.1. The original
analysis of this network assumed that each activity had an
exponential(1) duration; now we examine the more general
case of exponential(λ) activity durations. As discussed ear-
lier, because two single-use arcs appear on the same path,
namely a25 and a56, they are replaced by the single arc a26

whose activity duration PDF is Erlang(λ, 2) resulting from
the convolution of the PDFs f25(x) and f56(x). By using the
node-arc incidence matrix for the revised Pritsker network

and the associated array of PDFs,

dist = [
λe−λx, λe−λx, λe−λx, λe−λx,

λ2xe−λx, λe−λx, λe−λx, λe−λx],
the program returns the cumulative distribution function:

FT6(t) = 1 + 107

4
e−2λt − 71

4
e−4λt − 8e−2λtλ2t2

− 45

2
e−2λtλt − 1

6
e−2λtλ3t3 − 1

6
e−λtλ3t3

− 2e−λtλ2t2 − 2e−4λtλ2t2 − 71

2
e−3λtλt

+ 1

8
e−2λtλ4t4 − 1

8
e−3λtλ4t4

− 9e−3λtλ2t2 + 2

3
e−3λtλ3t3 − 12e−4λtλt

− 85

4
e−3λt + 45

4
e−λt t > 0.

Ifλ is set to 1, this CDF equals the CDF found in Section 4.3.2,
as it should.

4.3.11. Wheatstone Bridge Network. Now we consider
the Wheatstone bridge network analyzed in Section 4.3.3 and
shown in Figure 16, with activity durations that are exponen-
tial(1) random variables. By using the node-arc incidence
matrix and the PDF array

dist = [
e−x, e−x, e−x, e−x, e−x, e−x,e−x, e−x] ,

the program confirms that the expression for FT6(t) found in
Section 4.3.3 is correct.

4.3.12. The 8-Path Network. The final network we exam-
ine is the eight-path network shown in Figure 18. If we
assume that the arcs exiting the source node have exponen-
tial(0.5) durations, that arcs entering the terminal node have
exponential(0.25) durations and that all remaining arcs have
exponential(1) durations, then we can use the node-arc inci-
dence matrix and PDF array to find the distribution of time
needed to complete the network. Our program returns the
following completion-time CDF for this network:

FT6(t) = 1 + 11884

11025
e−11t/4 − 4462

315
e−5t/4 + 2

9
e−t t2 − 152

105
e−3t/2t − 355772

23625
e−3t/4 + 1756

945
e−2t t

− 9547

23625
e−3t + 2

45
e−5t/2t + 2

175
e−13t/4t − 1

75
e−3t t − 4

105
e−11t/4t + 31646

3675
e−9t/4

− 36847

14175
e−5t/2 + 2432567

99225
e−t − 36

1225
e−15t/4 + 257

1575
e−7t/2 − 52

15
e−3t/4t

− 863108

70875
e−7t/4 + 1093

135
e−t t − 176

675
e−7t/4t − 4

21
e−9t/4t − 38

135
e−5t/4t + 170

27
e−t/2t

− 778979

165375
e−2t − 6842

525
e−t/4 − 1046

6125
e−13t/4 + 25797

1225
e−3t/2 + 979331

165375
e−t/2 t > 0.
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5. CONCLUSIONS AND FURTHER WORK

Activity networks are useful when modeling a project hav-
ing distinct activities that exhibit precedence relationships.
When the durations of the activities are deterministic, it is
easy to find the time needed to complete a project by using
a simple longest path algorithm. However, when only ran-
dom activity durations are given, the analysis is much more
complicated. Monte Carlo simulation can provide an approxi-
mate solution in this case, but the simulation must be written
specifically for the network and could require millions of
replications for a reliable estimate. In some networks, series-
parallel reduction can supply an exact solution analytically,
but very few networks can be reduced in this manner.

In this article a more general approach to finding the dis-
tribution of the time needed to complete a stochastic activity
network is described. The process is based on conditioning
upon the durations of the multiple-use arcs to set up a function
that can be integrated to solve for the CDF of the entire net-
work. Our algorithm sets up appropriate k-fold integrals that
must be evaluated, where k is the number of arcs appearing
on multiple paths. A computer implementation completely
automates the calculations to find the completion-time distri-
bution; the only user input is the node-arc incidence matrix
N and the PDFs of the individual activity durations.

Our algorithm is easy to use, but the restrictions placed
on the network are rather severe. However, our algorithm
provides a foundation for the development of a more gen-
eral algorithm, allowing analysis of more realistic activity
networks in the future.

The first restriction is that there can be at most two inci-
dent arcs to any nonterminal node. This limits the number
of arguments in the maximum expressions for upper lim-
its of integration to two, because each path through a node
contributes an argument to a maximum expression. If we
let a and b be the arguments in some maximum expression,
that is, max{a, b}, the only cases that must be considered
are a > b and a < b. Thus, each k-fold integral is split
into at most two k-fold integrals when each maximum is
eliminated, representing the cases a > b and a < b. Allow-
ing three incident arcs at a nonterminal node would yield
three arguments in a maximum expression, with six possible
orderings. Then splitting the original k-fold integral could
result in as many as six k-fold integrals when a maximum is
eliminated.

Dropping the two incoming arcs requirement would also
create problems in the implementation. Currently each upper
limit of integration is represented by at most four terms in a
matrix. Allowing more arguments in the maximum expres-
sions would require more rows in each matrix, but it would
be impossible to know how many rows would be needed
until the matrix was being constructed. Creation of the new

limit-of-integration matrices would also be more difficult.
The program currently functions by creating one new matrix
for each maximum encountered. Under the more general case
with a > 2 incoming arcs, there would be a−1 new matrices
created for each maximum encountered on the first iteration.
Enumerating and editing these matrices would require added
computation.

Another restriction placed on the networks is that the activ-
ity durations must have support on (0, ∞). It is appropriate
that activities have a positive duration, but not all will have an
unbounded possible duration time. By requiring this restric-
tion on the activity durations, many possible distributions for
the duration are excluded, such as the uniform distribution,
which has support on a finite interval. Relaxing this restric-
tion would complicate the limits of integration for variables
with finite support, resulting in more k-fold integrals.

The final restriction placed on the network is that the
random activity durations have distributions that are a sin-
gle function as opposed to a piecewise function, such as the
triangular distribution. Removing this restriction causes the
same problem as having finite support. When the k-fold inte-
grals are set up, there would automatically be at least two
integrals for each piecewise distribution, one for each dis-
tinct interval defined by the distribution function. Once these
k-fold integrals are set up, the situation addressed above is
encountered—there are variables that have lower limits of
integration larger than 0 and upper limits of integration less
than infinity. Therefore, the restriction to infinite support
would have to be addressed before any work to relax this
final restriction could proceed.

Another improvement would enable our algorithm to pro-
cess networks having arcs in series. These arcs could be
combined into a single arc whose duration distribution is
the convolution of the constituent duration distributions. This
was the case in the Pritsker network presented earlier, where
two exponential(1) durations were combined into a single
Erlang(1, 2) variable. In the future, the implementation of
the algorithm could be revised to automatically find arcs in
series and perform the convolution internally, perhaps using
the Maple-based APPL language [5].
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APPENDIX A. BRIDGE-PLUS NETWORK MAPLE CODE

FL1 := 1 - exp(-(t - y12) / 5);
FL2 := 1 - exp(-(t - y12 - y34) / 10);
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FL3 := 1 - exp(-(t - y34) / 10);
FL4 := 1 - exp(-t / 10);
f12 := exp(-y12 / 5) / 5;
f34 := exp(-y34 / 5) / 5;
F := int(int(FL1 * FL2 * FL3 * FL4 * f12 * f34, y34 = 0 .. t - y12), y12 = 0 .. t);

APPENDIX B. BRIDGE NETWORK MAPLE CODE

FL1 := t - y12;
FL2 := t - y12 - y34;
FL3 := t - y34;
f12 := 1;
f34 := 1;
F1 := int(int(FL1 * FL2 * FL3 * f12 * f34, y34 = 0 .. t - y12), y12 = 0 .. t);
F2 := simplify(

int(int(1 * 1 * 1 * f12 * f34, y34 = 0 .. t - 1 - y12), y12 = 0 .. t - 1) +
int(int(1 * FL2 * 1 * f12 * f34, y34 = t - 1 - y12 .. t - 1), y12 = 0.. t - 1) +
int(int(1 * FL2 * FL3 * f12 * f34, y34 = t - 1 .. 1), y12 = 0 .. t - 1) +
int(int(FL1 * FL2 * 1 * f12 * f34, y34 = 0 .. t - 1), y12 = t - 1 .. 1) +
int(int(FL1 * FL2 * FL3 * f12 * f34, y34 = t - 1 .. t - y12), y12 = t - 1 .. 1));

F3 := simplify(1 - ((1 - t + 2) ˆ 2) / 2 +
int(int(1 * FL2 * 1 * f12 * f34, y34 = t - 1 - y12 .. 1), y12 = t - 1 .. 1));

APPENDIX C. BRIDGE NETWORK MAPLE CODE WITH PIECEWISE

F401 := int(int((t - y12) * (t - y12 - y34) * (t - y34), y34 = 0 .. t - y12), y12=0 .. t);
F412 := int(int(1, y34 = 0 .. t - 1 - y12), y12 = 0 .. t - 1) +

int(int(t - y12 - y34, y34 = t - 1 - y12 .. t - 1), y12 = 0 .. t - 1) +
int(int((t - y12 - y34) * (t - y34), y34 = t - 1 .. 1), y12 = 0 .. t - 1) +
int(int((t - y12) * (t - y12 - y34), y34 = 0 .. t - 1), y12 = t - 1 .. 1) +
int(int((t - y12) * (t - y12 - y34) * (t - y34), y34 = t - 1 .. t - y12),y12 = t - 1 .. 1);

F423 := 1 - ((1 - t + 2) ˆ 2) / 2 +
int(int(t - y12 - y34, y34 = t - 1 - y12 .. 1), y12 = t - 2 .. 1);

F4 := simplify(piecewise(t <= 0, 0, t < 1, F401, t <= 2, F412, t < 3, F423, 1));
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