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An algorithm for computing the PDF of order statistics drawn from discrete parent populations is presented,
along with an implementation of the algorithm in a computer algebra system. Several examples and appli-
cations, including exact bootstrapping analysis, illustrate the utility of this algorithm. Bootstrapping procedures
require that B bootstrap samples be generated in order to perform statistical inference concerning a data set.
Although the requirements for the magnitude of B are typically modest, a practitioner would prefer to avoid
the resampling error introduced by choosing a finite B, if possible. The part of the order-statistic algorithm for
sampling with replacement from a finite sample can be used to perform exact bootstrapping analysis in certain
applications, eliminating the need for replication in the analysis of a data set.
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1. Introduction

As evidenced by over a thousand references cited
in the survey text by David and Nagaraja (2003), a
large amount of literature has been devoted to the
theory and application of order statistics. In conjunc-
tion, a growing interest in undergraduate and grad-
uate courses in order statistics (Arnold et al. 1992)
has also emerged over the past ten years. Many pop-
ular mathematical statistics texts, such as Hogg and
Craig (1995), Casella and Berger (2002), or Rice (1995),
address only distributions of order statistics for inde-
pendent and identically distributed random vari-
ables drawn from continuous populations due to
the mathematical tractability of their theoretical for-
mulas. Further, order statistics for continuous par-
ent populations have found important applications in
many areas, including survival analysis, life testing,
reliability, robustness studies, statistical quality con-
trol, filtering theory, signal processing, image process-
ing, and radar target detection (Nagaraja et al. 1996,
Balakrishnan and Rao 1998).

Work in the late 1980s through the 1990s exam-
ined the theory of order statistics for nonidentically
distributed and dependent variables, but again, for
random variables drawn from continuous popula-
tions. Boncelet (1987), Balakrishnan (1988), Bapat and
Beg (1989), and Balakrishnan et al. (1992) relate the
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distributions of order statistics in samples of size k to
those in samples of sizes k — 1, generalizing formulas
in the standard independent, identically distributed
case. Subsequently, Cao and West (1997) wrote algo-
rithms that extend the known theory of distributions
of order statistics of independent, but not identically
distributed, random quantities to practical situations.

Results for order statistics drawn from discrete par-
ent populations are sparse and usually specialized
to fit one particular discrete population (e.g., Young
1970, Srivastava 1974, Ciardo et al. 1995). Arnold et al.
(1992) devote a chapter to discrete order statistics.
We will present an algorithm in a computer alge-
bra system (CAS) for determining distributions of
order statistics drawn from general discrete parent
populations and the application of this algorithm to
exact bootstrap analysis. Using Efron and Tibshirani’s
(1993) notation, we will consider eliminating the gen-
eration of B bootstrap samples when performing a
bootstrap analysis by calculating the exact distribu-
tion of the statistic of interest. This process eliminates
the resampling variability that is present in bootstrap-
ping procedures.

The algorithm presented in this paper handles dis-
crete parent populations with finite or infinite sup-
port, and sampling with or without replacement.
Development of this algorithm provides the scientific
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community with easy access to many discrete order-
statistic distributions. Application areas with respect to
bootstrapping that are presented in this paper are the
estimation of standard errors for the median, mean,
and range, and interval estimation for the range.

2. Algorithm

Let X;, X,, ..., X, be n independent and identically
distributed (iid) random variables defined on €, each
with CDF Fy(x) and PDF fy(x). Let X(;) < X5 <--- <
X denote these random variables rearranged in
nondescending order of magnitude. Thus, X, is the
rth smallest number in the sample, r =1,2,...,n.
Because order statistics are random variables, it is
possible to compute probability values associated
with values in their support.

When the population is continuous, the PDF of the
rth order statistic can be expressed easily because the
probability that any two X;)’s are the same is zero. As
is well known (e.g., Casella and Berger 2002, p. 229),
the PDF of X, is

n! r—1 n—r
R Pt L) G R OV
xeQ)

forr=1,2,...,n.

If X;,X,,...,X, is a random sample from a dis-
crete population, then the PDF of the rth order statis-
tic cannot always be expressed as a single formula,
as in the continuous case. When working with dis-
crete random variables, the computation of the PDF
of the rth order statistic will fall into one of several
categories, depending on the sampling convention
(with or without replacement), the random variable’s
support (finite or infinite), and the random variable’s
distribution (equally likely or nonequally likely prob-
abilities). A taxonomy of these categories appears in
Figure 1. The bootstrapping application requires sam-
pling with replacement from a finite population, but
other applications require the additional branches of
the algorithm as displayed in Figure 1.

The OrderStat(X,n,r, [wo]) (henceforth referred
to as OrderStat) algorithm requires three arguments:
a random variable X, the number of items n ran-
domly drawn from the population with PDF fy(x),
and the index r of the desired order statistic. An
optional fourth argument wo can be specified to indi-
cate that the items are drawn from the population
without replacement. The implementation steps of the
OrderStat algorithm are explained in detail in the fol-
lowing two subsections (“Without Replacement” and
“With Replacement”). In both cases, the output of the
algorithm is fy  (x), the PDF of the rth order statistic
of the random variable X, where n items have been

Discrete Population

Sampling
With Replacement

RN

Sampling
Without Replacement

N

Finite Infinite Finite Infinite
Support Support Support Support
Equally Non-Equally
Likely Likely
Probabilities Probabilities
Figure 1 Categorization of Discrete Order Statistics by Sampling

Convention, Support, and Probability Distribution

sampled either with or without replacement from the
population with PDF fy(x). After each branch (dis-
played in Figure 1) of the algorithm is discussed in
its appropriate subsection, an example with solution
of the type of problem that fits into that particular
branch classification is provided.

The OrderStat algorithm has been implemented in
Maple and is one of over 30 procedures included in a
probability package developed to automate the nam-
ing, processing, and application of random variables.
The software is referred to as “A Probability Program-
ming Language” (APPL) and is described in Glen
et al. (2001).

2.1. Without Replacement

Providing the string wo as the fourth argument to the
OrderStat procedure indicates that items are drawn
from the discrete population without replacement.
Random variables with finite or infinite support are
handled by two separate techniques.

If the population distribution has finite support, the
population size is denoted by N. To specify this sup-
port in a compact form, it is temporarily assumed
to be (without loss of generality) the ordered set
{1,2,..., N}. For example, if

05 x=7
fx(x)=1302 x=11
0.3 x=15,

then N =3, and the support of X is temporarily
assumed to be {1, 2, 3}, instead of {7, 11, 15}. The orig-
inal support is reinstated after the order-statistic prob-
abilities are computed.

If the population with PDF fx(x) has equally likely
probability values, e.g., rolling a fair die, then by com-
binatorial analysis the PDF of the rth order statistic
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when 7 items are sampled is (Arnold et al. 1992, p. 54)
CD0)
()

ExamPLE 1 (SAMPLING WITHOUT REPLACEMENT; FI-
NITE SUPPORT; EQUALLY LIKELY PROBABILITIES). Hogg
and Craig (1995) draw 15 cards at random and
without replacement from a deck of 25 cards num-
bered 1,2, ...,25. Find the probability that the card
numbered 10 is the median of the cards selected.

SoLuTION. Let fy(x) = % for x=1,2,...,25. The
population size is N = 25, the size of the sample is
n=15, and the sample median X corresponds to
r =8. The probability that the sample median equ-
als 10 is given by the above formula as

() (7)
()
1053

~ 14858
=~ .0709.

fX(r)(x)Z x=r17+1/'-'/r+N_n-

In addition to just computing one probability value
as obtained by hand above, the OrderStat algorithm
returns the PDF of the 8th order statistic (when
n =15 items are sampled from the population without
replacement), which is

1 x—1\[/25—x
fx(g)(x)=m< v )( v )X=8,9,...,18. O

If X has finite support {1,2, ..., N} and nonequally
likely probabilities, there are three cases to consider
when computing the PDF of the rth order statistic.

1. One item is sampled: n =1. The PDF of the rth
order statistic is the same as the population PDF; i.e.,
fx(y)(x) = fx(x) forr=1,2,...,N.

2. The entire population is sampled: n = N. The
PDF of the rth order statistic is fX(y) (x)=1for x=r.

3. More than one item, but not the entire popula-
tion, is sampled: n=2,3,..., N — 1. In this nontriv-
ial case, an n x N array, ProbStorage, is defined that
eventually contains the probabilities fx (x) for x =
1,2,...,N and r=1,2,...,n. The value of fX(y)(x)
is found in row r and column x of the array. For
example, if X ~ Binomial(5,p = 1) and n =3 items
are sampled (without replacement) from this popula-
tion, then the ProbStorage array is 3 x 6 and has the
form displayed in Figure 2. The algorithm’s imple-
mentation requires use of two APPL combinatorial
procedures, NextCombination and NextPermutation,
which were specifically created for use in the
OrderStat algorithm. Following is a brief description
of the algorithm for the without-replacement/finite
support/nonequally-likely-probabilities case for n =
2,3,...,N—1

21
P NG 1 2 3 4 5 6
1 * * * * 0
Figure 2 Initial Form of ProbStorage Array for X ~ Binomial(5, };)

Where n =3 Iltems Are Sampled Without Replacement
Note. Asterisks denote positive probability values; zeros denote impossible
situations.

(a) The first lexicographical combination of
n items sampled from the sequence of integers 1 to N
is formed; it is {1,2,...,n}. For X ~ Binomial(5, }1),
the first lexicographical combination of n =3 items
from {1,2,...,6}1is {1, 2, 3}.

(b) Given a combination consisting of n distinct
integers, the algorithm generates all possible permu-
tations of that combination and their corresponding
probabilities. For the example X ~ Binomial(5, 1), the
first combination is {1, 2, 3} and its permutations are
[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].
The probabilities obtained for each of these per-

mutations, respectively, are 13286025 13286025 13286025

7 7 7
13286025 13286025 and 13286025 2235311?17 ZEX ;%13341?22 th1e19161§(9)21§—
1106078727 1972705287 134730752 ° ple, P

ability of obtaining the permutation [3, 1, 2] is com-
puted as

fx@) fx(®2)
SO B T- (O + AD)
or
135 22 = 13286025

512112851 (324 28) ™ 197270528

512 1024

(c) After the probability of each permutation
generated in (b) is computed, each permutation is
“rewritten” lexicographically to determine the corre-
sponding order-statistic probabilities. The permuta-
tion [3, 1, 2], for example, is rewritten as [1, 2, 3]. The
algorithm then adds the probability of obtaining that
particular permutation to the appropriate three cells
in the ProbStorage array. The (r, x) cell accumulates the
probabilities of the various permutations for which
the rth order statistic has the value x. For example, the
final value in the (1, 1) cell represents the probability
that the first order statistic assumes the value one. In
the Binomial(5, 1) example, the probability of obtain-
ing the permutation [3,1,2], 2242 s added to the
ProbStorage cells (1,1), (2,2), and (3, 3). See Figure 3.

(d) After all n! permutations of a given combi-
nation are exhausted, the procedure NextCombination
determines the next lexicographical combination.
Given this new combination, the algorithm repeats
steps (b) and (c). This process iterates through the (V)
combinations of size n chosen from a population of
size N.
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NG 1 2 3 4 5 6
1 =1, 1) +pr (1,2) (1, 3) 2(1,4) 0 0
0 2(2,2) +pr 2(2,3) (2,4 2(2,5) 0
3 0 0 2@3,3)+pr 2@3,4) 23,5 23,6
Figure 3 Computation of ProbStorage Array for X ~ Binomial(5, ) Where n =3 Items Are Sampled Without Replacement

Note. Given the permutation [3, 1, 2], its probability pr = 13286025/197270528 is added to the current probability sums > (r, x) in cells (1,1), (2, 2), and

(3, 3). Zeros denote impossible situations.

ExaMPLE 2 (SAMPLING WITHOUT REPLACEMENT; FI1-
NITE SUPPORT; NONEQUALLY LIKELY PROBABILITIES).
Let X be a random variable with PDF

ppox=1

_Jp. x=10
fx(x)= ps x=100
ps x=1000,

where p,+p,+p;+p,=1land p;>0,i=1, 2,3, 4. Find
the distribution of the median order statistic when
n =3 items are sampled without replacement from the

population.
SorutioN. The PDF for the median order statistic
computed using the OrderStat algorithm is

Pap2P1 + Par2P1 + P4aP2P1
(=pg)(=po—ps) * (=pa)(A=pi—ps) = (=p2)(1—p2—p4)
+ Pap2P1 Par2P1 + P4ar2P1
(A=p2)(A=p1-p2) (1=p1)(A=p1—py) (I=p1)(A=p1-p2)
P3pP2P1 P3papry P3papry
(I=p3)(A=po=p3) * (=p3)(l=p1—p3) = (1=p2)(1-p2—P3)
+ P3pr2pr1 P3r2r1
(I=p2)(1=p1—p2) ~ (1=p1)(1=p1-p3)
P3rar1 —
o) o ¥=10
*@) Pap3p2 Pap3p2 Pap3P2
(1=pg)(=pg—p3) ~ (I=pg)(=pa—pg) = (=p3)(1—ps—p3)
+ P4pP3P2 P4pP3P2 P4p3r2
(1-p3)(1—p2—p3) (1=p2)(1=p2—pg) (1=p2)(A=p2—p3)
+ P4pP3P1 P4pP3r1 P4pP3P1
(I=pg)(=pg=p3) * (=pa)(A=p1—ps) = (1-p3)(1-p4—p3)
+ Par3r1 P4p3P1
(1=p3)(1=p1—p3) (1=p1)(A=p1—ps)
+ AL x —100. O

(1=p1)(1=p1—p3)

If the population distribution has a countably
infinite support, i.e., {1, 2, ...}, then the pattern estab-
lished for finding the PDF of the rth order statis-
tic in the finite-support case will not work. At this
time, beyond the trivial case when n =1 item is
sampled and fy (x) = fx(x) for r=1,2,..., N, the
OrderStat algorithm computes the PDF of the min-
imum order statistic when at most n = 2 items are
sampled without replacement from a discrete popu-
lation with infinite support. The n =2 case is consid-
ered in the following paragraph. Future work with
OrderStat will begin to incorporate the algorithmic
pattern for values of n > 3. Currently, no literature
considers these cases.

When n = 2 items are sampled without replace-
ment, the probability that the minimum order statistic

has value x, for x=1,2, ..., is given by

Pr(Xp =x) =Pr(X; =x)Pr(X, >x+1[ X; =x)
+ Y Pr(X; =y)Pr(X, =x| X; =y).
y=x+1

Thus, the PDF of X(;) when n =2 items are sampled is

Sx(x+1) o fxW)
1— fx(x) J§11 fx(y)]

x=1,2,...,

fro 00 = il 2D

where Sy(x) is the survivor function defined by
Sx(x) =Pr(X =x).

ExamPLE 3 (SAMPLING WITHOUT REPLACEMENT; IN-
FINITE SUPPORT). Let X ~ Geometric(3). Find the prob-
ability that the minimum order statistic is five when
n =2 items are sampled without replacement from
the population.

SoruTtiOoN. The PDF of the minimum order statistic
as calculated using the OrderStat algorithm is

BEENNRTE S S
o= +a(a) Zoarige
x=1,2,.

By substitution, it can easily be determined that
Pr(X =5)=0.0020. O

2.2. With Replacement

If the optional fourth argument wo is not provided
to the OrderStat procedure, the items are assumed
to be sampled from the discrete population with
replacement. When sampling with replacement, the
probability density function, cumulative distribution
function (CDF) F;(x), and survivor function (SF) Sy (x)
are needed to determine the distribution of the rth
order statistic. The APPL procedures PDF, CDF, and SEF,
respectively, determine these forms of a distribution.
Computing an order-statistic distribution when sam-
pling with replacement from a finite population will
be used in the bootstrapping application.

If the random variable X has finite support ), then
without loss of generality we can assume that ) =
{1,2,..., N}. The PDF of X,) when n items are sam-
pled with replacement from this finite population is
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given by
Z (Z) LI 8x(2)]" x=1
2)> . F(x-1)]"
fx, ()= L‘2=;)102=:0(”rn—u_w,w)[ (x—1)]

L) Sk (x + 1]
x=2,3,...,N—-1

> (1) - DFUEOP x=N,

u=0

This formula is not valid in the special case when the
discrete population consists of only one item N =1.
The PDF of the rth order statistic in this case is simply
f X(r) (=1

The formula for the PDF of X, is a direct result
of the following observation. For the rth order statis-
tic to equal x, there must be u values less than or
equal to x —1 and w values greater than or equal to
x+1, where u=0,1,...,r—1and w=0,1,...,n—r.
The other n — u — w values must be equal to x. The
CDF procedure is used to determine the probability
of obtaining a value less than or equal to x — 1, the
SF procedure is used to determine the probability of
obtaining a value greater than or equal to x +1, and
the PDF procedure is used to determine the probability
of obtaining the value x. The multinomial coefficient
expresses the number of combinations resulting from
a specific choice of u and w.

Taking an example from Arnold et al. (1992, p. 43),
let X be a discrete uniform random variable with PDF
fx(x)=1,x=1,2,3,4. Then the CDF and SF of X,
respectively, are

0 x <1 1 x<l1
=18 1<x<4 Sx)={1-8 1<x<4
1 x>4 0 x> 4.

Suppose n =5 values are sampled with replace-
ment from this population. To calculate fx, (3), ie.,
the probability that the second order statistic is x =3,
evaluate the sum

@=2% (s )

u=0 w=0 —u—-w,w

4G R F21E)) i M) b

The first term in the summation is the probability of
drawing all threes. The second term, in which u =0
and w =1, is the probability of drawing four threes
and a value greater than or equal to four (which can
only be the value four in this example). This collection
of four threes and one four can be drawn five different
ways. The subsequent terms in the sum have similar
meanings.

ExaMPLE 4 (SAMPLING WITH REPLACEMENT; FINITE
SuPPORT). A fair die is cast eight independent times.
Find the PDF of the smallest of the eight numbers
obtained, X(;, (Hogg and Craig 1995, p. 230).

SoruTtioN. To compute the numeric PDF by hand,

r=L () (-5)

is calculated for x =1, 2, ..., 6. For example, the prob-
ability that the first order statistic is x =4 is

-2 ()6 G

1 1 7 7 3
= 1679616 T 104976 ' 104976 ' 26244 ' 52488
77 4
+ 6561 " 6561 | 6561
6805
© 1679616

= (.0038.

Similar calculations for x =1,2,...,6 yield the PDF
of the first order statistic as
1288991

toroere X =1
36121 _
iseod X =2
58975 _
Fo (1) = Teroers X =3
X 6305 4 _g
1679616 =
85 _
g X=9
1 _
o066 X =06

The OrderStat algorithm yields the same results, but
in addition returns the PDF of the minimum order
statistic as a polynomial:

1, 91 . 89

Fxo®) = ~30505° * 119904 ~ 200952"
38675, 63217 , 496951
839808" 209952 ' 419904
543607 4085185

209952 * 1679616
forx=1,2,...,6. O
If the support of X is countably infinite, i.e.,
Q1 =1{1,2,...}, then the calculation of the PDF of X, is
similar to the finite-support case. The main difference
is that the formula used in the finite-support case is
now used for values of x that are unbounded:

n—r

)3 (Z)) O S@F =1

w=0

gnif(u/?’l— .

u=0 w=0 u—uw, w) [Fx(x = 1)]"
RGO [, e+ D

fx(,, (x) =

x=2,3,...
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Because the formula assumes that the support of X is
{1,2,...}, the algorithm works only for distributions
with infinite right-hand tails.

Since it is physically impossible to execute the for-
mula for infinitely many values of x, a general expres-
sion for fx(,, (x) in terms of x is obtained by taking
advantage of Maple’s ability to sum and simplify
complicated symbolic expressions. Maple computes
(in symbolic terms) the double summation of a multi-
nomial coefficient multiplied by the product of the
CDF, PDF, and SF raised to various powers.

ExaMPLE 5 (SAMPLING WITH REPLACEMENT; INFI-
NITE SUPPORT). Define a geometric random variable X
with parameter p (0 <p <1) to be the trial number of
the first success in repeated independent Bernoulli(p)
trials. The PDF of X is fy(x)=pg*', forx=1,2,...,
where g =1 — p. Margolin and Winokur (1967) tab-
ulated values for the mean and variance of the rth
order statistic of a geometric distribution for sam-
ples of size n=1,5(5)20 for » =1(1)5(5)20, where
r=1,2,...,n and 4 =0.25(0.25)0.75. The values are
calculated to two decimal places.

Margolin and Winokur’s treatment of order statis-
tics for the geometric distribution is based on the use
of recurrence relations. The formulas they use to com-
pute the first and second moments of the rth order
statistic of a geometric distribution (with parameter
p =1—¢q) when n items are sampled (with replace-
ment) are

n—1\"1 (_])] (7;1)
E[X(r)] = n(,, _ 1) ]:X(:) (n —7r +j + 1)(1 _ qn—r+j+l)
and
Y e i L i
O\ r=1) S n—r+j+)(A =g

The OrderStat algorithm can readily produce the
exact value of any of the rounded figures given in
their tables. If X ~ Geometric(}l), for example, then
the exact values of the mean and variance of the
third order statistic when n =5 items are sampled can
be found with the OrderStat algorithm as 32728 =~

1011395
3.22 and 7B ~ 3 67, respectively. (Mean and

5114599230125
Variance are additional APPL procedures that have
the random variable of interest as their argument.)
The OrderStat algorithm has the capability to com-
pute the mean and variance for a much larger range
of arguments, including a symbolic probability p, than
provided in their table. If Y ~ Geometric(p), for exam-
ple, then the variance of the minimum order statistic

when n = 6 items are sampled with replacement is
1—6p+15p>—20p°+15p* —6p° +p° 0O
P2 (p°—6p*+15p3—20p2+15p—6)

3. Applications

3.1. Range Statistics

One natural extension to the OrderStat algorithm is
a RangeStat algorithm, which finds the PDF of the
range of a sample of n items drawn from a dis-
crete population, either with or without replacement.
This procedure will also be used in the bootstrapping
application.

Let X be a discrete random variable with PDF fy(x)
and CDF F(x), and let Y be a random variable repre-
senting the range of X. We can assume (without loss
of generality) that the support of X is {1,2,..., N},
where N is a positive integer or infinity. If we are
sampling with replacement (which implies that the
n draws are independent), then the probability that
Y assumes the value y, where y=0,1,...,N —1, is
given by Burr (1955):

X} [fx@I" y=0

N—-y

Y {Prc <X <x+y)"

x=1

—[Prix+1<X<x+y)]"
—[Prix<X<x+y-1]"
+[Pr(x+1=<X<x+y-1)]"}

N-y
=D IR +y) = F(x = 1)]"
x=1

—[F(x+y) = FK@)]"

—[E(x+y—1)—E(x—1)]"

+[F(x+y —1) = F(x)]"}
y=1,2,...,N-1

Pr(Y=y)=

Of the four terms being summed in the y=1,2, ...,
N —1 case, the first term is the probability that all
sampled elements lie between x and x + y inclusive.
The second term removes the probability that these
elements do not include x because this would result
in a range that is less than y. The third term removes
the probability that these elements do not include
x +y because this would also result in a range that
is less than y. The fourth term adds back the prob-
abilities of those elements that include neither x nor
x 4+ y, which were removed by both the second and
third terms.

In the without-replacement case, the RangeStat
algorithm basically follows the same steps as the
OrderStat algorithm, including use of the procedures
NextCombination and NextPermutation. In the trivial
case when the entire population is sampled, the PDF
of the range Y is fy(y) =1 for y=N—-1. If n =
2,3,..., N, where N is a positive integer less than or
equal to 7, then a single-dimensional array of length
N —n+1 is defined that will eventually contain the
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values of fy(y) fory=n—1,n,...,N —1. As in the
OrderStat algorithm, the first lexicographical com-
bination of n items sampled from the sequence of
integers 1 to N is formed. Given a combination, the
algorithm generates all possible permutations of that
combination. The probability for each permutation is
calculated (as described in Section 2.1), and then the
maximum and minimum values of that permutation
are determined. The permutation’s range, which is
the difference between its maximum and minimum
values, is computed and then the appropriate array
cell is incremented by that permutation’s probability.

3.2. Bootstrapping

“One of the most influential developments in statis-
tics in the last decade has been the introduction and
rapid dissemination of bootstrap methods” (Rice 1995,
Preface). “Much of the current appeal of bootstrap,
without doubt, stems from the not unrealistic hope
of obtaining—as much of the research effort has been
geared to show—higher-order accuracy in an auto-
matic and simple manner... . Only recently has atten-
tion been paid to the practically crucial question of
providing the user with some means of assessing how
well-determined, or accurate, the bootstrap estimator
is” (Young 1994, p. 384).

Using Efron and Tibshirani’s (1993) notation, this
section considers eliminating the generation of B boot-
strap samples when performing a bootstrap analysis
by calculating the exact distribution of the statistic of
interest. There are several reasons, as alluded to in the
previous paragraph, for considering this approach.

¢ Although bootstrap methods are relatively easy
to apply, determining the number of bootstrap rep-
etitions, B, to employ is a common problem facing
practitioners (Andrews and Buchinsky 2002). A prac-
titioner needs to be concerned about problem-specific
requirements for B, e.g., “B in the range of 50 to 200
usually makes Se, ., a good standard error estimator,
even for estimators like the median” (Efron and Tib-
shirani 1993, p. 14) or “B should be >500 or 1000 in
order to make the variability of [the estimated 95th
percentile] acceptably low” for estimating 95th per-
centiles (Efron and Tibshirani 1993, p. 275). In fact,
“one can obtain a ‘different answer’ from the same
data merely by using different simulation draws if
B is too small, but computational costs can be great
if B is chosen to be extremely large” (Andrews and
Buchinsky 2000, p. 23). Because of this, Andrews and
Buchinsky (2000) introduced a three-step method to
determine B to attain a specified level of accuracy.

* Exact values are always preferred to approxima-
tions. There is no point in adding resampling error to
sampling error unnecessarily.

¢ A bootstrapping novice can easily confuse the
sample size n and number of bootstrap samples B.

Eliminating the resampling of the data set B times
simplifies the conceptualization of the bootstrap
process.

¢ In many situations, computer time is saved using
the exact approach.

By way of example, this section shows how the
OrderStat and RangeStat algorithms (along with ad-
ditional APPL procedures) can be used to perform
exact bootstrap analysis. The use of these algorithms
eliminates the resampling variability that is present
in a bootstrap procedure. “The only exact solutions
that are available for the bootstrap variance of an
L-statistic (e.g., mean, trimmed mean, median, quick
estimators of location and scale, upper and lower
quartiles) are for the specific cases of the sample mean
and sample median (when the sample size is odd)”
(Hutson and Ernst 2000, p. 89). The application areas
that will be presented here are the estimation of stan-
dard errors for the median, mean, and range, and
interval estimation for the range.

3.2.1. Estimation of Standard Errors. The stan-
dard error of the sample mean, s//n, is useful when
comparing means, but standard errors for comparing
other quantities (e.g., fractiles) are often intractable.
The following examples consider the estimation of
standard errors associated with the rat-survival data
given in Table 1 (Efron and Tibshirani 1993, p. 11).
Seven rats are given a treatment and their survival
times, given in days, are shown in the first row of the
table. Nine other rats constitute a control group, and
their survival times are shown in the second row of
the table.

ExaMPLE 1 (CoMPARING MEDIANS). Consider first
the estimation of the standard error of the difference
between the medians of the two samples. The stan-
dard bootstrap approach to estimating the standard
error of the median for the treatment group is to gen-
erate B bootstrap samples, each of which consists of
seven samples drawn with replacement from 16, 23,
38, 94, 99, 141, and 197. The sample standard devia-
tion of the medians of these B bootstrap samples is an
estimate of the standard error of the median. Using
the S-Plus commands

set.seed(1)

tr <- c(16, 23, 38, 94, 99, 141, 197)

medn <- function(x) {quantile(x, 0.50)}

bootstrap(tr, medn, B = 50)
yields an estimated standard error of 41.18 for the
treatment data with B =50 bootstrap replicates. With

Table 1 Rat-Survival Data

Group Data n Median Mean Range
Treatment 16, 23, 38, 94, 99, 141, 197 7 94 86.86 181
Control 10, 27, 30, 40, 46, 51, 52,104,146 9 46  56.22 136
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Table 2 Bootstrap Estimates of the Standard Error of the Median

B=50 B=100 B=250 B=500 B=1000 B=+o0

Treatment 4118  37.63 36.88 37.90 38.98 37.83
Control 20.30  12.68 9.538 13.10 13.82 13.08

the set.seed function used to call a stream number
corresponding to the associated column, Table 2
shows the estimated standard errors for several B
values.

There is considerable resampling error introduced
for smaller values of B. The B = 400 column of Table 2
corresponds to the ideal bootstrap estimate of the stan-
dard error of 6, or seﬁ(é*) =limg_, . S, to use the ter-
minology and notation in Efron and Tibshirani (1993,
p. 46).

An additional APPL procedure was constructed,
BootstrapRV(data) (henceforth referred to as
BootstrapRV), whose only argument is a list of n
data values. The BootstrapRV procedure creates a
discrete random variable X that can assume the
provided data values, each with probability 1/n. If
we put the treatment data values 16, 23, 38, 94, 99,
141, and 197 in a list and provide this list to the
BootstrapRV procedure, it creates a discrete random
variable X that can assume these data values each
with probability 1/7.

Assign the random variable Y to the distribu-
tion of the fourth order statistic (the median) in
seven draws with replacement from the rat-treatment
data. This is done with the APPL statement Y :=
OrderStat(X, 7, 4). The distribution of the random
variable Y is

pen V=16
s Y=23
e Y=38
fW)=\sn y=9%
oen Y=99
% y =141
prp V=197

Taking the square root of the variance of Y (which
can be done in APPL) returns the standard error as
T V/242712738519382 = 37.83467. In a similar fash-
ion, the ideal bootstrap estimate of the standard error of
the median can be calculated in the control case and
is s +/25662937134123797402 = 13.07587. Finally,
note that the seemingly large difference between
the two sample medians (94 — 46 = 48) is only
48/4/37.832 +13.082 = 1.19 standard-deviation units
away from zero, indicating that the observed differ-
ence in the medians is not statistically significant. Had
the standard bootstrap procedure been applied with

B =50 bootstrap replications, Table 2 indicates that the

number of standard-deviation units would have been
estimated to be 48/+/41.182 +20.302 = 1.05. Although
the conclusion in this case is the same, the difference
between using B =50 and B = +oco could result in dif-
ferent conclusions for the same data set. O

ExamMPLE 2 (COMPARING MEANS). Although the
standard error of the mean is tractable, we continue
with the previous analysis and attempt to compare
the sample means to illustrate how additional APPL
procedures are used for comparing means. As before,
S-Plus can be used to create bootstrap estimates given
in Table 3. The code

set.seed(1)

x <- c(16, 23, 38, 94, 99, 141, 197)

bootstrap(x, mean, B = 50)
produces the upper-left-hand entry in Table 3.

After the bootstrap random variable X is created
as in the previous example, the APPL procedure
ConvolutionIID sums n =7 of these iid X’s to cre-
ate a convoluted random variable W. The APPL pro-
cedure Transform transforms the random variable W
using the transformation Y = W/n. These manipu-
lations yield the probability density function of the
mean Y as

1/77=1/823543 y=16
()/77 =1/117649 y=17
(0)/77 =3/117649 y =18
(1)/7" =5/117649 y=19
TO=V 077 21117649 y=13477
(1)/7” =5/117649 y =20
1/77=1/823543 y=197,

and the standard error as Z£+/327649, or approx-
imately 23.36352. This, of course, is equal to
V(i —=1)/n(s/y/n) = /6/7 (s/s/7), where s is the stan-
dard deviation of the treatment survival times. This
fact is the fortunate consequence of the mathemati-
cal tractability of the standard error for means. Other,
less fortunate, situations can be handled in a similar
manner.

Similar APPL code for the treatment case yields
an estimated standard error in the B = +oco case of
5+/129902, or approximately 13.34886. The differ-
ence between the treatment and control group means
(86.86 — 56.22 = 30.64) is not statistically significant

Table 3 Bootstrap Estimates of the Standard Error of the Mean

B=50 B=100 B=250 B=500 B=1000 B=+

Treatment 23.89  24.29 23.16 24.36 23.75 23.36
Control 17.07  13.83 13.40 13.13 13.55 13.35
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since it is only 30.64/+/23.362 + 13.352 = 1.14 standard
deviations away from zero. 0O

ExaMPLE 3 (COMPARING RANGES). The previous two
examples have estimated the standard errors of mea-
sures of central tendency (e.g., the median and mean).
Estimation of the standard error of a measure of dis-
persion, the sample range R, will now be considered.
The standard error of the range R for the treatment
case is ﬁ«/88781509983, or approximately 35.45692,
which is obtained wusing the BootstrapRV and
RangeStat procedures. Similar APPL statements for
the control case yield an estimated standard error for
the range as 3+/129902, or approximately 40.04658.

The observed difference in the ranges between
the treatment and control groups (181 —136=45)
is not statistically significant since it is only 45/
+/35.462 +40.052 = 0.84 standard deviations away
from zero. O

3.2.2. Confidence Intervals. A final example is
presented here to show how one of the shortcomings
of the standard bootstrap approach can be overcome
by using the parametric bootstrap. APPL is used in
both settings to eliminate resampling error.

ExamPLE 4 (CONFIDENCE INTERVAL FOR RANGE).
The previous three examples estimated the standard
errors of measures of central tendency and a measure
of dispersion. This example constructs a confidence
interval for the sample range of the rat-treatment
group.

Let R be the range of the n =7 observations. The
APPL procedures BootstrapRV, RangeStat, and IDF
(a procedure that determines inverse distribution
functions or values) produce the 95% confidence
interval 76 < R < 181. This confidence interval has the
unappealing property that the point estimator, R =
181, is also the upper limit of the confidence interval.

Trosset (2001) suggested an alternative method for
computing a confidence interval for the range R,
which involves parametric bootstrapping. First, an
exponential distribution with mean 1/ is fit to the
treatment group data using the APPL MLE (maximum
likelihood estimator) procedure. The procedure iden-
tifies the parameter estimate for the distribution as
6 = 6%8 The (continuous) distribution of the sample

range of n =7 observations drawn from an exponen-

tial population with parameter § = = is then com-
puted. The 95% confidence interval for the range R is

68 < R <475.

4. Discussion

An asset of the OrderStat algorithm is that it can be
used to explore the properties of order statistics of
various distributions, such as the geometric distribu-
tion. Arnold et al. (1992, p. 52) show that the dis-
tribution of the sample minimum from a geometric

distribution with PDF f(x) =p(1—p)* for x=0,1, ...
is geometric with parameter 1 — (1 —p)”. That is, the
geometric distribution and the sample minimum from
the geometric distribution come from the same fam-
ily of distributions. Although the OrderStat algorithm
will not allow us to see this general result in terms
of n, it does allow us to verify this conclusion for
increasing values of n starting at n = 2. The algorithm
is a tool for learning about and exploring properties
of order statistics. The properties and results can be
verified by other means, such as simulation or ana-
lytical methods (in some cases), if so desired. Other
useful aspects of the algorithm were explored in the
applications sections. Below we conclude with some
timing results and measurement performances.

We have done timing experiments to determine the
practical limitations of using APPL to perform exact
bootstrapping. The statistic under consideration is the
determining factor as to whether or not one would
use the APPL procedures discussed in this paper.
Table 4 contains the time (in seconds on a 848 MHz,
Intel Pentium III processor laptop machine) for APPL
to determine the exact standard error of the median,
mean, and range for three different data sets. The first
data set is the rat-treatment group discussed in the
applications section, and the second two data sets are
from Hand et al. (1994) with sample sizes of n =23
and n =35. They are

BallBearings = [17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.48,51.84,51.96,54.12, 55.56, 67.80,
68.64, 68.64, 68.88,84.12,93.12, 98.64,
105.12,105.84, 127.92, 128.04, 173.40],

and

Presidents = [10, 29, 26, 28, 15, 23,17, 25, 0,20, 4, 1,
24,16,12,4,10,17,16,0,7,24,12,4,
18,21,11,2,9,36,12,28, 3, 16, 9].

The disproportionate time for computing the stan-
dard error of the mean for the Presidents data set is
due to the necessary creation of the PDF of the con-
volution of 35 iid BootstrapRV(Presidents) random
variables. All APPL procedures only accept discrete
random variables with ordered supports. Creating a
convolution of more than 10 iid random variables
in APPL causes time delays because of sorting algo-
rithm time requirements (based on the number of

Table 4 Exact Bootstrap Method Times (in Seconds)
Sample size Rats7  Bearings 23  Presidents 35
Median 0.019 0.549 2.224
Mean 0.039 — 250.610
Range 0.010 0.771 3.585
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iild random variables) and data formats (e.g., inte-
ger, rational, nonpositive). Although we used an APPL
procedure for creating moment generating functions
(MGFs) to create PDFs for the convolutions of iid
BootstrapRV’s in the rat survival times and Presidents
data sets, we were unable to employ this method with
the BallBearings data set because of its noninteger
data values. The original APPL (non-MGF) convolu-
tion code ConvolutionIID can determine the PDF of
at most nine iid discrete random variables, regard-
less of the format of the support (e.g., noninteger
and nonpositive). Both convolution procedures have
their limitations, and those limitations are exceeded
with the BallBearings data set. Fortunately, theoreti-
cal results exist for computing the standard error of
the mean. The dash in Table 4 denotes that the stan-
dard error of the mean could not be obtained in the
BallBearings example; the time required (84 hours)
to determine the MGF of the convolution of 23
of the BootstrapRV(BallBearings) random variables
exceeded practical expectations.

The time required to compute the bootstrap esti-
mates for B =200 bootstrap replications for the stan-
dard error in these cases in S-Plus is less than a
second. The trade-off in using APPL procedures ver-
sus a preexisting software package with bootstrap-
ping is precision versus computer time. To further
investigate the accuracy of the standard error of the
median computed by S-Plus versus the APPL proce-
dure, simulated data from a variety of distributions
based on symmetry and shape were created. A single
data set was generated from the appropriate distribu-
tion for each sample size n. The standard error of the
median for each of the simulated data sets appears in
Table 5. (Note that the PDF of the gamma distribution
with parameters a and b is f(x) = a(ax)?~'e=*/T'(b) for
x > 0.) The table entries are the standard errors of the
median as calculated in APPL (which corresponds to
B = +0c0) and in S-Plus using the bootstrap function
with B =200, B=>500, and B =1000. The numbers in
the table associated with the bootstrapping are aver-
ages of 100 replications. The only case in which APPL

Table 5 Standard Errors of the Median for Various Distributions and Sample Sizes

Sample Uniform(—1,1) T(5) Gamma(1,1) Gamma(1,0.1)

size Normal(0, 1) (short tailed) (heavy tailed) (slightly skewed) (heavily skewed)

5 APPL 0.4855290730 0.2351964343 0.7629798392 0.8283462971 0.02503762460

B =200 0.4859 0.2290 0.7576 0.8311 0.02516
B =500 0.4863 0.2325 0.7617 0.8280 0.02511
B =1000 0.4845 0.2332 0.7621 0.8271 0.02509

15 APPL 0.2683256885 0.2032509315 0.6399134179 0.4015447534 0.002422313289
B =200 0.2689 0.2047 0.6447 0.4011 0.002361
B =500 0.2684 0.2052 0.6398 0.3998 0.002156
B=1000 0.2687 0.2038 0.6367 0.4013 0.002345

25 APPL 0.1731572056 0.1923136966 0.1288715334 0.5391931046 0.004471352237
B =200 0.1710 0.1937 0.1270 0.5383 0.003225
B =500 0.1722 0.1926 0.1289 0.5395 0.003584
B =1000 0.1731 0.1923 0.1290 0.5396 0.003762

35 APPL 0.1574494382 0.2003765627 0.2340377215 0.1447994448 0.01427190012
B =200 0.1568 0.2004 0.2335 0.1452 0.01401
B =500 0.1562 0.2008 0.2309 0.1450 0.01425
B =1000 0.1571 0.2004 0.2348 0.1444 0.01432

45 APPL 0.1678335148 0.1401358740 0.2271996278 0.1300985538 0.0007586864666
B =200 0.1660 0.1402 0.2261 0.1281 0.0006130
B =500 0.1675 0.1404 0.2274 0.1299 0.0007100
B=1000 0.1676 0.1401 0.2271 0.1300 0.0006574

55 APPL 0.1183004083 0.1078244912 0.1854762190 0.1324662485 0.001183628210
B =200 0.1175 0.1081 0.1856 0.1318 0.001190
B =500 0.1177 0.1071 0.1851 0.1327 0.001185
B=1000 0.1179 0.1072 0.1855 0.1324 0.001186

75 APPL 0.1623131704 0.1041300347 0.1915669587 0.07657912379 0.0008932239966
B =200 0.1627 0.1036 0.1921 0.07565 0.0008918
B =500 0.1625 0.1042 0.1909 0.07671 0.0008864
B =1000 0.1624 0.1042 0.1910 0.07641 0.0008984

95 APPL 0.1272179181 0.1320419450 0.08651961726 0.06644847628 0.001396997097
B =200 0.1259 0.1319 0.08662 0.06629 0.001427
B =500 0.1267 0.1324 0.08616 0.06634 0.001390
B=1000 0.1273 0.1323 0.08685 0.06630 0.001412
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Table 6 Median Relative Errors for S-Plus Approximations vs. Exact APPL Values from the 40
Cells in Table 5

Sample Uniform(—1,1) T(5) Gamma(1,1) Gamma(1,0.1)

size Normal(0, 1) (short tailed) (heavy tailed)  (slightly skewed)  (heavily skewed)
5 0.0021 0.0085 0.0011 0.0015 0.0021

15 0.0014 0.0027 0.0050 0.0006 0.0319

25 0.0003 0.0001 0.0010 0.0008 0.1586

35 0.0022 0.0001 0.0033 0.0027 0.0034

45 0.0014 0.0003 0.0004 0.0008 0.1335

55 0.0034 0.0058 0.0001 0.0005 0.0020

75 0.0005 0.0007 0.0030 0.0022 0.0058

95 0.0006 0.0020 0.0038 0.0022 0.0107

took substantially longer than S-Plus to compute the
standard error was when the sample size was n =95
for any of the distributions. To better visually sum-
marize the precision of the results in Table 5, Table 6
displays the relative errors in the S-Plus approxima-
tions to the exact APPL value for each individual cell
in Table 5 associated with B =1000. As can be seen
from Table 6, the relative errors range from as small
as 0.0001 to as large as 0.1586. No significant trend
is apparent for the various sample sizes, but the rela-
tive error is typically highest for the heavily skewed
gamma distribution.

In conclusion, for small and moderate sample sizes
and test statistics that are tractable for APPL, the
exact approach to bootstrapping eliminates resam-
pling error and can even reduce computation time
compared to some statistical software packages (such
as Minitab) where user-written macros are required to
perform bootstrapping.
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Appendix
This appendix contains APPL code for solving our exam-
ples. The five examples from Section 2 given below con-
sider various sampling mechanisms (without replacement
and with replacement) and types of sampling distributions
(finite support and infinite support).

ExaMPLE 1 (SAMPLING WITHOUT REPLACEMENT; FINITE
SuPPORT; EQUALLY LIKELY PROBABILITIES).

X := UniformDiscreteRV(1, 25);

Y := OrderStat(X, 15, 8, "wo");

PDF(Y, 10);

ExXAMPLE 2 (SAMPLING WITHOUT REPLACEMENT; FINITE
SuPPORT; NONEQUALLY LIKELY PROBABILITIES).

X := [[pl, p2, p3, p4], [1, 10, 100, 10007,

["Discrete", "PDF"]];
OrderStat(X, 3, 2, "wo");

ExaMPLE 3 (SAMPLING WITHOUT REPLACEMENT; INFINITE
SUPPORT).

X := GeometricRV(1/2);

OrderStat(X, 2,1, "wo");

ExampPLE 4 (SAMPLING WITH REPLACEMENT; FINITE SUP-
PORT).

X := UniformDiscreteRV(1, 6);

OrderStat(X, 8,1);

ExamPLE 5 (SAMPLING WITH REPLACEMENT; INFINITE
SUPPORT).

X := GeometricRV(1/4);

Y := OrderStat(X, 5, 3);

Mean(Y);

Variance(Y);

The three examples from Section 3 given below (rat-
survival-treatment case only) consider various statistics that
can be used in bootstrapping.

ExaMPLE 1 (COMPARING MEDIANS).

X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);

Y := OrderStat(X, 7, 4);

sqrt(Variance(Y));

ExaMPLE 2 (COMPARING MEANS).

X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);
W := ConvolutionIID(X, 7);
g := [[x -> x/7], [-infinity, infinity]];

Y := Transform(W, g);

sqrt(Variance(Y));

ExaMPLE 3 (COMPARING RANGES).

X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);
Y := RangeStat(X, 7);

sqrt(Variance(Y));
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