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Abstract

A data set of missiles tested at various times consists entirely of left- and right-censored observations. We
present an algorithm for computing the nonparametric maximum likelihood estimator of the survivor
function. When there are a signi"cant number of tied observations, the algorithm saves signi"cant computa-
tion time over a direct implementation of the survivor function estimate given in Andersen and R+nn,
(Biometrics 1995; 51:323}9).

Scope and purpose

The algorithm presented here is of use to a modeler interested in computing the nonparametric maximum
likelihood estimator of the survivor function for a data set that consists solely of left- and right-censored
observations, which also contains tied observation times. This estimator is of use to a modeler in analyzing
a data set of nonnegative response times, as in the case of a reliability engineer modeling component survival
times or a biostatistician modeling patient survival times. � 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Kaplan}Meier product-limit estimator is commonly used for survivor function estimation
for a data set containing right-censored observations [1]. We consider the problem of estimating
the survivor function for a data set consisting solely of left- and right-censored observations.
Computing the nonparametric maximum likelihood estimate (NPMLE) of the survivor function in
this case is not trivial, although no iterative methods are required. This paper gives an algorithm
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for computing the NPMLE of the survivor function S(t) using an estimator given in Andersen and
R+nn [2]. The algorithm is applied to a data set of missile tests.

Following Andersen and R+nn's notation, let X"(X
�
,X

�
,2,X

�
) be the vector of i.i.d. failure

times with survivor function S and let T"(¹
�
,¹

�
,2,¹

�
) be the vector of observation times,

independent of X. The i.i.d. pairs (¹
�
,D

�
) are observed for i"1, 2,2, n, where the indicator

functionD
�
"I(X

�
)¹

�
) is one when the observation is left-censored (i.e., X

�
)¹

�
), and zero when

the observation is right-censored (i.e., X
�
'¹

�
).

One could envision several scenarios where an algorithm of this type might be used. Two such
scenarios follow.

� An educational psychologist is interested in the age at which a child is able to master a particular
task. The psychologist tests n children and records the age of child i, ¹

�
, and whether or not

child i was able to master the task D
�
. All observations are either left censored (D

�
"1 if

the child successfully completes the task) or right censored (D
�
"0 if the child fails to complete

the task).
� An automobile manufacturer may routinely require their dealerships to inspect a particular part

(e.g., the mu%er) on every vehicle that enters their service facility. The dealership inspects
n vehicles and records the odometer reading ¹

�
, along with whether the mu%er is defective

(D
�
"1) or passes inspection (D

�
"0).

Andersen and R+nn [2] indicate that the NPMLE for the survivor function is the solution to an
isotonic regression problem. Assuming that the observation times are ordered so that
¹

�
)¹

�
)2)¹

�
, de"ne

H
�
"

�
�
���

D
�

for i"0, 1,2, n, and consider the step function associated with plotting i vs. H
�
. The greatest

convex minorant is the piecewise linear function that falls below the step function and connects the
bottoms of the steps under the constraint that the greatest convex minorant must be a convex
function. 1!SK (¹

�
) is the left-continuous derivative at i of the piecewise-linear function, and

SK (t)"SK (¹
�
) for t3(¹

�
,¹

���
), where ¹

�
"0 and ¹

���
"#R.

Some additional notation will be helpful when developing an algorithm for computing the
NPMLE of the survivor function when ties in the observation times are present. Let k be the
number of distinct observation times. For j"1, 2,2, k, let >

�
be the observation time, n

�
be the

number of items tested at time>
�
, and ¸

�
be the number of left-censored observations at time>

�
. It

is assumed that the left-censored observations are placed before the right-censored observations in
computing the greatest convex minorant for reasons discussed in Section 2.

Table 1 contains a left- and right-censored data set consisting of n"2534 missiles tested at
k"55 distinct observation times ranging from >

�
"2 to >

��
"60 months. Each missile tested

either fails the test, contributing a left-censored observation, or passes the test, contributing
a right-censored observation. A total of ���

���
¸

�
"171 missiles failed the test, each contributing

a left-censored observation.
The plot of i vs. H

�
in Fig. 1 for the missile data shows that the convex minorant has seven pieces,

and hence there will be seven discontinuous drops in the survivor function estimate. The survivor
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Table 1
Missile test data

j >
�

n
�

¸
�

1 2 1 0
2 4 5 0
3 6 14 1
4 7 6 0
5 8 3 0
6 10 12 2
7 11 29 1
8 12 18 1
9 13 41 2

10 14 10 0
11 15 6 0
12 16 6 0
13 17 21 0
14 18 27 5
15 19 29 2
16 20 15 3
17 21 33 1
18 22 24 3
19 23 36 0
20 24 95 8
21 25 80 6
22 26 22 13
23 27 80 5
24 28 77 3
25 29 13 5
26 30 28 6
27 31 88 6
28 32 11 1

j >
�

n
�

¸
�

29 33 64 9
30 34 38 10
31 35 77 6
32 36 81 5
33 37 67 6
34 38 26 6
35 39 81 4
36 40 61 4
37 41 65 9
38 42 57 6
39 43 93 1
40 44 35 1
41 45 36 4
42 46 44 5
43 47 12 0
44 48 20 4
45 49 15 3
46 50 43 6
47 51 31 1
48 52 10 3
49 53 16 1
50 54 10 1
51 55 12 1
52 56 1 0
53 57 2 1
54 58 4 0
55 60 3 0

function estimate, including the risers associated with the seven steps, is shown in Fig. 2, and the
values of SK (t) are given in Table 2. The estimate is not plotted beyond the last downward step.

2. Computing S< (t)

Tied observation times imply that not all of the bottoms of the steps need to be considered when
computing the greatest convex minorant. The assumption that left-censored observations be
placed before right censored observations when computing the greatest convex minorant impacts
the NPMLE of S(t). As shown in Fig. 3 for n

�
"5 and ¸

�
"3, the convex piecewise linear function

between the two steps di!ers if the left-censored values are placed "rst (e.g., the "gure on the left) or
last (e.g., the "gure on the right). The solid dots represent the i vs. H

�
values and the greatest convex

minorant is shown by the dashed line connecting the bottoms of the steps. Thus only the last step
associated with a time value >

�
where ¸

�
'0 need be considered in the plot of i vs. H

�
.
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Fig. 1. The step function and greatest convex minorant for the missile data.

Table 2
Survivor function estimates

Interval SK (t)

[0, 17) 1.0000
[17, 33) 0.9578
[33, 39) 0.9378
[39, 40) 0.9351
[40, 44) 0.9344
[44, 47) 0.9320
[47, 60) 0.9022
[60, R) 0.8743

Furthermore, if N
�
,N

�
,2,N

�
are the cumulative number of items on test and M

�
,M

�
,2,M

�
are

the cumulative number of left censorings, then the potential corner points of the greatest convex
minorant occur at the points (N

�
,M

�
), for j"1, 2,2, k. Special accommodations must be made

for j"1.
The algorithm is given in Appendix A and an Splus implementation is given in Appendix B,

which is available from the author. Phase 1 of the algorithm consists of computing the cumulative
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Fig. 2. NPMLE of S(t) for the missile data.

Fig. 3. The e!ect of the placement of left-censored data values on the greatest convex minorant. The solid points denote
"ve (i, H

�
) pairs associated with an observation time with ties.

number of items on test and the cumulative number of left censorings. In order for the algorithm to
handle the case where ¸

�
'0, M

�
and N

�
are set to zero. In order for the algorithm to handle the

case where ¸
�
'0, ¸

���
is set to zero. Phase 2 of the algorithm computes the greatest convex

minorant by checking for the minimal slope between potential corner points. The j loop index is
either incremented by one (if ¸

�
"0) or incremented to the next index associated with the corner

points of the greatest convex minorant (if ¸
�
'0). The index r is incremented every time the

survivor function estimate takes a step downward. Since no slope can exceed one, the variable
MinSlope is initially set to 1.01, and replaced in the search for the smallest slope. The estimated
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survivor function values are stored in s
�
, s

�
,2, and the associated drop times in the estimated

survivor function are stored in d
�
, d

�
,2. Considering the computational complexity, Phase 1 of

the algorithm is O(k), whereas Phase 2 is order O(k�). The time savings occurs over the naive
implementation of the estimator when there are numerous ties, as was the case with the missile
data.
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Appendix A. Algorithm

Procedure NPMLE: Compute the nonparametric survivor function estimate for a data set
consisting entirely of left- and right-censored observations.

Input: For j"1, 2,2, k,
j: index associated with the observation times.
>

�
: observation time.

n
�
: number tested at time >

�
.

¸
�
: number of left-censored observations at time >

�
.

Output: The nonparametric estimate of the survivor function of the time to failure given by the
survivor function values s

�
, s

�
,2 and corresponding drop times d

�
, d

�
,2 .

[Phase 1: Compute the cumulative number of items on test N
�
,N

�
,2,N

�
and the cumu-

lative number of left censorings M
�
,M

�
,2,M

�
. The arti"cial values M

�
"0 and N

�
"0

are inserted to allow the algorithm to correctly handle the boundary condition ¸
�
'0. The

arti"cial value ¸
���

"0 is inserted to allow the algorithm to correctly handle the boundary
condition ¸

�
'0.]

N
�
Q0

M
�
Q0

for jQ1 to k
N

�
QN

���
#n

�
M

�
QM

���
#¸

�
endfor
¸
���

Q0

[Phase 2: Compute the greatest convex minorant and associated survivor function estimate. Let
s be a vector of the complement of the slopes of the greatest convex minorant, i.e., the s vector holds
the survivor function estimates. Let the vector d hold the survivor function drop times. The index
r is incremented upon each drop in the survivor function. Move from corner to corner computing
slopes.]
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rQ1
jQ1

while ����
���

¸
�
'0

if ¸
�
'0 then

MinSlopeQ1.01
for iQj#1 to k#1

if N
���

!N
���

'0 then
SlopeQ(M

���
!M

���
)/(N

���
!N

���
)

if Slope)MinSlope
MinSlope Q Slope
pQi

endif
endif

endfor
s
�
Q1! MinSlope

d
�
Q>

���
rQr#1
jQp

else
jQj#1

endif
endwhile

Appendix B. Splus code

����������������������������������������
�
� Phase 1: read in the data in the form Y}i, n}i, L}i
� compute cumulative sums
�
����������������������������������������

data Qmatrix(scan(‘‘left1.d’’), byrow " T, ncol " 3)
times Qdata[ ,1]
numleft Qdata[ ,3]
k Qlength(numleft)
n Qcumsum(data[ ,2])
m Qcumsum(numleft)
numleft[k � 1] Q0
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�����������������������������������������
�
� Phase 2: compute greatest convex minorant and survivor function
�
�����������������������������������������

s Qrep(0, k)
d Qrep(0, k)
j Q1
r Q1
while (sum(numleft[j:(k � 1)]) ' 0) �

if (numleft[j] ' 0) �
minslope Q1.01
for (i in (j � 1):(k � 1)) �

if (j ' 1) �
if (n[i - 1] - n[j - 1] ' 0) �

slope Q(m[i - 1] - m[j - 1]) / (n[i - 1] - n[j - 1])
�

�
else

�
if (n[i - 1] ' 0) �

slope Qm[i - 1] / n[i - 1]
�

�
if (slope (" minslope) �

minslope Qslope
p Qi

�
�
s[r] Q1 - minslope
d[r] Qtimes[p - 1]
r Qr � 1
j Qp

�
else
�

j Qj � 1
�

�
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�����������������������������������������
�
� Phase 3: plot the survivor function estimator
�
�����������������������������������������

postscript(file " ’’left.ps’’, width " 6.1, height " 7.1, horizontal " F)
par(mai " c(1.0, 1.0, 0.4, 0.4))
plot(c(0, d[1]), c(1, 1), xlab"’’t’’, ylab"’’S(t)’’, bty"’’l’’,

xlim " c(0, max(times)), ylim " c(0, 1),
sub"’’’’, las " c(1), type " ’’l’’, font " 3)

segments(d[1], 1, d[1], s[1])
if (r ' 2) �

for (jj in 2:(r - 1)) �
segments(d[jj - 1], s[jj - 1], d[jj], s[jj - 1])
segments(d[jj], s[jj - 1], d[jj], s[jj])

�
�
dev.off() � this will shut down the postscript device
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