APPL: A Probability Programming Language

Maj. Andrew G. GLEN, Diane L. EvaNS, and Lawrence M. LEEMIS

Statistical packages have been used for decades to analyze
large datasets or to perform mathematically intractable sta-
tistical methods. These packages are not capable of working
with random variables having arbitrary distributions. This arti-
cle presents a prototype probability package named APPL (A
Probability Programming Language) that can be used to manip-
ulate random variables. Examples illustrate its use. A current
version of the software can be obtained by contacting the third
author at leemis @math.wm.edu.
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1. INTRODUCTION

Probability theory consists of a vast collection of axioms and
theorems that provides the scientific community with many con-
tributions, including the naming and description of random vari-
ables that occur frequently in applications, the theoretical results
associated with these random variables, and the applied results
associated with these random variables for statistical applica-
tions. No one volume categorizes its work in exactly these three
ways, but the literature’s comprehensive works accomplish these
goals. One stark omission is apparent in the literature—there is
no mention of an ability to automate the naming, processing,
or application of random variables. This omission is even more
profound when one considers the tedious nature of the math-
ematics involved in the execution of many of these results for
all but the simplest of examples. In practice, the level of tedium
makes the actual execution untenable for many random vari-
ables. Automation of certain types of these procedures could
eradicate this tedium.

Many existing statistical software packages, such as SPSS,
SAS, and S-Plus, have numeric tools to apply statistical pro-
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cedures. Most computer algebra systems, such as Maple and
Mathematica, contain built-in statistical libraries with symbolic
capabilities for use in statistical computations. Further, Karian
and Tanis (1999, preface) developed procedures in Maple to
serve as a supplement for “statistical analysis and also explo-
rations within a rich mathematical environment.” The only effort
to automate probability manipulations and calculations that we
have found to date is the Mathematica-based mathStatica due to
Rose and Smith (in press). This paper introduces a Maple-based
conceptual probability software package, referred to as “A Prob-
ability Programming Language” (APPL), that fills the existing
technology gap in probability theory.

APPL has been successfully integrated into three classes
(mathematical statistics, reliability, and probability) at The Col-
lege of William & Mary. It is primarily used as a time-saving
device and experimental tool. Students work small problems
from first principles, and APPL allows them to both check their
work and solve more time-consuming problems.

The problem below (Hogg and Craig 1995, p. 287) is a sample
of the type of question that can be worked by hand, then have
the solution checked using APPL. Furthermore, a student can
easily change any of the arguments in the problem (e.g., the
sample size or critical value) to see if the results of the change
match their intuition.

Example 1. Let X; and X5 be iid observations drawn from
a population with PDF

flx) =027 0<z<1,

where & > 0. Test Hy: 6 = 1 versus Hy: 6 > 1 us-
ing the test statistic X;Xs and the critical region C =
{(X1,X2)|X1X5 > 3/4}. Find the power function and signif-
icance level « for the test.

The APPL code to compute the power function is

n := 2;

crit := 3 / 4;

assume (theta > 0) ;

X := [[x -> theta * x © (theta - 1)],
[0, 1], ["Continuous", "PDF"]];

T := ProductIID(X, n);

power := SF(T, crit);

which yields

Pr(rejecting Hol6) = 1 — (3/4)% + 0(3/4)% In(3/4).

The fact that the population distribution is nonstandard in-
dicates that the random variable X must be defined using the
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“list-of-sublists” data structure used in APPL (and described
in Section 3.1). The assume procedure defines the parameter
space. The ProductIID procedure computes the product of
two independent and identically distributed random variables X
and assigns it to the variable T. Last, the power function is de-
fined using the survivor function (SF) to compute Pr(T > crit
= 3/4).

To compute the significance level of the test, the Maple state-
ment

alpha := subs(theta = 1, power);

is required, yielding « = 1/4 + (3/4) In(3/4) = .0342. To plot
the power function requires the additional Maple statement

plot (power, theta = 0 4) ;

Obviously, this example can be generalized for different sam-
ple sizes, population distributions, and critical values with only
minor modification.

We end this section with three other problems that might be
assigned in an introductory mathematical statistics class, along
with the APPL code to solve them.

Example 2. Let X1, X5, ..., X190 beiid U(0,1) random vari-
ables. Find the probability that the sum of X7, Xo,..., X is

between four and six; that is, compute Pr (4 < Z;gl X; < 6) .
The APPL code to solve this problem is

n := 10;

X := UniformRV (0, 1);

Y := ConvolutionIID(X, n);

CDF (Y, 6) - CDF(Y, 4);
655177

which yields exactly gg7555, or approximately .722.

The central limit theorem and Monte Carlo simulation are of-
ten used for problems like this one. The central limit theorem
yields only one digit of accuracy here since n is only 10. Monte
Carlo requires custom programming and the result is often stated
as an interval around the true value. Also, each additional digit
of accuracy requires a 100-fold increase in the number of repli-
cations.

Example 3. Let X ~ triangular(1,2,4) and YV ~
triangular(1,2,3). If X and Y are independent, find the dis-
tribution of V' = XY

The APPL code to solve this problem is

X := TriangularRV (1, 2, 4);
Y := TriangularRV (1, 2, 3);
V := Product (X, Y);

which returns the probability density function of V' as shown in
Figure 1.

Example 4. Let X be a random variable with the distribution
associated with the Kolmogorov—Smirnov (KS) test statistic in
the all parameters known case with a sample size of n = 6
(Drew, Glen, and Leemis 2000). Similarly, let Y be a KS random
variable (all parameters known) with n = 4. If X and Y are
independent, find var [max {X,Y'}].

The APPL code to solve this problem is

X := KSRV (6) ;
Y := KSRV (4);
Z := Maximum (X, Y);

Variance (Z) ;

1025104745465977580000192015279

which yields g3=0 T 6Ti55559893007199 76345600

.0122337.

In the last three examples, an instructor might be hesitant to
assign these as homework or exam questions due to the tedium
required to determine their solutions. The APPL language allows
students to see that tools exist that can get exact solutions to
problems requiring repetitive operations.

or approximately

2. NOTATION AND NOMENCLATURE

APPL presently considers only continuous random variables.
Similar data structures and algorithms are being developed for
discrete distributions. Use is made of the following acronyms
and functional notation for representations of a continuous ran-
dom variable X:

e probability density function (PDF) fx(x),

e cumulative distribution function (CDF)

Fx(x) = ffoo fx(s)ds,

e survivor function (SF) Sx(z) =1 — Fx(z),

e hazard function (HF) hx (x) = gf{ ((z)),

e cumulative hazard function (CHF) Hx (z) = [*__ hx(s)ds,
and

e inverse distribution function (IDF) Fi* (u).

The term “piecewise” refers to PDFs (and other functions)
that can be constructed by piecing together various standard
functions, such as polynomials, logarithms, exponentials, and
trigonometric functions; for example, the triangular(1, 2, 3) PDF
has two pieces, each of which is a linear function. The abbrevia-
tion “N(u, 0)” is used to refer to the normal distribution, where
the second parameter is the standard deviation, not the variance.
Also, “U(a, b)” is used to represent the uniform distribution
with parameters a and b. Subscripts in parentheses represent
order statistics; for example, the rth order statistic associated

%”hw—k%lnv—%v—k% l<v<?2
—%vlnv—lllnv—&—%v—k%’an—S—&—%ln? 2<v<3
fr(v) = —vlnv —2Inv+20+ Lm2- 23 -4+ 4 n2-2n3 3<v<4
viv) = %’1111}—#%1111}—%1113—%ln?—%v—14ln2—21n3+%4 4<v<6
glnv—l—%lnv—&—%lnii—%v—%1n2—81n2+%—|—4ln3 6<v<8
—%1nv—4lnv—|—%”ln2—|—§ln3+%v—8+81n2—|—41n3 8 <v<12.

Figure 1. The PDF of V Using APPL.
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with a random sample X, Xo, ..., X, is denoted by X ;). The
abbreviation “iid” is used to denote independent and identically
distributed random variables. The terms “fully specified,” “semi-
specified,” and “unspecified” are used to describe the degree to
which parameters are specified as constants or fixed parameters
in a distribution. For example, the exponential(1) distribution is
a fully-specified distribution. The Weibull(1, ) and the N(0, o)
are both semi-specified distributions. The triangular(a, b, c) and
exponential(\) distributions are both unspecified. Typewriter

font is used for APPL statements. The Maple input prompt “>
has not been included in the examples.

3. APPL OVERVIEW

The notion of probability software is different from the no-
tion of applied statistical software. Probability theory contains
numerous theorems (e.g., the sum of normal random variables
is normal) and calculations (e.g., the product of two random
variables) that require symbolic, algebraic manipulations. Ap-
plied statistical calculations are usually numeric manipulations
of data based on known formulas or algorithms associated with
models. Availability of computer algebra systems such as Maple
and Mathematica facilitate the development of software that will
manipulate functions, as opposed to computing numbers.

As described in Maple Version 6’s help menu, its statis-
tics package “provides data analysis functions, such as various
means and quantiles, plotting functions, such as histograms and
scatter plots, and data manipulation functions, such as weighted
moving average and standard scores. Also available are least
square fit, random number generation, analysis of variance (one
way), data import from a file and numerical evaluation of statis-
tical distributions.” The procedures in this package mainly carry
out numeric computations and plots associated with datasets.
Although this is a valuable feature of the Maple software, these
procedures do not define or operate on random variables. For
example, the Maple statistical procedure mean is unable to de-
termine the mean of aN(2,4) random variable, but it can compute
the mean of the dataset {1, 2, 3, 3, 6, 7}. Since the Maple sta-
tistical procedures cannot be applied to probability distribution
functions, obtaining probability results with these procedures is
impossible.

Karian and Tanis’s (1999) statistics supplement to Maple
“consists of about 130 procedures written specifically to promote
explorations of probabilistic and statistical concepts.” Their
supplement includes procedures for finding descriptive statis-
tics (e.g., Mean, Median, and Variance), generating ran-
dom samples from distributions, plotting (e.g., BoxWhisker,
PlotEmpPDF, and StemLeaf), working with regression and
correlation problems, producing the PDF and CDF of some dis-
tributions, finding percentiles of some distributions, producing
confidence intervals, performing an analysis of variance, per-
forming goodness-of-fit and nonparametric tests (e.g., QQFit,
ChiSquareFit,and KSFit), and computing the convolution
of two random variables. While Karian and Tanis have utilized
their efforts in building mainly an excellent statistical package
in Maple, we have focused our energy into constructing a prob-
ability package for the manipulation of random variables.
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At present, APPL is limited to univariate, continuous, inde-
pendent random variables, and the complicated transformations
and combinations that can result between independent random
variables. A set of algorithms that derives functional represen-
tations of distributions and uses these functions in a manner that
is typically needed in applications is described in the Appendix.
Specifically, algorithms have been developed that will conduct
the following operations:

e supply a common data structure for representing the distri-
butions of univariate random variables;

e convert any functional representation of a random variable
into another functional representation using the common data
structure; that is, allowing conversion amongst the PDF, CDF,
SF, HF, CHF, and IDF;

e provide straightforward instantiation of well-known distri-
butions, such as the exponential, normal, and uniform distribu-
tions, with either numeric or symbolic parameters;

e determine the distribution of a simple transformation of a
continuous random variable, Y = ¢(X), including piecewise
transformations;

e calculate the PDF of sums of independent random vari-
ables; thatis, Z = X + Y,

e calculate the PDF of products of independent random vari-
ables; that is, Z = XY;

e calculate the PDF of the minimum and maximum of in-
dependent random variables; that is, Z = min{X,Y} and
Z =max{X,Y};

e calculate the PDF of the rth order statistic from a sample
of n iid random variables;

e generate random variates associated with a random vari-
able;

e plot any of the six functional forms of any fully-specified
distribution; for example, the CDF;

e provide basic statistical abilities, such as maximum likeli-
hood estimation, for distributions defined on a single interval of
support;

e determine common summary characteristics of random
variables, such as the mean, variance, and moment generating
function; and

e complement the structured programming language that
hosts the software (in this case Maple) so that all of the proce-
dures listed above may be used in mathematical and computer
programming in that language.

3.1 The Common Data Structure

Implicit in a probability software language is a common, suc-
cinct, intuitive, and manipulatable data structure for describing
the distribution of a random variable. This implies there should
be one data structure that applies to the PDF, CDF, SF, HF, CHF,
and IDF. The common data structure used in this software is
referred to as the “list-of-sublists.” Specifically, any functional
representation of a random variable is presented in a list that
contains three sublists, each with a specific purpose. The first
sublist contains the ordered functions that define the functional
forms of the distribution. The PDF representation of the triangu-
lar distribution, for example, would have the two linear functions
that comprise the two segments of its PDF for its first sublist.
The second sublist is an ordered list of real numbers that de-



lineate the end points of the intervals for the functions in the
first sublist. The end point of each interval is the start point of
the succeeding interval. The third sublist indicates what distri-
bution form the functions in the first sublist represent. The first
element of the third sublist is either the string "Cont inuous"
for continuous distributions or "Discrete" for discrete dis-
tributions. The second element of the third sublist shows which
of the six functional forms is used in the first sublist. The string
"PDF", for example, indicates the list-of-sublists is currently a
PDF list-of-sublists.

Examples:

e The following APPL statement, executed in Maple, assigns
a list-of-sublists that represents the PDF of a U(0, 1) random
variable to the variable X:

X := [[x -> 11, [0,

["Continuous",

1],
"PDF"] ] ;

e The triangular distribution has a PDF with two pieces to its
distribution. The following statement defines a triangular(0, 1,
2) random variable X as a list-of-sublists:

X := - X]l [OI ll

IIPDFH] ] ;

[[x -> x, x -> 2 21,

["Continuous",

e An exponential random variable X with a mean of 2 can be
defined in terms of its hazard function with the statement:

X := [[X _>1/2]I

["Continuous",

[0, infinity],
llHFll]] ,.

e Unspecified parameters can be represented symbolically.
A N(6, 1) random variable X can be defined with the statement:

X := [[x -> exp(-(x - theta) ~ 2 / 2)
/ sgrt(2 * Pi)],
[-infinity, infinity],

["Continuous", "PDF"]];

e The parameter space can be specified by using the Maple
assume function. Consider the random variable 7" with HF

A O<t<1
hT(t):{/\t t>1

for A > 0. The random variable T can be defined by the state-
ments:

assume (lambda > 0) ;

T := [[t -> lambda, t -> lambda * t],
[0, 1, infinity],
["Continuous", "HF"]];

e The syntax allows for the endpoints of intervals associated
with the support of a random variable to be specified symboli-
cally. A U(a, b) random variable X is defined by:

X :=[[x->1/ (b -al, I[a,

["Continuous", "PDF"]];

bl,

Common, continuous, univariate distributions, such as the expo-
nential and normal distributions, can also be defined using a pro-
cedure that creates the appropriate list-of-sublists. The following
distributions have been pre-defined in APPL: ArcSin, ArcTan,
Beta, Cauchy, Chi, ChiSquare, Erlang, Error, Exponential, Ex-
ponentialPower, ExtremeValue, F, Gamma, GeneralizedPareto,
Gompertz, HyperbolicSecant, HyperExponential, HypoExpo-
nential, IDB, InverseGaussian, InvertedGamma, KS, LaPlace,
LogGamma, Logistic, LogLogistic, LogNormal, Lomax, Make-
ham, Muth, Normal, Pareto, Rayleigh, StandardCauchy, Stan-
dardNormal, StandardTriangular, StandardUniform, T, Trian-
gular, Uniform, and Weibull.

Each distribution is defined in a procedure whose name has
the letters RV appended to its name given above. A chi-square
random variable with seven degrees of freedom X, for example,
can be defined by the APPL statement

X := ChiSquareRV (7) ;

which defines the appropriate list-of-sublists. The reader inter-
ested in the details associated with APPL is encouraged to read
the appendix prior to reading the next section.

4. APPLICATIONS AND EXAMPLES

A key contribution of APPL is that it provides a new way
of viewing existing problems and opens new avenues for their
solutions. This section provides examples where the problem-
solving paradigm can shift due to the ability to find exact dis-
tributions of random variables. The four subsections that follow
highlight some diverse areas of application that can be addressed
with APPL. The section starts with relatively simple examples
involving the central limit theorem (CLT). In these examples,
one will be able to determine the error of the CLT approxi-
mations to distributions involving sums of independent random
variables. The second subsection contains a demonstration of
how to use APPL to generate mathematically intractable tables,
graphs, and charts, effectively reducing the need for the volumes
containing these entities. The third subsection contains a demon-
stration of how the software allows for modeling lifetimes using
hazard functions. The final subsection provides a discussion on
a simple methodology by which APPL furthers one’s ability to
identify outliers in samples. These four examples serve only to
suggest the nature of applications of APPL; many more appli-
cations exist.

4.1 Exactness in Lieu of CLT Approximations

The CLT with iid samples can be used to facilitate in-
ference about the population mean. The CLT implies that
X = % >oi, X; is asymptotically normally distributed when
the X;’s are iid random variables with finite mean and variance.
Application of the CLT becomes restricted, however, with small
sample sizes, with skewed data, or in the presence of outliers
(Moore and McCabe 1999, pp. 516-517). In these cases, an al-
ternative method is to determine the exact distribution of X.
Once the distribution X is found, one can use it to make sta-
tistical inferences about the population mean. A few examples
follow.
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Table 1. Fractiles for Exact and Approximated Distributions

Fractile
Approach Distribution .9 .95 .975 .99
Exact X 1.240 1.318 1.388 1.473
1
CLT N (1, \/ﬁ) 1.234 1.300 1.358 1.425

Let X ~ exponential(1). By the CLT, the distribution of
Y = X is approximately N(1, ﬁ) for large n. For the case
n = 3, one can compute the exact distribution of Y with the
following statements:

ExponentialRV (1) ;

3;

ConvolutionIID (X, n);

Transform(Y, [[x -> x / n],
[0, infinityl]);

KoKB X

7

The resulting Erlang PDF is fy(y) = %yze*:’y for y > 0,
which is predictably non-normal in shape since n is too small
for the normality of the CLT to apply to such a skewed un-
derlying distribution. Now consider the case of n = 30, often
considered a sufficiently large sample size for an adequate CLT
approximation. Here a computation of the error associated with

statements. The result is the following Erlang PDF:

~24631531333923339843 7500000 29,30y
N 10577732774609

Table 1 contains selected fractiles for both the exact distribution
of X and its CLT approximation, the N(1, \/%) distribution.
For the selected fractiles, the approximation is only good to
about one digit beyond the decimal point. The additional APPL
statements to generate the CLT values in Table 1 are:

Iy ()

y > 0.

Z NormalRV (1, 1 / sgrt(n));
alpha [0.9, 0.95, 0.975, 0.99];
for i from 1 to 4 do

evalf (IDF(z, alphalil));
od;

For a related application, an old, approximate method of gen-
erating random variates from the standard normal distribution
(e.g., Park and Leemis 2001) is:

Z*=U1+Us+---+ U2 — 6,

where the U;’s are iid U(0, 1) random variables. Using APPL,
the PDF of Z* is shown in Figure 2.

The following statements determine the exact distribution of
this 12-fold convolution and the fourth moment of Z* and a
standard normal random variable Z:

the approximation is provided. To obtain the PDF of X, change U := UniformRV (0, 1);
the second line of codeton := 30; and re-execute the Maple Ul2 := ConvolutionIID(U, 12);
m(z—kﬁ)n, —-6<z<-5
__ 1 a1 1,10 11,9 107 .8 517 .7 _ 2477 .6 _ 11737 .5
3623300 67200 30240 20160 10080 7200 7200
54797 .4 _ 250657 ,.3 _ 1113317 .2 _ 4726777 ,. _ 18595037 Secx<—4
10080 20160 60430 302400 3326400 °

ﬁ att + 17%80 at? + 1010180 a? + 5;6 x® + % a’ + % af
00 4 MO0 B g B0 T dca<os
okt o L 10 AL g9 25,8 33,7 13,6 143 ,5
*% ‘- 1518230 SfﬁxQ*%er 16616239270’ —3 <z <2
1201960 att + ﬁ at? + 1010180 a” + % a® + % a’ + ﬁ a® + #(1)0 @’
+ 52054 ot + % o’ — 3506234 a? + 5&%00 T+ 16656532210’ —2<z<-1
78641100 ot — 1441100 at? + ﬁ a® — % a® + % ot — % a? + 16656531270%’ —1<z <0

Tz () = m H— 1441100 at? + leio 5 - %mG + 73710554 - %ﬁ + 16656531270707 0<z<l1
. 10_%m9+ﬁx8_%$7+ﬁx6_%x5
+ 2 gt — Mg 208 g2 Al B552l l<z<?2
oo T~ mea Tt e T~ e T T a0 ® — 1320 + 50 20
—%x“—k%x?’—%:ﬁ %x+16616239270’ 2<z <3
77251760 ot + 17%80 - 1010180 o + % a® — %go T+ % ¢ % a®
P s e <<
m att — ﬁ a!? + 3012140 ¥ — 2(1)%0 a® + 18(1»750 al — % a® + % @’
- ijgggg ot + 22500166507 a® — 1(15(1)?12(1)7 a? + 4:>>7()22647()7()7 - 1383529652100307’ 4<r <5
7399116800 o't + 6041800 !? — 20}60 o’ + T120 ¥ — % o’ + % a® — % a®
+%x4_%x3+43856x2_%w+112429567 5< <6

Figure 2. The PDF of Z* Using APPL.
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Zstar := Transform(Ul2, [[x -> x - 6],
[-infinity, infinity]]);
Z := NormalRV (0, 1);

Kurtosis (ZStar) ;
Kurtosis (Z) ;

The distribution of Z* is useful because, like the standard normal

distribution, its mean is zero, its variance is one, and its skewness

is zero. The first difference between th(:1 moments of Z* and Z

occurs in the kurtosis, F Z-EZ7] =F { z* 4},which
(57 &)

equals 2.9 for Z* and 3.0 for a standard normal random variable

Z.

In the overlaid Maple plots of the standard normal PDF and
fz+(x) shown in Figure 3, it is apparent that this approximate
distribution fits the standard normal distribution in the PDF very
nicely except around z = 0 [where fz(0) = \/% = .399 and

fz+(0) = 1665653127070 =~ 394] and, of course, in the tails, since the

approximate distribution only has support on (—6, 6). To obtain
overlaid plots of these two distributions, the APPL P1lotDist
procedure and Maple plots [display] procedure are used.

Plotl PlotDist (Zstar, -6, 6):
Plot2 := PlotDist(Z, -6, 6):
plots[display] ({Plotl, Plot2});

4.2 A Mathematical Resource Generator

APPL is also able to generate tables, graphs, and charts. The
term resource refers to tables, graphs, and charts, to include
such items as means, critical points, variances, and so on. APPL
can be invoked to reduce the need for such tables. Additionally,
since these computations can be produced automatically, pro-
grams can be designed to produce needed values in real time,

0.4

Figure 3. Overlaid plots of fz« (x) and the standard normal PDF.

as opposed to being restricted to knowing in advance which ele-
ment of which table will be needed for program execution. There
are many references for critical tables for common distributions,
in addition to common tables given in introductory statistics ta-
bles, that software such as this (and others) effectively replace.
Highlighted, however, will be two recent books, CRC Handbook
of Tables for Order Statistics from Inverse Gaussian Distribu-
tions with Applications (Balakrishnan and Chen 1997) and CRC
Handbook of Tables for the Use of Order Statistics in Estima-
tion (Harter and Balakrishnan 1996). These books were selected
because of the relatively complex nature of the information they
present. Also, they were chosen to highlight that even as late as
1997, the scientific community had to rely on tables and charts
for a significant amount of probabilistic information.

First is a comparison of Balakrishnan and Chen’s text with
APPL’s capabilities. This book begins with 39 pages of theory
and references to the inverse Gaussian (IG) distribution and its
order statistics, followed by 645 pages of PDF plots, expected
value tables, covariance tables, estimation tables, and so forth.
APPL is able to create a number of these figures and tables,
and in some cases goes beyond those presented in the text. Page
50, for example, shows the N(0, 1) and the standardized IG(.8)
PDFs overlaid in a single plot. The PDF of a standardized I1G
random variable X (which is listed as equation (2.14) on page
7 of the text) is:

1 3
Ix(@) = 7= <3+kx

The two plots may be overlaid and animated for k increasing
from zero to one as follows:

3/2 , 3
) o—30°/(6+2k) — <@ <oo.

Z := NormalRV (0, 1);

X := [[x->(3/ (3 +k*x)) "~ (3 / 2) *
exp(-3 * x ~ 2/ (6 + 2 * k * x))
/ sqgrt(2 * Pi)],
[-3 / k, infinity], ["Continuous",
"PDF"]1];

NormalExpr := op (unapply(ZI[1] (x)) (x));

InvGaussExpr := op (unapply(X[1] (x)) (x));

unassign(’'k’) ;
plots[animate] ({NormalExpr,

InvGaussExpr}, x = -4 .. 4, k =0 1);
The plot is shown in Figure 4 for k£ = .8. To execute the anima-
tion, first select the plot by clicking on it. Then choose “Play”
from the “Animation” menu. Balakrishnan and Chen used such
plots to show how the two distributions separate as k increases
from zero. For plotting the IG PDF, one is not limited to the
standardized version of the distribution. One could plot any IG
PDF, CDF, HF, and so on. Clearly, one is not limited to just PDF
plots in APPL, nor is one limited to plots of only standardized
IG distributions.

Another recent resource, CRC Handbook of Tables for the
Use of Order Statistics in Estimation (Harter and Balakrishnan
1996), also gives extensive charts for various applications of
order statistics. Appendix C of this book (pp. 326-530) lists
tables of various means, variances, and covariances of order
statistics from many common distributions. For example, Table
C1.1 gives means of order statistics for the N(0, 1) distribution,
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Figure 4. Overlaid plots of the standard normal and standard 1G(.8)
distributions.

Table C2.1 for the means of exponential(1) order statistics, and
so on. APPL can replicate such tables. For instance, to produce
the mean of the n = 8, » = 6 order statistic from the Weibull(1,
.5) distribution, use the statements:

X := WeibullRV(1l, 0.5);
X86 := OrderStat (X, 8, 6);
Mean (X86) ;

which returns 1.760598073, compared to 1.76060 in Harter and
Balakrishnan (1996, p. 392).

Unlike Harter’s text, the software can go beyond computing
means of order statistics. One can, for example, compute the
98th percentile of the same Weibull order statistic and give the
probability that the order statistic exceeds 1.92 with the addi-
tional statements:

evalf (allvalues (IDF (X86,
SF (X86, 1.92);

0.98)));

The correct real values returned are 6.48028842 and
321864302, respectively. Furthermore, we are not limited to
the relatively few base distributions that Harter and Balakrishnan
present in their Appendix C, but can enter any Weibull parameter
values.

There is no implication that these, or any of the vast resource
collections, are archaic. We envision this software augmenting
the information presented in texts such as these. Foreseen is a
shifting away from looking up values in tables; instead, one will
encode the creation of necessary values directly into programs.
The first 208 pages of Harter and Balakrishnan’s text, for ex-
ample, still review theory behind the creation and use of order
statistics. APPL adds to the resource base that books such as
these provide.
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4.3 Modeling with Hazard Functions

The capabilities of APPL allow a shift in the paradigm of
parameterized model design in new ways. The reliability of a
system is often given in terms of the instantaneous rate of fail-
ure; that is, the hazard function. Reliability texts often classify
lifetime distributions into distribution classes that are named
after the shape of the hazard function. Leemis (1995, chap. 3),
among others, defines many of these classes, to include the in-
creasing failure rate (IFR), the decreasing failure rate (DFR),
and the bathtub-shaped (BT) hazard function.

One possible use for APPL is to model systems using a hy-
pothesized shape of a hazard function. Should a system be hy-
pothesized to have a bathtub-shaped HF for example, there are
only a few common distributions with HFs with such a shape.
Leemis (1995, p. 100) listed only two of 16 common reliabil-
ity distributions as having a BT-shaped HF. Instead of being
limited to these distributions, one may hypothesize a family of
distributions with BT-shaped HFs. For example, a second-order
polynomial HF of the form a(x — b)? will have the BT shape as
longasa > 0and b > 0.

Here is an example of using APPL to model with hypothesized
HFs. Consider a sample of failure times [1, 11, 14, 16, 17].
Assuming it is hypothesized that the system should be fit by the
quadratic BT-shaped HF distribution, one can fit these data to
the unspecified distribution as follows.

assume(a > 0);

assume (b > 0);

T := [[t ->a * (£t - b) ~ 2],
[0, infinity],
["Continuous", "HF"]];

PDF (T) ;

The last statement returns the general form of the PDF:
Fr(t) = a(t® — 2th + b%) et (F 3104303 4 5

One can find the values & and b that maximize the likelihood
function as follows:

data :=
hat :=

[1, 11, 14,
MLE (T, data,

16,
[a,

171;
bl);

The results are: a = .0037937, b = 5.93512. The plot of the SF
for T overlaid on the empirical SF is shown in Figure 5.

For another example of modeling in terms of hazard func-
tions, let us hypothesize that risk to a system is seasonal. Such is
the case in many applications such as structures at risk to occur-
rences of category five hurricanes. A periodic hazard function
might be modeled in such a case. Suppose one hypothesizes a
family of periodic HF distributions having HFs of the form

hr(t) =a+bsin(ct), t>0;a>1b], and a,b,ceR.

The parameter a represents a measure of the long-term constant
risk associated with 7T". In other words, increased values of a cor-
respond to a higher likelihood of chance failures. The parameters
b and c control the amplitude and period of the HF, modeling
the severity and length of the cyclic stresses. One can instantiate
the unspecified distribution with the following statement
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Figure 5. The SF of the hypothesized BT-shaped hazard function fit
to the sample [1, 11, 14, 16, 17] overlaid on the empirical SF.

T := [[t -> a + b * gin(c * t)],
[0, infinity],

["Continuous", "HF"]];

and the PDF may be found with PDF (T) . Letting the parameters
take on values of ¢« = 1, b = .5, and ¢ = 10, one gets the
PDF (using the PlotDist procedure) plotted in Figure 6, a
peculiarly multi-modal PDF that decreases exponentially over
time.

4.4 Outlier Detection

The theory and practice of identifying outliers in a dataset is
another APPL application. The literature contains ample meth-
ods for identifying outliers in samples from a normal popula-
tion. Regarding detection of outliers, D’ Agostino and Stephens
(1986, p. 497) wrote “We shall discuss here only the underlying
assumption of normality since there is very little theory for any
other case.” Sarhan and Greenberg (1962, p. 302) and David
(1981) proposed a number of test statistics based on standard-
ized order statistics of normally distributed data. They provide
charts of acceptance and rejection regions in lieu of p values. For
instance, in the fully specified case where p and o are known,
Sarhan and Greenberg proposed the test statistic (X ,,y — p)/o
for testing for extreme observations in normal samples. APPL
is a useful tool for calculating the distribution of order statistics.

APPL may contribute to the outlier detection problem in at
least three ways:

1. There is no need to standardize the test statistic, since the
distribution of the rth order statistic may be found with the pro-
cedure OrderStat.

2. One need no longer rely on charts of rejection regions,
since once the distribution of the rth order statistic is known,
one can directly calculate p values.

Table 2. Pr(X ) > 10) for n = 6 for several population distributions

Distribution Pr (X, > 10)
Weibull (.295, 2) .000973
exponential (1/3) .195839

N (3, 2) .001395
N (3, 4) 217532

3. One is not limited to the assumption of normality. APPL
facilitates finding the distribution of the rth order statistic of a
wide range of distributions.

Here are a few examples. In the sample {1, 2, 3, 4, 5, 10},
it is possible that the last element in the sample is an outlier.
Assuming that the population has a mean of 1 = 3, one could
find the order statistic probability Pr(X ) > 10) for samples
of size n = 6 from various underlying distributions. Let us con-
sider the following possible population distributions, each with
a mean of 3 (set A = /m/6 = .295 for the Weibull case):
Weibull(.295, 2), exponential(1/3), N(3, 2), and N(3, 4). The
probability Pr(X ) > 10) is the significance level against the
null hypothesis that Xy came from this underlying distribu-
tion. The four probabilities can be found with the following
statements:

X1 := WeibullRV(sgrt(Pi) / 6, 2);
X2 := ExponentialRV (1 / 3);

X3 := NormalRV (3, 2);

X4 := NormalRV (3, 4);

evalf (SF (OrderStat (X1, 6, 6), 10));
evalf (SF (OrderStat (X2, 6, 6), 10));
evalf (SF (OrderStat (X3, 6, 6), 10));
evalf (SF (OrderStat (X4, 6, 6), 10));

The results are shown in Table 2. An interpretation is that for
n = 6 the value 10 is an outlier with respect to the N(3, 2) distri-

1.2

0.4

0.2

Figure 6. The PDF of the distribution having periodic hazard function
hr(t) with parametersa = 1, b= .5, and ¢ = 10.
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bution at the .0014 level of significance and to the Weibull(.295,
2) population distribution at the .001 level of significance. It is
not a significant outlier to the other two population distributions.

An extension to this detection example is found in the last two
population distributions, the normal distributions with o equal to
2 and 4. One sets a specified level of significance, say a = .05,
and solves for the value of o that will show a maximum value
of 10 to be an outlier for the normal family of distributions. In
effect what is desired is a solution to the following. Letting X ~
N(3, 0), find o such that Pr(X ) < 10) = .95. One can find &
exactly by manipulating the CDF list-of-sublists representation
of X () in the following way.

The first element of the first sublist contains the CDF of the
sixth order statistic, so it is set equal to .95 and solved for . The
following code produces the solution o = 2.933571640.

X := NormalRV (3, sigma) ;

X6 := OrderStat (X, 6, 6);

X6 := CDF(X6) ;

solve (X6 [1] [1] (10) = 0.95, sigma) ;

The first line of code sets the semi-specified normal distribution
as the population distribution for X . The second line determines
the PDF of X g). The third line converts the PDF of X ) to a
CDF. The last line isolates the first element of the first sublist of
X6 which is the CDF function of the independent variable x and
the unknown parameter o. Theentry (10) provides the indepen-
dent variable a value of 10. Then the Maple solve procedure
solves for the unknown parameter sigma which represents o.
Using .95 as the right-hand side of the equation, as opposed to
95/100, causes Maple to find the floating point solutions.

Similarly, outlier detection can be performed for other popula-
tion distributions for other parameters of interest given a specific
minimum or maximum value.

5. CONCLUSION

APPL consists of Maple procedures that allow a modeler to
define and perform operations on continuous, univariate ran-
dom variables. The examples given in this paper illustrate how
APPL’s ability to automate these calculations can extend the
reaches of probability theory. The APPL software can be used
in probability or mathematical statistics classes. It has spawned
additional research on topics such as:

e the Kolmogorov—Smirnov statistic (Drew, Glen, and
Leemis 2000);

e order statistics from discrete populations (Evans, Leemis,
and Drew 2000);

e goodness-of-fit testing (Glen, Leemis, and Barr in press);

e Benford’s Law (Leemis, Schmeiser, and Evans 2000);

e input modeling for discrete-event simulation (Evans and
Leemis 2000); and

e convolutions of discrete random variables (Evans, Leemis,
and Drew, 2001).

Work is presently underway to extend APPL procedures to
discrete univariate random variables. Future work in the area
of computational probability may include multivariate distribu-
tions, time series analysis, and stochastic processes.
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APPENDIX

This appendix contains illustrative examples of some of the
procedures comprising the core of APPL. More details concern-
ing the procedures shown in the APPL tree diagram in Figure 7
are given at www.math.wm.edu/~leemis/2001amstat.pdf.

Defining continuous random variables. Common continuous,
univariate distributions have pre-defined types that can be used
to reduce keystrokes.

e An exponential(1) random variable X may be created with
the following statement:

X := ExponentialRV (1) ;

e An exponential(\) random variable X, where A > 0, may
be created as follows:

X := ExponentialRV (lambda) ;

e Any distribution can be re-parameterized. An exponential
(%) random variable Y, where # > 0, may be created as follows:

assume (theta > 0);
Y := ExponentialRV(1 / theta);

e The semi-specified Weibull(\, 1), where A > 0, distribu-
tion may be created as follows:

X := WeibullRV (lambda, 1) ;

Changing functional forms of a random variable. The functional
form of a distribution can be converted to and from its six well-
known forms, the PDF, CDF, SF, HF, CHF, and IDF. The routines
return functional forms when they are called with a single param-

eter and scalars when a second optional parameter is included.

e The CDF form of a standard normal random variable is
created with the statements:

X
X

NormalRV (0,
CDF (X) ;

1);

o If X ~ N(0, 1), then the following statements can be used
to find Pr(X < 1.96) = .975.

X := StandardNormalRV () ;
prob := evalf (CDF (X, 1.96));

e For the case of unspecified parameters, the following state-
ments convert an unspecified Weibull PDF to an unspecified
Weibull SF:

X
X

WeibullRV (lambda,
SF(X) ;

kappa) ;

e Finding a quantile of a distribution requires the IDF pro-
cedure. The .975 quantile of a Weibull(1, 2) distribution can be
found with the statement

quant := IDF(WeibullRV (1, 2), 0.975);

e The procedures handle distributions defined in a piecewise
fashion. To find the survivor function of the random variable T’
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Figure 7. APPL tree diagram.
with hazard function X := ExponentialRV (1) ;
ho(t) = A 0<t<l1 1;1:.5; g
T =1 M t>1 or 1 from 1 to n do

for A > 0, the following statements are used:

assume (lambda > 0) ;

T := [[t -> lambda, t -> lambda * t],
[0, 1, infinity],
["Continuous", "HF"]];

SF(T) ;

Plotting Distributions. APPL contains the PlotDist proce-
dure that plots any distribution represented in the list-of-sublists
format.

e The statements used to plot the PDF for the triangular(1, 2,
3) distribution are:

X := TriangularRV (1, 2,
PlotDist (X) ;

3);

e To see a progression of the five PDFs of the order statistics
(the OrdersStat procedure is introduced subsequently) for an
exponential(1) distribution, enter:

PlotDist (OrderStat (X, n,
od;

i), 0, 10);

Transforming a random variable. The Transform procedure
can be used to determine the PDF of the transformation of a
random variable of the form Y = ¢(X), where g(X) may be
defined in a piecewise fashion (Glen, Leemis, and Drew 1997).

e Let X ~U(0,1) and Y = g(X) = 4X. To determine the
PDFof Y:

X := UniformRV (0, 1);
g := [[x -> 4 * x], [-infinity, infinity]];
Y := Transform(X, g);

e The following statements determine the distribution of the
square of an inverse Gaussian random variable with A = 1 and
w=2:

X := InverseGaussianRV (1, 2);
g := [[x 21, [0, infinity]l];
Y := Transform(X, g);

->x 7
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Computing the distribution of order statistics. The OrderStat
procedure returns the PDF of the rth of n order statistics drawn
from a population having the same distribution as the random
variable X.

e The minimum of six iid exponential(1) random variables,
which in turn is exponentially distributed with A = 6, is found
with the statements:

X
Y :=

ExponentialRV (1) ;
OrderStat (X, 6, 1);

Computing products of independent random variables. The
Product and Product IID procedures compute the PDF of
products of random variables (Glen, Leemis, and Drew 2000).

e A plot of the PDF of the product of a standard normal and a
U(0, 1) random variable is found with the following statements:

X NormalRV (0, 1) ;
Y UniformRV (0, 1);
PlotDist (Product (X, Y));

e For ratios of random variables, employ the transformation
ability of APPL, which could be used to calculate the distribution
of a random rate, given independent distributions for distance
and time:

U := UniformRV (0, 10);
T := ExponentialRV (1) ;
R := Product (U, Transform(T, [[x -> 1 / x],

[0, infinityl]l));

Computing convolutions of independent random variables. The
Convolutionand ConvolutionIID proceduresreturnthe
PDF of the sum of independent random variables.

e The sum of a standard normal random variable and a U(0,
1) random variable has a PDF found as follows:

X := NormalRV (0, 1);
Y := UniformRV (0, 1);
7Z := Convolution (X, Y);

e Tanis (1999, p. 391) finds the sum of two continuous ran-
dom variables with PDF

fx(z) =

The PDF and plot of the sum of three of these random variables
is found as follows:

3 2
- -l<z<l
23: T

X := [[X -> (3 / 2) * x 7 2]/ [_11 1]1
["Continuous", "PDF"]];
Y := ConvolutionIID(X, 3);

PlotDist (Y) ;

Computing the minimum or maximum of independent random
variables. The procedures Minimum and Maximum return the
PDF of the minimum and maximum of two independent random
variables given as arguments.
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e The PDF of the minimum of a standard normal random
variable and a U(0, 1) random variable is found as follows:

X := NormalRV (0, 1);
Y := UniformRV (0, 1);
Z := Minimum(X, Y);

e The maximum of two independent unit exponential random
variables, which could represent the system lifetime of a parallel
arrangement of a two-component system, is found as follows:

X :=
Z

ExponentialRV (1) ;
Maximum (X, X);

[Received June 1998. Revised September 2000.]
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