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Statistical packages have been used for decades to analyze large data sets or to perform

mathematically intractable statistical methods. These packages are not capable of working
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1. INTRODUCTION

Probability theory consists of a vast collection of axioms and theorems that, in essence,

provides the scientific community many contributions that include:

• the naming and description of random variables that occur frequently in applications,

• the theoretical results associated with these random variables, and,

• the applied results associated with these random variables for statistical applications.

No one volume categorizes its work in exactly these three ways, but the literature’s com-

prehensive works accomplish these goals. Voluminous works, such as Johnson, Kotz, and

Balakrishnan (1995), or succinct works, such as Evans, Hastings, and Peacock (2000), are

organized on the first contribution above, naming and describing random variables. Works

such as Hogg and Craig (1995), Casella and Berger (1990), and David (1981) organize their

efforts according to the second contribution, covering theoretical results that apply to ran-

dom variables. Works such as Law and Kelton (2000), Lehmann (1986), and D’Agostino and

Stephens (1986) concentrate on the statistical applications of random variables, and tailor

their explanations of probability theory to the portions of the field that have applications in

statistical analysis.

In all these works, as well as countless others, one stark omission is apparent. There

is no mention of an ability to automate the naming, processing, or application of random

variables. This omission is even more profound when one considers the tedious nature of the

mathematics involved in the execution of many of these results for all but the simplest of

examples. In practice, the level of tedium makes the actual execution untenable for many

random variables. Automation of certain types of these procedures could eradicate this

tedium.

Many existing statistical software packages, such as SPSS, SAS, and S-Plus, have nu-

meric tools to apply statistical procedures. Most computer algebra systems, such as Maple

and Mathematica, contain built-in statistical libraries with symbolic capabilities for use in
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statistical computations. Further, Karian and Tanis (1999, preface) have developed proce-

dures in Maple to serve as a supplement for “statistical analysis and also explorations within

a rich mathematical environment.” The only effort to automate probability manipulations

and calculations that we have found to date is the Mathematica-based mathStatica due to

Rose and Smith (2001). This paper introduces a Maple-based conceptual probability soft-

ware package, referred to as “A Probability Programming Language” (APPL), that fills the

existing technology gap in probability theory.

APPL has been successfully integrated into three classes (Mathematical Statistics, Reli-

ability, and Probability) at The College of William & Mary. Its main use is as a time-saving

device and experimental tool. Students have the ability to work small problems from first

principles, and APPL allows them to both check their work and solve more time-consuming

problems.

The problem below (Hogg and Craig 1995, page 287) is a sample of the type of question

that can be worked by hand, then have the solution checked using APPL. Furthermore, a

student can easily change any of the arguments in the problem (e.g., the sample size or

critical value) to see if the results of the change match their intuition.

Example 1. Let X1 and X2 be iid observations drawn from a population with PDF

f(x) = θxθ−1 0 < x < 1,

where θ > 0. Test H0: θ = 1 versus H1: θ > 1 using the test statistic X1X2 and the critical

region C = {(X1, X2)|X1X2 ≥ 3/4}. Find the power function and significance level α for the

test.

The APPL code to compute the power function is

n := 2;

crit := 3 / 4;

assume(theta > 0);

X := [[x -> theta * x ^ (theta - 1)], [0, 1], ["Continuous", "PDF"]];

T := ProductIID(X, n);

power := SF(T, crit);

which yields

Pr(rejecting H0|θ) = 1− (3/4)θ + θ(3/4)θ ln(3/4).
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The fact that the population distribution is non-standard indicates that the random

variable X must be defined using the “list-of-sublists” data structure used in APPL (and de-

scribed in Section 3.1). The assume procedure defines the parameter space. The ProductIID

procedure computes the product of two independent and identically distributed random vari-

ables X and assigns it to the variable T. Last, the power function is defined using the survivor

function (SF) to compute Pr(T ≥ crit = 3 / 4).

To compute the significance level of the test, the Maple statement

alpha := subs(theta = 1, power);

is required, yielding α = 1/4 + (3/4) ln(3/4) ∼= 0.0342. To plot the power function requires

the additional Maple statement

plot(power, theta = 0 .. 4);

Obviously, this example can be generalized for different sample sizes, population distribu-

tions, and critical values with only minor modification.

We end this section with three other problems that might be assigned in an introductory

mathematical statistics class, along with the APPL code to solve them.

Example 2. Let X1, X2, . . . , X10 be iid U(0,1) random variables. Find the probability that

the sum of X1, X2, . . . , X10 is between four and six; i.e., compute Pr
(

4 <
∑10

i=1 Xi < 6
)

.

The APPL code to solve this problem is

n := 10;

X := UniformRV(0, 1);

Y := ConvolutionIID(X, n);

CDF(Y, 6) - CDF(Y, 4);

which yields exactly 655177
907200

, or approximately 0.722.

The central limit theorem and Monte Carlo simulation are often used for problems like

this one. The central limit theorem yields only one digit of accuracy here. Monte Carlo

requires custom programming and the result is often stated as an interval around the true

value. Also, each additional digit of accuracy requires a 100-fold increase in the number of

replications.
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Example 3. Let X ∼ triangular(1, 2, 4) and Y ∼ triangular(1, 2, 3). If X and Y are

independent, find the distribution of V = XY .

The APPL code to solve this problem is

X := TriangularRV(1, 2, 4);

Y := TriangularRV(1, 2, 3);

V := Product(X, Y);

which returns the probability density function of V as

fV (v) =
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v
3
ln v + 4

3
ln v + v

3
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3
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3
ln 2− 8 ln 2 + 8

3
+ 4 ln 3 6 < v ≤ 8

−v
3
ln v − 4 ln v + 2v

3
ln 2 + v

3
ln 3 + 2

3
v − 8 + 8 ln 2 + 4 ln 3 8 < v < 12.

Example 4. Let X be a random variable with the distribution associated with the

Kolmogorov–Smirnov (KS) test statistic in the all parameters known case with a sample

size of n = 6 (Drew, Glen, and Leemis, 2000). Similarly, let Y be a KS random variable (all

parameters known) with n = 4. If X and Y are independent, find Var [max {X,Y }] .

The APPL code to solve this problem is

X := KSRV(6);

Y := KSRV(4);

Z := Maximum(X, Y);

Variance(Z);

which yields 1025104745465977580000192015279
83793210145582989309719976345600

or approximately 0.0122337.

In the last three examples, an instructor would be hesitant to assign these as homework

or exam questions due to the tedium required to determine their solutions. The APPL

language allows students to see that tools exist that can get exact solutions to problems

previously placed in the “intractable” class.
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2. NOTATION AND NOMENCLATURE

APPL presently considers only continuous random variables. Similar data structures

and algorithms are being developed for discrete distributions. Use is made of the following

acronyms and functional notation for representations of a continuous random variable X:

• probability density function (PDF) fX(x),

• cumulative distribution function (CDF) FX(x) =
∫ x
−∞ fX(s) ds,

• survivor function (SF) SX(x) = 1− FX(x),

• hazard function (HF) hX(x) =
fX(x)
SX(x)

,

• cumulative hazard function (CHF) HX(x) =
∫ x
−∞ hX(s) ds, and

• inverse distribution function (IDF) F−1
X (u).

The term “piecewise” refers to PDFs (and other functions) that can be constructed by piec-

ing together various standard functions, such as polynomials, logarithms, exponentials, and

trigonometric functions, e.g., the triangular(1, 2, 3) PDF has two pieces, each of which is

a linear function. The abbreviation “N(µ, σ)” is used to refer to the normal distribution,

where the second parameter is the standard deviation, not the variance. Also, “U(a, b)” is

used to represent the uniform distribution with parameters a and b. Subscripts in parenthe-

ses represent order statistics, e.g., the rth order statistic associated with a random sample

X1, X2, . . . , Xn is denoted by X(r). The abbreviation “iid” is used to denote independent

and identically distributed random variables. The terms “fully-specified,” “semi-specified,”

and “unspecified” are used to describe the degree to which parameters are specified as con-

stants or fixed parameters in a distribution. For example, the exponential(1) distribution

is a fully-specified distribution. The Weibull(1, κ) and the N(0, σ) are both semi-specified

distributions. The triangular(a, b, c) and exponential(λ) distributions are both unspecified.

Typewriter font is used for APPL statements. The Maple input prompt “>” has not been

included in the examples.
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3. APPL OVERVIEW

The notion of probability software is different from the notion of applied statistical soft-

ware. Probability theory contains numerous theorems (e.g., the sum of normal random

variables is normal) and calculations (e.g. the product of two random variables) that require

symbolic, algebraic manipulations. Applied statistical calculations (e.g., mean) are usually

numeric manipulations of data based on known formulas or algorithms associated with mod-

els. Availability of computer algebra systems such as Maple and Mathematica facilitate the

development of software that will derive functions, as opposed to computing numbers.

As described in Maple Version 6’s help menu, its statistics package “provides data anal-

ysis functions, such as various means and quantiles, plotting functions, such as histograms

and scatter plots, and data manipulation functions, such as weighted moving average and

standard scores. Also available are least square fit, random number generation, analysis of

variance (one way), data import from a file and numerical evaluation of statistical distribu-

tions.” The procedures in this package mainly carry out numeric computations and plots

associated with data sets. Although this is a valuable feature of the Maple software, these

procedures do not define or operate on random variables. For example, the Maple statistical

procedure mean is unable to determine the mean of a N(2, 4) random variable, but it can

compute the mean of the data set {1, 2, 3, 3, 6, 7}. Since the Maple statistical procedures

cannot be applied to probability distribution functions, obtaining probability results with

these procedures is impossible.

Karian and Tanis’s (1999) statistics supplement to Maple “consists of about 130 proce-

dures written specifically to promote explorations of probabilistic and statistical concepts.”

Their supplement includes procedures for finding descriptive statistics (e.g., Mean, Median,

and Variance), generating random samples from distributions, plotting (e.g., BoxWhisker,

PlotEmpPDF, and StemLeaf), working with regression and correlation problems, producing

the PDF and CDF of some distributions, finding percentiles of some distributions, produc-

ing confidence intervals, performing an analysis of variance, performing goodness-of-fit and
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nonparametric tests (e.g., QQFit, ChiSquareFit, and KSFit), and computing the convolu-

tion of two random variables. While Karian and Tanis have utilized their efforts in building

mainly an excellent statistical package powered by Maple, we have focused our energy into

constructing a probability package for the manipulation of random variables.

At present, APPL is limited to univariate, continuous, independent random variables,

and the complicated transformations and combinations that can result between independent

random variables. A set of algorithms that derives functional representations of distributions

and uses these functions in a manner that is typically needed in applications is described in

the appendix. Specifically, algorithms have been developed that will conduct the following

operations:

• supply a common data structure for representing the distributions of univariate random

variables,

• convert any functional representation of a random variable into another functional

representation using the common data structure, i.e., allowing conversion amongst the

PDF, CDF, SF, HF, CHF, and IDF,

• provide straightforward instantiation of well-known distributions, such as the exponen-

tial, normal, and uniform distributions, with either numeric or symbolic parameters,

• determine the distribution of a simple transformation of a continuous random variable,

Y = g(X), including piecewise transformations,

• calculate the PDF of sums of independent random variables, i.e., Z = X + Y ,

• calculate the PDF of products of independent random variables, i.e., Z = XY ,

• calculate the PDF of the minimum and maximum of independent random variables,

i.e., Z = min {X,Y } and Z = max {X,Y },

• calculate the PDF of the rth order statistic from a sample of n iid random variables,
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• generate random variates associated with a random variable,

• plot any of the six functional forms of any fully-specified distribution, e.g., the CDF,

• provide basic statistical abilities, such as maximum likelihood estimation, for distribu-

tions defined on a single interval of support,

• determine common summary characteristics of random variables, such as the mean,

variance, and moment generating function,

• complement the structured programming language that hosts the software (in this case

Maple) so that all of the above mentioned procedures may be used in mathematical

and computer programming in that language.

3.1 The Common Data Structure

Implicit in a probability software language is a common, succinct, intuitive, and manipu-

latable data structure for describing the distribution of a random variable. This implies there

should be one data structure that applies to the PDF, CDF, SF, HF, CHF, and IDF. The

common data structure used in this software is referred to as the “list-of-sublists.” Specifi-

cally, any functional representation of a random variable is presented in a list that contains

three sublists, each with a specific purpose. The first sublist contains the ordered functions

that define the functional forms of the distribution. The PDF representation of the trian-

gular distribution, for example, would have the two linear functions that comprise the two

segments of its PDF for its first sublist. The second sublist is an ordered list of real numbers

that delineate the end points of the intervals for the functions in the first sublist. The end

point of each interval is the start point of the succeeding interval. The third sublist indicates

what distribution form the functions in the first sublist represent. The first element of the

third sublist is either the string "Continuous" for continuous distributions or "Discrete"

for discrete distributions. The second element of the third sublist shows which of the six

functional forms is used in the first sublist. The string "PDF", for example, indicates the

list-of-sublists is currently a PDF list-of-sublists.
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Examples:

• The following APPL statement, executed in Maple, assigns a list-of-sublists that rep-

resents the PDF of a U(0, 1) random variable to the variable X:

X := [[x -> 1], [0, 1], ["Continuous", "PDF"]];

• The triangular distribution has a PDF with two pieces to its distribution. The following

statement defines a triangular(0, 1, 2) random variable X as a list-of-sublists:

X := [[x -> x, x -> 2 - x], [0, 1, 2], ["Continuous", "PDF"]];

• An exponential random variable X with a mean of 2 can be defined in terms of its

hazard function with the statement:

X := [[x -> 1 / 2], [0, infinity], ["Continuous", "HF"]];

• Unspecified parameters can be represented symbolically. A N(θ, 1) random variable X

can be defined with the statement:

X := [[x -> exp(-(x - theta) ^ 2 / 2) / sqrt(2 * Pi)],

[-infinity, infinity], ["Continuous", "PDF"]];

• The parameter space can be specified by using the Maple assume function. Consider

the random variable T with HF

hT (t) =















λ 0 < t < 1

λt t ≥ 1

for λ > 0. The random variable T can be defined by the statements:

assume(lambda > 0);

T := [[t -> lambda, t -> lambda * t], [0, 1, infinity],

["Continuous", "HF"]];

• The syntax allows for the endpoints of intervals associated with the support of a random

variable to be specified symbolically. A U(a, b) random variable X is defined by:

X := [[x -> 1 / (b - a)], [a, b], ["Continuous", "PDF"]];

Common, continuous, univariate distributions, such as the exponential and normal distri-

butions, can also be defined using a procedure that creates the appropriate list-of-sublists.
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The following distributions have been pre-defined in APPL: ArcSin, ArcTan, Beta, Cauchy,

Chi, ChiSquare, Erlang, Error, Exponential, ExponentialPower, ExtremeValue, F, Gamma,

GeneralizedPareto, Gompertz, HyperbolicSecant, HyperExponential, HypoExponential, IDB,

InverseGaussian, InvertedGamma, KS, LaPlace, LogGamma, Logistic, LogLogistic, LogNor-

mal, Lomax, Makeham, Muth, Normal, Pareto, Rayleigh, StandardCauchy, StandardNormal,

StandardTriangular, StandardUniform, T, Triangular, Uniform, and Weibull.

Each distribution is defined in a procedure whose name has the letters RV appended to

its name given above. A chi-square random variable with seven degrees of freedom X, for

example, can be defined by the APPL statement

X := ChiSquareRV(7);

which defines the appropriate list-of-sublists. The reader interested in the details associated

with APPL is encouraged to read the appendix prior to reading the next section.

4. APPLICATIONS AND EXAMPLES

A key contribution of APPL is that it provides a new way of viewing existing prob-

lems and opens new avenues for their solutions. This section provides examples where the

problem-solving paradigm can shift due to the ability to find exact distributions of random

variables. The four subsections that follow highlight some diverse areas of application that

can be addressed with APPL. The section starts with relatively simple examples involving

the central limit theorem (CLT). In these examples, one will be able to determine the error

of the CLT approximations to distributions involving sums of independent random variables.

The second subsection contains a demonstration of how to use APPL to generate mathemat-

ically intractable tables, graphs, and charts, effectively reducing the need for the volumes

containing these entities. The third subsection contains a demonstration of how the software

allows for modeling lifetimes using hazard functions. The final subsection provides a dis-

cussion on a simple methodology by which APPL furthers one’s ability to identify outliers

in samples. These four examples serve only to suggest the nature of applications of APPL;

many more applications exist.
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4.1 Exactness in Lieu of CLT Approximations

The CLT with iid samples can be used to facilitate inference about the population mean.

The CLT implies that X̄ =
1

n

n
∑

i=1

Xi is asymptotically normally distributed when the Xi’s

are iid random variables with finite mean and variance. Application of the CLT becomes

restricted, however, with small sample sizes, with skewed data, or in the presence of outliers

(Moore and McCabe, 1999, pp. 516–517). In these cases, an alternative method is to deter-

mine the exact distribution of X̄. Once the distribution X̄ is found, one can use it to make

statistical inferences about the population mean. A few examples follow.

Let X ∼ exponential(1). By the CLT, the distribution of Y = X̄ is approximately

N(1, 1√
n
) for large n. For the case n = 3, one can compute the exact distribution of Y with

the following statements:

X := ExponentialRV(1);

n := 3;

Y := ConvolutionIID(X, n);

Y := Transform(Y, [[x -> x / n], [0, infinity]]);

The resulting Erlang PDF is fY (y) =
27
2
y2e−3y for y > 0, which is predictably non-normal in

shape since n is too small for the normality of the CLT to apply to such a skewed underlying

distribution. Now consider the case of n = 30, often considered a sufficiently large sample

size for an adequate CLT approximation. Here a computation of the error associated with

the approximation is provided. To obtain the PDF of X̄, change the second line of code to

n := 30; and re-execute the Maple statements. The result is the following Erlang PDF:

fY (y) =
246315313339233398437500000

10577732774609
y29e−30y y > 0.

Table 1 contains selected fractiles for both the exact distribution of X̄ and its CLT approxi-

mation, the N(1, 1√
30
) distribution. For the selected fractiles, the approximation is only good

Table 1: Fractiles for exact and approximated distributions
Fractile

Approach Distribution 0.9 0.95 0.975 0.99

Exact X̄ 1.240 1.318 1.388 1.473
CLT N(1, 1√

30
) 1.234 1.300 1.358 1.425
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to about one digit beyond the decimal point. The additional APPL statements to generate

the CLT values in Table 1 are:

Z := NormalRV(1, 1 / sqrt(n));

alpha := [0.9, 0.95, 0.975, 0.99];

for i from 1 to 4 do

evalf(IDF(Z, alpha[i]));

od;

For a related application, an old, approximate method of generating random variates

from the standard normal distribution (Park and Leemis, 2000, for example) is:

Z∗ = U1 + U2 + · · ·+ U12 − 6,

where the Ui’s are iid U(0, 1) random variables. Using APPL, the PDF of Z∗ is

fZ∗(x) =
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67200
x10 + 11

30240
x9 − 107

20160
x8 + 517

10080
x7 − 2477

7200
x6 + 11737

7200
x5

− 54797
10080

x4 + 250657
20160

x3 − 1113317
60480

x2 + 4726777
302400

x− 18595037
3326400

, 4 < x < 5

− 1
39916800

x11 + 1
604800

x10 − 1
20160

x9 + 1
1120

x8 − 3
280

x7 + 9
100

x6 − 27
50

x5

+ 81
35

x4 − 243
35

x3 + 486
35

x2 − 2916
175

x + 17496
1925

, 5 < x < 6.

The following statements determine the exact distribution of this 12-fold convolution and

the fourth moment of Z∗ and Z:

U := UniformRV(0, 1);
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U12 := ConvolutionIID(U, 12);

Zstar := Transform(U12, [[x -> x - 6], [-infinity, infinity]]);

Z := NormalRV(0, 1);

Kurtosis(ZStar);

Kurtosis(Z);

The distribution of Z∗ is useful because, like the standard normal distribution, its mean is

zero, its variance is one, and its skewness is zero. The first difference between Z∗ and Z is

in the fourth moment, E

[

(

Z∗−E[Z∗]√
V [Z∗]

)4
]

= E
[

(Z∗)4
]

, which equals 2.9 for Z∗ and 3.0 for a

standard normal random variable Z.

In the overlaid Maple plots of the standard normal PDF and fZ∗(x) shown in Figure 1, it is

0

0.1

0.2

0.3

0.4

PDF

–6 –4 –2 2 4 6x

Figure 1: Overlaid plots of fZ∗(x) and the standard normal PDF.

apparent that this approximate distribution fits the standard normal distribution in the PDF

very nicely except around x = 0 [where fZ(0) =
1√
2π
∼= 0.399 and fZ∗(0) = 655177

1663200
∼= 0.394]

and, of course, in the tails, since the approximate distribution only has support on (−6,

6). To obtain overlaid plots of these two distributions, the APPL PlotDist procedure and

Maple plots[display] procedure are used.

Plot1 := PlotDist(Zstar, -6, 6):

Plot2 := PlotDist(Z, -6, 6):

plots[display]({Plot1, Plot2});
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4.2 A Mathematical Resource Generator

APPL is also able to generate tables, graphs, and charts. The term resource refers to

tables, graphs, and charts, to include such items as means, critical points, variances, and

so on. APPL can be invoked to reduce the need for such tables. Additionally, since these

computations can be produced automatically, programs can be designed to produce needed

values in real time, as opposed to being restricted to knowing in advance which element of

which table will be needed for program execution. There are many references for critical

tables for common distributions, in addition to common tables given in introductory statistics

tables, that software such as this (and others) effectively replace. Highlighted, however, will

be two recent books, CRC Handbook of Tables for Order Statistics from Inverse Gaussian

Distributions with Applications (Balakrishnan and Chen, 1997) and CRC Handbook of Tables

for the Use of Order Statistics in Estimation (Harter and Balakrishnan, 1996). These books

were selected because of the relatively complex nature of the information they present. Also,

they were chosen to highlight that even as late as 1997, the scientific community had to rely

on tables and charts for a significant amount of probabilistic information.

First is a comparison of Balakrishnan and Chen’s text with APPL’s capabilities. This

book begins with 39 pages of theory and references to the inverse Gaussian (IG) distribution

and its order statistics, followed by 645 pages of PDF plots, expected value tables, covariance

tables, estimation tables, and so forth. APPL is able to create a number of these figures and

tables, and in some cases goes beyond those presented in the text. Page 50, for example,

shows the N(0, 1) and the standardized IG(0.8) PDFs overlaid in a single plot. The PDF of

a standardized IG random variable X (which is listed as equation (2.14) on page 7 of the

text) is:

fX(x) =
1√
2π

(

3

3 + kx

)3/2

e−3x2/(6+2kx) − 3

k
< x <∞ .

The two plots may be overlaid and animated for k increasing from zero to one as follows:

Z := NormalRV(0, 1);

X := [[x -> (3 / (3 + k * x)) ^ (3 / 2) *

exp(-3 * x ^ 2 / (6 + 2 * k * x)) / sqrt(2 * Pi)],

14



[-3 / k, infinity], ["Continuous", "PDF"]];

NormalExpr := op(unapply(Z[1](x))(x));

InvGaussExpr := op(unapply(X[1](x))(x));

unassign(’k’);

plots[animate]({NormalExpr, InvGaussExpr}, x = -4 .. 4, k = 0 .. 1);

The plot is shown in Figure 2 for k = 0.8. To execute the animation, first select the plot by

clicking on it. Then choose “Play” from the “Animation” menu. Balakrishnan and Chen use

0

0.1

0.2

0.3

0.4

PDF

–4 –3 –2 –1 1 2 3 4
x

Figure 2: Overlaid plots of the standard normal and standard IG(0.8) distributions.

such plots to show how the two distributions separate as k increases from zero. For plotting

the IG PDF, one is not limited to the standardized version of the distribution. One could

plot any IG PDF, CDF, HF, and so on. Clearly, one is not limited to just PDF plots in

APPL, nor is one limited to plots of only standardized IG distributions.

Another recent resource, CRC Handbook of Tables for the Use of Order Statistics in Esti-

mation (Harter and Balakrishnan, 1996), also gives extensive charts for various applications

of order statistics. Appendix C of this book, covering pages 326–530, lists tables of various

means, variances, and covariances of order statistics from many common distributions. For

example, Table C1.1 gives means of order statistics for the N(0, 1) distribution, Table C2.1

for the means of exponential(1) order statistics, and so on. APPL can replicate such tables.

For instance, to produce the mean of the n = 8, r = 6 order statistic from the Weibull(1,

0.5) distribution, use the statements:

15



X := WeibullRV(1, 0.5);

X86 := OrderStat(X, 8, 6);

Mean(X86);

which returns 1.760598073, compared to 1.76060 in Harter and Balakrishnan (1996, p. 392).

Unlike Harter’s text, the software can go beyond computing means of order statistics.

One can, for example, compute the 98th percentile of the same Weibull order statistic and

give the probability that the order statistic exceeds 1.92 with the additional statements:

evalf(allvalues(IDF(X86, 0.98)));

SF(X86, 1.92);

The correct real values returned are 6.48028842 and 0.321864302, respectively. Furthermore,

we are not limited to the relatively few base distributions that Harter and Balakrishnan

present in their Appendix C, but can enter any Weibull parameter values.

There is no implication that these, or any of the vast resource collections, are archaic. We

envision this software augmenting the information presented in texts such as these. Foreseen

is a shifting away from looking up values in tables; instead, one will encode the creation of

necessary values directly into programs. The first 208 pages of Harter and Balakrishnan’s

text, for example, still review theory behind the creation and use of order statistics. APPL

adds to the resource base that books such as these provide.

4.3 Modeling with Hazard Functions

The capabilities of APPL allow a shift in the paradigm of parameterized model design

in new ways. The reliability of a system is often given in terms of the instantaneous rate

of failure, i.e., the hazard function. Reliability texts often classify lifetime distributions into

distribution classes that are named after the shape of the hazard function. Leemis (1995,

Chapter 3), among others, defines many of these classes, to include the increasing failure rate

(IFR), the decreasing failure rate (DFR), and the bathtub-shaped (BT) hazard function.

One possible use for APPL is to model systems using a hypothesized shape of a hazard

function. Should a system be hypothesized to have a bathtub-shaped HF for example, there

are only a few common distributions with HFs with such a shape. Leemis (1995, p. 100) lists

only two of 16 common reliability distributions as having a BT-shaped HF. Instead of being
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limited to these distributions, one may hypothesize a family of distributions with BT-shaped

HFs. For example, a second-order polynomial HF of the form a(x − b)2 will have the BT

shape as long as a > 0 and b > 0.

Here is an example of using APPL to model with hypothesized HFs. Consider a sample

of failure times [1, 11, 14, 16, 17]. Assuming it is hypothesized that the system should be

fit by the quadratic BT-shaped HF distribution, one can fit these data to the unspecified

distribution as follows.

assume(a > 0);

assume(b > 0);

T := [[t -> a * (t - b) ^ 2], [0, infinity], ["Continuous", "HF"]];

PDF(T);

The last statement returns the general form of the PDF:

fT (t) = a(t2 − 2tb+ b2) e−t a (t2−3 t b+3 b2)/3 t > 0.

One can find the values â and b̂ that maximize the likelihood function as follows:

data := [1, 11, 14, 16, 17];

hat := MLE(T, data, [a, b]);

The results are: â = 0.0037937, b̂ = 5.93512. The plot of the SF for T overlaid on the

empirical SF is shown in Figure 3.

0

0.2

0.4

0.6

0.8

1

SF

2 4 6 8 10 12 14 16 18t

Figure 3: The SF of the hypothesized BT-shaped hazard function fit to the sample [1, 11,
14, 16, 17] overlaid on the empirical SF.
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For another example of modeling in terms of hazard functions, let us hypothesize that

risk to a system is seasonal. Such is the case in many applications such as structures at risk

to occurrences of category five hurricanes. A periodic hazard function might be modeled in

such a case. Suppose one hypothesizes a family of periodic HF distributions having HFs of

the form

hT (t) = a+ b sin(c t), t > 0; a > |b|, and a, b, c ∈ < .

The parameter a represents a measure of the long-term constant risk associated with T .

In other words, increased values of a correspond to a higher likelihood of chance failures.

The parameters b and c control the amplitude and period of the HF, modeling the severity

and length of the cyclic stresses. One can instantiate the unspecified distribution with the

following statement

T := [[t -> a + b * sin(c * t)], [0, infinity], ["Continuous", "HF"]];

and the PDF may be found with PDF(T). Letting the parameters take on values of a = 1,

b = 0.5, and c = 10, one gets the PDF (using the PlotDist procedure) plotted in Figure 4,

a peculiarly multi-modal PDF that decreases exponentially over time.

0

0.2

0.4

0.6

0.8

1

1.2

PDF

1 2 3 4 5 6
t

Figure 4: The PDF of the distribution having periodic hazard function hT (t) with parameters
a = 1, b = 0.5, and c = 10.
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4.4 Outlier Detection

The theory and practice of identifying outliers in a data set is another contribution

provided by APPL. The literature contains ample methods for identifying outliers in samples

from a normal population. Regarding detection of outliers, D’Agostino and Stephens (1986,

p. 497) write “We shall discuss here only the underlying assumption of normality since there

is very little theory for any other case.” Sarhan and Greenberg (1962, p. 302) and David

(1981) propose a number of test statistics based on standardized order statistics of normally

distributed data. They provide charts of acceptance and rejection regions in lieu of p-values.

For instance, in the fully-specified case where µ and σ are known, Sarhan and Greenberg

propose the test statistic (X(n)−µ)/σ for testing for extreme observations in normal samples.

APPL is a useful tool for calculating the distribution of order statistics.

APPL may contribute to the outlier detection problem in at least three ways:

1. There is no need to standardize the test statistic, since the distribution of the rth order

statistic may be found with the procedure OrderStat.

2. One need no longer rely on charts of rejection regions, since once the distribution of

the rth order statistic is known, one can directly calculate p-values.

3. One is not limited to the assumption of normality. APPL facilitates finding the distri-

bution of the rth order statistic of a wide range of distributions.

Here are a few examples. In the sample {1, 2, 3, 4, 5, 10}, it is possible that the last

element in the sample is an outlier. Assuming that the population has a mean of µ = 3, one

could find the order statistic probability Pr(X(6) ≥ 10) for samples of size n = 6 from various

underlying distributions. Let us consider the following possible population distributions,

each with a mean of 3 (set λ =
√
π/6 ∼= 0.295 for the Weibull case): Weibull(0.295, 2),

exponential(1/3), N(3, 2), and N(3, 4). The probability Pr(X(6) ≥ 10) is the significance

level against the null hypothesis that X(6) came from this underlying distribution. The four

probabilities can be found with the following statements:
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X1 := WeibullRV(sqrt(Pi) / 6, 2);

X2 := ExponentialRV(1 / 3);

X3 := NormalRV(3, 2);

X4 := NormalRV(3, 4);

evalf(SF(OrderStat(X1, 6, 6), 10));

evalf(SF(OrderStat(X2, 6, 6), 10));

evalf(SF(OrderStat(X3, 6, 6), 10));

evalf(SF(OrderStat(X4, 6, 6), 10));

The results are shown in Table 2. An interpretation is that for n = 6 the value 10 is an

Table 2: Pr(X(6) ≥ 10) for n = 6 for several population distributions

Distribution Pr(X(n) ≥ 10)

Weibull(0.295, 2) 0.000973
exponential(1/3) 0.195839

N(3, 2) 0.001395
N(3, 4) 0.217532

outlier with respect to the N(3, 2) distribution at the 0.0014 level of significance and to

the Weibull(0.295, 2) population distribution at the 0.001 level of significance. It is not a

significant outlier to the other two population distributions.

An extension to this detection example is found in the last two population distributions,

the normal distributions with σ equal to 2 and 4. One sets a specified level of significance,

say α = 0.05, and solves for the value of σ that will show a maximum value of 10 to be an

outlier for the normal family of distributions. In effect what is desired is a solution to the

following. Letting X ∼ N(3, σ), find σ such that Pr(X(6) < 10) = 0.95. One can find σ

exactly by manipulating the CDF list-of-sublists representation of X(6) in the following way.

The first element of the first sublist contains the CDF of the sixth order statistic, so it is

set equal to 0.95 and solved for σ. The following code produces the solution σ ∼= 2.933571640.

X := NormalRV(3, sigma);

X6 := OrderStat(X, 6, 6);

X6 := CDF(X6);

solve(X6[1][1](10) = 0.95, sigma);

The first line of code sets the semi-specified normal distribution as the population distribution

for X. The second line determines the PDF of X(6). The third line converts the PDF of X(6)

to a CDF. The last line isolates the first element of the first sublist of X6 which is the
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CDF function of the independent variable x and the unknown parameter σ. The entry (10)

provides the independent variable a value of 10. Then the Maple solve procedure solves for

the unknown parameter sigma which represents σ. Using 0.95 as the right-hand side of the

equation, as opposed to 95/100, causes Maple to find the floating point solutions.

Similarly, outlier detection can be performed for other population distributions for other

parameters of interest given a specific minimum or maximum value.

5. CONCLUSION

APPL consists of Maple procedures that allow a modeler to define and perform operations

on continuous, univariate random variables. The examples given in this paper illustrate how

APPL’s ability to automate these calculations can extend the reaches of probability theory.

Many of the examples can be used in probability or mathematical statistics classes. APPL

has spawned additional research on topics such as:

• the Kolmogorov–Smirnov statistic (Drew, Glen, and Leemis, 2000),

• order statistics from discrete populations (Evans, Leemis, and Drew, 2000),

• goodness-of-fit testing (Glen, Leemis, and Barr, 2000),

• Benford’s Law (Leemis, Schmeiser, and Evans, 2000),

• input modeling for discrete-event simulation (Evans and Leemis, 2000),

• convolutions of discrete random variables (Evans, Leemis, and Drew, 2001).

Work is presently underway to extend APPL procedures to discrete univariate random

variables. Future work in the area of computational probability may include multivariate

distributions, time series analysis, and stochastic processes.
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APPENDIX

This appendix contains descriptions of the procedures comprising the core of APPL. The

APPL tree diagram in Figure 4 summarizes the procedures described in Sections A.2 through

A.11.
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MLE
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CleanUp
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PlotEmpCDF
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Figure 5. APPL tree diagram.
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The notation used in defining APPL syntax in this appendix (in order of appearance)

follows:

• param1, param2, . . . , paramk are numeric (e.g., 6, 2/3, 2.7) or symbolic parameters,

• X and Y are random variables defined in the list-of-sublists form described in Section

3.1,

• x is a numeric or symbolic value,

• brackets [ ] denote optional parameters,

• double quotes denote character strings,

• low and high are numeric values,

• g is a function,

• n and r are positive integers such that n ≥ r,

• a capitalized parameter indicates that it must be entered as a Maple list.

A.1 Common Continuous, Univariate Distributions

Syntax: The statement

X := DistributionName RV(param1, param2, . . . , paramk);

assigns to the variable X a list-of-sublists representation of the specified random variable.

The choices for DistributionName are listed in Section 3.1.

Purpose: Instantiates common distributions. While the list-of-sublists is a data structure

that lends itself to the mathematics of the software, it is not an instantly recognizable form

for representing a distribution. APPL provides a number of simple procedures that take

definitions of common distributions and convert them to a list-of-sublists format.

Special Issues: The suffix RV is added to each name to make it readily identifiable as a

distribution assignment, as well as to avoid conflict with Maple-specific names such as normal
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and gamma. The first letter of each word is capitalized, which is the case for all procedures in

APPL. Usually the returned value is given as a PDF, but in the case of the IDB distribution

(Leemis, 1995), a CDF is returned since the CDF of the IDB distribution is easier for Maple

to manipulate (e.g., integrate, differentiate) than the PDF. Certain assumptions are made

about unspecified parameters. For example, an assignment of an unspecified exponential

random variable (see the second example below), will result in the assumption that λ > 0.

This assumption, as with all other distributions’ assumptions, are only applied to unspecified

parameters.

Examples:

• An exponential(1) random variable X may be created with the following statement:

X := ExponentialRV(1);

• An exponential(λ) random variable X, where λ > 0, may be created as follows:

X := ExponentialRV(lambda);

• These procedures also allow a modeler to re-parameterize a distribution. An exponen-

tial (1
θ
) random variable Y , where θ > 0, for example, may be created as follows:

assume(theta > 0);

Y := ExponentialRV(1 / theta);

• The semi-specified Weibull(λ, 1), where λ > 0, distribution may be created as follows:

X := WeibullRV(lambda, 1);

Note that this special case of the Weibull distribution is equivalent to an exponential(λ)

distribution.

A.2 The Six Representations of Distributions

Syntax: The statement

FunctionalForm(X, [x]);

returns either (1) the list-of-sublists format of the desired functional representation of the

distribution, where FunctionalForm is PDF, CDF, SF, HF, CHF, or IDF, or (2) the value of the

functional form at the value x.
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Purpose: The 6 × 6 distribution conversion ability, a variation of the matrix outlined by

Leemis (1995, p. 55), is provided so that the functional form of a distribution can be converted

to and from its six well-known forms, the PDF, CDF, SF, HF, CHF, and IDF. This set of

procedures takes one form of the distribution as an argument and returns the desired form

of the distribution in the appropriate list-of-sublists format. For the one-argument call,

the functional representation will be returned. For the two-argument call, the value of the

function at the value x will be returned.

Special Issues: The procedures are fairly robust against non-specified parameters for the

distributions that will be converted (see the fourth example below).

Examples:

• To obtain the CDF form of a standard normal random variable:

X := NormalRV(0, 1);

X := CDF(X);

or, equivalently, in a single line,

X := CDF(NormalRV(0, 1));

Since the CDF for a standard normal random variable is not closed form, APPL returns:

X :=
[[

x→ 1

2
erf

(

1

2
x
√
2
)

+
1

2

]

, [−∞, ∞], [“Continuous”, “CDF”]
]

where erf is the Maple error function defined by erf(x) = 2
π

∫ x
0 e−t

2
dt.

• IfX ∼ N(0, 1), then the following statements can be used to find Pr(X < 1.96) ∼= 0.975.

X := StandardNormalRV();

prob := evalf(CDF(X, 1.96));

• Should the hazard function of a unit exponential distribution be entered, its associated

PDF may be determined as follows:

X := [[x -> 1], [0, infinity], ["Continuous", "HF"]];

X := PDF(X);

• For the case of unspecified parameters, the following statements convert an unspecified

Weibull PDF to an unspecified Weibull SF:
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X := WeibullRV(lambda, kappa);

X := SF(X);

which returns:

X :=
[[

x→ e(−xκ˜ λ˜κ˜)
]

, [0, ∞] , [“Continuous”, “SF”]
]

The tildes after the parameters indicate that assumptions have been made concerning

the parameters (i.e., λ > 0 and κ > 0) in the WeibullRV procedure.

• Finding a quantile of a distribution requires the IDF procedure. The 0.975 quantile of

a Weibull(1, 2) distribution can be found with the statement

quant := IDF(WeibullRV(1, 2), 0.975);

If 0.975 is replaced by a random number, a Weibull variate is generated.

• The procedures handle distributions defined in a piecewise fashion. The random vari-

able T with hazard function

hT (t) =















λ 0 < t < 1

λt t ≥ 1

for λ > 0, for example, has survivor function

ST (t) =















e−λt 0 < t < 1

e−λ(t2+1)/2 t ≥ 1

which can be found using the APPL statements

assume(lambda > 0);

T := [[t -> lambda, t -> lambda * t], [0, 1, infinity],

["Continuous", "HF"]];

SF(T);

• The procedures can be nested so that if the random variable X has been defined in

terms of its PDF, then the statement

X := PDF(CDF(HF(SF(CHF(IDF(X))))));

does nothing to the list-of-sublists representation for X, assuming that all transforma-

tions can be performed analytically (e.g., exponential, Weibull).
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A.3 PlotDist

Syntax: The statement

PlotDist(X, [low], [high]);

plots the current list-of-sublists defined X between the optional arguments low and high on

a coordinate axis.

Purpose: To give a graphical representation of any list-of-sublists represented distribution.

The arguments low and high define the minimum and maximum values desired on the

horizontal axis. If defaulted, Maple defines the limits of the plot.

Special Issues: A distribution function must be fully-specified for a plot to be generated.

Examples:

• The following statements will generate the plot of the PDF for the triangular(1, 2, 3)

distribution:

X := TriangularRV(1, 2, 3);

PlotDist(X);

• To plot the CHF of the exponential(1) distribution for 0 < t < F−1
X (0.95), enter the

statements:

X := ExponentialRV(1);

PlotDist(CHF(X), 0, IDF(X, 0.95));

• To see a progression of the five PDFs of the order statistics (the OrderStat procedure

is introduced in Section A.6) for an exponential(1) distribution, enter:

X := ExponentialRV(1);

n := 5;

for i from 1 to n do

PlotDist(OrderStat(X, n, i), 0, 10);

od;

The result is five PDFs plotted sequentially. This sequence could be of use to an

instructor explaining the progressive nature of order statistics to first-year probability

students.
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Algorithm: The algorithm loops through each of the pieces of the definition of the random

variable, executing a Maple plot procedure to plot multiple functions on a single set of axes.

A.4 ExpectedValue

Syntax: The statement

ExpectedValue(X, [g]);

returns the expected value of a function of a random variable. If the optional argument g (a

function) is not provided, then the procedure assigns g to be x -> x.

Purpose: Finds the expected value of a function of a random variable.

Special Issues: Procedures Mean, Variance, Skewness, Kurtosis, MGF, and CF are special

cases of ExpectedValue.

Examples:

• To find the expected value and moment generating function of a standard normal

random variable, type:

X := NormalRV(0, 1);

meanX := ExpectedValue(X);

Mx := MGF(X)

The mean can also be determined by

meanX := Mean(StandardNormalRV());

• Unspecified distributions may also be used. The expected value of the square root of

an exponential(λ) random variable is calculated with the statements:

X := ExponentialRV(lambda);

meanX := ExpectedValue(X, x -> sqrt(x));

Algorithm: The algorithm is a straightforward implementation of the following result. Let

the continuous random variable X have PDF fX(x). Let g(X) be a continuous function of

X. The expected value of g(X), when it exists, is given by

E[g(X)] =
∫ ∞

−∞
g(x) · fX(x)dx .

A.5 Transform

Syntax: The statement

Transform(X, g);
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returns the PDF of the transformed random variable in the list-of-sublists format.

Purpose: Determine the PDF of the transformation of a random variable of the form

Y = g(X), where g(X) may be defined in a piecewise fashion.

Special Issues: The transformation function must also be defined in an altered list-of-

sublists format. The modeler must break the transformation into piecewise monotone seg-

ments.

Examples:

• Let X ∼ U(0, 1) and Y = g(X) = 4X. To determine the PDF of Y :

X := UniformRV(0, 1);

g := [[x -> 4 * x], [-infinity, infinity]];

Y := Transform(X, g);

• The following statements determine the distribution of the square of an inverse Gaus-

sian random variable with λ = 1 and µ = 2:

X := InverseGaussianRV(1, 2);

g := [[x -> x ^ 2], [0, infinity]];

Y := Transform(X, g);

• An example of using Transform to: (a) find the negative of a random variable is in

Section A.8; (b) find the reciprocal of a random variable is in Section A.7; and (c)

divide a random variable by a constant is in Section A.11.

Algorithm: The theorem which provides the basis for the algorithm and the details asso-

ciated with the algorithm are found in Glen, Leemis, and Drew (1997).

A.6 OrderStat

Syntax: The statement

OrderStat(X,n, r);

returns the PDF of the rth of n order statistics drawn from a population having the same

distribution as the random variable X.

Purpose: Return the distribution of a specified order statistic. The procedure’s arguments

are defined as follows: the population distribution is represented in the list-of-sublists format,
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the positive integer sample size n, and the positive integer order statistic index r, where

r ≤ n. The procedure returns the marginal PDF for the rth order statistic in the list-of-

sublists format.

Special Issues: This procedure is robust for unspecified parameters in the population

distribution, unspecified n and r, and piecewise distributions.

Examples:

• The minimum of six iid exponential(1) random variables, which in turn is exponentially

distributed with λ = 6, is found with the statements:

X := ExponentialRV(1);

Y := OrderStat(X, 6, 1);

• In this example, n, r, and the distribution are unspecified.

X := ExponentialRV(lambda);

Y := OrderStat(X, n, r);

The result is the general form of the rth order statistic from an exponential(λ) popu-

lation:

Y :=

[[

x→ n! (−e(−λ˜x ) + 1 )(r−1) λ˜e(−λ˜x (n−r+1))

(r − 1)! (n− r)!

]

, [0,∞], [“Continuous”, “PDF”]

]

• As seen in the example in Section A.3 for PlotDist, the OrderStat procedure may be

embedded in loops and other programming capabilities in Maple.

Algorithm: The algorithm is a straightforward implementation of the following result (Hogg

and Craig, 1995, p. 198):

fX(r)
(x) =

n!

(r − 1)!(n− r)!
FX(x)

r−1 · (1− FX(x))
n−r · fX(x).

A.7 Product and ProductIID

Syntax: The statement

Product(X,Y );

returns the PDF of the product of X and Y .
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Purpose: Compute the PDF of products of random variables. The arguments can be any

list-of-sublists representation of a distribution. This algorithm is explained in Glen, Leemis,

and Drew (2000). The similar procedure ProductIID(X,n) computes the PDF of the n-fold

product of iid random variables.

Special Issues: The two random variables in the argument list are assumed to be indepen-

dent, but not necessarily identically distributed in Product. Distributions do not have to

be fully-specified, as seen in the third example. The algorithm may be used in conjunction

with Transform to compute the PDF of ratios of random variables, as seen in the fourth

example.

Examples:

• A plot of the PDF of the product of a standard normal and a U(0, 1) random variable

is found with the following statements:

X := NormalRV(0, 1);

Y := UniformRV(0, 1);

PlotDist(Product(X, Y));

• The height of the PDF of the product of three independent standard normal random

variables at one is found with:

X := NormalRV(0, 1);

Z := ProductIID(X, 3);

evalf(PDF(Z, 1));

The PDF of Z is in terms of Maple’s BesselK function.

• The PDF of the product of two independent unspecified exponential(λ) distributions

is a PDF also in terms of Maple’s BesselK function:

X := ExponentialRV(lambda);

Y := Product(X, X);

The procedure returns the following list-of-sublists:

Y := [[v → 2λ˜2 BesselK(0, 2λ˜
√
v)], [0, ∞], [“Continuous”, “PDF”]]

• For ratios of random variables, employ the transformation ability of the software as in
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the following example, which could be used to calculate the distribution of a random

rate, given independent distributions for distance and time:

U := UniformRV(0, 10);

T := ExponentialRV(1);

R := Product(U, Transform(T, [[x -> 1 / x], [0, infinity]]));

A.8 Convolution and ConvolutionIID

Syntax: The statement

Convolution(X,Y );

returns the PDF of the sum of X and Y .

Purpose: Return the PDF of the convolution of two independent random variables X

and Y in the usual list-of-sublists format. Similarly, the procedure ConvolutionIID(X,n)

computes the PDF of the n-fold convolution of iid random variables.

Special Issues: The random variables entered as arguments are assumed to be independent,

but not necessarily having the same distribution in Convolution. The ability to compute

differences of random variables is inherent in the software by employing the transformation

ability, as in the third example below.

Examples:

• The sum of a standard normal random variable and a U(0, 1) random variable has a

PDF found as follows:

X := NormalRV(0, 1);

Y := UniformRV(0, 1);

Z := Convolution(X, Y);

• In a review of Maple V c© Student Version: Release 5 in The American Statis-

tician, Tanis (1999, p. 391) does an example concerning the sum of two continuous

random variables with PDF

fX(x) =
3

2
x2 − 1 < x < 1.

The PDF and plot of the sum of three of these random variables is found in APPL as

follows:
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X := [[x -> (3 / 2) * x ^ 2], [-1, 1], ["Continuous", "PDF"]];

Y := ConvolutionIID(X, 3);

PlotDist(Y);

• To find the PDF of the difference between a uniform and exponential random variable:

X := UniformRV(0, 10);

Y := ExponentialRV(1);

Z := Convolution(X, Transform(Y, [[y -> -y], [-infinity, infinity]]));

This call to Transform finds the distribution of the opposite of the random variable

Y , so the PDF of the random difference Z = X − Y is computed.

Algorithm: To compute the convolution distribution of Z = X + Y, Convolution carries

out the transformation Z = ln(eXeY ) using the Transform and Product procedures.

A.9 Minimum

Syntax: The statement

Minimum(X,Y );

returns the PDF of the minimum of the two random variables listed as arguments.

Purpose: Computes the PDF of the minimum of X and Y , entered in the usual list-of-

sublists format, where X and Y are assumed to be independent and continuous.

Special Issues: The two random variables in the argument list are assumed to be inde-

pendent, but not necessarily identically distributed. The procedure is robust for unspecified

parameters for the distributions (see the third example below). The procedure is able to

handle piecewise random variables, as illustrated in the first example below where two dis-

tributions with only one interval each in their PDFs result in a minimum with two intervals.

Examples:

• The PDF of the minimum of a standard normal random variable and a U(0, 1) random

variable is found as follows:

X := NormalRV(0, 1);

Y := UniformRV(0, 1);

Z := Minimum(X, Y);
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• The PDF of the minimum of two unspecified iid Weibull random variables is found

with:

X := WeibullRV(lambda, kappa);

Y := Minimum(X, X);

This call to Minimum returns Y as:

Y :=
[[

x→ 2λ˜κ˜ x(κ˜−1 ) κ˜ e(−2λ˜κ˜ xκ˜)
]

, [ 0,∞ ], [“Continuous”, “PDF”]
]

Algorithm: The procedure uses the CDF technique to find the PDF of the minimum of two

independent random variables. Special consideration is given to piecewise random variables,

as the CDF technique requires the intervals to be aligned properly.

A.10 Maximum

Syntax: The statement

Maximum(X,Y );

returns the PDF of the maximum of X and Y .

Purpose: Compute the PDF of the maximum of X and Y , entered in the usual list-of-

sublists format, where the X and Y are assumed to be independent and continuous.

Special Issues: The two random variables in the argument list are assumed to be indepen-

dent, but not necessarily identically distributed. There are no separate procedures necessary

for finding the PDF of the maximum or minimum of n iid random variables, since this is

already possible with OrderStat.

Examples:

• The maximum of a standard normal random variable and a U(0, 1) random variable

is found as follows:

X := NormalRV(0, 1);

Y := UniformRV(0, 1);

Z := Maximum(X, Y);

• The maximum of two independent unit exponential random variables, which could

represent the system lifetime of a parallel arrangement of a two-component system, is

found as follows:
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X := ExponentialRV(1);

Z := Maximum(X, X);

Algorithm: This procedure relies on the Minimum and Transform procedures to determine

the distribution of the maximum. Specifically, it determines the PDF of Z = max {X,Y }

by performing the transformation Z = −min {−X,−Y }.

A.11 Maximum Likelihood Estimation

Syntax: The statement

MLE(X,Data, Parameters, [Rightcensor]);

returns the MLE of the parameters listed in the list Parameters a result of the sample

observations listed in Data for sampling from a population with a distribution represented

by the random variable X.

Purpose: Compute real, and symbolic, when possible, estimates of parameters for dis-

tributions. The Data argument can either be a fully-specified list of real numbers or the

unspecified list of symbols. The Parameters argument is a list of the unknown parameters

to be estimated. The optional Rightcensor argument is a right-censor vector of ones and

zeros, where one indicates an observed value and zero indicates a right-censored value.

Special Issues: Any distribution represented as a list-of-sublists may be used in the esti-

mation procedure. The procedure is limited by Maple’s solving capability, especially in the

case of unspecified samples. An advantage of this approach to ML estimation is that the

distribution of the estimator can be found, as in the fourth example below. Similar work

has been done by Rose and Smith (2000) and incorporated into their mathStatica package.

Examples:

• For the semi-specified inverse Gaussian distribution where σ is known (or assumed)

but µ is unknown, one finds µ̂ = 3 for the data set 1, 2, 3, 4, 5 as follows:

X := InverseGaussianRV(1, mu);

muhat := MLE(X, [1, 2, 3, 4, 5], [mu]);

• Should both parameters need to be estimated, then the parameter list would include

both of the unknown parameters as follows:

38



X := InverseGaussianRV(lambda, mu);

paramhat := MLE(X, [1, 2, 3, 4, 5], [lambda, mu]);

The call returns the estimated values in the form of a list assigned to paramhat, where

paramhat is now the list [300 / 37, 3] corresponding to the MLEs λ̂ = 300
37

and

µ̂ = 3.

• To illustrate a right-censored data set, consider the “time to vomit”, in minutes, for

n = 21 subjects placed in a cubical cabin mounted on a hydraulic piston and subjected

to vertical motion for two hours (Hand et al., 1994, p. 13). Letting 0 represent a

censored value and 1 represent an uncensored value, one can determine an estimate for

the parameter λ of an exponential distribution with the statements:

X := ExponentialRV(lambda);

VData := [30, 50, 50, 51, 66, 82, 92, seq(120, i = 8 .. 21)];

RCensor := [1, 1, 0, 1, 0, 1, 1, seq(0, i = 8 .. 21)];

lambdahat := MLE(X, VData, RCensor);

These statements return the parameter estimate λ̂ = 5
2101

.

• For the case of a general random sample X1, X2, . . . , Xn, i.e., the sample is unspecified,

but n is fixed, one would type the following statements:

X := NormalRV(mu, 1);

muhat := MLE(X, [x1, x2, x3, x4, x5], [mu]);

This code returns the MLE X̄ for n = 5. To find the distribution of this estimator:

Y := Transform(ConvolutionIID(X, 5), [[x -> x / 5], [-infinity, infinity]]);

One can then find its mean, variance, quantiles, and so forth, using APPL.
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