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We present an algorithm for computing the cumulative distribution function of the Kolmogorov—
Smirnov test statistic D,, in the all-parameters-known case. Birnbaum (1952) gives an n-fold
integral for the CDF of the test statistic which yields a function defined in a piecewise fashion,
where each piece is a polynomial of degree n. Unfortunately, it is difficult to determine the
appropriate limits of integration for computing these polynomials. Our algorithm performs
the required integrations in a manner that avoids calculating the same integrals repeatedly,
resulting in shorter computation time. It can be used to compute the entire CDF or just a
portion of the CDF, which is more efficient for finding a critical value or a p-value associ-
ated with a hypothesis test. If the entire CDF is computed, it can be stored in memory so
that various characteristics of the distribution of the test statistic (e.g., moments) can be
calculated. To date, critical tables have been approximated by various techniques including
asymptotic approximations, recursive formulas, and Monte Carlo simulation. Qur approach
yields exact critical values and significance levels. The algorithm has been implemented in

a computer algebra system.
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1 Introduction

The Kolmogorov—Smirnov (KS) test statistic D, is defined by
D, = sup [F(z) — B ()]

where n is the sample size, F'(z) is a hypothesized CDF with fixed parameters, and F, (),
also called the empirical distribution function, is a step-function that increases by 1/n at each
data value. This statistic has been used for goodness-of-fit testing for continuous populations
for decades. The KS test’s appeal is its straightforward computation of the test statistic and
the distribution-free characteristic of D,,. Its drawback is that its cumulative distribution
function under the null hypothesis is difficult to determine, leaving one to calculate critical
values with various approximation methods. We consider the distribution of the KS statistic

in the case when all parameters are known.

Birnbaum (1952) gives the CDF of D,, — -+ as

2n
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for0 <v < 27;_1, where
n
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for 0 < uy <wuy < --- <y, <1, and is 0 otherwise. Birnbaum’s rather harmless-looking

integral is tedious to compute by hand, even for small values of n, due to the complexity
of the region where ¢ is nonzero. Evaluating his expression requires calculating many n-
fold integrals whose limits are determined by considering a carefully chosen partition of the
support of D,. The difficult part of the process is to set the appropriate limits on these

integrals.



An algorithm for computing the CDF of the KS test statistic in the all-parameters-known
case for a positive integer parameter n is presented here. Computing the CDF provides a
challenging calculus problem, even for small values of n. The CDF can be constructed from
a set of piecewise degree-n polynomials. The algorithm can be used to plot the entire CDF

or to just find particular fractiles or probabilities associated with the distribution.

2 Literature review

The literature available on the KS statistic is extensive. Stephens’ article (Chapter 4 of
D’Agostino and Stephens, 1986) contains comprehensive coverage on the use of the KS
statistic, as well as other statistics based on the empirical distribution function. He calcu-
lates the power of these goodness-of-fit tests. Johnson, Kotz, and Balakrishnan (1995, p.
640) consider this source (D’Agostino, 1986) to be so complete that they have deleted KS
discussions in their second edition and refer the reader to that compendium instead. For
computing critical points of the KS distribution, we find five-digit accuracy as early as 1956
(Miller, 1956). Miller relies on asymptotic results that converge fairly quickly to produce
these estimates. Birnbaum’s article (1952) also explains how various sets of recursive for-
mulas can be used to calculate certain critical points to reasonable levels of accuracy. Law
and Kelton (1991, p. 387) indicate that critical points require computer techniques, and
are only easily calculated for n < 50. There appears to be no source that produces exact
distribution functions for any distribution where n > 3 in the literature. Birnbaum (1952,
p. 441) gives the CDF of D,, — 5= for n = 2 and n = 3. Knuth (1981) provides a functional
form for the CDFs for the two statistics D and D, but does not provide the CDF for
D, = max{D}, D;}, a harder problem given the dependence between the two random vari-
ables. Schréer and Trenkler (1995) give the distribution of the KS test statistic for unequal
sample sizes in the two- and three-sample cases. As a consequence of the apparent complex-
ity of the required integration and lack of literature on exact distributions, we believed early
on that a computational algebra system, such as Maple, would be necessary to compute the

polynomials needed for the distribution of the KS test statistic.



3 Computing the distribution of D,

When 0 < v < i, Birnbaum’s integral is easy to compute since none of the intervals of
integration overlap. Additionally, these intervals are all wholly contained within the interval
from 0 to 1. Because the limits of Birnbaum’s integral guarantee that 0 < uy <wy <--- <

u, < 1, we may replace the integrand g(uy, us,...,u,) with 1, and our computation of the

KS CDF requires only a single n-fold integral:

1 TtV [Eatv St 1
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When v has a fixed value greater than ﬁ, it is also desirable to replace Birnbaum’s
integrand by 1. In order to justify this replacement, we must only allow integration over that
region of n-dimensional space for which 0 < vy < uy < --- < w, < 1. Since the intervals
of integration specified in Birnbaum’s integral for different w;’s can overlap, the smallest
allowable value for any wu; is influenced by all u;’s with subscripts less than ¢ that can take

on values in u;’s interval of integration. This overlapping requires partitioning the interval

from £+ — v to &=L

5 5= +v into subintervals (which we will henceforth refer to as u-subintervals),

with the first u-subinterval starting at i — v and a new u-subinterval beginning whenever
the left endpoint of one of Birnbaum’s intervals of integration is encountered. When any w;
lies in a u-subinterval that consists entirely of negative values, Birnbaum’s integrand is zero.
For this reason, only u-subintervals that have a positive right endpoint contribute to the KS

CDF.

Of course, the number of u-subintervals that have a positive right endpoint depends on

the value of v. Because of this, the interval 0 < v < 2221 must be subdivided at the following
values of v: ;—n, %, 25—n, s 22;3. When the values of v remain within one of the resulting

subintervals for v, the number of u-subintervals that have a positive right endpoint will
remain fixed.

Another complication arises because it is necessary to know, for a fixed value of v and
for the u-subintervals produced by this value, which variables of integration u; can take on
values in each of the u-subintervals of [0, 1]. The previous subdivision of the values of v is not

fine enough to allow unambiguous specification of the range for each u;. When 2 < j, u; and



u; have overlapping intervals of integration if the upper integration limit for u; exceeds the
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lower integration limit for u;, i.e., +v > =— —v. As a result, as v increases from 0 to
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, new overlaps take place when v equals . % The interval 0 < v < %
must be divided into subintervals at these values of v as well as at the values of v listed
previously. We will henceforth refer to the resulting subintervals as v-subintervals.

Indicator matrices will be used to summarize the interrelationships between the possible

values for the variables of integration wy, us, ..., u,. For a fixed n and for values of v in the

kth v-subinterval of (0, 22;1), the indicator matrix Ay will show, by the presence of a 1 or
a 0 in row 2 and column j, whether or not w; can take on values in the jth u-subinterval.
Finally, by defining paths through these indicator matrices, we will produce a complete set
of n-fold integrals which satisfy the requirement 0 < uy < uy < --- < w, < 1, and which
produce the KS CDF when summed.

The algorithm for computing the cumulative distribution function of D, is divided into
four phases. In Phase 1, an appropriate partition of the support of D, — % is determined. In
Phase 2, we define matrices Ay that are instrumental in determining the limits of integration
in the n-fold integrals. In Phase 3, these integrals and their associated limits are computed.
To take advantage of the similarities in the limits of integration of these n-fold integrals,
they are grouped for efficiency and all evaluated to the same level of integration before
proceeding to the next level. Finally, Phase 4 consists of translating the support of D, — i

to the support of D,. Thus the input to the algorithm is a positive integer n and the output
is the piecewise CDF of D,,. The algorithm is available from the authors.

3.1 Phase 1: Partition the support of D, — i

The endpoints of the segments that define the support of the KS test statistic can be de-
termined from the limits of integration given by Birnbaum. Using Birnbaum’s formula, the

baseline lower and upper limits of integration associated with v = 0 are

{1 3 5 2n—1}
2n’2n ' 20”7 2n '
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As v increases, the support of D, — -

is broken into disjoint v-subintervals. The endpoints
of these support v-subintervals consist of v = 0 and the values of v for which the endpoints

of the n intervals of integration either:

. . 1 3 5 In—1
e equal 0 or 1, which occurs at the v-values {5-, =, = ..., <= } , or
S . , 1 2 3 n—1
e coincide. which occurs at the v-values ¢ =——, =, = ... 2=
? 2n? 2n 2n? 7 2n

Thus the union of these two sets and 0 comprise the endpoints of the v-subintervals of the
support of D,, — %

The first phase of the algorithm computes the above endpoints vy = 0,v1,v9,..., v,
where m is the number of v-subintervals on which the CDF of D, — % is defined. For any

n,

m= (%1

where [ | denotes the ceiling function.

3.2 Phase 2: Define the A matrices

Two book-keeping steps are needed in this phase of the algorithm. They are:

1. Define ¢q,cq, ..., ¢, as the midpoints of the v-subintervals of support for D, — i
2. Define z1,x3,...,x, as the midpoints of the intervals of integration for uy,us, ..., u,
in Birnbaum’s n-fold integral. Thus
2t —1 )
x; = o v=1,2,...,n.
Part of the algorithm involves defining n x n indicator matrices Ay, Ay,..., A, corre-

sponding to the v-subintervals which form the support of D,, — i The rows of an A matrix

refer to the variables of integration wuq,us, ..., u,. The columns of an A matrix refer to the

u-subintervals, with the jth column corresponding to the interval from z; — v to z;41 — v,
except for the nth column, which corresponds to the interval from z, — v to z, + v. If the
(¢,7) element of an A matrix equals 1, then the range of u; includes at least part of the jth

u-subinterval, as will be explained in Phase 3 below.



The integrals that need to be computed for each segment of support of D, — i can be
visualized as a path in A, consisting of a sequence of moves from the (n,n) position of A to
a nonzero element in the first row of A. All moves in the A matrix from row z to row z — 1

(for i =n,n —1,...,2) require that the following conditions are met:

1. The move must be from one of the 1’s in row ¢ to one of the 1’s in row 7z — 1.

2. The move is either directly vertical or vertical and one or more spaces to the left.

That is, if the move begins at a 1 element in column j of row z, it must end at a 1 element

in column 1 through j of row ¢ — 1.

Example 3.1 For n = 3 and k£ = 3, the support of the CDF includes the v-

subinterval 2 < v < 2 and has the following A3 matrix:

111
As=10 1 1
00 1

There are five different paths from the (3, 3) element to the top row of the matrix.
In the five matrices below, these five paths to the top row of the A matrix are

displayed by using boldface type on the path.

1 1 1 111 1 11 111 1 11
6c1r14{,J]01 1¢(,{011},]0 1 1|,/011
0 0 1 0 0 1 0 01 0 0 1 0 01

Each path corresponds to a triple integral, whose limits will be specified in Phase
3. The sum of these integrals produces the CDF on % <v < %, as will be shown

in Example 3.3 below.

Table 1 shows how rapidly the number of n-fold integrations required to compute the
CDF of D, — i grows with n. Note that the five triple integrals in the previous example
corresponds to n = 3 and the third v-subinterval (k = 3), shown in boldface in the table.
Note that the fifth column in Table 1 is the product of the first and fourth columns.
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Table 1. Computational requirements for computing the D, CDF for small n.

Number of n-fold Total number Total number
n | m | integrals required for of n-fold integrals | of single integrals
each v-subinterval required required
111 1 1
212 11,2 3 6
314|1,4,5,3 13 39
415 |1,8,13,9,4 35 140
51 7 |1,16, 34, 27,28, 14, 5 125 625
6| 8 | 1,32, 89,81, 89, 48, 20, 6 366 2196

Example 3.2 The method for determining the integers in the third column of
the previous table is somewhat analogous to determining the entries in a row
of Pascal’s triangle by using the entries of the previous row. Beginning at each
nonzero A matrix element in rows 2 through n, there are a certain number of
paths whose moves to the top row of the matrix satisfy the two conditions stated
previously. We will assign such elements a number p (for paths) that denotes the
number of paths from that element to the top of the matrix. Thus if p;, = 2
(as is the case for the (2, 2) element of the A3 matrix for n = 3 and k = 3 in
Example 3.1) then no matter how we reached this element of the A matrix, there
are only two possible paths remaining to the top. The p; ; values are assigned as
follows. Only those elements of matrix A with value 1 are assigned a p; ; value.
If the jth entry in the first row of A is nonzero, assign p; ; = 1. For the second
and subsequent rows (¢ = 2,3,...,n), p;; = Egzl pi—1,4- Upon completion, p,, ,
represents the total number of paths from the lower right corner of the matrix to

the top row of the matrix. Consider, for example, the case of n =5 and k = 4.



The A4 matrix with superscripts denoting the p; ; values is

0o 1t 1t 1* 0
0 1t 12 17 1°
Ag=1|0 0 1* 1 1°
0 0 0 12 1'®

00 0 0 1% ]

Here we see that p; 5 = 27, meaning there are 27 possible paths to the top row
of A4, consistent with the n = 5 and k£ = 4 element in Table 1. The p; ; values
parallel the work on the two-sample case in Schréer and Trenkler (1995, page

187).

3.3 Phase 3: Set limits on the appropriate integrals

The indicator matrix A shows, by the presence of a 1 in row 2 and column j, for j < n, that
u; can assume values from the maximum of z; — v and 0 to the minimum of z;1; — v and
x; +v. The presence of a 1 in row ¢ and column n, means that u; assumes values from z,, — v
to the minimum of z; + v and 1. Each path in A, as described in Section 3.2, represents
a set of allowable intervals of integration for the variables u; to w, in a particular n-fold
integral. For a particular path, the limits of integration for each w; are those given above
that correspond to entry a;; of A in row : that lies on the path, with one exception: if both
a;; and a;_q ; are on the same path, the lower limit of integration for u; must be u;_;.

For each path through the matrix A, and for each nonzero entry «;; on that path, a
single integration with respect to u; must be performed. If a;_; ; is on the same path as «a; ;,
then the lower limit of integration will be the variable u;_;. If @;,_1 ; is not on the same path
as a;;, then the lower limit of integration will be a fixed number: the maximum of z; — v
and 0. Thus for each path which passes through «; ;, either a variable or fixed lower limit of

integration might be appropriate.

Example 3.3 Using the rules above, the five paths displayed in Example 3.1



correspond, respectively, to the following integrals:

%—v %—v 1
1 d’LLg dUQ du1
3 5 ’
0 gV g~V

%—v %—v 1
/ / / 1 dU3 dUQ dul,
%—v uy %—v
%—v %—I—v 1
/ / / 1 du3 du2 dul,
0 %—v ug
%—v %—I—v 1
/ / / 1 du3 du2 dul,
%—v g—v U
%—I—v %—I—v 1
/ / / 1 dU3 dUQ dul.
%—U Ul ug

When these five integrals are summed, Birnbaum’s expression reduces to

1 11 11
P (Dg < G —I-’U) = —4v° + gv ~ o

Note that the inside integral

1
/ 1 du3

on the third, fourth, and fifth triple integral is identical. The number of iden-
tical integrals of this type grows rapidly as n increases. The algorithm we have

developed avoids recalculation of duplicate integrals. Continuing in this fashion

for the other A matrices (i.e., Ay, A2, and Ay), yields the CDF

48v® 0<v<i

(D 1 —12'03—|—8'02—|—v—é é<v<%
< =-+4v)=

(3 6+) g 4 1y, 11 2 o8

3 27 6 6

3 2 | 25 17 3 5

2v° — bv + TV — 108 s <v< g

Note that Birnbaum’s (1952) CDF contains a sign error in the fourth v-subinterval
of support.

Example 3.4 To illustrate the role of fixed and variable limits, consider again

10



the case of n = 5 and k = 4 as in Example 3.2. The A; matrix shown below
has its 1’s replaced with F, V, or B, indicating whether a fixed-limit integral, a

variable-limit integral, or both need to be computed for each entry.

o F F F O
0V B B F
Ay=|0 0 B B B
00 0 B B
00 0 0 B_

In general, when the A matrix contains a zero, neither the fixed nor variable lower limits
need to be computed. Now consider the elements of the A matrix that contain a 1. The
positions associated with the first 1 in each column of A require only a fixed lower limit to
be calculated. The positions below the first 1 in the first nonzero column require only a
variable lower limit to be calculated. All other positions in the A matrix associated with
1 elements require both a fixed a variable lower limit to be calculated. Table 2 shows the
computational efficiency of performing the integrations for various values of n by using the

algorithm.

11



Table 2. Computational efficiency associated with using the F' and V arrays.

Total number Total number
n | m | of single integrals of single integrals

required (Table 1) | required (algorithm)

1)1 1 0
2|2 6 4
3| 4 39 23
415 140 48
5| 7 625 108
6 |8 2196 170
10 | 14 442540 800
15122 318612735 2793

The number of single integrals (algorithm) for any n is bounded above by

D (]
where the first factor corresponds to the maximum number of 1’s in any A matrix, the second
factor accounts for computing both the fixed and variable matrices (described subsequently),
and the last factor is one less than m since no integration is required for the first v-subinterval.

Table 3 lists the coefficients of the polynomials that define the CDF of D, — i as com-
puted by the algorithm which has been implemented in Maple for n = 1,2,...,6. The ability
to integrate polynomials and to store fractions exactly is required for these calculations. Note

that Dy is uniformly distributed as expected.

12



Table 3. CDFs of D,, — i forn=1,2,...,6.
k Coefficients of CDF polynomials Subinterval
1 2,0 0<v< %
1 8,0,0 0<v< i
2 -2,3,—1% T<v<?
1 48,0,0,0 0<v<s
2 —-12,8,1,—% t<v<i
3 —4,0,12 11 Zcv<
4 2—5,;,—% %<v<%
1 384,0,0,0,0 0<v<é
2 —48,0,15, -3, 52 T<v<i
3 16,—40,21, -3, - 2= Zcv<
1 6,15 2 s Pcv<s
5 —2,7, M7 345 355 Scu<l
1 3840,0,0,0,0,0 0<v< 11—0
2 0,—288, 624 % _36 6 Loycl
3 160, —160, 254,%,—%,% %<v< %
4 —20,64 —%,%,%,—% %<v<%
5 12,0, -%, 8, 28, — o350 5 <v<i
6 sas-gommsomm gcocs
7 2,9, 8517 _%7 %7 _590004090 % <v< %
1 46080,0,0,0,0,0,0 0<v< 11—2
2 2880, —3360, 660, 60, 127ﬂ7_515ﬂ % <v< %
3 320,480, —700, %520, 1% 25 2L Z<v< g
o] s, 120, 5, g, g <o <
5| 101, -188, 2, T e _TE |8 c o g
i
7] 10,-33, 922437 3201%57 2324157657 123047830677 - 165528552 % <v< %
8 —2,11 _%7 %7 _753125%57 12%17%5617 _1242382596992 % < U< %
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Rather than detail every aspect of the logic of Phase 3 of the algorithm, we illustrate the
evolution of the n x n matrices F' (for fixed limits) and V' (for variable limits) in a row-by-row

fashion for a particular combination of n and k.

Example 3.5 Consider again the case of n = 3 and k = 3, which corresponds

to the v-subinterval % <v< g. The z; values associated with n = 3 are z; = é,
s = 2 and x3 = 2. The v; values associated with n = 3 are vg = 0, v; = %

6 6 ) 6
vy = 2, v3 = 2, and vy = 2. The centers of the v-subinterval =Ll =2
vy = %, v3 =3, and vy = 2. e centers of the v-subintervals are ¢; = 35, ¢2 = 3,
c3 = %, and ¢4 = %. The As matrix is

111
As=10 1 1
00 1

The F' and V matrices are computed simultaneously, row by row, starting with
the last row and ending with the first. Thus all of the elements of the third
row of F' and of V' are computed before computing the elements of the second
row is begun. In general, integrals which are calculated in a particular row
become integrand candidates for the integration to be carried out in the row
immediately above. The F' and V matrices are designed to store the intermediate
results of integration of the n-fold integrals so that the necessary inner integration
operations are performed only once. Entries in the :th rows of F' and V each
result from n + 1 — ¢ single integrations, one integration corresponding to the :th
row and one integration for every lower row. The F' matrix stores the results of
all integration in which the last integral had a fixed lower limit and the V' matrix
stores the results of all integration in which the last integral had a variable lower
limit. In this example, for the inner-most integration variable us, there is only
one possible fixed integration to compute and one possible variable integration

to compute on the third u-subinterval. These computations are seen in the (3,

14



3) element of the respective matrices:

Fip Fiy Fis Vig Vig Vis
F= 0  Fyy I3 ) V= 0 Vig Vays
0 0 [, ldus 0 0 [ ldus

The second variable, usy, has four possible combinations of limits and integrands.
Elements (2, 2) and (2, 3) of the F' matrix store integration results that have
all fixed lower-limits of integration, but the integrands are fixed and variable,
respectively. Elements (2, 2) and (2, 3) of the V' matrix have a variable lower
limit of integration w;. Fj5 covers the case in which uy varies over the second
u-subinterval and ug varies over the third u-subinterval. For F; 3, both u; and us
vary over the third u-subinterval, so us must have uy as its variable lower limit;
hence the integrand is V53, not Fj53. Similar cases are covered by V;; and V53,
except that variable lower limits are used in anticipation of the fact that u; and
uy can both vary over the same w-subinterval, making it necessary to have u;
as the (variable) lower limit for uy. The integrations in the second row of each
matrix are shown below (note, the integration for the (3, 3) element, previously

discussed, has been carried out).

Fl,l F1,2 F1,3 ‘/1,1 ‘/1,2 ‘/1,3
F = 0 ff__: F373 dUQ fgj—: ‘/373 dUQ , V == 0 u%l_v F373 dUQ fu%l—i_v ‘/373 dUQ
0 0 é + v 0 0 1 — uy

For the third and last variable, uq, only fixed-limit integration takes place so only
the F' matrix is updated. The integrals in this first row are shown below (note

again, all previously discussed integration have been carried out in the second

and third rows of F and V'):

1

5 (Faa Fag)dus I (Vi o Fa) dun 17 Vi
F= 0 0+ o —stsv |
0 0 5 v

15



V1,1 V1,2 VLS

V = 242,45 oo 1. 1,2 1. .3 1.2
0 i+ Ut g5 —vur — gur T vt gt Suy —ug

0 0 1—’LL2

The completely evaluated F' matrix is given by

p2 43y, 1 45, 2,3 ,2 2, 1

v +QU 36 36+180 SU +v QU 81
F = 1,41 142,
0 SU+18 9+30
0 0 s +v

Finally, the CDF on the 3rd v-subinterval is the sum of the elements in the first

row of the F' matrix, all multiplied by 3! = 6.

3.4 Phase 4: Shift the distribution

At this point, the CDF is computed in the form P(D, < v + i) Now we convert the
distribution into the more usable form P(D, < y) = Fp,(y) by making the substitution
y = v+ % in both the polynomials and the v-subintervals of the CDF. Specifically, we
add i to each endpoint of the v-subintervals and we substitute (y — ﬁ) for v in the CDF
polynomials. We then take these two lists of numbers and polynomials respectively, simplity
them [using Maple’s simplify () command], and create the CDF representation in the form
of the “list-of-lists” representation for distributions outlined in Glen (1998). This enables
us to use the distribution in the ways that all other distributions are used in the software
proposed by Glen (1998). Specifically, we can now verify critical values for the distribution,

but more importantly, we can calculate exact significance levels of any given statistic. An

16



example of the shifted distribution for n = 6 is:

0 y <:f%
46080 y° — 23040 y® + 4800 y* — 1620 y% 4 10042 _ 10, 4 5 T <y<i
2880 y® — 4800 y° 4 2360 y* — 12043 4 235,24 10, 5 t<y<i
320y +320y° — 0yt 4 210,58 T2 4 M, S5 T<y<i

Fo(y) = —280y° +560y° — Byt + 22 y° + B2y — Py + 5 5<y<g
104yS —240y°> + 295yt — 19243 4 T2 7645, 4 5 3<y<!
—20y° +32y° — 1825 4 L0 y2 4 By ] 1<y<?
10y° —38y° + 10y — 22y’ — {Rv* + Sy — | 2<y<?
—2y° +12y° —30y* + 40y — 30y? + 12y — 1 B<y<l
1 y > 1.

The CDF and PDF of Dg are shown in Figure 1 and Figure 2. We have noted that there is

a discontinuity in the PDF at y = %, and more generally, at y = % This corresponds to the

value v = i in Birnbaum'’s original integral. This is the smallest value of v for which the
3 2n—1
207277 2n

n-dimensional hypercube centered at ( ) makes contact with the boundary of
the region in n-space that satisfies 0 < uy < wuy <--- < w, < 1. The CDFs for D; through
D3y are available in ASCII form (readable by Maple) at www.math.wm.edu/leemis.html.

The CDF for n = 30 requires about 20 printed pages of text.

4 Conclusions and further research

The algorithm described here computes the exact CDF of the Kolmogorov—Smirnov test
statistic in the all-parameters-known case, effectively eliminating the need for tables when
the sample size is small. Computing the CDF provides a challenging calculus problem, even
for small values of n. The resultant CDF is set of piecewise degree-n polynomials. While
the algorithm is slow for large n, once the CDF is generated and stored, it may be used with
virtually no computation time. The CDFs for n = 1 to n = 30 have been stored. Once

the CDF has been generated and stored, subsequent computations of characteristics (e.g.,

17



p-values, critical points, moments) are fast. The mean of Dys, for example, is exactly:

19789174192091655069533351340633597236049
118234311230480670928955078125000000000000

We have compared the accuracy of Birnbaum’s approximate methods in his Table 2 and
found errors in the third digit of the CDF values Furthermore, asymptotic methods typically
only find the CDF associated with a single point, whereas our algorithm exactly determines
the entire distribution of the test statistic.

The algorithm has been implemented in Maple and incorporated into a larger package of
procedures known as APPL (A Probability Programming Language). This package can be
used to solve problems such as the one that follows. Let X be a KS random variable (all
parameters known) with n = 6. Let Y be a KS random variable (all parameters known)
with n = 4. Assuming that X and Y are independent, find Var [max {X,Y}]. One would
typically be limited to Monte Carlo simulation in order to solve this question without the

algorithm given in the paper. The APPL code to solve this problem is

X := KSRV(6);
Y := KSRV(4);
Z := Maximum(X, Y);

Variance(Z);

which yields the variance as exactly

1025104745465977580000192015279
83793210145582989309719976345600

or approximately 0.0122337.
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Figure 1: The CDF of the Dg random variable.
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Figure 2: The PDF of the Dg random variable. Note the discontinuity at y = 1/6.
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