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Hill stated that “An interesting open problem is to deter-
mine which common distributions (or mixtures thereof) sat-
isfy Benford’s law . . .”. This article quantifies compliance
with Benford’s law for several popular survival distribu-
tions. The traditional analysis of Benford’s law considers
its applicability to datasets. This article switches the em-
phasis to probability distributions that obey Benford’s law.
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1. INTRODUCTION

Astronomer and mathematician Simon Newcomb noticed
“how much faster the first pages (of tables of logarithms)
wear out than the last ones” leading to the counter-intuitive
conclusion that the first significant digit in the values in a
logarithm table is not uniformly distributed between 1 and
9. Using a heuristic argument, he found that ones occur
most often (more than 30% of the time) and nines least
often (less than 5% of the time). More specifically, if the
random variable X denotes the first significant digit, then

Pr(X = x) = log10 (1 + 1/x) ,

for x = 1, 2, . . . , 9. He published this “logarithm law” in the
American Journal of Mathematics in 1881.

General Electric physicist Frank Benford (1938) appar-
ently independently arrived at the same conclusion as New-
comb concerning logarithm tables. He proceeded to “collect
data from as many fields as possible” to see if natural and
sociological datasets would also obey the logarithm law. He
often found good agreement between the logarithm law and
his 20,229 total observations, including datasets as diverse
as the areas of rivers, American League baseball statistics,
atomic weights of elements, death rates, and numbers ap-
pearing in Reader’s Digest.

What has become known as “Benford’s law” has found
applications in the distribution of the one-day return on
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stock market indexes (Ley 1996), the distribution of the
populations of 3,141 counties in the 1990 U.S. Census, and
the detection of accounting fraud (Nigrini 1996).

A mathematically rigorous proof of Benford’s law has
proven elusive. This is in part due to the fact that certain
datasets (e.g., random numbers) do not follow Benford’s
law. Recent attempts have considered the effect of scale
invariance (e.g., dollars versus yen), base invariance (e.g.,
octal versus base ten), and mixtures (i.e., sample data drawn
from several population distributions that are selected at
random), as indicated in Hill (1995, 1998).

The purpose of this article is to switch the emphasis
from the examination of datasets that obey Benford’s law
to probability distributions that obey Benford’s law. The
emphasis here is on survival distributions (i.e., random vari-
ables with positive support), although more general distri-
butions can be examined in the same fashion.

2. PARAMETRIC SURVIVAL DISTRIBUTIONS

Hill (1995, pp. 361–362) stated that “An interesting open
problem is to determine which common distributions (or
mixtures thereof) satisfy Benford’s law . . .”. This section
quantifies compliance with Benford’s law for several pop-
ular survival distributions.

As before, let X denote a random variable having Ben-
ford’s distribution, and let T denote a random lifetime with
survival function S(t) = Pr(T ≥ t). If Y is the value of the
first significant digit in the lifetime T , then

Pr(Y = y) =
∞∑

i=−∞

[
S

(
y · 10i

)− S
(
(y + 1)10i

)]

for y = 1, 2, . . . , 9. Thus, Pr(Y = 7), for example, is found
by summing the appropriate probabilities on the intervals

. . . , (.07, .08), (.7, .8), (7, 8), (70, 80), . . . .

More detailed examples on the derivation of the probability
mass function of Y are given in Section 3.

For a particular random variable T having prescribed sur-
vivor function S(t), it is desired to measure the goodness-
of-fit between Benford’s distribution and the distribution
of the first significant digit. Two such measures are the chi-
square goodness-of-fit statistic

c =
9∑

x=1

[Pr(Y = x)− Pr(X = x)]2

Pr(X = x)
,

and

m = max
x=1,2,...,9

{|Pr(Y = x)− Pr(X = x)|} .

These measures are calculated for several popular lifetime
distributions in Table 1 as parameterized in Leemis (1995,
Chapter 4).
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Table 1. Conformance to Benford’s Law for Parametric Survival Distributions

Distribution λ κ Class c m

Exponential 1 IFR/DFR .61 · 10−2 .29 · 10−1

Exponential 5 IFR/DFR .54 · 10−2 .18 · 10−1

Muth .1 IFR .13 · 10−1 .41 · 10−1

Gompertz 5 1.1 IFR .62 · 10−2 .20 · 10−1

Weibull 1 .3 DFR .37 · 10−10 .16 · 10−5

Weibull 1 2 IFR .19 .11

Gamma 1 .3 DFR .15 · 10−3 .29 · 10−2

Gamma 1 2 IFR .48 · 10−1 .50 · 10−1

Log logistic 1 .3 DFR .86 · 10−21 .67 · 10−11

Log logistic 1 2 UBT .24 · 10−1 .35 · 10−1

Exponential Power Distribution 1 .3 BT .48 · 10−4 .17 · 10−2

The following observations were made while construct-
ing the table:

• The results for the exponential distribution for λ =
5, for example, are also good for λ = 5 · 10k, for k =
±1,±2, . . ..
• For all distributions considered with a shape parameter

κ, the goodness-of-fit measures c and m increased in κ for
the values of κ considered.
• For all two-parameter distributions, the goodness-of-fit

measures c and m were more sensitive to changes in the
shape parameter κ than the scale parameter λ.

Notice that for the log logistic distribution with λ = 1
and κ = .3, there is an astonishing 11-digit agreement with
Benford’s law. The fact that the probability density function
of the logarithm of a log logistic random variable is sym-
metric might provide a clue as to why it matched Benford’s
law so closely.

General conditions associated with the distribution of the
random variable T will now be derived in order to determine
when Benford’s law applies.

3. CONDITIONS FOR CONFORMANCE TO
BENFORD’S LAW

As stated earlier, the probability density function of a
Benford random variable X is

fX(x) = Pr(X = x) = log10 (1 + 1/x) ,

for x = 1, 2, . . . , 9. The associated cumulative distribution
function is

FX(x) = Pr(X ≤ x) = log10 (1 + x) ,

for x = 1, 2, . . . , 9. Inverting the cumulative distribution
function, a Benford variate X can be generated by

X ← d10U − 1e,
or

X ← b10Uc,

where U ∼ U(0, 1).
As before, let T be the random lifetime whose first sig-

nificant digit is of interest. Let the integer-valued random
variable D satisfy

10D ≤ T < 10D+1

(e.g., T = 365 ⇒ D = 2 and T = 1/10 ⇒ D = −1).
This definition of D allows the first significant digit Y to
be written in terms of T and D as

Y = bT · 10−Dc = b10log10 T−Dc
(e.g., T = 365⇒ Y = b365 · 10−2c = b3.65c = 3).

Referring back to the variate generation algorithm, it is
clear that if the random variable Z = log10 T−D ∼ U(0, 1),
which represents the result from the logarithm table, then
the first significant digit Y has the Benford distribution.
Using conditioning, the cumulative distribution function of
Z is given by

FZ(z) = Pr(Z ≤ z)

=
∞∑

d=−∞
Pr

(
10d ≤ T < 10d+1)

·Pr
(
log10 T − d ≤ z|10d ≤ T < 10d+1) ,

for 0 < z < 1. Thus, conformance to Benford’s law implies
that the weights (the first term in the product) associated
with each order of the magnitude and the distribution of
Z = log10 T −D (the second term in the product) are such
that the infinite sum produces a linear function in z.

Why was Newcomb surprised? He expected each page of
a logarithm table to be equally worn; that is, he surmised
that the values that people used as arguments in logarithm
tables would be uniformly distributed between 1.0 and 10.0.
Although the left-hand column of a logarithm table is ar-
ranged in a linear fashion so that 1.0 to 2.0 requires 1

9 of
the pages, Newcomb correctly observed that the people us-
ing the tables in 1881 did not use them in a uniform fash-
ion (e.g., more than 30% of the table look-ups were from
the first 1

9 of the pages). In summary, Newcomb expected
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uniformity in the inputs to the logarithm tables, but uni-
formity was actually achieved in the resultant logarithms,
represented by Z.

We now proceed to investigate distributions that satisfy
these conditions.

Example 1. A distribution can be created that satisfies
Benford’s law exactly. Let W ∼ U(0, 2). Let T = 10W .
The probability density function of T is

fT (t) =
1

2t ln 10

for 1 < t < 100. The probability mass function of D is

fD(0) = Pr(D = 0) = Pr(1 < T < 10)

=
∫ 10

1
fT (t)dt

=
1
2
,

and

fD(1) = Pr(D = 1) = Pr(10 < T < 100)

=
∫ 100

10
fT (t)dt =

1
2
.

The probability mass function of the leading digit Y is

fY (y) = Pr(Y = y)
= Pr(y < T < y + 1) + Pr(10y < T < 10(y + 1))

=
∫ y+1

y

fT (t) dt +
∫ 10(y+1)

10y

fT (t) dt

=
∫ y+1

y

1
2t ln 10

dt +
∫ 10(y+1)

10y

1
2t ln 10

dt

= log10

(
y + 1

y

)

for y = 1, 2, . . . , 9. This probability mass function matches
Benford’s distribution exactly.

Alternatively, one can proceed by determining the distri-
bution of Z = log10 T −D, where W = log10 T .

FZ(z) = Pr(Z ≤ z)

=
∞∑

d=−∞
Pr

(
10d ≤ T < 10d+1)

·Pr
(
log10 T − d ≤ z|10d ≤ T < 10d+1)

=
1∑

d=0

Pr (d ≤W < d + 1)

·Pr (W − d ≤ z|d ≤W < d + 1)
= Pr (0 ≤W < 1) · Pr (W ≤ z|0 ≤W < 1)

+ Pr (1 ≤W < 2) · Pr (W − 1 ≤ z|1 ≤W < 2)

=
1
2
z +

1
2
z

= z

for 0 < z < 1. Since this is the cumulative distribution
function for a U(0, 1) random variable, Benford’s law is
satisfied exactly.

The previous example can be generalized as follows. Let
W ∼ U(a, b), where a and b are real numbers satisfying
a < b. If the interval

(
10a, 10b

)
covers an integer number

of orders of magnitude, then the first significant digit of the
random variable T = 10W satisfies Benford’s law exactly.
Equivalently, if b−a is a positive integer, then the first sig-
nificant digit of T = 10W satisfies Benford’s law. Examples
include a = −2, b = 1 and a = log10(3/2), b = log10(150).

There is no need for the support of the distribution of
T = 10W to span several orders of magnitude as is the case
for many of the datasets that conform to Benford’s law.
Example 1 shows that a single order of magnitude (e.g.,
a = 5, b = 6) is sufficient.

Example 2 considers a nonuniform distribution for W .

Example 2. Let W ∼ Triangular(0, 1, 2). The proba-
bility density function for W is

fW (w) =
{

w 0 < w < 1
2− w 1 ≤ w < 2.

As before, let T = 10W and Z = W −D. The cumulative
distribution function of Z is

FZ(z) =
1∑

d=0

Pr (d ≤W < d + 1)

·Pr (W − d ≤ z|d ≤W < d + 1)

=
1
2
z2 +

1
2

(
2z − z2)

= z

for 0 < z < 1. Thus, the first significant digit of T satisfies
Benford’s law exactly.

This example can also be generalized. Let W ∼
Triangular(a, b, c), where a, b, and c are real numbers sat-
isfying a < b < c. The first significant digit of the random
variable T = 10W satisfies Benford’s law exactly if a, b,
and c are integers.

The symmetric, integer-parameter triangular distribu-
tion’s conformance to Benford’s law may provide some in-
sight into the log logistic’s stellar performance in Table 1.
If the probability density function of W is symmetric about
an integer and the variance of W is large, then it is often the
case that the probability density function of W is approx-
imately linear between consecutive integers. The symmet-
ric portions of the probability density function of W will
nearly cancel one another when computing the distribution
of Z. A normal random variable W with integer mean µ
and large standard deviation σ, for example, corresponds to
a lognormal T = 10W whose first significant digit closely
approximates Benford’s law.

Example 3 considers a nonsymmetric distribution for W .
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Example 3. Let W have probability density function

fW (w) =
{

1− w2 −1 < w < 0
(w − 1)2 0 ≤ w < 1.

As before, let T = 10W and Z = W −D. The cumulative
distribution function of Z is

FZ(z) =
0∑

d=−1

Pr (d ≤W < d + 1)

·Pr (W − d ≤ z|d ≤W < d + 1)

=
2
3

[
−z3

2
+

3z2

2

]
+

1
3

[
1 + (z − 1)3

]
= z

for 0 < z < 1. Thus, the first significant digit of T satisfies
Benford’s law exactly.

This example can be generalized for W with probability
density function

fW (w) =
{

1− wn −1 < w < 0
(w − 1)n 0 ≤ w < 1,

where n is a positive, even integer.
We wanted to experiment with several other probabil-

ity distributions in order to evaluate conformance to Ben-
ford’s law. In order to automate this process, we wrote an
APPL (Glen, Leemis, and Evans in press) procedure Ben-
ford, whose argument is the distribution of W and whose
returned value is the distribution of Z. The algorithm is
shown in Figure 1.

The code required to return the distribution of Z for the
triangular distribution in Example 2, for instance, is

W := TriangularRV(0, 1, 2);
Z := Benford(W);

After experimenting with Benford on other distribu-
tions, we have come to the following conclusions:

1. Distributions of W with a single mode that occurs at
either extreme of their support will never satisfy Benford’s
law (e.g., W ∼ exponential).

2. Using a geometric argument, certain limiting distribu-
tions of W (e.g., W ∼ N(µ, σ2), where µ is an integer and
σ →∞) will satisfy Benford’s law.

3. Other distributions (e.g., Weibull) may come very close
to satisfying Benford’s law for various parameter values.
Our experimentation revealed that compliance with Ben-
ford’s law depends on parameter values within one partic-
ular parametric family. Thus, using Benford’s law to detect
accounting fraud, for example, is dubious due to an unac-
ceptably high rate of false positives.

4. For a random variable T that can assume negative val-
ues, all of the results given here apply since the first digit
of |T | equals the first digit of T .

5. If W is a distribution such that the first significant digit
of 10W satisfies Benford’s law, then the first significant digit
of bW satisfies Benford’s law for base b = 2, 3, . . ..

6. The distribution associated with the more general form
of Benford’s law

Pr(mantissa < t) = log10 t 1 ≤ t < 10,

where the mantissa of a real number is the number ob-
tained from shifting the decimal point to the place immedi-
ately following the first significant (nonzero) digit, is sum-
invariant (Allaart 1997). A short proof of a generalization
of Allaart’s result appears below.

Result. Using our earlier notation, let W ∼ U(0, 1) and
T = 10W . Then the random variable T with cdf, FT (t) =
log10 t for 1 ≤ t < 10, is sum-invariant; that is, if the interval
[1, 10) is equally partitioned by h > 0, then the expected
sum of variates in any given partitioned interval is the same.

Proof. Let k be any natural number and set h = 9
k . With-

out loss of generality, fix k. Let Aj = [1 + (j − 1) · h, 1 +
j · h) ⊂ < for j = 1, 2, . . . , k. The probability that T is in
the interval Aj and the conditional expected value of T on
the interval Aj for any j = 1, 2, . . . , k are, respectively,

Pr(1 + (j − 1) · h ≤ T < 1 + j · h)

=
∫ 1+j·h

1+(j−1)·h

1
x ln(10)

dx

=
ln(1 + j · h)− ln(1 + (j − 1) · h)

ln(10)
,

Ω← Support(W ) [The set Ω is the support of the random variable W ]
Lo← bΩc [Lower loop limit]
Hi← dΩe − 1 [Upper loop limit]
Weight← Array[1..Hi− Lo + 1] [Let Weight hold the mixture probabilities]
TransfW← Array[1..Hi− Lo + 1] [Let TransfW hold the transformed segments of W ]

For d← Lo to Hi
Weight[d]← FW (d + 1)− FW (d) [Calculate weights for the mixture]
TruncW[d]←Truncate(W, d, d + 1) [Truncate W between d and d + 1]
TransfW[d]←Transform(TruncW, w − d) [Horizontally shift W by d units]

Z ← Mixture(Weight,TransfW) [Compute the distribution of the mixture]

Figure 1. Algorithm for procedure Benford.

4 General



and

E(T |1 + (j − 1) · h ≤ T < 1 + j · h)

=
∫ 1+j·h

1+(j−1)·h
x · 1

x(ln(1 + j · h)− ln(1 + (j − 1) · h))
dx

=
h

ln(1 + j · h)− ln(1 + (j − 1) · h)
.

Thus, the expected sum of n variates in the interval Aj for
any j is

n · E(T |1 + (j − 1) · h ≤ T < 1 + j · h)

·Pr(1 + (j − 1) · h ≤ T < 1 + j · h) =
n · h

ln(10)
,

Since this expected sum depends on k and is independent
of j, the distribution of T is sum-invariant.

7. Any mixture of distributions that individually obey
Benford’s law will obey Benford’s law. The case of two
random variables satisfying Benford’s law is proven below.

Result. Let T1 and T2 be nonnegative random variables
whose first significant digits satisfy Benford’s law. Let the
random variable T have probability density function

fT (t) = pfT1(t) + (1− p)fT2(t) t > 0,

for 0 < p < 1. Then T also satisfies Benford’s law.

Proof. Let Z1 = log10 T1 − D, Z2 = log10 T2 − D,
and Z = log10 T − D. Since T1 and T2 satisfy Benford’s
law, then FZ1(z) = z and FZ2(z) = z. In order to prove
that T also satisfies Benford’s law, we need to show that
FZ(z) = z. By conditioning on z, we have

FZ(z) = pFZ1(z) + (1− p)FZ2(z)
= pz + (1− p)z
= z

for 0 < z < 1.

4. VARIATE GENERATION

As stated earlier, variates from the Benford distribution
can be generated via

X ← b10Uc,
where U ∼ U(0, 1). Two variations of this algorithm can
be developed by allowing different bases and multiple sig-
nificant digits as described in the next two paragraphs.

Benford’s law for the first significant digit in base b is
associated with the probability density function

fX(x) = Pr(X = x) = logb (1 + 1/x) ,

for x = 1, 2, . . . , b−1 and b = 2, 3, . . .. Since the cumulative
distribution function is

FX(x) = Pr(X ≤ x) = logb (1 + x) ,

for x = 1, 2, . . . , b− 1, variates can be generated via

X ← bbUc,

where U ∼ U(0, 1). Note that when b is 2 (the binary case),
the X value generated is always 1, as expected.

When the first r digits are considered, Benford’s law gen-
eralizes to

fX(x) = Pr(X = x) = log10 (1 + 1/x) ,

for x = 10r−1, 10r−1 + 1, . . . , 10r − 1, for r = 1, 2, . . ..
[Note that this rather relaxed notation implies that x = 365
when r = 3 corresponds to a first digit R1 = 3, second
digit R2 = 6, and third digit R3 = 5, which occurs with
probability Pr(X = 365) = Pr(R1 = 3, R2 = 6, R3 = 5) =
log10(1 + 1/365).] The cumulative distribution function is

FX(x) = Pr(X ≤ x)

=
x∑

i=10r−1

log10(1 + 1/i)

=
x∑

i=10r−1

log10(i + 1)− log10 i

= log10(x + 1)− log10
(
10r−1)

= log10

(
x + 1
10r−1

)

for x = 10r−1, 10r−1 + 1, . . . , 10r − 1. Variates can be gen-
erated by inversion via

X ← b10U−r+1c,

where U ∼ U(0, 1).
Combining the previous two cases, a discrete Benford

variate X associated with the first r significant digits in
base b is generated by inversion via

X ← bbU−r+1c,

where U ∼ U(0, 1).

5. CONCLUSIONS

Benford’s law holds exactly for certain parametric sur-
vival distributions introduced in Section 3, holds to varying
degrees for many other parametric distributions as shown
in Section 2, and holds very poorly [e.g., T ∼ U(3, 7) since
the digits 1, 2, 7, 8, 9 never occur or the number of children
in a family in the U.S.] for other distributions. The reason
that Benford’s law applies to so many datasets may simply
be due to the fact that many popular parametric lifetime
models also closely follow his law for particular values of
their parameters.

[Received June 1999. Revised December 1999.]
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