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We present a two-parameter survival distribution that has an upside-down bathtub (UBT,

or humped-shaped) hazard function. This distribution provides biostatisticians, reliability

engineers, and other statisticians with a second two-parameter UBT model whose closed-

form survivor function simplifies the analysis of right-censored data sets. We develop the

distribution’s probabilistic and statistical properties. Maximum likelihood estimators of the

parameters are found using numerical methods. Approximate confidence intervals can be

determined by using the observed information matrix or the likelihood ratio statistic. We

also give examples in which the arctangent distribution is a reasonable alternative to other

common lifetime distributions.
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Introduction

Parametric lifetime distributions have been used in reliability for modeling the time to fail-

ure of components and systems. Although emphasis has traditionally been placed on models

where the hazard function has a bathtub shape, applications have been found where an

upside-down bathtub (UBT), or hump-shaped hazard function is the appropriate model.

Kececioglu (1991, page 425) lists transistors, metals subjected to alternating stress levels,

insulation degradation, mechanical devices subjected to wear, and bearings as potential

UBT applications. Chhikara and Folks (1989, page 156) state that “When early occurrences

such as product failures or repairs are dominant in a lifetime distribution, its failure rate

is expected to be non-monotonic, first increasing and later decreasing” and cite airborne

communication transceivers (page 5, 139–140) as an application. Lee (1992, page 12) further

supports the validity of a UBT risk model in describing patients with tuberculosis who have

risks that “increase initially, then decrease after treatment.” To further substantiate the

usefulness of the UBT model, Donald R. Barr (Professor of Systems Engineering, United

States Military Academy) opines that the UBT risk function would apply in modeling the

probability of a soldier becoming a casualty as a result of artillery fire. In this example,

casualty risk starts out low as the fire is initially inaccurate, increases as the shooter hones

in on the target, and then decreases as the remaining soldiers are able to “dig in” for protec-

tion. Although reliability engineers generally have an abundance of two-parameter survival

distributions to choose from, relatively few have a UBT hazard function. The commonly

used UBT distributions are the inverse Gaussian, log normal, and log logistic distributions.

Of these, only the log logistic distribution has a closed-form survival function. This distri-

bution is most often used in biostatistical applications, whereas the inverse Gaussian and

log normal are typically used in reliability.

The arctangent distribution developed here gives a survival distribution with a UBT

hazard function and closed-form survivor function, a useful feature in the analysis of a

right-censored data set. Additionally, the survivor function can be inverted in closed-form,

which enables synchronization and monotonicity in variate generation. Unlike most survival

distributions, the arctangent distribution’s development uses trigonometric functions. We

will present the arctangent distribution’s development, probabilistic properties, and statis-
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tical inference. Parameter estimation for complete and right-censored data sets is found by

maximum likelihood. Finally we will provide three examples where the distribution is a

demonstrably reasonable alternative to other survival distributions.

Development

We noticed that the arctangent function, when negated and shifted vertically, resembles a

survivor function. Further, we decided that by shifting the function so that it crossed the

vertical axis at 1 and then asymptotically decreased to 0 we then had a flexible survivor

function. By adding a phase shift parameter φ and a positive scaling parameter α yields the

function

g(t) = − arctan[α(t− φ)] +
π

2
−∞ < t <∞,

which is a decreasing function with a range of (0, π). Finally, since g(0) = arctan(αφ) + π
2
,

the appropriate way to adjust this function so that it assumes the value 1 when t = 0 is to

divide g(t) by g(0), yielding the survivor function for the random lifetime T

ST (t) =
− arctan[α(t− φ)] + π

2

arctan(αφ) + π
2

t ≥ 0.

Since the arctangent is an odd function, the form of the survivor function that will be used

here is

ST (t) =
arctan[α(φ− t)] + π

2

arctan(αφ) + π
2

t ≥ 0, (1)

where α > 0 and −∞ < φ < ∞. This survivor function satisfies the three existence condi-

tions: S(0) = 1, lim
t→∞

S(t) = 0, and S(t) is non-increasing. Furthermore, the distribution’s

probability density function and hazard function are

fT (t) = −S
′

T (t) =
α

[

arctan(αφ) + π
2

][

1 + α2(t− φ)2
] t ≥ 0, (2)

hT (t) =
fT (t)

ST (t)
=

α
[

arctan[α(φ− t)] + π
2

][

1 + α2(t− φ)2
] t ≥ 0. (3)

This arctangent distribution is equivalent to a Cauchy distribution truncated on the left

at t = 0. Thus the parameter α is similar to a scale parameter and the parameter φ is similar

to a phase shift or location parameter. Figure 1 shows three different pdfs of the arctangent
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distribution. Notice that as φ becomes negative, the distribution changes from a bell-shaped

distribution to a distribution with a mode of 0. Also notice that the parameter α controls the

“peakedness” of the distribution: the dispersion of the distribution is a decreasing function

of α.

We initially chose the name “Arctangent Distribution,” because of the similarities that

the arctangent function has with a generic survivor function. The relationship to the Cauchy

distribution was noticed later. The cdf of the Cauchy distribution is also a shifted and scaled

arctangent function.

Probabilistic Properties

The arctangent distribution has several useful probabilistic properties that make it a

viable distribution for lifetime data analysis. Specifically, it enjoys closed-form survivor and

hazard functions, unlike most distributions in the UBT class. The closed-form survivor func-

tion simplifies parameter estimation for censored data sets and allows for variate generation

via inversion. The probabilistic properties include:

• The distribution is in the UBT class when αφ > c and is in the decreasing failure rate

(DFR) class when αφ ≤ c where

1 + 2c arctan(c) + cπ = 0,

found by simplifying h′
T (0) = 0. Using numerical methods, c ≈ −0.42898.

• The mode of the distribution is tmode = φ, ∀ φ > 0. For the case where the probability

density function is monotonically decreasing, tmode = 0, ∀ φ ≤ 0.

• The pth fractile of the distribution is

tp = φ+
1

α
tan

[

π

2
− (1− p)

(

arctan(αφ) +
π

2

)

]

, (4)

which yields a median of

t0.5 = φ+
1

α
tan

[

π

4
−

1

2
arctan(αφ)

]

.
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This closed-form expression for the fractiles will be useful in determining initial es-

timates for the numerical methods required to determine the maximum likelihood

estimates.

• Variates can be generated via inversion by

T ← φ+
1

α
tan

[

π

2
− (1− U)

(

arctan(αφ) +
π

2

)

]

,

where U is uniformly distributed between 0 and 1.

• The conditional survivor function is given by

ST |T>a(t) =
ST (t)

ST (a)
=

arctan[α(φ− t)] + π
2

arctan[α(φ− a)] + π
2

=
arctan[α(φ− a)− (t− a)] + π

2

arctan[α(φ− a)] + π
2

=
arctan[α(γ − y)] + π

2

arctan[αγ] + π
2

,

for y ≥ 0, which is again an arctangent distribution with the same α as the uncondi-

tional distribution and where γ = φ− a and y = t− a.

• The limiting distribution as α→∞ is a degenerate distribution at φ.

• The arctangent distribution is related to the Cauchy distribution. Specifically, a

Cauchy distribution truncated on the left at zero will yield the arctangent distribution.

Not surprisingly, the mean and higher order moments of the distribution are undefined.

This poses a challenge when discussing mean time to failure (MTTF) of components.

Since the mean is undefined, central tendencies of the distribution could be discussed

in terms of its mode and median. The disadvantage of this limitation is that practition-

ers are generally more comfortable with the mean as the primary measure of central

tendency.

• The arctangent distribution has a heavy right tail which makes it useful for evaluating

items that fail with less risk once it has survived a certain time threshold. Certain

biostatistical data sets indicate such heavy right tails in cancer data. The arctangent

distribution is capable of modeling lifetime distributions with a heavier tail than the

log normal or log logistic. We will show this in an example where the distribution

models the survival time of rats given a cancer accelerating drug, where there is a

heavy right tail. Competing risks models are also useful in modeling heavy right tails.
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Statistical Inference

We now present some straightforward statistical inference of the distribution for complete

and right-censored data sets. We then compare the results with other distributions, including

other commonly used UBT distributions. The arctangent distribution requires numerical

methods to determine the maximum likelihood estimators of its parameters, which is typical

of most two-parameter lifetime models. First, we present statistical inference procedures for

uncensored data using a reliability example. Second, we illustrate inferences with censored

data using a biostatistical data set. Finally, we will present a biostatistical example that

illustrates the heavy tail of the distribution.

For the uncensored case, let t1, t2, ..., tn be the failure times. The likelihood function is

L(α, φ) =
n
∏

i=1

f(ti, α, φ) =
n
∏

i=1

α
[

arctan(αφ) + π
2

][

1 + α2(ti − φ)2
] .

The first partial derivatives of logL(α, φ) with respect to the two parameters yield

∂ logL(α, φ)

∂α
=

−nφ
[

1 + (αφ)2
][

π
2
+ arctan(αφ)

] +
n

α
+

n
∑

i=1

−2α(ti − φ)2
[

1 + α2(ti − φ)2
] (5)

and
∂ logL(α, φ)

∂φ
=

−nα
[

1 + (αφ)2
][

π
2
+ arctan(αφ)

] +
n
∑

i=1

2α2(ti − φ)
[

1 + α2(ti − φ)2
] . (6)

Equating (5) and (6) to zero does not yield closed-form solutions for the maximum likelihood

estimators α̂ and φ̂. For the numerical methods to be effective in finding α̂ and φ̂ it is

necessary to have appropriate initial estimates of the parameters. Since the mean and higher

order moments are undefined, one must rely on a “method of fractiles”, as opposed to the

method of moments, to find initial estimates α̂0 and φ̂0. This entails an initial system of

two equations based on the pth fractile of the the distribution, where the fractiles are chosen

based on the test data.

To illustrate the applicability of the arctangent distribution, we will use Lieblein and

Zelen’s (1956) data set of n = 23 ball bearing failure times (each measurement in 106
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revolutions):

17.88 28.92 33.00 41.52 42.12 45.60 48.48

51.84 51.96 54.12 55.56 67.80 68.64 68.64

68.88 84.12 93.12 98.64 105.12 105.84 127.92

128.04 173.40

Although it’s an old data set, we start with this example because Crowder et al. (1991, page

63) conjectured that the UBT shaped distributions may fit the ball bearing data better than

the IFR distributions, based on the values of the log likelihood function at the maximum

likelihood estimators.

Using the “method of fractiles” to find initial parameter estimates for the parameters, we

note from the empirical survivor function for the data (Figure 2) that time 42.12 corresponds

to the 5

23
· 100 = 22.7th percentile of the distribution and that time 105.12 corresponds to

the 19

23
· 100 = 82.6th percentile of the distribution. Thus using (4), initial estimates for the

MLEs are found by solving

42.12 = φ+
1

α
tan

[

π

2
−

(

1−
5

23

)

(

arctan(αφ) +
π

2

)

]

,

105.12 = φ+
1

α
tan

[

π

2
−

(

1−
19

23

)

(

arctan(αφ) +
π

2

)

]

for α and φ. This system yields our initial estimates of the parameters as follows: α̂0 =

0.04102 and φ̂0 = 57.96. Using these values as initial estimates, we may now solve equations

(5) and (6) numerically yielding α̂ = 0.04238 and φ̂ = 58.08. Taking second partial deriva-

tives of the log likelihood function and evaluating at the MLEs yields the 2 × 2 observed

information matrix (see Cox and Oakes, 1984)

I =





5989 1.305

1.305 0.021



 .

Inverting the matrix and taking the square roots of the diagonal elements gives asymptoti-

cally valid 95% approximate confidence intervals for α and φ

0.01727 < α < 0.06753

44.46 < φ < 71.70.
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Figure 2 gives a graphical comparison of the arctangent fit versus the Weibull fit of

the empirical data. We can see the fits are virtually identical in the early stages, then

the arctangent fits more closely than does the Weibull in the center. At the right tail,

the Weibull fits closer, due to the arctangent distribution’s propensity for a heavy tail.

Finally, we can compare the arctangent distribution’s model adequacy with that of other

popular two-parameter lifetime distributions. The Kolmogorov–Smirnov (K–S) goodness-of-

fit statistic for the arctangent distribution is Dn = 0.093. Table 1 gives Dn values for some

popular distributions fitted to the ball bearing data evaluated at the maximum likelihood

estimators of their parameters. (Chhikara and Folks (1989, page 74) fit the inverse Gaussian

distribution to this data set.) The K-S statistic is one measure to gauge quality of fit.

Thus, as we see in Table 1, the lower K-S values of the three UBT distributions, the inverse

Gaussian, arctangent, and log normal, add further credibility to Crowder’s conjecture that

UBT models seem to fit this data set better than those with increasing failure rates (i.e.,

the Weibull and gamma distributions). Using a K–S statistic with estimated parameters

is problematic. Therefore, we use this statistic not for a formal test, but to further the

conjecture that UBT distributions fit this data better.

We now consider statistical inference for censored data. The arctangent distribution’s

closed-form survivor function yields a closed-form likelihood function, thus simplifying the

analysis of right-censored data. The only other UBT distribution with this property is the

log logistic distribution. The statistical methods are similar to those of the uncensored case;

however, the numerical methods are a bit more tedious. We will use Gehan’s (1965) test

data of remission times from the drug 6-MP when used on n = 21 leukemia patients of which

there were r = 9 observed remissions and 12 individuals who were randomly right censored.

Letting an asterisk denote a right-censored observation, the remission times in weeks are:

6 6 6 6∗ 7 9∗ 10

10∗ 11∗ 13 16 17∗ 19∗ 20∗

22 23 25∗ 32∗ 32∗ 34∗ 35∗

To fit this data to the arctangent distribution, let t1, t2, . . . , tn be the remission times

and c1, c2, . . . , cn be the associated censoring times. Our maximum likelihood estimation
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is now be based on the likelihood function

L(α, φ) =
∏

i∈U

f(ti, α, φ)
∏

i∈C

S(ci, α, φ)

=
∏

i∈U

α
[

arctan(αφ) + π
2

][

1 + α2(ti − φ)2
]

∏

i∈C

arctan(α(φ− ci)) +
π
2

arctan(αφ) + π
2

,

where U and C are the sets of indices of uncensored and censored observations, respectively.

The log likelihood function is

logL(α, φ) = r logα− r log
[

arctan(αφ) +
π

2

]

−
∑

i∈U

log[1 + α2(ti − φ)2]

+
∑

i∈C

log[2 arctan[α(φ− ci)] + π]− (n− r) log[2 arctan(αφ) + π].

A “method of fractiles” initial estimate for the parameters yields: α̂0 = 0.0562 and φ̂0 = 9.58.

Now we take the two partial derivatives of logL with respect to α and φ, set them equal to

zero, and compute α̂ = 0.0455 and φ̂ = 11.2. This example illustrates the methodology used

to fit the arctangent distribution to censored data sets.

A third example illustrates the usefulness of the distribution’s heavy right tail. Cox

and Snell (1981, page 169) present data on life span of rats who have been given a cancer

accelerator. The following complete data set gives number of days the rats survived:

37 38 42 43 43 43 43 43 48 49

51 51 55 57 59 62 66 69 86 177

The arctangent MLE estimates for this data set yield α̂ = 0.127 and φ̂ = 48.0 which is

plotted against the empirical survivor function in Figure 3. Note how the heavy right tail of

the arctangent distribution models the heavy right tail of the rat lifetimes. The rat with the

survival time of 177 is driving the fit. Thus, for data sets with heavy tails such as this one,

the practitioner may make use of the arctangent distribution’s propensity for a heavy tail.

Conclusion

The arctangent distribution is a new two-parameter lifetime distribution in the UBT class

with closed-form survivor functions. It gives reliability engineers, biostatisticians, and others

another tool in the complex task of statistical modeling. Although a UBT model has a
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smaller number of applications than does the IFR or bathtub-shaped models, there are

enough references in the literature to indicate a need for more distributions in this class.

This paper is presented to give the UBT model a second distribution that enjoys a closed-

form survivor function and has been demonstrated to adequately describe well-known data

sets.
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TABLE 1. Kolmogorov–Smirnov Goodness-of-fit Statistics for the Ball Bearing Data.

Distribution D23

Exponential 0.301

Weibull 0.152

Gamma 0.123

Inverse Gaussian 0.099

Arctangent 0.093

Log normal 0.090
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Figure 1: Examples of the arctangent probability density function.
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Figure 2: Empirical, fitted arctangent, and fitted Weibull survivor functions for the ball

bearing lifetimes.
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Figure 3: The arctangent distribution fit to the rat cancer data.
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