A Generalized Univariate Change-of-Variable
Transformation Technique

ANDREW G. GLEN /| Department of Mathematics, College of William & Mary,
Williamsburg, VA 23187, Email: agglen@math.wm.edu

LAWRENCE M. LEEMIS / Department of Mathematics, College of William & Mary,
Williamsburg, VA 23187, Email: leemis@math.wm.edu

JOHN H. DREW / Department of Mathematics, College of William & Mary, Williams-
burg, VA 23187, Email: jhdrew@math.wm.edu

We present a generalized version of the univariate change-of-variable technique
for transforming continuous random variables. Extending a theorem from Casella
and Berger ! for many-to—1 transformations, we consider more general univari-
ate transformations. Specifically, the transformation can range from 1-to-1 to
many—to—1 on various subsets of the support of the random variable of interest.
We also present an implementation of the theorem in a computer algebra sys-
tem that automates the technique. Some examples demonstrate the theorem’s

application.

Subject classifications: probability
Other key words: change-of-variable technique, computer algebra systems, probability den-

sity functions, random variables

In its simplest application, the change-of-variable technique is used to determine the dis-
tribution of a continuous random variable Y given the distribution of a continuous random
variable X and a 1-to-1 transformation from the support of X to the support of Y. As the
conditions on the transformation ¥ = ¢(X) become more general, the technique requires
more detail in its description and is less likely to appear in introductory probability and

[3, page 511 {iscuss transforming random variables using

statistics texts. Casella and Berger
the change-of-variable technique when the entire transformation is many-to-1, except for
a finite number of points, that is, the cardinality of the set ¢g7'(y) is the same for almost

» page 190] ovtend this many-to-1 technique to

all y in the support of ¥. Hogg and Craig [°
n-dimensional random variables. We are concerned with a more general univariate case in
which the transformations are “piecewise many—to-1,” where “many” may vary based on the
subinterval of the support of ¥ under consideration. We state and prove a theorem for this
case and present code in a computer algebra system to implement the result. Although the
theorem is a straightforward generalization of Casella and Berger’s, there are a number of
details that have to be addressed in order to produce an algorithm for finding the probability
density function (pdf) of Y. The resulting computer algebra system implementation of our
theorem relieves analysts, researchers, and students from arduous computations.

Consider the following example. Let fx(z) = % for —1 < = < 2, be the pdf for the
random variable X. Consider the transformation ¥ = ¢(X) = X?*. This transformation is
a 2-to—1 transformation on the interval X € (—1,1) (except at X = 0) and it is 1-to-1
on the interval X € [1,2); see Figure 1. Some introductory probability texts use this as an
example (e.g., Larsen and Marx [7 Page 137]) byt fail to state a general theorem that treats
such piecewise many—to—1 transformations. The difficulty lies in identifying an appropriate
partition of the support of X and a corresponding partition for the support of Y, and then
determining which of these subsets of the support of X correspond to each of the subsets
of the support of Y. A further complication is encountered when the transformation itself

is either discontinuous or non-differentiable at certain points. For example, consider the

random variable X, where fx(z) = (z +1)/18 for —1 < & < 5, and the transformation (see

Figure 3):
X? —-l<X<?
X <X <5

Y =g(X) =

RO W

In this example, the transformation is discontinuous as well as “piecewise many—to—1.” Our
theorem and resulting implementation in a computer algebra system will determine the pdf
of Y for such transformations.

In Section 1, we will present our transformation theorem, modeled after Casella and
Berger’s Theorem 2.1.3 (page 51). Our theorem has been presented more generally in ear-

» page 225] congider multivariate many—to—one transformations.

lier papers. Barr and Zehna [*
Rohatgi [9 pages 3= and Port [8 Page 462 copsider the piecewise many-to-one case in the
univariate and multivariate settings, respectively. Our theorem is strictly univariate, but
permits implementation in a computer algebra system. It determines the distribution of
Y = ¢(X) for any univariate random variable X of the continuous type with few restric-
tions on the transformation ¢g(X). We note that our theorem will be stated in a somewhat
elaborate form for the purpose of facilitating its implementation. Section 2 discusses an

algorithmic implementation of the theorem using the computer algebra system capabilities

of the software package Maple V. Section 3 illustrates the usefulness of the algorithm.

1 Theorem

Before we present the theorem, we overview the rationale for the notation. We assume that
the support of X, denoted by X', consists of a finite union of open intervals. The points
Ty < T3 < --- < Tp41 generate n consecutive subintervals and are determined as follows.
The first subinterval of X begins with z; and the last subinterval of X ends with z,,;. The
remaining x;’s correspond to other endpoints of the intervals of X or to the locations in X
where the function ¢ is discontinuous or non-differentiable, or ¢’ is zero. Let g;(x) denote
the restriction of g(x) to (x;,x,41); by design, ¢; is monotone and therefore invertible. Let
X* = {x1,22,...,2n41}; note that since X is continuous, P(X € X*) = 0.

We introduce Y™, a set of points on the y-axis, to partition the support of ¥ into subin-

tervals. The range of each g;, denoted by (m;, M;), either contains or is disjoint from each

Y subinterval. The set Y is designed so that the final pdf of ¥ may be specified by desig-
nating its value on each Y subinterval. The set Y* is defined using one-sided limits because
the transformations ¢y, ¢z, ..., g, are not necessarily defined at the points in X*. The set I;
consists of integers ¢ with the property that the range of g¢; is either equal to or properly
contains the jth Y subinterval. The pdf for each Y subinterval depends on the pdf of X and

the associated transformations g;.

Theorem. Let X be a random variable of the continuous type with pdf fx(z) and with
support X', where X" consists of a finite union of open intervals. Let g(z) be a real-valued
function whose domain includes X. Let —co<z1<z9< -+ <z, <z,py1 <+00 be a sequence

of extended real numbers which satisfy the following conditions:
1. The sequence includes the endpoints of the intervals whose union is X.
2. fx(z) is continuous on each open interval A; = (z;, x;41) for 1 =1,2,... n.

3. If fx(z) is not identically zero on A;, then the function g¢;(z), which is the restriction
of g(x) to A;, is monotone on A; and has a nonzero derivative at each point in A;, for

r=1,2,...,n.

Let X* ={z1,22,...,Tps1}-

Let a = {¢|fx(x) is not identically zero on A,}.

Let m; = min{lilmg(:c), %im g(”c)} fori=1,2,...,n.
|\, T[Ti41

Let M; = max{limg(:c), lim g(r)} for:=1,2,...,n.

z|z; zTTit1

Let Y* = UZ'EQ {mi, MZ} .
Let m =[|Y*|| — 1, where || - || denotes cardinality.
Order the elements of y; of Y* so that y1 <y < -+ < ypp1.

Let I; = {i|m; <y, and y;41 < M}, forj = 1, 2, ...,

Then for y € (y;,y+1), d _1()
Y — ~1/. 9 \Yy)
fY(y) Zgl:]fX <g2 (y)) ‘ dy ‘

fory=1,2,...,m.

Proof. Without loss of generality, consider the jth Y subinterval (y;,y;41). Also suppose
that @ and b are any points that lie inside (y;,y;+1) such that ¢ < b. Furthermore, let
M; = max{g;"'(a),¢7"(b)} and m; = min{g; " (a),g;'(b)} for i € I,. As Hogg and Craig

[5, page 190] ,6int out,

P(a<Y<b):EP<mZ-<X<MZ-).

i€l
Since Y is a continuous random variable,

Pla<Y <b) = Z/Mifx(x)dx

iel; M

_ Z/fx ‘dgldy ‘

1€1;

- [Za(oro) 25

€15
where we performed the change-of-variable y = g;(), or equivalently z = g7 '(y), and have
used the absolute value to treat both increasing and decreasing transformations (see [4, page
268]). Referring to Theorem 7.1 in Freund [we see that the integrand
_ dg; *(y
> Ix (gi 1(’!/)) ‘%
i€l Yy

is the pdf for Y on the subinterval (y;,y;4+1)- [

2 Implementation

It could be quite tedious to implement this theorem by hand for large m and n. With the
onset of computer algebra systems such as Maple V, however, one may implement algorithms
that correspond to theorems such as ours. Qur implementation in Maple code is included in
the appendix and parallels the theorem. Two main implementation issues emerged. First,
Maple may produce several candidates for g;'', e.g., when ¢;(z) = 2%, Maple returns g; ' (y) =

y and g7 '(y) = VY. The correct inverse is selected by requiring that g; Ygi(e)) = e,
where ¢; is any point in the :th X subinterval. When the ith X subinterval has finite
endpoints, ¢; can be chosen to be the midpoint of the subinterval. In the cases where
T1 = —00 or Ty = 00 [e.g, X ~ N(p,0?%)], ¢; must be selected more carefully. The

algorithm for determining ¢; is:

1. If 21 = —o0 and x5 = 400, then ¢; = 0.
2. If 11 = —oc and z3 # +o0, then ¢; = x5 — 1.

3. If z, # —o0 and z,,41 = 40, then ¢, = z, + 1.

4. For all other cases, ¢; = %

The second implementation issue involves redundancies in lists. Maple doesn’t recognize
that the integer 3 and the floating-point value 3.0, for example, are redundant in a list.
The ReduceList procedure finds all adjacent points that differ by a small prescribed 6 and
discards redundant floating-point type elements.

The data structure used to represent the distribution of a random variable is a “list of
three lists.” The first sub-list has as elements the functions that comprise the piecewise
continuous portions of the pdf. The second sub-list has as elements the ordered support
points of the distribution that delineate the beginning and end of the domain for each of

wo.”

the functions in the first sub-list. The third sub-list contains the string “p” which denotes
that the function in the first sub-list is a probability density function (rather than a cdf or a
hazard function). The data structure for g is a “list of two lists” that is similar in nature to
that of f. Here we characterize g by listing its monotone components and the endpoints of
the corresponding domains. Example 3.1 gives a detailed illustration of the data structures
for f and g¢.

The following are some additional implementation issues that arose during the coding of

the algorithm:

e The user must supply =1, x3, ..., x,41. This ordered list consists of the endpoints of the
open intervals which constitute X and all locations in X where ¢g(z) is discontinuous
or non-differentiable, or ¢'(x) is zero. A preprocessor to determine elements of X*
corresponding to ¢'(z) = 0 could be added to the algorithm if desired. Thus if the
support of X is (—1,2), and ¥ = ¢g(X) = X?, this preprocessor would include z = 0
in X* yielding X* = {—1,0,2}.

e The partition points x1, z, ..., T,41 must be chosen so that fx () is not defined piece-

wise on any X subinterval (e.g., if X has a triangular distribution, the mode must be

a partition point).

e Adding extra z-values in X to X* that are not maxima, minima or saddle points of
g(x) or discontinuities of fx () or g(x) will not affect the correctness of the algorithm’s

implementation of the theorem, although the implementation will be slower.

e Many transformations such as g(z) = = + €” do not have an inverse that can be
expressed in a closed-form. Numerical methods could be used in conjunction with the
algorithm to find individual values of fy(y). We have not implemented this in our code.
If g(z) = x 4 €”, for example, then

dg~'(y)| _ 1
dy 1+ e*

z=g~1(y)

e Periodic transformations can present a problem in the implementation of the theorem.
Maple uses the usual principal inverses for sinx, cosx, and tan z, but the restricted
ranges of these principal inverses are often inappropriate. When the algorithm tries
to identify which inverse is appropriate, it is only given one choice, the principal in-
verse, but the domain of X might not coincide with the range of the principal inverse.

Example 3.4 illustrates the problem and a circumvention.

e No error-trapping has been done to insure that fx(z) is a legitimate pdf, i.e.

/O:o fx(z)de =1, fx(z) > 0V «.

Also, there is limited error-trapping on g(z) in that the procedure gives an error mes-

sage when the inverse cannot be found.

e Parameters are allowed in fx(z) but not in g(z).

3 Examples

This section contains some illustrative examples of using the algorithm described in the
previous section to determine the distribution of ¥ = ¢(X). Before using the program,

we tested its performance on several common transformations. Given X ~ N(0,1) and

Y = ¢g(X) = X?, the program returned the pdf for a y? random variable. Given X ~
N(p,0?)and Y = g(X) = (X — p)/o, the program returned the pdf for a standard normal
random variable. Now we will consider more complex examples that illustrate the theorem’s

implementation.

Example 3.1 Consider the first example from the introduction: given the ran-
dom variable X ~ U(—1,2), find the distribution of ¥ = ¢(X) = X% Given
X*, the algorithm determines the relevant partitions of the supports of X and
Y. Then it determines which X subintervals map onto which Y subintervals.

The subintervals are apparent in Figure 1. Note the set X* is displayed on the

a(X)

4 3

3 4

2

1

0
0 ¥ T — X
1 0 1 2

Figure 1: The transformation ¥ = g(X) = X* for —1 < X < 2.

horizontal axis, Y* on the vertical axis, both marked with the x symbol. The
transformation is partitioned into monotone segments (with identical or disjoint
ranges) delineated by the + symbol. The assignment of data structures for f and

g and the call to Transform are as follows:

fx

[[x->17/23], [-1, 2], [pl 1;

[[x->x "2, x->x " 2], [- infinity, 0, infinity]];

gx

fnew := Transform(fx, gx);

The program determines that the transformation is 2-to-1 on —1 < z < 1
(excluding x = 0) and 1-to-1 on 1 < z < 2. Since Y = X? has two inverses,
the program determines which inverse to apply to which X subinterval. The

resulting pdf for Y is

= O<y<l1
) A
)=y 1 l<y<4
6/

The corresponding returned value of fnew is a “list of three lists” that specifies

the pdf of Y:
[[y -> 1/ (8 % sqrt(y)), y -> 1 / (6 * sqrt(y))], [0, 1, 4], [pll.

Example 3.2 Consider the random variable X ~ U/(0,7). Find the pdf of Y =
9(X) =X =3|-1

. A graphical representation of this transformation is shown

g(X)
3 4
2 A
1 3
0 A+
X T X % S T T = X

Figure 2: The transformation Y = g(X) = || X = 3| 1| for 0 < X < T.

in Figure 2, with X*, Y* and the monotone segments of g marked as before.

This transformation is more complex than Example 3.1 in that it is 4-to—1 for

9

0<y<l1,2to-1 for 1 <y <2, and 1-to-1 for 2 < y < 3. The program yields
the correct pdf for Y

% 0<y<l
Ir(y) = % I<y<?2
1 2<y<3

Example 3.3 Consider the second example from the introduction: if the random

variable X has pdf fx(xz) = (x4 1)/18 for —1 < a < 5, find the distribution of

X? —-l<X<?

Y =¢(X)=
X 2<X<h

The appropriate partition for the transformation is depicted in Figure 3. The

g(x)
5 3
4 A
3 4
2
1
0
* * T T T T ¥ X

Figure 3: The transformation ¥ = ¢(X) has a discontinuity and is variously 2-to—-1 and

1-to-1 on different subintervals.

program determines the following pdf for Y:

181/17 0<y<l
VUl .

o B, T
“aeyy D <y <225
wl 2.25 <y <5

10

Example 3.4 As a final example, we will consider the problem that Casella
and Berger [l discussed, without providing fy(y), as a prelude to their theorem.
Letting X be a uniform random variable on (0, 2x), find the distribution of ¥ =
g(X) = sin*(X). As Figure 4 shows, this transformation is 4-to—1 for the single
Y subinterval (0,1). Furthermore, since n = 4, X* = {0, Z, 7, 2% 27 }. The pdf of

399y o

g(x)
10
05 A
00
* T T T T T T X

Figure 4: The transformation Y = g(X) = sin*(X) for 0 < X < 2.

Y is
Frly) = ——a— 0<y<l
y(y) = y
which is commonly known as the arcsin distribution (see Johnson, Kotz, and

Balakrishnan [Pase 212y " Ty gvercome the principal inverse difficulty alluded to

in the previous section, we devised the following equivalent situation: consider

the random variable X ~ U(—Z,Z) and let Y = g(X) = sin*(X). In this case

272

the domain of X will be the same as the range of ¢~! which results from using

the standard arcsin function.

This solution yielded a random variable with a notable feature. The distribution’s

Ty(y)

hazard function, hy (y) = —————, might be of interest to a reliability engineer.

1 — Fy(y)

11

4

We envision more for this Maple implementation of a probability theorem than what is
illustrated in these examples. The tool provided by the Transform procedure will be useful
to the practitioner as well as the academic. The academic might use this tool to find new
distributions. Let X be a beta random variable with specified parameters, for example, and
let g(X) = X%, Applying g several times in succession may yield a distribution that is useful
in modeling. Alternatively, students might be asked to combine a set of ten transformations

and ten distributions in order to create 100 new distributions, picking out the interesting

For this distribution,

2
hy(‘y): 0<y <.

Vy — y?[r — 2 arcsin(2y — 1)]

By plotting this hazard function, we see it has the rare property of a closed-form,

“bathtub”-shaped hazard function. Furthermore, we can now apply the trans-
formation W = ¢(Y) = AY in order to derive a random variable W that is a
one-parameter random variable with a closed-form, bathtub-shaped hazard func-
tion. To our knowledge, although the arcsin distribution has been discussed in
the literature, we have yet to find mention of the fact that it has a bathtub-shaped
hazard function. Most distributions with bathtub-shaped hazard functions must
be analyzed numerically because their hazard functions are not closed form. One
of the useful features of the Transform procedure is that it can help the prac-
titioner gain insight into what transformations could result in a useful model.
In this example, it becomes apparent that the transformation “crowds” the uni-
formly distributed X random variable into a distribution for Y that is “heavy” on
either end of its support. The result is a random variable with a bathtub-shaped
hazard function. The program enables the model designer to confirm, or gain

insight into the univariate transformations that could result in a useful model.

Conclusion

properties of the more notable ones.

purpose of iterative probabilistic model design, illustrated in Example 3.4. For example, the

The practitioner, on the other hand, may use the Transform procedure for the specific

12

Transform procedure could be part of an optimization algorithm that finds the constants a
and b, where Y = ¢g(X) = aX + b, yielding the optimal linear transformation of X in terms
of some measure of performance in analysis problems where a linear transformation of data
is appropriate.

Our current intent for the procedure Transform is to include it in a package of proba-
bilistic procedures that would handle many types of analysis for the practitioner. We now
have, for example, the procedures Convolute 2, Product0f, Truncate, OrderStat, PAfOf,
Cdf0f, Min0f, and Max0f. The combined effect of these procedures allows one to model with
previously untenable distributions that were disregarded as too complex to analyze. We are
currently using these functions in the following areas of probabilistic modeling: optimizing
life tests (both censored and uncensored non-exponential populations); determining exact
distributions in renewal theory and reliability block diagrams; and, minimizing the use of

the CLT by using the actual distributions of convolutions of random variables.

Acknowledgements

The authors gratefully acknowledge helpful comments from Jacques Carette, Gianfranco
Ciardo, the Area Editor Carl Harris, two referees, the students in a Mathematical Statistics

course at William & Mary, and support from a William & Mary summer research grant.

References

[1] D. Barr and P.W. Zehna, 1971. Probability, Brooks/Cole, Inc., Belmont, California.
[2] R. Berger, 1995. personal communication.

[3] G. Casella and R. Berger, 1990. Statistical Inference, Wadsworth and Brooks/Cole, Inc.,

Pacific Grove, California.

[4] J. Freund, 1992. Mathematical Statistics, Fifth edition, Prentice-Hall, Englewood Cliffs,

New Jersey.

13

[5] R.V. Hogg and A.T. Craig, 1995. Mathematical Statistics, Fifth edition, Prentice-Hall,
Englewood Cliffs, New Jersey.

[6] N.L. Johnson, Kotz, S., and Balakrishnan, N., 1995. Continuous Univariate Distribu-
tions, Volume 2, Second edition, John Wiley & Sons, New York.

[7] R.J. Larsen and M.L. Marx, 1986. An Introduction to Mathematical Statistics and Its
Applications, Second edition, Prentice—Hall, Englewood Cliffs, New Jersey.

[8] S.C. Port, 1994. Theoretical Probability for Applications, John Wiley & Sons, New York.

[9] V.K. Rohatgi, 1976. An Introduction to Probability Theory Mathematical Statistics,
John Wiley & Sons, New York.

14

Appendix: Maple Code

#

Reducelist is a procedure that eliminates floating point redundancies (e.g.,
3 vs. 3.0) from a sorted Maple list.

#

Reducelist := proc(LST)

local i, size, delt, deltamin, ListIn:

deltamin := 0.0000001:

ListIn := LST:
size := nops(ListIn):
for i from (size - 1) by -1 to 1 do
if (ListIn[i] <> -infinity and ListIn[i + 1] <> infinity) then
delt := evalf(ListIn[i + 1]) - evalf(ListIn[il):
if (delt < deltamin) then
if (whattype(ListIn[i]) <> float) then
ListIn := subsop((i + 1) = NULL, ListIn):
else
ListIn := subsop(i = NULL, ListIn):
fi:
fi:
fi:
od:
RETURN(ListIn):
end:

Procedure Transform finds the pdf of Y = g(X), where X and Y are continuous
random variables. The arguments are f(x), the pdf of X, and g(X), the
transformation. The arguments of Transform and the returned value are in
the ’list of lists’ format.

H B R ®

Transform := proc(fX, gX)
local nx, XStarSet, ng, XStarList, n, FF, i, k, c, BEGIN, END, gndx, j, mn, Mx, a,
b, YStarSet, YStarList, m, £fY, h, ntmp, temp, gtemp, ii, t, itp, ginv, fY:

nx := nops(fX[2]):
XStarSet := {op(£X[2])}:

ng := nops(gX[2]):
for i from 1 to ng do
if (evalf(gX[2][i]) > evalf(£fX[2][1]) and evalf(gX[2][i]) < evalf(fX[2][nx]))
then

15

XStarSet := XStarSet union {gX[2][il}

fi:
od:
XStarList := sort([op(XStarSet)], (x, y) -> evalb(evalf(x) < evalf(y))):
XStarList := ReduceList(XStarList):

n := nops(XStarList) - 1:
FF := array(l1 .. n):

Find the appropriate index k of fX[1][k] for each x interval.
for 1 from 1 to n do
for k from 1 to nx do
if (evalf(XStarList[i]) >= evalf(fX[2]1[k])) then
FF[i] := k:
fi:
od:
od:

c := array(l .. n):

if (XStarList[1] = -infinity and XStarList[2] = infinity) then
cl[1] := 0
else
BEGIN := 1:
END := n:
if (XStarList[1] = -infinity) then
c[1] := XStarList[2] - 1:
BEGIN := 2:
fi:
if (XStarList[n + 1] = infinity) then
c[n] := XStarList[n] + 1:
END :=n - 1:
fi:
for i from BEGIN to END do
c[i] := (XStarList[i] + XStarList[i + 1]) / 2:
od:
fi:

ng := nops(gX[1]):
gndx := array(l .. n):

Find the appropriate index j of gX[1][j] for each x interval.

for 1 from 1 to n do
for j from 1 to ng do

16

if (evalf(XStarList[i]) >= evalf(gX[2][j]) and evalf(XStarList[i]) <
evalf(gX[2][j + 1])) then

gndx[i] := j:
break:
fi:
od:
od:
mn := array(l .. n):
Mx := array(l .. n):

for 1 from 1 to n do
a := limit(gX[1] [gndx[i]](x), x = XStarList[i], right):
b := limit(gX[1] [gndx[i]](x), x = XStarList[i + 1], left):
mn[i]
Mx [1]
od:
YStarSet := {seq(mn[i], i =1 .. n), seq(Mx[i], i =1 .. n)}:
YStarList := sort([op(YStarSet)], (x, y) -> evalb(evalf(x) < evalf(y))):
YStarList := ReduceList(YStarList):
m := nops(YStarList) - 1:

min(a, b):
max(a, b):

£ffY := []:
for j from 1 to m do
h :=0:

for 1 from 1 to n do
If we are working with a relevant transformation segment, adjust the pdf.
if (evalf(mn[i]) <= evalf(Y¥StarList[j]) and evalf(YStarList[j + 1]) <=
evalf(Mx[i])) then
temp := [solve(gX[1][gndx[i]]l(t2) =y, t2)]:
ntmp := nops(temp):
gtemp := array(l .. ntmp):
for ii from 1 to ntmp do
gtemp[ii] := unapply(templ[ii], y):
od:
if (ntmp = 1) then
If there is only one inverse, assign it to ginv.
ginv := gtemp[1](y):
else
If there is more than one inverse, find the appropriate one.
for t from 1 to ntmp do
Evaluate each inverse of the transformation at the midpoint of the
subinterval. Set ginv to that inverse for which gtemp(g(x)) = x.
itp := evalf(gtemp[t] (gX[1][gndx[i]] (evalf(c[i])))):
if (itp > evalf(XStarList[i]) and itp < evalf(XStarList[i + 1])) then
ginv := gtemp[t](y):

17

break:
else
ginv := notfound:
fi:
od:
if (ginv = notfound) then
print (‘ERROR, GINVERSE not found‘):
fi:
fi:

For the case of an increasing transformation segment, add the change.
if (evalf(limit(gX[1] [gndx[i]] (xx), xx = XStarList[i], right))
< evalf(limit(gX[1] [gndx[i]](xx), xx = XStarList[i + 1], left))) then
h :=h + £fX[1][FF[i]](ginv) * diff(ginv, y):
For the case of a decreasing transformation segment, subtract the change.

else
h :=h - £fX[1][FF[i]](ginv) * diff(ginv, y):
fi:
fi:
od:
ffY := [op(££Y), op([unapply(simplify(h), y)]1)]:
od:
fY[1] := [op(££fY)]:
fY[2] := [op(YStarList)]:
fy[3] := [’p’]:
RETURN(£Y):
end:

18

19

