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Figure 10: Kurtosis vs. Skewness vs. Coeflicient of Variation, Rotated [Ball Bearings
at (0.52,0.88,3.19)]
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Figure 9: Kurtosis vs. Skewness vs. Coefficient of Variation [Ball Bearings at

(0.52,0.88,3.19)]
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Figure 8: Kurtosis vs. Skewness [Ball Bearings at (0.88,3.19)]
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Figure 7: Skewness vs. Coefficient of Variation [Ball Bearings at (0.52,0.88)]
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Figure 6: MLE Survivor Function vs. Kaplan—-Meier Product-Limit Estimate (Ball
Bearings, Weibull Fit)
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Figure 5: Confidence Region for MLEs (a = 0.10,0.05, Ball Bearings, Weibull Fit)
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Log Likelihood Function

Figure 4: Log Likelihood Function with Maximum Value Identified (Ball Bearings,
Weibull Fit)
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Figure 3: Weibull Plot (Ball Bearings, Weibull Fit)
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Figure 2: Reliability Bounds for a Four-Component System
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Figure 1: Four Component System
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Uniform 1.64658 NoShapeParameter

Exponential 5.93626 NoShapeParameter
Weibull 0.247013 k -> 1.95794
Gamma 0.488128 k -> 13.0483
Loglogistic 1.38079 k -> 55.9427
Pareto 5.91096 b -> 1737.07
LogNormal 2.9733 sigma -> 0.0314362

5.3 Discussion

It should be kept in mind that the Euclidean distance technique should only be
used to determine which models would be obviously inferior. It is not a method
with which to choose a model. For instance, in testing this method using randomly
generated samples from a log normal distribution, the fitted Weibull and gamma
distributions would often be closer to the sample moments; the lognormal is not a clear
cut winner based on distance to the sample moments. for example, the Kolmogorov-
Smirnov goodness-of-fit test smaller for the MLE lognormal fit than it is for the MLE
Weibull fit. Hence, For the ball bearing data set, one should only conclude that the
exponential & Pareto distributions are inferior in describing the distribution. For the
Weibull distribution, the initial estimate of x is close to the MLE, which was 2.10
(see section 4.2).

The Mathematica implementation is similar to the Weibull maximum likelihood
problem: the major step is performed by a root-solver. Using Mathematica did lead
us to a new discovery: although the kurtosis vs. skewness vs. coefficient of variation
plot was only marginally useful in and of itself, the minimum Euclidean distance to

the sample point provides us with some very useful exploratory results.
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The moment curves given here are the function of, at most, a single shape parameter.
The value of this parameter when the Euclidean distance is minimized can be used
as an initial estimate for obtaining its maximum likelihood estimate. Hence, not
only can we see which distributions are possible models, we can also learn something
about their parameter estimates. Again, due to Mathematica’s root-solving ability,
this minimizer was not difficult to develop. Unlike the likelihood function in section 4,

the distance functions do not need a particularly accurate initial estimate to converge.
5.2 Example

Consider again the ball bearing data from section 4.2. Its moments are 4 =
0.52,43 = 0.88,44 = 3.19. Figures 7 & 8 are the skewness vs. coefficient of variation
and kurtosis vs. skewness plots for several lifetime distributions: gamma, log logistic,
log normal, Pareto, and Weibull. The exponential distribution is a special case of
the gamma and Weibull, and has moments v = 1,v3 = 2,74 = 9. Also, the uniform
distribution has moments v = %,73 = 0,v4 = % The sample moments of the
ball bearing data are indicated by a point on each graph. Figures 9 & 10 show
the 3-dimensional moment curves from two perspectives. Figure 9 looks down at
the kurtosis vs. skewness plot, with depth provided by the coefficient of variation.
Figure 10 is a rotated version with the kurtosis (height) scale reduced. As explained
previously, the behavior is difficult to see.

What follows is the results of determining the minimum Euclidean distance be-

tween (4, s, v4) and each of the moment curves in three dimensions:

In[9]: MomentDistancel[datal
Out[9]//MatrixForm=

> DISTRIBUTION MIN DISTANCE INITIAL ESTIMATE
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This larger programming application revealed a down-side of using Mathematica.
The program syntax can be quite tedious. Slight deviations from the desired command

can produce a wealth of syntax errors and warnings, and/or incorrect results.

5. MODEL SELECTION

We select a parametric model to describe a set of lifetime data. In order to limit
the number of models, sample moments can be compared to the theoretical moments
of the distribution in question.

Two graphical methods used for this purpose are plots of skewness (y3) vs. coef-
ficient of variation (), and kurtosis (74) vs. skewness (see Cox and Oakes [2], p. 27).
The first plot is a visual representation of symmetry and spread, while the second is of
peakedness and symmetry. Some distributions, such as the exponential and uniform
distributions, reduce to a single point on these plots. Close proximity of the curve
to the corresponding sample moments indicates that the distribution is not a bad

potential parametric model.
5.1 Mathematica Implementation

Since Mathematica is capable of producing a 3-dimensional parametric plot, it
occurred to us that a plot of (v,73,74) would be of similar use. Unfortunately, the
simplicity of the curves makes their proximity to the sample moments difficult to
discern without rotating the 3-dimensional plot. One solution to this problem is
to find the minimal Euclidean distance between (%, 43, 44) and the 3-dimensional
moment curves, where ¥ is the ratio of the sample standard deviation to the sample

mean and
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kappa: 2.102 lambda: 0.01221
Log Likelihood at the MLE: -113.7

Observed Information Matrix:
681327. 874 .6

874.6 10.38

Inverse Information Matrix (Variance-Covariance Matrix of the MLEs):
-6
1.646 10 -0.0001387

-0.0001387 0.1080

Two comments with respect to the s-confidence region in Figure 5 follow. First,
Figure 5 verifies that a Weibull distribution is a better fit than an exponential dis-
tribution since the line x = 1 is not interior to the s-confidence region. Second,
adjusting an argument in ReliabilityFit gives smoother contours at the cost of

larger computation times.

4.3 Discussion

Mathematica’s overall performance on this larger, more complex problem was
adequate. We were pleased with the program’s ability to overlay several graphic
images such that the scaling & appearance were appropriate. We accomplished nearly
everything we had hoped to, although much trial & error was often necessary.

Another advantage of our Mathematica implementation is that our function has
only three arguments: the data set, a survivor function, and initial parameter es-
timates. The log likelihood function, score vector, and information matrix are all
determined by Mathematica. As such, the code appears much more like the mathe-
matical derivations than the corresponding code in an algorithmic language. Other

two-parameter distributions could be fitted in a similar fashion.



4.2 Example

The data below are ball bearing failure times (in 10° revolutions) from Lawless [3]

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40.

The commands necessary to run our function ReliabilityFit are

In[6]: data={{17.88, 1}, {28.92, 1}, {33.00, 13}, {41.52, 1},
{42.12, 1}, {45.60, 1}, {48.48, 1}, {51.84, 1}, {51.96, 1%},
{54.12, 1}, {55.56, 1}, {67.80, 1}, {68.64, 1}, {68.64, 1%},
{68.88, 1}, {84.12, 13}, {93.12, 1}, {98.64, 1}, {105.12, 1},
{105.84, 1}, {127.92, 1}, {128.04, 1}, {173.40, 1}}

In[7]: SurvFunctWeibull = N[E] ~ (- (LAM x) ~ K)

In[8]: ReliabilityFit[data, WeibullSurvivor, InitEstimWeibull[data]l

The second element of each data pair gives its censoring status (0: right censored,
1: observed), and InitEstimWeibull is a function that returns initial estimates of
the Weibull parameters. The output of the program includes a scatterplot and fitted
regression line (Figure 3), a 3-dimensional graph of the log likelihood function (Figure
4), 90% and 95% confidence regions for the MLEs (Figure 5), and a comparison of
the MLE survivor function to the corresponding Kaplan—Meier product-limit estimate
(Figure 6). The function prints the survivor function, maximum likelihood estimators,
the maximum value of the log likelihood function, the observed information matrix,

and the asymptotic variance-covariance matrix of the MLEs, as shown here.

k
-(lam t)
Survivor Function: E

Maximum Likelihood Estimators-



the data. There is no difficulty in implementing either the regression or the plot in
Mathematica?.

Initial estimates in hand, Mathematica calculates the maximum of the log likeli-
hood function and plots the log likelihood function surface. The observed information
matrix, the asymptotic variance-covariance matrix of the MLEs, and the value of the
log likelihood’s maximum are all printed. The latter can be used to compare the fits
of different families of distributions.

As a further test of the Weibull fit,
2log L(A, &) — log L(\, £)]

is asymptotically y3, and hence we can obtain an approximate s-confidence region for
the parameter estimates. This s-confidence region can be used to determine whether
the additional parameter in the Weibull distribution (compared to the exponential
distribution without a shape parameter) is warranted. If the line k = 1 is interior
to the s-confidence region, the extra parameter is not s-significant, and the reduced
model might be appropriate. Quantiles of the chi-square distribution, and those
of many other distributions, are available in Mathematica. Using the Mathematica
function ContourPlot produces a contour plot of the log likelihood function, which
is the boundary of an asymptotically valid s-confidence region for the parameters.
The output given in the example that follows represents a balance between precision
and computing time. Finally, a graph of the estimated survivor function is produced,

along with the Kaplan— Meier product-limit estimator of the survivor function.

2Obtaining the Weibull MLEs can be reduced to a one-dimensional search. In order to facilitate
the fitting of other two-parameter distributions with the same code, however, this approach was not
taken. Additionally, a two-dimensional search was a better test of Mathematica’s abilities.



for all t > 0, A > 0, and x > 0. Most of the derivation shown below is given in Cox
and Oakes [2].

For failure times ¢,¢5,...,%, and censoring times cy, ¢, ..., ¢,, the log likelihood
function can be expressed in terms of the hazard function A(¢) and the cumulative

hazard function H ()

log L(A, k) = Y logh(zi, A, k) — ZH:H(:I;Z', A K)
€U i=1
where U is the set of indices corresponding to uncensored observations, r is the number
of observed failures, and z; = min{t;, ¢;}, for i = 1,2,... n.

Maximum likelihood estimates can be obtained in the usual way by taking the
first partial derivatives of the log likelihood function with respect to A and &, setting
the resulting equations equal to zero, and solving for the parameters.

Given the survivor function, Mathematica can perform all of the derivations nec-
essary to obtain this 2 x 2 system of equations. Given suitable initial estimates, it
can solve the equations via Newton’s Method. We found that simply guessing the
initial estimates resulted in a rather slow convergence of the root solver. Therefore,
we used a least squares approach to obtain initial estimates for A and x. For the
Weibull distribution

log[—log S(t)] = xlog A + klog t.

Let R(t) be the set of indices corresponding to items at risk at or just prior to time
t and let n(t) = |R(t)| be the number of elements in, or the cardinality of R(?).
Estimating the survivor function with Z(—_:i, we perform a simple linear regression on
log x; vs. log [— log %_%] The slope of the fitted model is an estimate of k and the
intercept is an estimate of xlog A. This is equivalent to a plot of the data on Weibull
paper, and has the side benefit of being able to assess model adequacy. By plotting

the data and the fitted regression line, we can determine whether the relationship

is linear, thereby confirming the appropriateness of the model over the region of



In[4] := lowerbnd
2 3
Out[4]l= (1 - 1 -p )@ - U -p))

In[5]:= lowerbnd /. p -> 0.7

Out[5]= 0.88543
3.3 Discussion

Mathematica has more power & flexibility than is really needed to solve this
problem. Still, the ability to view & experiment with the upper and lower bounds is
an educational tool since students can easily explore the behavior of the inequality

for different reliabilities and system configurations.

4. LIFETIME DATA ANALYSIS

Consider fitting statistical models to a set of lifetime data. In particular, we
wish to fit the Weibull distribution to a right-censored data set using maximum
likelihood estimation (the Weibull distribution was chosen because its MLEs must be
calculated by numerical methods). Also, we would like to obtain some measures of
model adequacy: s-confidence regions for the parameters, a visual comparison of the
corresponding non-parametric model, and the ability to compare the fit to that of

other parametric models.
4.1 Mathematica Implementation
Recall that the survivor function of the Weibull distribution is
S(t) = e~ (0"
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Plot[{lowerbnd, upperbnd}, {p, 0, 1}, PlotLabel ->

"Reliability Bounds", AxesLabel -> {"p", "r(p)"}];

The arguments passed to bound are the set of minimal cut sets, and the set of minimal

path sets.!

3.2 Example

To illustrate the use of these reliability bounds on a small system, consider the

four-component system in Figure 1. This system has three minimal path sets
{1}, {2, 3}, {2, 4}

and two minimal cut sets
{1, 2}, {1, 3, 4}.

Once bound been input, the appropriate Mathematica commands to determine

the reliability bounds for this system are

In[1]:= mpaths = { {1}, {2, 3}, {2, 4} }
In[2]:= mcuts = { {1, 2}, {1, 3, 4} }
In[3]:= bound[mpaths, mcuts]

The upper and lower bounds for the system reliability for components with iden-
tical reliabilities are plotted in Figure 2. We can request the expression for, say, the

lowerbound, and evaluate it for p = 0.7.

1One Mathematica data structure is a list, which is a set of numbers, algebraic expressions,
functions, graphical elements, etc.



3. RELIABILITY BOUNDS

The reliability r(p) of a s-coherent system of s-independent components can be

bounded using minimal path sets and minimal cut sets (Barlow and Proschan [1],

p. 37), where p = (p1,p2,...,pn)" is a vector of component reliabilities. For a s-
coherent system of s-independent components with minimal path sets P, P, ..., Ps,
and minimal cut sets C, Cy, ..., Uk, one such bound is

j=1 iEP;

<r(p) <1 — Hll - Hpi],

ﬁ pi <r(p) < ]i[Hpi.

j=1i€C; j=1i€eP,
The bounded expression is the probability that the system is operational at one

particular time, i.e., the system reliability.
3.1 Mathematica Implementation

Consider a scenario where each component has the same reliability p, where 0 <
p < 1. For various values of p, how precise are our bounds for an arbitrary system
configuration? A Mathematica function bound calculates and plots the reliability

bounds. Since the code for this function is short, it is included below.

bound[paths_List, cuts_List]
(

numpaths = Length[paths];

numcuts = Length[cuts];

upperbnd = lowerbnd = 1;

Do [upperbnd = upperbnd * (1 - p " Length[paths[[i]l]]),{i, numpaths}];
upperbnd = 1 - upperbnd;

Do[lowerbnd = lowerbnd * (1

(1 - p) ~ Lengthlcuts[[i]1]]), {i, numcuts}];



censoring times
time on test for item ¢, 2 =1,2,...,n

index set of uncensored observations

r number of observed failures
L(.) likelihood function

A Weibull scale parameter MLE
R Weibull shape parameter MLE
h(t) hazard function

H(t) cumulative hazard function
R() risk set at time ¢

n(t) cardinality of R(t)

v=7 coefficient of variation
B=b (T;“)S] skewness

ya=b (T;“)4] kurtosis.

2. BACKGROUND

Mathematica is an environment for numerical & symbolic computations, with
excellent graphics capabilities. It combines the ‘interactive user interface’ and ‘func-
tional programming’ of a high level language such as S-Plus with commands & func-
tions that support symbolic manipulation. We will not emphasize the actual coding of
our functions, but rather the insight gained from applying Mathematica to reliability
problems. The Mathematica code is available from the authors.

Each subsequent section is divided into four parts: an introduction to the par-
ticular topic, the implementation of Mathematica to solve the problem, a specific
example to illustrate the implementation, and a brief discussion of the merits of the

Mathematica solution.



1. INTRODUCTION

Computational algebra languages are tools for solving a wide array of mathe-
matical problems. These interactive frameworks have powerful symbolic & graphical
capabilities that are easily & quickly implemented, making these languages superior
to standard algorithmic languages such as C or FORTRAN for certain applications.
In addition, they provide low-level programming constructs that allow flexibility that
is often not available in specific application software packages.

This paper documents our application of one such program, the Mathematica
system [4], as a tool. In short, how would one fare in applying such a language
to some of the diverse computational problems in reliability? What features of the
system make it superior (or inferior) to other programming environments? Can a
reliability engineer with a modest computer programming background make use of
Mathematica to solve problems efficiently? In order to answer these questions, we
chose three problems that test the usefulness of this tool: reliability bounds, lifetime

data analysis, and model selection.

Acronyms
MLE maximum likelihood estimator
KM/PL Kaplan—Meier product limit.
Notation
r(p) system reliability
P = (p1,p2yes Pn) vector of component reliabilities
P, P, . P minimal path sets
Cq, Cqy oy O minimal cut sets
S(t) survivor function
A Weibull scale parameter
K Weibull shape parameter
t, ty, o, ty failure times
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Summary & Conclusions — Reliability analysts are typically forced to choose
between using an ‘algorithmic programming language’ or a ‘reliability package’ for
analyzing their models and lifetime data. This paper shows that computational lan-
guages can be used to bridge the gap to combine the flexibility of a programming
language with the ease of use of a package. Computational languages facilitate the
development of new statistical techniques and are excellent teaching tools. This paper
considers three diverse reliability problems that are handled easily with a computa-
tional algebra language: system reliability bounds, lifetime data analysis, and model
selection.



