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Figure 10: Kurtosis vs. Skewness vs. Coe�cient of Variation, Rotated [Ball Bearingsat (0:52; 0:88; 3:19)] 25
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Uniform 1.64658 NoShapeParameterExponential 5.93626 NoShapeParameterWeibull 0.247013 k -> 1.95794Gamma 0.488128 k -> 13.0483LogLogistic 1.38079 k -> 55.9427Pareto 5.91096 b -> 1737.07LogNormal 2.9733 sigma -> 0.03143625.3 DiscussionIt should be kept in mind that the Euclidean distance technique should only beused to determine which models would be obviously inferior. It is not a methodwith which to choose a model. For instance, in testing this method using randomlygenerated samples from a log normal distribution, the �tted Weibull and gammadistributions would often be closer to the sample moments; the lognormal is not a clearcut winner based on distance to the sample moments. for example, the Kolmogorov-Smirnov goodness-of-�t test smaller for the MLE lognormal �t than it is for the MLEWeibull �t. Hence, For the ball bearing data set, one should only conclude that theexponential & Pareto distributions are inferior in describing the distribution. For theWeibull distribution, the initial estimate of � is close to the MLE, which was 2.10(see section 4.2).The Mathematica implementation is similar to the Weibull maximum likelihoodproblem: the major step is performed by a root-solver. Using Mathematica did leadus to a new discovery: although the kurtosis vs. skewness vs. coe�cient of variationplot was only marginally useful in and of itself, the minimum Euclidean distance tothe sample point provides us with some very useful exploratory results.12



The moment curves given here are the function of, at most, a single shape parameter.The value of this parameter when the Euclidean distance is minimized can be usedas an initial estimate for obtaining its maximum likelihood estimate. Hence, notonly can we see which distributions are possible models, we can also learn somethingabout their parameter estimates. Again, due to Mathematica's root-solving ability,this minimizer was not di�cult to develop. Unlike the likelihood function in section 4,the distance functions do not need a particularly accurate initial estimate to converge.5.2 ExampleConsider again the ball bearing data from section 4.2. Its moments are 
̂ =0:52; 
̂3 = 0:88; 
̂4 = 3:19. Figures 7 & 8 are the skewness vs. coe�cient of variationand kurtosis vs. skewness plots for several lifetime distributions: gamma, log logistic,log normal, Pareto, and Weibull. The exponential distribution is a special case ofthe gamma and Weibull, and has moments 
 = 1; 
3 = 2; 
4 = 9. Also, the uniformdistribution has moments 
 = 1p3; 
3 = 0; 
4 = 95. The sample moments of theball bearing data are indicated by a point on each graph. Figures 9 & 10 showthe 3-dimensional moment curves from two perspectives. Figure 9 looks down atthe kurtosis vs. skewness plot, with depth provided by the coe�cient of variation.Figure 10 is a rotated version with the kurtosis (height) scale reduced. As explainedpreviously, the behavior is di�cult to see.What follows is the results of determining the minimum Euclidean distance be-tween (
̂; 
̂3; 
̂4) and each of the moment curves in three dimensions:In[9]: MomentDistance[data]Out[9]//MatrixForm=> DISTRIBUTION MIN DISTANCE INITIAL ESTIMATE11



This larger programming application revealed a down-side of using Mathematica.The program syntax can be quite tedious. Slight deviations from the desired commandcan produce a wealth of syntax errors and warnings, and/or incorrect results.5. MODEL SELECTIONWe select a parametric model to describe a set of lifetime data. In order to limitthe number of models, sample moments can be compared to the theoretical momentsof the distribution in question.Two graphical methods used for this purpose are plots of skewness (
3) vs. coef-�cient of variation (
), and kurtosis (
4) vs. skewness (see Cox and Oakes [2], p. 27).The �rst plot is a visual representation of symmetry and spread, while the second is ofpeakedness and symmetry. Some distributions, such as the exponential and uniformdistributions, reduce to a single point on these plots. Close proximity of the curveto the corresponding sample moments indicates that the distribution is not a badpotential parametric model.5.1 Mathematica ImplementationSince Mathematica is capable of producing a 3-dimensional parametric plot, itoccurred to us that a plot of (
; 
3; 
4) would be of similar use. Unfortunately, thesimplicity of the curves makes their proximity to the sample moments di�cult todiscern without rotating the 3-dimensional plot. One solution to this problem isto �nd the minimal Euclidean distance between (
̂; 
̂3; 
̂4) and the 3-dimensionalmoment curves, where 
̂ is the ratio of the sample standard deviation to the samplemean and
̂ = s�t 
̂3 = 1n nXi=1  ti � �ts !3 
̂4 = 1n nXi=1  ti � �ts !410



kappa: 2.102 lambda: 0.01221Log Likelihood at the MLE: -113.7Observed Information Matrix:681327. 874.6874.6 10.38Inverse Information Matrix (Variance-Covariance Matrix of the MLEs):-61.646 10 -0.0001387-0.0001387 0.1080Two comments with respect to the s-con�dence region in Figure 5 follow. First,Figure 5 veri�es that a Weibull distribution is a better �t than an exponential dis-tribution since the line � = 1 is not interior to the s-con�dence region. Second,adjusting an argument in ReliabilityFit gives smoother contours at the cost oflarger computation times.4.3 DiscussionMathematica's overall performance on this larger, more complex problem wasadequate. We were pleased with the program's ability to overlay several graphicimages such that the scaling & appearance were appropriate. We accomplished nearlyeverything we had hoped to, although much trial & error was often necessary.Another advantage of our Mathematica implementation is that our function hasonly three arguments: the data set, a survivor function, and initial parameter es-timates. The log likelihood function, score vector, and information matrix are alldetermined by Mathematica. As such, the code appears much more like the mathe-matical derivations than the corresponding code in an algorithmic language. Othertwo-parameter distributions could be �tted in a similar fashion.9



4.2 ExampleThe data below are ball bearing failure times (in 106 revolutions) from Lawless [3]17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12 55.56 67.8068.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40.The commands necessary to run our function ReliabilityFit areIn[6]: data={{17.88, 1}, {28.92, 1}, {33.00, 1}, {41.52, 1},{42.12, 1}, {45.60, 1}, {48.48, 1}, {51.84, 1}, {51.96, 1},{54.12, 1}, {55.56, 1}, {67.80, 1}, {68.64, 1}, {68.64, 1},{68.88, 1}, {84.12, 1}, {93.12, 1}, {98.64, 1}, {105.12, 1},{105.84, 1}, {127.92, 1}, {128.04, 1}, {173.40, 1}}In[7]: SurvFunctWeibull = N[E] ^ (- (LAM x) ^ K)In[8]: ReliabilityFit[data, WeibullSurvivor, InitEstimWeibull[data]]The second element of each data pair gives its censoring status (0: right censored,1: observed), and InitEstimWeibull is a function that returns initial estimates ofthe Weibull parameters. The output of the program includes a scatterplot and �ttedregression line (Figure 3), a 3-dimensional graph of the log likelihood function (Figure4), 90% and 95% con�dence regions for the MLEs (Figure 5), and a comparison ofthe MLE survivor function to the corresponding Kaplan{Meier product-limit estimate(Figure 6). The function prints the survivor function, maximum likelihood estimators,the maximum value of the log likelihood function, the observed information matrix,and the asymptotic variance-covariance matrix of the MLEs, as shown here.k-(lam t)Survivor Function: EMaximum Likelihood Estimators- 8



the data. There is no di�culty in implementing either the regression or the plot inMathematica2.Initial estimates in hand, Mathematica calculates the maximum of the log likeli-hood function and plots the log likelihood function surface. The observed informationmatrix, the asymptotic variance-covariance matrix of the MLEs, and the value of thelog likelihood's maximum are all printed. The latter can be used to compare the �tsof di�erent families of distributions.As a further test of the Weibull �t,2[logL(�̂; �̂)� logL(�; �)]is asymptotically �22, and hence we can obtain an approximate s-con�dence region forthe parameter estimates. This s-con�dence region can be used to determine whetherthe additional parameter in the Weibull distribution (compared to the exponentialdistribution without a shape parameter) is warranted. If the line � = 1 is interiorto the s-con�dence region, the extra parameter is not s-signi�cant, and the reducedmodel might be appropriate. Quantiles of the chi-square distribution, and thoseof many other distributions, are available in Mathematica. Using the Mathematicafunction ContourPlot produces a contour plot of the log likelihood function, whichis the boundary of an asymptotically valid s-con�dence region for the parameters.The output given in the example that follows represents a balance between precisionand computing time. Finally, a graph of the estimated survivor function is produced,along with the Kaplan{ Meier product-limit estimator of the survivor function.2Obtaining the Weibull MLEs can be reduced to a one-dimensional search. In order to facilitatethe �tting of other two-parameter distributions with the same code, however, this approach was nottaken. Additionally, a two-dimensional search was a better test of Mathematica's abilities.7



for all t > 0, � > 0, and � > 0. Most of the derivation shown below is given in Coxand Oakes [2].For failure times t1; t2; :::; tn and censoring times c1; c2; :::; cn, the log likelihoodfunction can be expressed in terms of the hazard function h(t) and the cumulativehazard function H(t)log L(�; �) = Xi2U log h(xi; �; �) � nXi=1H(xi; �; �)where U is the set of indices corresponding to uncensored observations, r is the numberof observed failures, and xi = minfti; cig, for i = 1; 2; : : : ; n.Maximum likelihood estimates can be obtained in the usual way by taking the�rst partial derivatives of the log likelihood function with respect to � and �, settingthe resulting equations equal to zero, and solving for the parameters.Given the survivor function, Mathematica can perform all of the derivations nec-essary to obtain this 2 � 2 system of equations. Given suitable initial estimates, itcan solve the equations via Newton's Method. We found that simply guessing theinitial estimates resulted in a rather slow convergence of the root solver. Therefore,we used a least squares approach to obtain initial estimates for � and �. For theWeibull distribution log[� logS(t)] = � log �+ � log t:Let R(t) be the set of indices corresponding to items at risk at or just prior to timet and let n(t) = jR(t)j be the number of elements in, or the cardinality of R(t).Estimating the survivor function with n(t)n+1 , we perform a simple linear regression onlog xi vs. log h� log n(t)n+1i. The slope of the �tted model is an estimate of � and theintercept is an estimate of � log �. This is equivalent to a plot of the data on Weibullpaper, and has the side bene�t of being able to assess model adequacy. By plottingthe data and the �tted regression line, we can determine whether the relationshipis linear, thereby con�rming the appropriateness of the model over the region of6



In[4]:= lowerbnd 2 3Out[4]= (1 - (1 - p) )(1 - (1 - p) )In[5]:= lowerbnd /. p -> 0.7Out[5]= 0.885433.3 DiscussionMathematica has more power & 
exibility than is really needed to solve thisproblem. Still, the ability to view & experiment with the upper and lower bounds isan educational tool since students can easily explore the behavior of the inequalityfor di�erent reliabilities and system con�gurations.4. LIFETIME DATA ANALYSISConsider �tting statistical models to a set of lifetime data. In particular, wewish to �t the Weibull distribution to a right-censored data set using maximumlikelihood estimation (the Weibull distribution was chosen because its MLEs must becalculated by numerical methods). Also, we would like to obtain some measures ofmodel adequacy: s-con�dence regions for the parameters, a visual comparison of thecorresponding non-parametric model, and the ability to compare the �t to that ofother parametric models.4.1 Mathematica ImplementationRecall that the survivor function of the Weibull distribution isS(t) = e�(�t)�5



Plot[{lowerbnd, upperbnd}, {p, 0, 1}, PlotLabel ->"Reliability Bounds", AxesLabel -> {"p", "r(p)"}];)The arguments passed to bound are the set of minimal cut sets, and the set of minimalpath sets.13.2 ExampleTo illustrate the use of these reliability bounds on a small system, consider thefour-component system in Figure 1. This system has three minimal path setsf1g, f2, 3g, f2, 4gand two minimal cut sets f1, 2g, f1, 3, 4g.Once bound been input, the appropriate Mathematica commands to determinethe reliability bounds for this system areIn[1]:= mpaths = { {1}, {2, 3}, {2, 4} }In[2]:= mcuts = { {1, 2}, {1, 3, 4} }In[3]:= bound[mpaths, mcuts]The upper and lower bounds for the system reliability for components with iden-tical reliabilities are plotted in Figure 2. We can request the expression for, say, thelowerbound, and evaluate it for p = 0:7.1One Mathematica data structure is a list, which is a set of numbers, algebraic expressions,functions, graphical elements, etc. 4



3. RELIABILITY BOUNDSThe reliability r(p) of a s-coherent system of s-independent components can bebounded using minimal path sets and minimal cut sets (Barlow and Proschan [1],p. 37), where p = (p1; p2; :::; pn)0 is a vector of component reliabilities. For a s-coherent system of s-independent components with minimal path sets P1, P2, ..., Ps,and minimal cut sets C1, C2, ..., Ck, one such bound iskYj=1241� Yi2Cj(1 � pi)35 � r(p) � 1 � sYj=1241 � Yi2Pj pi35 ;or kYj=1 ai2Cj pi � r(p) � saj=1 Yi2Pj pi:The bounded expression is the probability that the system is operational at oneparticular time, i.e., the system reliability.3.1 Mathematica ImplementationConsider a scenario where each component has the same reliability p, where 0 <p < 1. For various values of p, how precise are our bounds for an arbitrary systemcon�guration? A Mathematica function bound calculates and plots the reliabilitybounds. Since the code for this function is short, it is included below.bound[paths_List, cuts_List] :=( numpaths = Length[paths];numcuts = Length[cuts];upperbnd = lowerbnd = 1;Do[upperbnd = upperbnd * (1 - p ^ Length[paths[[i]]]),{i, numpaths}];upperbnd = 1 - upperbnd;Do[lowerbnd = lowerbnd * (1 - (1 - p) ^ Length[cuts[[i]]]), {i, numcuts}];3



c1, c2, ..., cn censoring timesxi = minfti; cig time on test for item i, i = 1; 2; : : : ; nU index set of uncensored observationsr number of observed failuresL(:) likelihood function�̂ Weibull scale parameter MLE�̂ Weibull shape parameter MLEh(t) hazard functionH(t) cumulative hazard functionR(t) risk set at time tn(t) cardinality of R(t)
 = �� coe�cient of variation
3 = E ��T��� �3� skewness
4 = E ��T��� �4� kurtosis.2. BACKGROUNDMathematica is an environment for numerical & symbolic computations, withexcellent graphics capabilities. It combines the `interactive user interface' and `func-tional programming' of a high level language such as S-Plus with commands & func-tions that support symbolic manipulation. We will not emphasize the actual coding ofour functions, but rather the insight gained from applying Mathematica to reliabilityproblems. The Mathematica code is available from the authors.Each subsequent section is divided into four parts: an introduction to the par-ticular topic, the implementation of Mathematica to solve the problem, a speci�cexample to illustrate the implementation, and a brief discussion of the merits of theMathematica solution. 2



1. INTRODUCTIONComputational algebra languages are tools for solving a wide array of mathe-matical problems. These interactive frameworks have powerful symbolic & graphicalcapabilities that are easily & quickly implemented, making these languages superiorto standard algorithmic languages such as C or FORTRAN for certain applications.In addition, they provide low-level programming constructs that allow 
exibility thatis often not available in speci�c application software packages.This paper documents our application of one such program, the Mathematicasystem [4], as a tool. In short, how would one fare in applying such a languageto some of the diverse computational problems in reliability? What features of thesystem make it superior (or inferior) to other programming environments? Can areliability engineer with a modest computer programming background make use ofMathematica to solve problems e�ciently? In order to answer these questions, wechose three problems that test the usefulness of this tool: reliability bounds, lifetimedata analysis, and model selection.AcronymsMLE maximum likelihood estimatorKM/PL Kaplan{Meier product limit.Notationr(p) system reliabilityp = (p1; p2; :::; pn)0 vector of component reliabilitiesP1, P2, ..., Ps minimal path setsC1, C2, ..., Ck minimal cut setsS(t) survivor function� Weibull scale parameter� Weibull shape parametert1, t2, ..., tn failure times 1



Computational Algebra Applications inReliability TheoryGlen HartlessUniversity of FloridaGainesvilleLawrence LeemisThe College of William & MaryWilliamsburgKeyWords | Computational algebra language, Mathematica, Model selection,Reliability bounds, Symbolic algebra language, Weibull distribution.Summary & Conclusions | Reliability analysts are typically forced to choosebetween using an `algorithmic programming language' or a `reliability package' foranalyzing their models and lifetime data. This paper shows that computational lan-guages can be used to bridge the gap to combine the 
exibility of a programminglanguage with the ease of use of a package. Computational languages facilitate thedevelopment of new statistical techniques and are excellent teaching tools. This paperconsiders three diverse reliability problems that are handled easily with a computa-tional algebra language: system reliability bounds, lifetime data analysis, and modelselection.
0


