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Figure 1: E[X

(1)

], E[Y

(1)

], and E[Z

(1)

] (n = 1; 2; 3; 4, 8i; �

i

= 1) as a function of !.

S ~ShiftGeom(α,ω,σ)

Z ~ModGeom(α,ω)

X ~Geom(α,ω)

S’~ShiftGeom(α,σ)

Z’~ModGeom(α)

X’~Geom(α)

Y ~Expo(λ)

S’= Z’+ σ X’= Z’+ 1

S = Z + σ X = Z + ω X = X’ω

Z = Z’ω

S = (S’-σ)ω + σ

Y = limω↓0,α=ω/λ Z
Z = ωY/ω

Y = limω↓0,α=ω/λ S − σ
S = ω Y/ω + σ

Y = limω↓0,α=ω/λ X
X = ω Y/ω

 0 < α ≤ 1
 ω > 0
 −∞ < σ < ∞
 λ > 0

Figure 2: Relationships between the distributions discussed in this paper.

17



7 Conclusion

We have shown how, if the random variables fX

i

: i 2 Ng, fY

i

: i 2 Ng, and fZ

i

: i 2 Ng

model the same set of n concurrent activities using geometric, exponential, or modi�ed

geometric distributions, respectively, with given expectations f�

�1

i

: i 2 Ng, the minimum

in each set has a di�erent expected value: E[X

(1)

] > E[Y

(1)

] > E[Z

(1)

]. Stochastic variability

is employed to justify the result.

We then consider two di�erent ways to match the expectation of the minimums. First, by

taking into account the possibility of ties in the geometric case, we de�ne the \weighted min-

imum" W

(1)

, and obtain E[W

(1)

] = E[Y

(1)

], but this operation corresponds to decreasing the

time-step of the individual geometric distributions, hence their expectation. Alternatively,

we introduce the \shifted geometric distribution", which a generalizes both the geometric

and the modi�ed geometric. We can then de�ne a set of shifted geometric random variables

fS

i

: i 2 Ng, which match in expectation the exponential random variables both individually,

E[S

i

] = E[Y

i

] = �

�1

i

, and their minimum, E[S

(1)

] = E[Y

(1)

].
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We might now ask whether this value �

�

for which E[S

(1)

] = E[Y

(1)

] is such that the

other order statistics coincide as well, that is, whether

8i 2 N; i > 1; E[S

(i)

]j

�=�

�

= E[Y

(i)

]:

This is indeed true for n = 2, since

E[S

(1)

] + E[S

(2)

] = E[S

1

] + E[S

2

] = E[Y

1

] + E[Y

2

] = E[Y

(1)

] + E[Y

(2)

]

implies that, whenever E[S

(1)

] = E[Y

(1)

],

E[S

(2)

] = E[Y

(2)

]

Unfortunately, this is not true in general for n � 3, as it can be seen considering the

homogeneous case. When 8i 2 N;�

i

= �,

PrfS

(2)

> k! + �g = PrfA

(2)

> kg

= Pr

(

(8i 2 N;A

i

> k) _

 

_

i2N

(A

i

� k ^ 8j 2 N; j 6= i; A

j

> k)

!)

= Pr f8i 2 N;A

i

> kg+

X

i2N

PrfA

i

� k ^ 8j 2 N; j 6= i; A

j

> kg

= ((1� �)

n

)

k+1

+ n(1 � (1� �)

k+1

)((1� �)

n�1

)

k+1

= n(1� �)

(n�1)(k+1)

� (n� 1)(1 � �)

n(k+1)

and

E[A

(2)

] =

1

X

k=0

PrfA

(2)

> kg

=

1

X

k=0

n(1 � �)

(n�1)(k+1)

� (n� 1)(1 � �)

n(k+1)

=

n(1� �)

n�1

1� (1 � �)

n�1

�

(n� 1)(1 � �)

n

1� (1� �)

n

Hence, considering S

(2)

= A

(2)

! + � and substituting � from (3),

E[S

(2)

] =

 

n(1 � ��)

n�1

(1� ��� !�)

n�1

� (1� ��)

n�1

�

(n� 1)(1 � ��)

n

(1� ��� !�)

n

� (1� ��)

n

!

! + �;

while, due to the absence of memory of the exponential distribution,

E[Y

(2)

] = (n�)

�1

+ ((n� 1)�)

�1

:

It can be easily veri�ed numerically, for example when n = 3, ! = 1=2, � = 1, that the

only real root of E[S

(1)

] = E[Y

(1)

] is � � 0:173927, while the only real root less than �

�1

of

E[S

(2)

] = E[Y

(2)

] is � � 0:346961.
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In particular,

lim

�!�1

E[S

(1;2)

] = �1 and lim

�!�1

dE[S

(1;2)

]

d�

=

1

2

and

E[S

(1;2)

]

�

�

�

�=�

�1

MAX

= �

�1

MAX

and

dE[S

(1;2)

]

d�

�

�

�

�

�

�=�

�1

MAX

=

!

! + �

�1

MIN

� �

�1

MAX

2

 

!

! + �

�1

MIN

; 1

#

where �

MIN

= minf�

1

; �

2

g.

Inductive Hypothesis: Assume that, for a given n,

E[S

(1;n)

] =

p

n

q

n

� p

n

! + �

is a strictly increasing function of � over (�1; �

�1

MAX

], that is

dE[S

(1;n)

]

d�

=

p

0

n

(q

n

� p

n

)� p

n

(q

0

n

� p

0

n

)

(q

n

� p

n

)

2

! + 1 =

p

0

n

q

n

� p

n

q

0

n

(q

n

� p

n

)

2

! + 1 > 0

which implies

8� 2 (�1; �

�1

MAX

]; !(p

0

n

q

n

� p

n

q

0

n

) > �(q

n

� p

n

)

2

Inductive Step: Then the same holds for n + 1, that is,

E[S

(1;n+1)

] =

p

n+1

q

n+1

� p

n+1

! + � =

p

n

(1 � ��

n+1

)

q

n

(1� ��

n+1

+ !�

n+1

)� p

n

(1� ��

n+1

)

! + �;

where �

n+1

is the rate of the (n+1)-th exponential random variable, is a strictly increasing

function of � over (�1;maxf�

MAX

; �

n+1

g

�1

], that is

dE[S

(1;n+1)

]

d�

=

(1 � ��

n+1

)(1� ��

n+1

+ !�

n+1

)

>�(q

n

�p

n

)

2

for ���

�1

MAX

z }| {

(p

0

n

q

n

� p

n

q

0

n

)! ��

2

n+1

!

2

q

n

p

n

(q

n

(1� ��

n+1

+ !�

n+1

)� p

n

(1 � ��

n+1

))

2

+ 1

>

(1 � ��

n+1

)(1� ��

n+1

+ !�

n+1

)(�(q

n

� p

n

)

2

)� �

2

n+1

!

2

q

n

p

n

(q

n

(1 � ��

n+1

+ !�

n+1

)� p

n

(1� ��

n+1

))

2

+ 1

=

�

n+1

!(q

n

� p

n

)((q

n

+ p

n

)(1 � ��

n+1

) + �

n+1

!q

n

)

(q

n

(1 � ��

n+1

+ !�

n+1

)� p

n

(1 � ��

n+1

))

2

> 0

since, � < �

�1

n+1

and 8� 2 (�1;maxf�

MAX

; �

n+1

g

�1

]; q

n

> p

n

. QED.
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Theorem 2. There exists a unique value �

�

� �

�1

MAX

for which E[S

(1)

] = E[Y

(1)

].

Proof. To show the existence of �

�

, it is su�cient to observe that E[S

(1)

] is a continuous

function of � over (�1; �

�1

MAX

], that

E[S

(1)

]

�

�

�

�=0

=

!

Y

i2N

(1 + !�

i

)� 1

<

 

X

i2N

�

i

!

�1

= E[Y

(1)

]

(this is Inequality (2) in Section 3), and that

E[S

(1)

]

�

�

�

�=�

�1

MAX

= �

�1

MAX

>

 

X

i2N

�

i

!

�1

= E[Y

(1)

]:

Hence, by continuity, there must exist a value �

�

2 (0; �

�1

MAX

) satisfying

E[S

(1)

]

�

�

�

�=�

�

= E[Y

(1)

]:

Furthermore, if ! < �

�1

MAX

,

E[S

(1)

]

�

�

�

�=!

=

Y

i2N

(1� !�

i

)

1�

Y

i2N

(1 � !�

i

)

! + ! =

!

1�

Y

i2N

(1 � !�

i

)

>

 

X

i2N

�

i

!

�1

= E[Y

(1)

]

(this is Inequality (1) in Section 3), hence, in general, �

�

2 (0;minf!; �

�1

MAX

g).

We prove the uniqueness of �

�

by induction on n, showing that E[S

(1)

] is a strictly

increasing function of � over (�1; �

�1

MAX

], hence we make the index n explicit in E[S

(1)

] by

writing

E[S

(1;n)

] = minfS

i

: i 2 Ng:

Base step: For n = 2,

E[S

(1;2)

] =

(1 � ��

1

)(1� ��

2

)

(1 � ��

1

+ !�

1

)(1� ��

2

+ !�

2

)� (1� ��

1

)(1� ��

2

)

! + �

=

1 + ��

1

�

2

(! � �)

�

1

+ �

2

+ �

1

�

2

(! � 2�)

and

dE[S

(1;2)

]

d�

=

�

1

�

2

(!(�

1

+ �

2

� 2�

1

�

2

�) + 2(1 � ��

1

� ��

2

+ �

2

�

1

�

2

) + !

2

�

1

�

2

)

(�

1

+ �

2

+ �

1

�

2

(! � 2�))

2

=

�

1

�

2

(

�0 for ���

�1

MAX

z }| {

!(�

1

(1� ��

2

) + �

2

(1� ��

1

)) + 2(1 � ��

1

)(1� ��

2

)+!

2

�

1

�

2

)

(�

1

+ �

2

+ �

1

�

2

(! � 2�))

2

> 0:
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Consider now a set of modi�ed geometric random variables with time-step one, fA

i

: i 2

Ng and the set of shifted geometric random variables fS

i

: i 2 Ng obtained from them by

changing the time-step to ! and applying a time-shift �:

8i 2 N; A

i

�ModGeom(�

i

); S

i

= A

i

! + � ) S

i

� ShiftGeom(�

i

; !; �)

and set the parameters f�

i

: i 2 Ng so that:

8i 2 N; E[S

i

] =

1 � �

i

�

i

! + � = �

�1

i

= E[Y

i

] ) �

i

=

!�

i

1� ��

i

+ !�

i

:

Since 8i 2 N; 0 < �

i

� 1, the maximum value of � is

� � min

i2N

n

�

�1

i

o

=

�

max

i2N

f�

i

g

�

�1

= �

�1

MAX

:

The expectation of S

(1)

= minfS

i

: i 2 Ng = A

(1)

! + � is then

E[S

(1)

] =

Y

i2N

(1� �

i

)

1 �

Y

i2N

(1 � �

i

)

! + �

=

Y

i2N

 

1�

!�

i

1 � ��

i

+ !�

i

!

1 �

Y

i2N

 

1�

!�

i

1� ��

i

+ !�

i

!

! + �

=

Y

i2N

(1 � ��

i

)

Y

i2N

(1 � ��

i

+ !�

i

)�

Y

i2N

(1 � ��

i

)

! + �

=

p

n

q

n

� p

n

! + �

where p

n

=

Y

i2N

(1� ��

i

) and q

n

=

Y

i2N

(1� ��

i

+ !�

i

) satisfy

� 8� � �

�1

MAX

; p

n

< q

n

.

� p

n

j

�=0

= 1, q

n

j

�=0

=

Y

i2N

(1 + !�

i

) > 1.

� p

n

j

�=�

�1

MAX

= 0.

� If ! < �

�1

MAX

, q

n

j

�=!

= 1.
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parameters �, !, and �, S � ShiftGeom(�; !; �), if its pmf is

8k 2 IN;PrfS = k! + �g = �(1 � �)

k

which implies that its CDF is

8t 2 IR; PrfS � tg =

8

>

<

>

:

1� (1 � �)

b

t��

!

c

+1

if t � �

0 otherwise

and that its expectation is

E[S] =

1� �

�

! + �:

In other words, given a random variable A � ModGeom(�), ! > 0, and � 2 IR, S =

A! + � � ShiftGeom(�; !; �). Figure 2 shows the relationships between the geometric,

modi�ed geometric, shifted geometric, and exponential distributions.

Given Y � Expo(�), we can again consider the condition under which S and Y have the

same expectation:

E[S] =

1� �

�

! + � = �

�1

= E[Y ] ) � =

!�

1 � ��+ !�

: (3)

Since � is a probability, it can only have values in [0; 1]. Furthermore, E[S] = 1 when

� = 0, so we exclude this case. Then, S and Y have the same expectation for any choice of

! and �, as long as

0 < � =

!�

1 � ��+ !�

� 1 ) � � �

�1

and � is set according to Equation (3). A few observations are of particular interest:

� Once the value of E[S] is �xed at �

�1

, decreasing the time-shift � by �, possibly below

zero, causes a decrease in �, so that E[A] increases by �=! and E[S] = E[A]! � �

remains constant. Since E[A] can be arbitrarily large, this explains why there is no

lower bound for �.

� If � = 0, S �ModGeom(�; !).

� If ! < �

�1

and � = !, S � Geom(�; !).

� If � = �

�1

, � = 1, hence S � Const(�) � Const(�

�1

).
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takes ties into account by dividing the minimum completion time by the expected number

of ties (the corresponding quantity for the continuous case is still simply Y

(1)

, since the

probability of ties is zero in this case). The expected value of the weighted minimum for the

geometric case coincides with the expected minimum for the exponential case:

E[W

(1)

] = E

"

X

(1)

E[jI

[1]

j]

#

=

!

1�

Y

i2N

(1� �

i

)

X

i2N

�

i

1 �

Y

j2N

(1� �

j

)

=

!

X

i2N

�

i

=

 

X

i2N

�

i

!

�1

= E[Y

(1)

]:

We conclude this section by observing that, while the result E[W

(1)

] = E[Y

(1)

] seems to

imply that ties are the cause of Inequality (1) in Section 3, this is not correct, since the

inequality holds even when ties are not possible. This can be shown by considering a set of

geometric random variables fX

�

i

: i 2 Ng, where

8i 2 N;X

�

i

� Geom(�

�

i

; !

i

); E[X

�

] =

!

i

�

�

i

= �

�1

i

= E[Y

i

]

and, 8i 2 N;8j 2 N; i 6= j, the ratio !

i

=!

j

is not a rational number, hence, it is not possible

to �nd two integers k

i

and k

j

that would results in a potential tie at time k

i

!

i

= k

j

!

j

.

6 Matching the minimums by time-shifting

In the previous section, we forced the expectation of the minimums of fX

i

: i 2 Ng and

fY

i

: i 2 Ng to coincide by reducing the time-step of the geometric distributions, that is,

transforming fX

i

: i 2 Ng into fW

i

: i 2 Ng. While the result E[W

(1)

] = E[Y

(1)

] is appealing,

the weighted random variables fW

i

: i 2 Ng do not match the original fY

i

: i 2 Ng

in expectation. A more interesting result would be to modify our initial set of random

variables fX

i

: i 2 Ng so that both the individual random variables and the minimum

match the corresponding exponential quantities in expectation.

In this section, we accomplish exactly this by introducing the \shifted geometric" distri-

bution, a generalization of both the geometric and modi�ed geometric distribution. Given

0 < � � 1, ! > 0, and � 2 IR, we say that S has a shifted geometric distribution with

10



This result is more easily obtained observing that, because of the absence of memory of

the geometric distribution, I

[1]

and X

(1)

are independent, hence PrfI

[1]

= sg is simply the

product of the one-step probability of success for the elements of s and of the one-step

probability of failure for the elements not in s, normalized by the probability that at least

one success occurs.

For example, if n = 2, the three possible values for I

[1]

and their probabilities are:

PrfI

[1]

= f1gg = PrfX

1

< X

2

g =

�

1

(1 � �

2

)

1 � (1� �

1

)(1 � �

2

)

=

�

1

� �

1

�

2

!

�

1

+ �

2

� �

1

�

2

!

PrfI

[1]

= f2gg = PrfX

1

> X

2

g =

�

2

(1 � �

1

)

1 � (1� �

1

)(1 � �

2

)

=

�

2

� �

1

�

2

!

�

1

+ �

2

� �

1

�

2

!

PrfI

[1]

= f1; 2gg = PrfX

1

= X

2

g =

�

1

�

2

1 � (1� �

1

)(1 � �

2

)

=

�

1

�

2

!

�

1

+ �

2

� �

1

�

2

!

In general, the probability that a particular X

i

is equal X

(1)

, or that i 2 I

[1]

, is

PrfX

i

= X

(1)

g =

1

X

k=1

PrfX

i

= k! ^ 8j 2 N; j 6= i;X

j

� k!g

=

1

X

k=1

�

i

(1 � �

i

)

k�1

Y

j2N;j 6=i

(1� �

j

)

k�1

=

�

i

1 �

Y

j2N

(1� �

j

)

:

Hence, the expected number of ties at time X

(1)

among fX

i

: i 2 Ng is

E[jI

[1]

j] =

X

i2N

PrfX

i

= X

(1)

g =

X

i2N

�

i

1 �

Y

j2N

(1� �

j

)

:

We can de�ne the \weighted" random variables fW

i

: i 2 Ng, where

8i 2 N;W

i

=

X

i

E[jI

[1]

j]

� Geom

 

�

i

;

!

E[jI

[1]

j]

!

� Geom

0

B

B

B

@

�

i

; ! �

1�

Y

j2N

(1 � �

j

)

X

i2N

�

i

1

C

C

C

A

:

which are still geometrically distributed random variables with the same success probabilities

as their original counterparts fX

i

: i 2 Ng, but with a reduced time-step. Then,

W

(1)

= minfW

i

: i 2 Ng = min

(

X

i

E[jI

[1]

j]

: i 2 N

)

=

X

(1)

E[jI

[1]

j]

9



Since max is an increasing convex function and 8i 2 N;�X

i

�

v

�Y

i

�

v

�Z

i

,

maxf�X

i

: i 2 Ng �

v

maxf�Y

i

: i 2 Ng �

v

maxf�Z

i

: i 2 Ng;

implying that

�E[maxf�X

i

: i 2 Ng] � �E[maxf�Y

i

: i 2 Ng] � �E[maxf�Z

i

: i 2 Ng];

and thus that

E[minfX

i

: i 2 Ng] = E[X

(1)

] � E[minfY

i

: i 2 Ng] = E[Y

(1)

] � E[minfZ

i

: i 2 Ng] = E[Z

(1)

]:

5 Matching the minimums by changing the time-step

This section presents an explanation for the existence of the strict Inequality (1) in Section

3, and its quanti�cation, based on the possibility of a tie for the minimum in the set fX

i

:

i 2 Ng. A con�rmation of this intuition is found by de�ning a new random variable, W

(1)

,

obtained dividing X

(1)

by the expected number of random variables tied for the minimum:

the expectation of this \weighted minimum" W

(1)

is indeed the same as that of Y

(1)

.

The discrete nature of the geometric distribution implies that several random variables

in fX

i

: i 2 Ng might coincide with X

(1)

. De�ne I

[1]

to be the the set of indices among N

corresponding to such random variables (I

[1]

is itself random):

I

[1]

= fi 2 N : X

i

= X

(1)

g 6= ;:

The pmf of I

[1]

is

8s � N; s 6= ;;PrfI

[1]

= sg = Prf8i 2 s;X

i

= X

(1)

^ 8j 2 N n s;X

j

> X

(1)

g

=

1

X

k=1

Prf8i 2 s;X

i

= k! ^ 8j 2 N n s;X

j

> k!g

=

1

X

k=1

 

Y

i2s

�

i

(1� �

i

)

k�1

!

0

@

Y

j2Nns

(1 � �

j

)

k

1

A

=

 

Y

i2s

�

i

!

0

@

Y

j2Nns

(1� �

j

)

1

A

1�

Y

l2N

(1 � �

l

)

:
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An additional useful notion codi�es the idea that the remaining lifetime of a nonnega-

tive random variable conditioned on exceeding some value a has never greater expectation

(NBUE: New Better Than Used in Expectation), or never smaller expectation (NWUE:

New Worse Than Used in Expectation), than the original lifetime. Formally, a nonnegative

random variable A is NBUE if

8a � 0; E[A� a j A > a] � E[A]

and is NWUE if

8a � 0; E[A� a j A > a] � E[A]:

Ross lists some important consequences of these de�nitions:

� If X and Y are nonnegative, X �

v

Y , and E[X] = E[Y ], then �X �

v

�Y .

� If g : IR

n

! IR is an increasing convex function, if 8i 2 N;X

i

�

v

Y

i

, fX

i

: i 2 Ng are

independent, and fY

i

: i 2 Ng are independent, then

g(X

1

;X

2

; : : : ;X

n

) �

v

g(Y

1

; Y

2

; : : : ; Y

n

):

� If X is NBUE, and Y is exponential with the same mean as X, then X �

v

Y .

� If Z if NWUE and Y is exponential with the same mean as Z then Y �

v

Z.

These last two facts are used to relate X � Geom(�; !), Z � ModGeom(�; !), and Y �

Expo(�) with the same mean, by showing that the geometric distribution is NBUE and that

the modi�ed geometric distribution is NWUE. Let X � Geom(�; !), Z � ModGeom(�; !),

and choose any a � 0. Using the memoryless property of the geometric distribution, we can

derive:

E[X � a j X > a] = E[X j X > a]� a =

�

a

!

�

! + E[X]� a � E[X] and

E[Z � a j Z > a] = E[Z j Z > a]� a =

��

a

!

�

+ 1

�

! + E[Z]� a > E[Z]:

Therefore, X �

v

Y �

v

Z.

Considering again the three sets of independent random variables with matching means

fX

i

: i 2 Ng, fZ

i

: i 2 Ng, and fY

i

: i 2 Ng observe that

minfa

i

: i 2 Ng = �maxf�a

i

: i 2 Ng:

7



=

1

X

i2N

�

i

+ �

n+1

�

 

X

i2N

�

i

!

�

n+1

!

>

0

@

X

i2N[fn+1g

�

i

1

A

�1

= E[Y

(1;n+1)

]

The proof that E[Z

(1)

] < E[Y

(1)

] is analogous and is omitted. QED.

In other words, the minimum of n independent exponential random variables is always

strictly bounded in expectation by the minimums of n independent geometric and modi�ed

geometric random variables with matching means. For example, if n = 2, and �

1

= �

2

= �,

E[X

(1)

] = (2�(1 � �!=2))

�1

> E[Y

(1)

] = (2�)

�1

> E[Z

(1)

] = (2�(1 + �!=2))

�1

:

E[X

(1)

] and E[Z

(1)

] coincide with E[Y

(1)

] only in the limit, as ! # 0 (see �gure 1):

lim

!#0

E[X

(1)

] = lim

!#0

!

1�

Y

i2N

(1� �

i

!)

= lim

!#0

!

X

i2N

�

i

! + o(!)

=

 

X

i2N

�

i

!

�1

= E[Y

(1)

] and

lim

!#0

E[Z

(1)

] = lim

!#0

!

�1 +

Y

i2N

(1 + �

i

!)

= lim

!#0

!

X

i2N

�

i

! + o(!)

=

 

X

i2N

�

i

!

�1

= E[Y

(1)

]:

The convergence of E[X

(1)

] and E[Z

(1)

] to E[Y

(1)

] as ! # 0 can also be derived observing

that

E[X

(1)

]� ! < E[Z

(1)

] < E[Y

(1)

] < E[X

(1)

] < E[Z

(1)

] + !;

which follows from the fact that (X

i

� !) � ModGeom(�

i

; !) and (Z

i

+ !) � Geom(�

i

; !),

and from 8i 2 N;�

i

< �

i

, which imply that E[X

(1)

�!] < E[Z

(1)

] and E[Z

(1)

+!] > E[X

(1)

].

The next section contains an explanation for these inequalities.

4 Stochastic variability

Random variables with the same mean can be compared using the notion of stochastic

variability, described in Ross (1983), for which there are two equivalent de�nitions. Y is said

to be stochastically more variable than X, X �

v

Y , if

8 increasing convex function g;E[g(X)] � E[g(Y )]

or, equivalently, provided X and Y have nonnegative support, if

8a � 0;

Z

1

a

F

X

(t) dt �

Z

1

a

F

Y

(t) dt:

6



Since ! 2

T

i2N

(0; �

�1

i

], we obtain ! 2 (0; �

�1

MAX

], where �

MAX

= maxf�

i

: i 2 Ng.

It is well known that the minimum of each of these sets of random variables has the same

type of distribution as the elements of the set (Uppuluri, 1964, Margolin 1967):

X

(1)

= minfX

i

: i 2 Ng � Geom

 

1�

Y

i2N

(1� �

i

); !

!

;

Z

(1)

= minfZ

i

: i 2 Ng � ModGeom

 

1�

Y

i2N

(1 � �

i

); !

!

; and

Y

(1)

= minfY

i

: i 2 Ng � Expo

 

X

i2N

�

i

!

:

Hence, X

(1)

, Z

(1)

, and Y

(1)

have di�erent expectations:

E[X

(1)

] =

!

1�

Y

i2N

(1� �

i

)

=

!

1�

Y

i2N

(1 � �

i

!)

6=

 

X

i2N

�

i

!

�1

= E[Y

(1)

] and (1)

E[Z

(1)

] =

!

Y

i2N

(1� �

i

)

1�

Y

i2N

(1 � �

i

)

=

!

�1 +

Y

i2N

(1 + �

i

!)

6=

 

X

i2N

�

i

!

�1

= E[Y

(1)

]: (2)

Theorem 1. For n � 2, E[X

(1)

] > E[Y

(1)

] > E[Z

(1)

].

Proof. We prove that E[X

(1)

] > E[Y

(1)

] by induction on n, hence we make the index n

explicit by writing E[X

(1;n)

] and E[Y

(1;n)

].

Base step: For n = 2,

E[X

(1;2)

] =

!

1 � (1� �

1

!)(1 � �

2

!)

=

1

�

1

+ �

2

� �

1

�

2

!

>

1

�

1

+ �

2

= E[Y

(1;2)

]:

Inductive Hypothesis: Assume that, for a given n, E[X

(1;n)

] > E[Y

(1;n)

]. Then,

!

1 �

Y

i2N

(1� �

i

!)

>

 

X

i2N

�

i

!

�1

)

Y

i2N

(1� �

i

!) > 1 �

X

i2N

�

i

!

Inductive Step: Then E[X

(1;n+1)

] > E[Y

(1n+1)

], since

E[X

(1;n+1)

] =

!

1�

 

Y

i2N

(1 � �

i

!)

!

(1 � �

n+1

!)

>

!

1�

 

1 �

X

i2N

�

i

!

!

(1� �

n+1

!)

5



It is well known that both the geometric and modi�ed geometric distributions are discrete

analogs of the exponential distribution. In particular, given an exponential random variable

Y with rate � > 0,

Y � Expo(�) () 8t � 0;PrfY � tg = 1� e

��t

)E[Y ] = �

�1

;

one can determine � and � so that X and Z match Y in expectation:

E[X] =

!

�

= �

�1

= E[Y ] ) � = �! and

E[Z] =

!(1 � �)

�

= �

�1

= E[Y ] ) � =

�!

1 + �!

;

and then, using these values for � and �, the distributions of X and Z approximate that of

Y arbitrarily well as the time-step ! is reduced:

lim

!#0

PrfX � tg = lim

!#0

1 � (1 � �!)

b

t

!

c

= 1 � e

��t

= PrfY � tg and

lim

!#0

PrfZ � tg = lim

!#0

1�

 

1�

�!

1 + �!

!

b

t

!

c

+1

= 1 � e

��t

= PrfY � tg:

Note that � = �! 2 (0; 1) implies ! < �

�1

, that is, it is not possible to match the mean

of an exponential random variable Y � Expo(�) with a geometric random variable having a

time-step ! > �

�1

. In the special case ! = �

�1

, � = 1 and the distribution of X degenerates

to a constant: X � Geom(1; !) � Const(!). In the following, we allow this case and require

! 2 (0; �

�1

]. No such restriction exists in the case of the modi�ed geometric distribution,

where any ! > 0 can be used.

3 The minimum of a set of random variables

Consider now three sets of n � 2 independent random variables, fX

i

: i 2 Ng, fZ

i

: i 2 Ng,

and fY

i

: i 2 Ng with matching means. Given �

1

; : : : ; �

n

; ! > 0,

8i 2 N;X

i

� Geom(�

i

; !); E[X

i

] = �

�1

i

) �

i

= �

i

!;

8i 2 N;Z

i

� ModGeom(�

i

; !); E[Z

i

] = �

�1

i

) �

i

=

�

i

!

1 + �

i

!

; and

8i 2 N;Y

i

� Expo(�

i

); E[Y

i

] = �

�1

i

:
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8k 2 IN;PrfZ � kg =

k

X

l=0

�(1� �)

l

= 1� (1� �)

k+1

;

and that their expectations are

E[X] =

1

X

k=1

k�(1 � �)

k�1

=

1

�

and

E[Z] =

1

X

k=0

k�(1� �)

k

=

1� �

�

:

Informally, the di�erence between a geometric and a modi�ed geometric distribution

with the same parameter is the way in which they count: the geometric distribution starts

at one, the modi�ed geometric distribution starts at zero. Hence, if X � Geom(�), X �

1 � ModGeom(�). Equivalently, the geometric distribution models the trial number of

the �rst \success" in repeated independent Bernoulli trials, whereas the modi�ed geometric

distribution models the number of trials before the �rst success.

The above assumes that the \time-step" of the distribution is the same as the units

in which time is measured. This restriction is removed by considering X and Z as random

variables assuming values in fk! : k 2 IN

+

g or fk! : k 2 INg, respectively, for some time-step

! > 0:

X � Geom(�; !) () 8t 2 IR;PrfX � tg =

8

>

<

>

:

1� (1� �)

b

t

!

c

if t � 0

0 otherwise

and

Z �ModGeom(�; !) () 8t 2 IR;PrfZ � tg =

8

>

<

>

:

1� (1� �)

b

t

!

c

+1

if t � 0

0 otherwise

;

which imply

8k 2 IN

+

;PrfX = k!g = �(1 � �)

k�1

and

8k 2 IN;PrfZ = k!g = �(1� �)

k

and

E[X] =

!

�

and

E[Z] =

!(1� �)

�

:

3



1 Introduction

The purpose of this note is to compare the distributions of the minimums of two sets of

random variables, respectively with geometric and exponential distributions, having pair-

wise matching means. The geometric distribution is the discrete analog of the exponential

distribution and can be applied to a variety of performance models which can be analyzed

by analytic or simulation methods. The following notation is used:

� IN = f0; 1; 2; : : :g, the natural numbers.

� IN

+

= f1; 2; 3; : : :g, the positive natural numbers.

� N = f1; 2; : : : ; ng, the �rst n natural numbers (n is a constant which will be clear from

the context).

� F

A

(t) = PrfA � ag, the cumulative distribution function (CDF) of a random variable

A.

� F

A

(t) = 1� F

A

(t), the complement of the CDF of A (its survivor function).

2 Geometric, modi�ed geometric, and exponential dis-

tributions

Two random variables X and Z are said to have a geometric distribution with parameter

� 2 (0; 1), X � Geom(�), and a modi�ed geometric distribution with parameter � 2 (0; 1),

Z � ModGeom(�), if their probability mass functions (pmfs) are, respectively (Trivedi,

1982),

8k 2 IN

+

;PrfX = kg = �(1 � �)

k�1

and

8k 2 IN;PrfZ = kg = �(1� �)

k

;

from which it follows that their CDFs at the mass values are

8k 2 IN

+

;PrfX � kg =

k

X

l=1

�(1 � �)

l�1

= 1� (1 � �)

k

and

2
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