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Algorithms are developed for generating a sequence of event times from a
nonhomogeneous Poisson process that is influenced by the values of covariates that vary
with time. Closed form expressions for random variate generation are shown for several
baseline intensity and link functions.Tw o specific models linking the baseline process to
the general model are considered:the accelerated time model and the proportional
intensity model. In the accelerated time model, the cumulative intensity function of a

nonhomogeneous Poisson process under covariate effects isΛ(t; z(t)) = Λ0(
t

0
∫ ψ (z(u)) du),

wherez is a covariate vector,Λ0(t) is the baseline cumulative intensity function andψ (z)
is the link function. In the proportional intensity model, the cumulative intensity function
of a nonhomogeneous Poisson process under covariate effects is

Λ(t; z(t)) =
t

0
∫ ψ (z(u))λ0(u) du, whereλ0(t) is the baseline intensity function.
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1. INTRODUCTION

Event times from a nonhomogeneous Poisson process with constant covariates can

be generated by modifying existing algorithms.For the proportional intensity model, the

cumulative intensity function under covariate effects isΛ(t; z) = ψ (z)Λ0(t), where the

baseline cumulative intensity functionΛ0(t) is known, the link functionψ (z) does not

vary with time andz is a q × 1 vector of covariates. Acommon link function is the log

linear formψ (z) = eβ ′z, whereβ is a q × 1 vector of regression coefficients. Generating

ev ents from the process under covariate effects is straightforward (since the cumulative

intensity is multiplied by a constantψ (z)) when an appropriate algorithm exists for

generating from the baseline process.

The cumulative intensity function for the accelerated time model under covariate

effects isΛ(t; z) = Λ0(tψ (z)). Event times under covariate effects can be obtained by

dividing the event times that are generated for the baseline distribution by the link

function sinceψ (z) does not vary with time.

Generating event times for NHPPs with time dependent covariates is more

complicated than the constant covariate case. Section 2 contains a literature review on

variate generation for NHPPs, survival analysis with time dependent covariates and

variate generation for NHPPs with covariate effects. In Section 3, we discuss the

proportional intensity and accelerated time models with time dependent covariates.

Section 4 presents event time generation algorithms with time dependent covariates.



2. LITERATURE REVIEW

The literature for nonrepairable systems (i.e., survival analysis) and repairable

systems (i.e., point process models) is discussed separately in the two subsections that

follow. The discussion primarily concerns modeling and variate generation, and the only

point process model considered is the NHPP.

2.1 Nonrepairable systems

Several authors have included time dependent covariates in survival analysis.

Prentice and Kalbfleisch (1979) discussed estimation problems associated with the

proportional hazards, accelerated life and competing risks models with covariates. They

also consider covariates that vary with time. Dale (1985) used the proportional hazards

model in the presence of time dependent covariates to model the failure times of

motorettes under various temperatures.Kalbfleisch and McIntosh (1977) compared the

efficiency of the partial likelihood method and Weibull analysis for the Cox proportional

hazards model with time dependent covariates. Petersen(1986a, 1986b) proposed an

algorithm for estimating parameters by maximum likelihood in a large variety of

parametric survival models by using the Gauss-Newton method. The approach allowed

for a flexible treatment of time dependent covariates.

Hoffmann (1985) considered the Weibull and piecewise constant hazard functions as

baseline distributions for the proportional hazards model with time-varying covariates.

He gav e techniques for generating random variates from these models.Smith (1987)

included cost factors in a Monte Carlo evaluation of a system of components.Leemis,
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Shih and Reynertson (1990) discussed random variate generation for proportional hazards

and accelerated life models with time dependent covariates. For the accelerated life

model, a random variatet can be generated by two consecutive inv ersions

t ← Ψ − 1(H− 1
0 (− log(1 − u)))

whereΨ(t) =
t

0
∫ ψ (u)du is the cumulative link function, H0 is the baseline cumulative

hazard function andu is uniformly distributed between 0 and 1.For the proportional

hazards model, a random variate can be obtained by inverting the cumulative hazard

function

H(t; z(t)) =
t

0
∫ ψ (z(u))h0(u)du t ≥ 0.

A closed form equation for variate generation requires inversion ofH(t; z(t)).

2.2 Repairable systems

Many simulation textbook authors (e.g., Fishman (1978), Lavenberg (1983), Law

and Kelton (1991), Devroye (1986) and Ross (1990)) have suggested the use of NHPPs

for modeling systems with time-varying arrival rates. Several studies used parametric

intensity functions to simulate NHPPs.Lewis and Shedler (1976) proposed a method for

simulating a nonhomogeneous Poisson process with log linear intensity function,

λ(t) = exp(α0 + α1t). Lewis and Shedler (1979a) proposed a method for simulating a

nonhomogeneous Poisson process with intensity function which is a degree-two

exponential polynomial, whereλ(t) = exp(α0 + α1 t + α2 t2). Lee,Wilson and Crawford

(1991) used an exponential-trigonometric intensity function to model and simulate a
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cyclic storm-arrival process.

Nonparametric intensity functions are also popular for simulating NHPPs.

Kaminsky and Rumpf (1977) discussed three approximate methods that are used to

generate arrivals for a nonhomogeneous Poisson process and compared them to an exact

method. Lewis and Shedler (1979b) proposed a general method for simulating a

nonhomogeneous Poisson process by thinning. Thinning involves determining a

majorizing intensity functionλ * (t) ≥ λ(t). Thealgorithm yields a series of event times

from λ(t) that are a "thinned" series of event times fromλ * (t). Leemis(1991) proposed a

piecewise linear estimator for the cumulative intensity function of an NHPP from one or

more realizations.Inversion was used to generate event times for the NHPP. Other

articles on the variate generation of NHPPs include Fishman and Kao (1977), Ogata

(1981) and Klein and Roberts (1984).

Recently, sev eral authors have included covariates in NHPP models (e.g., Prentice,

Williams and Peterson (1981), Anderson and Gill (1982), Karr (1986) and Lawless

(1987)). Two models, the proportional intensity and accelerated time models, which are

analogous to proportional hazards and accelerated life models used in survival analysis

are used to incorporate the covariate effects in NHPP models. Allison (1984) discussed

ev ent history analysis with time dependent covariates with applications in the social

sciences. Leemis(1987) used accelerated life and proportional hazards models to

incorporate the covariate effects and gav e variate generation algorithms in both the

renewal and nonhomogeneous Poisson process cases.
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To summarize the variate generation techniques, Table 1 shows a taxonomy of

variate generation for constant covariates. Itincludes the formulas for generating event

times with constant covariates given in Leemis (1987).

Renewal NHPP

Accelerated life
t ← a +

H−1
0 (− log(u))

ψ (z)
t ←

Λ−1
0 (Λ0(aψ (z)) − log(u))

ψ (z)

Proportional hazards
t ← a + H−1

0 (
− log(u)

ψ (z)
) t ← Λ−1

0 (Λ0(a) −
log(u)

ψ (z)
)

Table 1. Formulas for generating event times with constant covariates.

3. PROPORTIONAL INTENSITY AND ACCELERATED TIME MODELS

The section defines and illustrates the proportional intensity and accelerated time

models in the following two subsections.

3.1 Proportional Intensity Model

The definition of the proportional intensity model with constant covariates,

λ(t; z) = ψ (z)λ0(t), can be generalized for the model associated with time dependent

covariates. With time dependent covariates, the link function is denoted byψ (z(t)) which

is a multiplier of the baseline intensity function. The proportional intensity model with

time dependent covariates can be defined by

λ(t; z(t)) = ψ (z(t))λ0(t)

whereλ0(t) is a baseline intensity function.
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3.2 Accelerated Time Model

The essence of the accelerated time model in the case of covariates that do not vary

with time is that "time" is contracted or expanded relative to that atz = 0 (baseline case).

The definition of the accelerated life model given by Cox and Oakes (1984) can also be

generalized to the accelerated time model with time dependent covariates

dtz / dt0 = 1 / ψ (z(tz))

where timetz is time for a system underz(t) and the corresponding "time"t0 is for the

system underz(t) = 0. If we integrate both sides of the expressiondt0 = ψ (z(tz)) dtz from

zero to the corresponding event times, we have

t0

0
∫ du0 =

tz

0
∫ ψ (z(uz)) duz

which yields

t0 =
tz

0
∫ ψ (z(uz)) duz

wheret0 is the event time under baseline conditions corresponding totz, the event time

under covariate effects. Noticethat in survival analysis, this implies thatH0(t
0) = H(tz),

where H is the cumulative hazard function. This means that the cumulative hazard

function at t0 of a system under baseline conditions is equal to the cumulative hazard

function at tz of a system under treatment conditionsz. In NHPP models, this is

generalized toΛ0(t
0
i ) = Λ(tz

i ), i = 1, 2, .. .  . Here t0
i denotes theith ev ent time under

baseline conditions andtz
i denotes the correspondingith ev ent time under covariate

effects. Adefinition of accelerated time models given by Lawless (1987, page 815) for

the constant covariate case isΛ(tz) = Λ0(ψ (z)tz). This definition is a special case of the
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above definition since

Λ(tz
i ) = Λ0(t

0
i ) = Λ0(

tz
i

0
∫ ψ (z(uz))duz) = Λ0(ψ (z)tz

i )

for i = 1, 2, .. .  . The interpretation is that the expected cumulative number of events attz

under covariate effects is equal to the expected cumulative number of events att0 under

the baseline conditions.With this relationship, we can determine the equivalent event

time under covariate effects by knowing the event time under baseline conditions when

the link function and the time dependent covariates are known. Theintensity function

under covariate effects can also be obtained by using this expression and a given baseline

intensity. Three examples of step, linear and power forms of a single time dependent

covariate are used to illustrate the relationship betweent z and t0. The log-linear link

functionψ (z) = eβ z is assumed, whereβ is the regression coefficient associated with the

single covariate z. For simplicity, we drop the subscript "i" and uset0 and t z to denote

the corresponding event times under baseline and covariate conditions respectively.

Example 1 (step covariate function)

First, we consider the binary step covariate case and indicate a biomedical

application. Thena general step covariate function is considered with covariate

valuesc1 andc2.

(a) Let the covariate be a step function with a jump att z = w

z(t z) =




0

1

0 ≤ t z ≤ w

t z > w.

This type of time dependent covariate might appear in a biomedical application

where one level of covariate (e.g., no drug is taken by the patient) is applied up to
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time w and another is applied after timew (e.g., drug is taken). Theev ent time t0

under baseline conditions andt z under treatment conditions might denote the

times when a patient’s blood pressure falls below a particular threshold.The

correspondingt0 is obtained by usingt0 =
t z

0
∫ ψ (z(uz)) duz,

t0 =




t z

w + eβ (t z − w)

0 ≤ t z ≤ w

t z > w.

The "baseline time",t0, is identical to time under the influence of the covariate,t z,

up to timew. After timew, three special cases exist depending on the value ofβ ,

the regression coefficient. If β = 0, t0 = t z for all values oft z, which means that

the change in the value of the covariate at timew has no influence on the event

times. If β > 0, then t0 is greater thant z for t z > w, indicating that the treatment

accelerates the event times. Figure 1a shows that the link functione0.5z(t) is also a

step function. The relationship betweent0 and t z in this case is shown in Figure

1b for w = 2. 5andβ = 0. 5. Note that the slope of the function plotted in Figure

1b changes from 1 betweent z = 0 to t z = 2. 5 to e0.5 = 1. 6487after t z = 2. 5. If

β < 0, then t0 is less thant z for t z > w, indicating that the treatment decelerates

the event times.

(b) Let the covariate be a step function with a jump att z = w and

z(t z) =




c1

c2

0 ≤ t z ≤ w

t z > w.

This type of time dependent covariate might appear in an application where one

level of covariate (e.g., the turning speed for a drill bit is 2400 RPM) is applied up
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to time w and another is applied after timew (e.g., the turning speed increases

from 2400 RPM to 3600 RPM at timew). Thecorrespondingt0 is obtained by

usingt0 =
t z

0
∫ ψ (z(uz)) duz.

t0 =




eβ c1t z

weβ c1 + eβ c2(t z − w)

0 ≤ t z ≤ w

t z > w.

The "baseline time",t0, is proportional to time under the influence of the

covariate, t z, up to time w, and the multiplicative factor iseβ c1. After timew they

are still proportional, however, the multiplicative factor becomeseβ c2.

Example 2 (piecewise linear covariate function)

Let the covariate be a constant (equal to one) fort z ≤ w. For t z ≥ w, the covariate

is a linear function.

z(t z) =




1

t z

0 ≤ t z ≤ w

t z > w.

The correspondingt0 is obtained by usingt0 =
t z

0
∫ ψ (z(uz)) duz,

t0 =







t zeβ

weβ +
1

β
(eβ t z

− eβ w)

0 ≤ t z ≤ w

t z > w.

Example 3 (power covariate function)

Let the covariate be a power function, i.e.,z(t z) = (t z)m for all t z ≥ 0. Thegeneral

expression fort0 is
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t0 =
t z

0
∫ ψ (z(uz))duz =

t z

0
∫ eβ (uz)m

duz t z ≥ 0.

Whenm = 1, the relationship can be expressed in closed form

t0 =
1

β
(eβ (t z) − 1).

4. GENERATION OF EVENT TIMES

To determine the appropriate method for generating event times from an NHPP with

time dependent covariates, assume that the last event in an NHPP has occurred at timea.

The random variableT denotes the next event time. The cumulative intensity function

for the time of the next event given that the last event has occurred at timea is

ΛT |T > a(t; z(t)) = Λ(t; z(t)) − Λ(a; z(t)).

This expression allows a modeler to calculate the expected number of events after timea.

A result that is useful in variate generation is given by Cinlar (1975).

Let N (t) be a  counting process and letΛ(t) be a nondecreasing function of time,t.

Then T1, T2, . . .  are the event times in a nonhomogeneous Poisson process with

E(N (t)) = Λ(t) if and only if Λ(T1), Λ(T2), . . . are the event times in a

homogeneous Poisson process with rate 1.

According to this result,ΛT |T > a(t; z(t)) has a unit exponential distribution, whereT is the

next event time andT − a is the time to the next event. If we can find expressions for

Λ(t; z(t)) for the proportional intensity and accelerated time models, the next event time

can be generated by using

t ← Λ− 1(Λ(a; z(t)) − log (1− u))

whereu is a random number uniformly distributed on [0,1). WhenΛ− 1(t) and Λ(t) are
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closed form, the next event time can be generated by a closed form expression. Aseries

of event times of an NHPP can be generated by using the expression repeatedly. Note

that the basic form of variate generation for lifetime or the first event time of an NHPP,

t ← H− 1(− log (1− u)), is a special case of this expression sinceΛ(a) = Λ(0)= 0 and the

cumulative hazard functionH(t) is equivalent to the cumulative intensity functionΛ(t).

For the accelerated time model, the cumulative intensity function is

Λ(t; z(t)) = Λ0(Ψ(t)) =
Ψ(t)

0
∫ λ0(u) du

whereΨ(t) =
t

0
∫ ψ (z(u)) du andλ0 is the baseline intensity function.For the proportional

intensity model, the cumulative intensity function is

Λ(t; z(t)) =
t

0
∫ ψ (z(u)) λ0(u)du

whereψ is the link function.

Table 2 presents variate generation algorithms for the time dependent covariate

cases. Thefirst column contains the algorithms given in Leemis, Shih and Reynertson

(1990) for the accelerated time (AT) and proportional intensity (PI) models when

generation of the first event time only or a renewal process is of interest. The second

column contains the corresponding variate generation algorithms for NHPPs.

In the proportional intensity and accelerated time models, a link function is a

multiplication factor of the intensity and time. It is interpreted as the proportion of

contraction or expansion of the intensity and time for a system under covariate effects.
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Renewal NHPP

AT t ← a + Ψ− 1(H− 1
0 (− log (1− u))) t ← Λ− 1(Λ(a; z(t)) − log (1− u))

Ψ(t) =
t

0
∫ ψ (u)du Λ(t; z(t)) =

Ψ(t)

0
∫ λ0(u)du

PI t ← a + H− 1(− log (1− u)) t ← Λ− 1(Λ(a; z(t)) − log (1− u))

H(t; z(t)) =
t

0
∫ ψ (z(u))h0(u)du Λ(t; z(t)) =

t

0
∫ ψ (z(u))λ0(u)du

Table 2. Formulas for generating event times with time dependent covariates.

There are two approaches to study variate generation with time dependent covariates.

The first approach is to assume that the link function itself is a function of time,

ψ (z(t)) = ψ (t). The second approach is to assume a time dependent covariate function

z(t), then construct the link function based on the commonly used log linear formeβ ′z(t).

The advantage of using the link function as a function of time is that the inversion of

cumulative intensity function is often more mathematically tractable.On the other hand,

the advantage of defining the covariates as a function of time is that the physical

measurement of the covariates can be directly applied to the models. The first approach

is used in this section.

Tw o types of time dependent link functions are used to illustrate the event times

generation algorithms for a single time dependent covariate. Four types of baseline

cumulative intensity functions are assumed associated with the covariate effects in the

models. Notethat we usebaseline distribution for the condition withz(t) = 0 in the
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survival models andbaseline process for the condition withz(t) = 0 in the NHPP models.

Table 3 shows the types of the link functionsψ (t), the corresponding covariate functions

z(t) and the researchers that used them.

link functionψ (t) covariate z(t) used by

step step Dale (1985), Peterson (1986a)

exponential linear Prentice and Kalbfleisch (1979), Peterson (1986a)

power logarithm Prenticeand Kalbfleisch (1979), Kalbfleisch and McIntosh (1977)

Table 3. Relationships between the time dependent link function

and the covariate function.

In the following discussion, a single time dependent covariate is considered.When

the form of the link function is known, the corresponding covariate function is obtained

byψ (t) = eβ z(t). For example, when a step link function is defined by

ψ (z(t)) =




c1

c2

0 ≤ t < b

t ≥ b

where b, c1 and c2 are constants.If β is the regression coefficient, then the

corresponding covariate function is

z(t) =




log c1 / β
log c2 / β

0 ≤ t < b

t ≥ b

which is also a step function. When the link function has exponential form,ψ (t) = eβ t ,

the corresponding covariate is a linear function,z(t) = t, for t ≥ 0. When the link
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function is a power function,ψ (t) = t k , the corresponding covariate is a logarithmic

function,z(t) =
k

β
log t, for t ≥ 0.

In the next two subsections, step and exponential link functions are used with four

baseline processes to illustrate the algorithms for the accelerated time and proportional

intensity models. The baseline processes are the homogeneous Poisson process, the

power law process and the processes with log logistic and exponential power intensity

forms. Ahomogeneous Poisson process is defined by the cumulative intensity function

Λ0(t) = λ t t ≥ 0

where λ is the rate of occurrence of failures. For the power law process, the

parameterization of the cumulative intensity function is

Λ0(t) = ν tδ t ≥ 0

whereν is a scale parameter andδ is a shape parameter. For the log logistic process, the

cumulative intensity and the intensity functions are

Λ0(t) = log(1 + (ρ t)κ ) λ0(t) =
ρκ (ρ t)κ − 1

1 + (ρ t)κ
t ≥ 0

where ρ is a scale parameter andκ is a shape parameter. For the exponential power

process, the cumulative intensity and the intensity functions are

Λ0(t) = e(t / τ )γ
− 1 λ0(t) =

γ
τ

(
t

τ
)γ − 1e(t / τ )γ

t ≥ 0

whereτ is a scale parameter andγ is a shape parameter. All parameters in these four

baseline processes are positive.
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4.1 Accelerated Time Model

For the accelerated time model, the cumulative intensity function with covariates is

Λ(t; z(t)) = Λ0(Ψ(t)) =
Ψ(t)

0
∫ λ0(u) du

whereΨ(t) =
t

0
∫ ψ (z(u)) du, ψ is the link function andλ0 is the baseline intensity function.

The subsequent event time can be generated by

t ← Λ− 1(Λ(a; z(t)) − log (1 − u))

wherea is the last event time andu is a random number in [0,1). Two examples show

the closed form expressions for event time generation with the step and exponential link

functions.

Example 4 (homogeneous Poisson baseline process)

(a) Let the link function be a step function

ψ (z(t)) =




c1

c2

0 ≤ t < b

t ≥ b.

The cumulative link function is

Ψ(t) =




c1t

bc1 + c2(t − b)

0 ≤ t < b

t ≥ b.

The cumulative intensity function with covariate z(t) is

Λ(t; z(t)) =
Ψ(t)

0
∫ λ du =





λc1t

λ(c1b + c2(t − b))

0 ≤ t < b

t ≥ b.

The time dependency associated with the covariate is effectively absorbed into the

cumulative intensity function. The inverse of the cumulative intensity function is
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Λ− 1(y) =







y

λc1
y

λc2
−

c1b

c2
+ b

0 ≤ y < λc1b

y ≥ λc1b.

The general expression for the generation of the next event time,t, is closed form

for a < b

t ←







a −
1

λc1
log (1− u)

c1

c2
(a − b) −

log(1− u)

λc2
+ b

u < 1− e(λc1a − b)

u ≥ 1− e(λc1a − b).

For a ≥ b, the variate for the next event time reduces to

t ← a −
log(1− u)

λc2
.

Figure 2 shows how the inversion of cumulative intensity technique is used to

generate the subsequent event time t for a given previous event time a. For

illustration, we assume the intensityλ(t) = 0. 1,c1 = 1, c2 = 2, a = 4 and b = 5.

(b) Let the link function be an exponential function, i.e.,ψ (t) = eβ t . The

cumulative link function is

Ψ(t) =
1

β
(eβ t − 1) t ≥ 0.

The cumulative intensity function is

Λ(t; z(t)) =
λ
β

(eβ t − 1) t ≥ 0.

The inverse of the cumulative intensity function is

Λ− 1(y) =
1

β
log (1+

yβ
λ

) y ≥ 0.

The event time can be generated by the closed form expression

- 15 -



t ←
1

β
log (eβ a −

β
λ

log (1 − u)).

Example 5 (power law baseline process)

(a) Let the link function be a step function

ψ (z(t)) =




c1

c2

0 ≤ t < b

t ≥ b.

As before, the cumulative link function is

Ψ(t) =




c1t

bc1 + c2(t − b)

0 ≤ t < b

t ≥ b.

The cumulative intensity function with covariate z(t) is

Λ(t; z(t)) =




ν cδ
1 tδ

ν (c1b + c2(t − b))δ
0 ≤ t < b

t ≥ b.

The inverse of the cumulative intensity function is

Λ− 1(y) =







(
y

ν cδ
1

)
1

δ

1

c2
(

y

ν
)

1

δ −
c1

c2
b + b

y < ν cδ
1bδ

y ≥ ν cδ
1bδ .

The general expression for variate generation is closed form fora < b

t ←







(aδ −
1

ν cδ
1

log(1− u))1 /δ

1

c2
((cδ

1aδ −
1

ν
log(1− u))1 /δ − c1b) + b

ν cδ
1aδ − log(1− u) <ν (c1b)δ

ν cδ
1aδ − log(1− u) ≥ν (c1b)δ .

For a ≥ b, the expression for the next event time reduces to

t ←
1

c2
(((c1b + c2(a − b))δ −

1

ν
log(1− u))1 /δ − c1b) + b.

(b) Let the link function be an exponential function, i.e.,ψ (t) = eβ t . The

cumulative link function is

- 16 -



Ψ(t) =
1

β
(eβ t − 1) t ≥ 0.

The cumulative intensity function is

Λ(t; z(t)) = ν β − δ (eβ t − 1)δ t ≥ 0.

The inverse of the cumulative intensity function is

Λ− 1(y) =
1

β
log (1+ β (

y

ν
)

1

δ ) y ≥ 0.

The next event time can be generated by the closed form expression

t ←
1

β
log (((eβ a − 1)δ −

β δ

ν
log (1 − u))1 /δ + 1).

4.2 Proportional Intensity Model

For the proportional intensity model, the cumulative intensity function with

covariates is

Λ(t; z(t)) =
t

0
∫ ψ (z(u)) λ0(u)du

whereψ is the link function andλ0 is the baseline intensity function. The subsequent

ev ent time for a single time dependent covariate,z(t), can be generated by

t ← Λ− 1(Λ(a; z(t)) − log (1 − u))

given that the last event has occurred at timea. Three examples are used to show closed

form expressions for event time generation with step and exponential link functions.

Example 6 (homogeneous Poisson baseline process)

(a) Let the link function be a step function
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ψ (z(t)) =




c1

c2

0 ≤ t < b

t ≥ b.

The cumulative intensity function with covariate is

Λ(t; z(t)) =
t

0
∫ ψ (z(u))λ0(u)du =





λc1t

λ(c1b + c2(t − b))

0 ≤ t < b

t ≥ b.

The inverse of the cumulative intensity function is

Λ− 1(y) =







y

λc1
y − c1λb

c2λ
+ b

0 ≤ y < λc1b

y ≥ λc1b.

Not surprisingly, the expression for variate generation is the same as that in

accelerated time models (Example 4a). This is because the accelerated time and

proportional intensity models have identical intensity functions under covariate

effects when the baseline process is a homogeneous Poisson process.

(b) Let the link function be an exponential function, i.e.,ψ (t) = eβ t . The

cumulative intensity function is

Λ(t; z(t)) =
λ
β

(eβ t − 1) t ≥ 0.

The event time can be generated by the same expression in Example 4b for

accelerated time models.

Example 7 (log logistic baseline process)

Let the link function be a step function

ψ (z(t)) =




c1

c2

0 ≤ t < b

t ≥ b.

The cumulative intensity function with covariate z(t) is
t

0
∫ ψ (z(u))

ρκ κ uκ − 1

1+ (ρu)κ
du,
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which yields

Λ(t; z(t)) =




c1 log(1+ (ρ t)κ )

c2 log(1+ (ρ t)κ ) + (c1 − c2) log(1+ (ρb)κ )

0 ≤ t < b

t ≥ b.

The inverse of the cumulative intensity function is

Λ− 1(y) =







1

ρ
(ey / c1 − 1)1 /κ

1

ρ
(e(y − (c1 − c2) (log (1+ (ρb)κ ))) / c2 − 1)

1

κ

y < c1 log (1+ (ρb)κ )

y ≥ c1 log (1+ (ρb)κ ).

The general expression for variate generation is closed form whena < b

t ←











1

ρ
(

1+ (ρa)κ

(1− u)1 / c1
− 1)1 /κ

c1 log(1+ (ρa)κ ) − log(1− u) < c1 log(1+ (ρb)κ )
1

ρ
(

(1+ (ρa)κ )c1 / c2

(1− u)1 / c2(1+ (ρb)κ )(c1 − c2) / c2
− 1)1 /κ

c1 log(1+ (ρa)κ ) − log(1− u) ≥ c1 log(1+ (ρb)κ ).

Whena ≥ b, the expression for the next event time is

t ←
1

ρ
(

1+ (ρa)κ

(1− u)1 / c2
− 1)1 /κ .

When the step function has a power or exponential form, the variate generation

expression is not closed form.

Example 8 (exponential power baseline process)

Let the link function be a step function

ψ (z(t)) =




c1

c2

0 ≤ t < b

t ≥ b.

The cumulative intensity function with covariate is
t

0
∫ ψ (z(u))

γ
τ

(
u

τ
)γ − 1 e(u / τ )γ

du,

which yields
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Λ(t; z(t)) =







c1(e
(

t

τ
)γ

− 1)

c2 e
(

t

τ
)γ

+ (c1 − c2) e
(
b

τ
)γ

− c1

0 ≤ t < b

t ≥ b.
The inverse of the cumulative intensity function is

Λ− 1(y) =







τ (log (
y

c1
+ 1))1 /γ

τ (log (
1

c2
(y + c1 − (c1 − c2)e

(b / τ )γ
)))1 /γ

y < c1(e
(b / τ )γ

− 1)

y ≥ c1(e
(b / τ )γ

− 1).

The general expression for variate generation is closed form fora < b

t ←











τ (log(e(a / τ )γ
−

1

c1
log(1− u)))1 /γ

c1(e
(a / τ )γ

− 1) − log(1− u) < c1(e
(b / τ )γ

− 1)

τ (log(
1

c2
(c1e(a / τ )γ

− log(1− u) − (c1 − c2)e
(
b

τ
)γ

)))1 /γ

c1(e
(a / τ )γ

− 1) − log(1− u) ≥ c1(e
(b / τ )γ

− 1).

For a ≥ b, the expression for the next event time is

t ← τ (log(e
(
a

τ
)γ

−
1

c2
log(1− u)))1 /γ .

When the step function has a power or exponential form, the expression is not

closed form.

Tw o tables are presented to summarize the results in Section 4.Table 4 indicates

whether closed form expressions are available for lifetime (first event time) generation

when different baseline distributions and covariate functions are assumed.Table 5 shows

whether closed form expressions are available for event times generation when different

baseline processes and covariate functions are assumed.
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AL PH

Baseline: link: step exponential power step exponential power

Exponential C C C C C  C

Weibull C C C C N  C

Log logistic C C  C C N  N

Exponential power C C C C N  N

Table 4. Summary of lifetime variate generation with time dependent covariates.

AT PI

Baseline: link: step exponential power step exponential power

HPP C(4a) C(4b) C C (6a) C (6b) C

Power C(5a) C(5b) C C N N

Log logistic C C C C (7) N (9) N

Exponential power C C C C (8) N N

Table 5. Summary of event times variate generation with time dependent covariates.

In each box, we use "C" to denote that a closed form expression for the event time

generation is available. The number in the parenthesis indicates the example that

includes the derivation of the expression. We use "N" (not closed form) when a closed

form expression is not available.

When there is no closed form expression using inversion of the cumulative intensity,

more complicated variate generation techniques, such as thinning, can be considered for

generating event times for the models. Example 9 illustrates the use of thinning,

assuming the log logistic baseline process and the exponential link function.
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Example 9 (baseline process with log logistic intensity)

There is no closed form expression for variate generation by inversion when the

baseline process is log logistic (with shape parameterκ ≥ 1) and the link function

is exponential. Thebaseline cumulative intensity and intensity functions are

Λ0(t) = log (1 + (ρ t)κ ) λ0(t) =
ρκ κ tκ − 1

1 + (ρ t)κ
.

The link functionψ (z(t)) is

ψ (z(t)) = eβ t .

where β is the regression coefficient. The intensity function under the

proportional intensity assumption is

λ(t; z(t)) =
ρκ κ tκ − 1 eβ t

1 + (ρ t)κ
.

In this example, thinning can be used since the baseline intensity function has an

upside down bathtub shape whenκ ≥ 1 and the intensity function under covariate

effectsλ(t; z(t)) remains finite when the regression coefficient is negative. When

thinning is used, a majorizing function needs to be defined. One simple, albeit

computationally inefficient, choice for the majorizing function is the maximum

value of the intensity functionλ(t; z(t)). This typically requires much more CPU

time since the probability of a rejection is fairly high for most time values.

To generate event times for the baseline process, the majorizing functionλ *
0 is

required. Thepoint that maximizes the baseline intensity can be obtained by

equating the first derivative of λ0(t) with respect tot to zero. The maximum

baseline intensity is att*
0 =

(κ − 1)1 /κ

ρ
, where superscript ’*’ denotes the
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maximum point. The maximum of baseline intensityλ0(t
*
0) = λ *

0 = ρ(κ − 1)1− 1 /κ

is therefore used as a majorizing (constant) function to generate event time for the

baseline process.For example, whenκ = 2 and ρ = 0. 5, the majorizing function

is λ *
0 = 0. 5andt*

0 = 2. 0.

For the process under covariate effects, the maximum value ofλ(t; z(t)) is

obtained by equating the first derivative of λ(t; z(t)) with respect tot to zero.

β ρκ tκ + 1 − ρκ tκ + β t +κ − 1 = 0.

In general, there is not a closed form solution fort*
c which solves the equation.

One specific value for the shape parameter, κ = 2, is used here to illustrate the

algorithm. Inthis case, the equation reduces to the cubic equation

β ρ2 t3 − ρ2 t2 + β t + 1 = 0.

To illustrate, we further assume thatρ = 0. 5 and β = − 0. 1. The maximum of

λ(t; z(t)) is obtained by solving a nonlinear equation with the bisection method.

The solution ist*
c = 1. 6868, where subscript ’c’ denotes the condition under

covariate effects. Thecorresponding maximum value λ(t*
c ; z(t*

c)) = λ *
c = 0. 4164

can be used as the majorizing function to generate event times under covariate

effects. Figure3 shows the two intensity functions and their majorizing functions,

λ *
0 andλ *

c, whereκ = 2, ρ = 0. 5andβ = − 0. 1are assumed.

To illustrate the variate generation algorithm for the process under covariate

effects using thinning, the next event time tnext is generated given that the last

ev ent has occurred at timea.

1. [Set the current event time.] t ← a
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2. [Generate random numbers.]u1, u2 ∼ IID U(0, 1)

3. [Determine the next event time.] t ← t + (
− 1

λ *
c

log (1 − u1))

4. [Thinning.] if u2 > λ(t; z(t)) / λ *
c go to 2

5. [Set the next event time.] tnext ← t

Figure 4 depicts the event time generation by thinning, wherea denotes the given

last event time, tnext is the next event time andt ’s are the rejected event times by

thinning in step 4.To generate the event time for baseline process, the majorizing

function is replaced byλ *
0 andλ(t; z(t)) is replaced byλ0(t) in steps 3 and 4.
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