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Algorithms are decloped for generating a sequence oferg times from a
nonhomogeneous Poisson process that is influenced by the valuesriEtes that ary
with time. Closed form expressions for random variate generation are showre®l se
baseline intensity and link function§wo specific models linking the baseline process to
the general model are consideretiie accelerated time model and the proportional
intensity model. In the accelerated time model, the cumelatitensity function of a

t

nonhomogeneous Poisson process underiete effects ig\(t; z(t)) = Ao(!w(z(u)) du),

wherez is a cwvariate vector,/\y(t) is the baseline cumulat intensity function ang(z)
is the link function. In the proportional intensity model, the cumeeaititensity function

of a nonhomogeneous Poisson process undervariate effects is
t

A(t; z(t)) = ‘!w(z(u))/lo(u) du, whereAy(t) is the baseline intensity function.

KEY WORDS: Cwariates; Nonhomogeneous Poisson processes; Simulatargte/
generation.



1. INTRODUCTION

Event times from a nonhomogeneous Poisson process with constanates can
be generated by modifyingisting algorithms.For the proportional intensity model, the
cumulatve intensity function under eariate effects isA(t; z) = ¢ (2)\q(t), where the
baseline cumulate intensity function/\y(t) is known, the link functiony (z) does not
vary with time andz is aqx1 vector of ceariates. Acommon link function is the log
linear formy (2) = €%, where B is aqx 1 vector of regression cdafients. Generating
events from the process undervedate effects is straightforavd (since the cumulag
intensity is multiplied by a constagt(z)) when an appropriate algorithm exists for

generating from the baseline process.

The cumulatre intensity function for the accelerated time model undear@ie
effects isSA(t; z2) = N\y(tw(2)). Event times under c@riate effects can be obtained by
dividing the e@ent times that are generated for the baseline digioib by the link

function sincey(z) does not vary with time.

Generating eent times for NHPPs with time dependentvatates is more
complicated than the constantvenate case. Section 2 contains a literatusreere on
variate generation for NHPPs, surdi analysis with time dependent \@iates and
variate generation for NHPPs with \apiate efects. In Section 3, we discuss the
proportional intensity and accelerated time models with time dependeatates.

Section 4 presentvent time generation algorithms with time dependentates.



2. LITERATURE REVIEW

The literature for nonrepairable systems (i.e., saflvanalysis) and repairable
systems (i.e., point process models) is discussed separately inotlsebisections that
follow. The discussion primarily concerns modeling and variate generation, and the only

point process model considered is the NHPP.

2.1 Nonrepairable systems

Several authors hee included time dependent \@wiates in surwa analysis.
Prentice and Kalbfleisch (1979) discussed estimation problems associated with the
proportional hazards, accelerated life and competing risks models wéhates. Thg
also consider oc@riates that vary with time. Dale (1985) used the proportional hazards
model in the presence of time dependentacates to model theaflure times of
motorettes under various temperatur&slbfleisch and Mcintosh (1977) compared the
efficiengy of the partial likelihood method andatull analysis for the Cox proportional
hazards model with time dependenvattes. Peterse(l986a, 1986b) proposed an
algorithm for estimating parameters by maximum likelihood in a large variety of
parametric survial models by using the Gauss-Newton method. The approacheallo

for a flexible treatment of time dependentaates.

Hoffmann (1985) considered theeWiull and piecwise constant hazard functions as
baseline distributions for the proportional hazards model with tenging coariates.
He qavetechniques for generating random variates from these mo8etsth (1987)

included cost factors in a Monte Carlea@ation of a system of componentseemis,



Shih and Reynertson (1990) discussed randanmate generation for proportional hazards
and accelerated life models with time dependentrcates. or the accelerated life

model, a random variatecan be generated by dveonsecutre inversions

t « W H Y (-log(1- u)))
t
where W¥(t) :!’w(u)du is the cumulatie link function, Hy is the baseline cumulag
hazard function and is uniformly distrituted between 0 and IFor the proportional

hazards model, a random variate can be obtained JVayting the cumulatie hazard

function

H(t; z(t)) = ‘!’w(z(u))ho(u)du t > 0.

A closed form equation for variate generation requireergion of H (t; z(t)).

2.2 Repairable systems

Many simulation textbook authors (e.g., Fishman (1978)yvehbeg (1983), Lav
and Kelton (1991), Deoye (1986) and Ross (1990))veasiggested the use of NHPPs
for modeling systems with time-varying amdli rates. Seeral studies used parametric
intensity functions to simulate NHPPEewis and Shedler (1976) proposed a method for
simulating a nonhomogeneous Poisson process with log linear intensity function,
A(t) =exp(ay +a;,t). Lewis and Shedler (1979a) proposed a method for simulating a
nonhomogeneous Poisson process with intensity function which isgeeedsvo
exponential polynomial, whera(t) = exp(ay + a; t + a,t?). Lee,Wilson and Craford

(1991) used an exponential-trigonometric intensity function to model and simulate a



cyclic storm-arrval process.

Nonparametric intensity functions are also popular for simulating NHPPs.
Kaminsky and Rumpf (1977) discussed three approximate methods that are used to
generate avels for a nonhomogeneous Poisson process and compared thenxaxtan e
method. L&is and Shedler (1979b) proposed a general method for simulating a
nonhomogeneous Poisson process by thinning. Thinninglves determining a
majorizing intensity functiom” (t) = A(t). Thealgorithm yields a series ofent times
from A(t) that are a "thinned" series ofeat times fromA™ (t). Leemis(1991) proposed a
piecavise linear estimator for the cumulatiintensity function of an NHPP from one or
more realizations.Inversion was used to generateest times for the NHPP Other
articles on the variate generation of NHPPs include Fishman and Kao (19&f3 Og

(1981) and Klein and Roberts (1984).

Recently sevaal authors hee included ceariates in NHPP models (e.g., Prentice,
Williams and Peterson (1981), Anderson and Gill (1982), Karr (1986) antkdsa
(1987)). Wwo models, the proportional intensity and accelerated time models, which are
analogous to proportional hazards and accelerated life models used val sanalysis
are used to incorporate thevenate effects in NHPP models. Allison (1984) discussed
event history analysis with time dependentvaates with applications in the social
sciences. Leemig1987) used accelerated life and proportional hazards models to
incorporate the o@riate effects and aye variate generation algorithms in both the

renaval and nonhomogeneous Poisson process cases.



To ummarize the variate generation techniques, Table 1 shows a taxonomy of
variate generation for constantwaniates. Itincludes the formulas for generatingeet

times with constant e@riates gven in Leemis (1987).

Renaval NHPP
Accelerated lf Hg'(~log(u) A (o (2) - log(u)
tcat+ ——= t ~
¥ (2) ¥ (2)
Proportional hazards t a4+ H_l(_ |Og(u)) t o AsH(Ao(a) - IOg(u))
- °Y @ = Dol T )

Table 1. Formulasfor generating event timeswith constant covariates.

3. PROPORTIONAL INTENSITY AND ACCELERATED TIME MODELS

The section defines and illustrates the proportional intensity and accelerated time

models in the following te subsections.

3.1 Proportional Intensity M odel

The definition of the proportional intensity model with constanvacates,
A(t; 2) =@ (2)Ao(t), can be generalized for the model associated with time dependent
covariates. Wth time dependent eariates, the link function is denoted pyz(t)) which
is a multiplier of the baseline intensity function. The proportional intensity model with
time dependent s@ariates can be defined by

A(t; z(1)) = ¢ (z(1)Ao(t)

whereAy(t) is a kaseline intensity function.



3.2 Accelerated Time M odé€

The essence of the accelerated time model in the casganftes that do notary
with time is that "time" is contracted or expanded re¢ai that atz=0 (baseline case).
The definition of the accelerated life modelegi by Cox and Oakes (1984) can also be
generalized to the accelerated time model with time dependeniates

dt? / dt® = 1/ @ (z(t?)
where timet? is time for a system undeft) and the corresponding "time® is for the
system undez(t) =0. If we integrate both sides of theqgressiondt® = ¢ (z(t?)) dt? from

zero to the correspondingeat times, we hee

tZ

tO
‘!’ du® = !’w(z(uz)) du®
which yields

tZ

©= [ s

wheret® is the @ent time under baseline conditions correspondintf tthe eent time
under coariate efects. Noticethat in surwal analysis, this implies thato(t°) = H(t?),
where H is the cumulatie hazard function. This means that the cumu&athazard
function att® of a system under baseline conditions is equal to the cuweulatzard
function att®* of a system under treatment conditions In NHPP models, this is
generalized to\,(t%) = A(t?), i =1, 2, ... . Heret? denotes thé™ event time under
baseline conditions antf denotes the correspondinli event time under ceariate
effects. Adefinition of accelerated time modelvai by Lawless (1987, page 815) for

the constant a@riate case i9\(t?) =Ay(¢w(2)t*). This definition is a special case of the



above cefinition since

tf

A(E) =No(t) = /\o(l @ (z(u?))du”) = No(w (D)
fori =1, 2, ... . The interpretation is that the expected cumugatiimber of gents att”
under coariate effects is equal to the expected cumuatumber of gents att® under
the baseline conditionswith this relationship, we can determine the egant event
time under cwariate effects by knowing thevent time under baseline conditions when
the link function and the time dependenvawtes are knon. Theintensity function
under coariate effects can also be obtained by using this expression anehaaseline
intensity Three eamples of step, linear and power forms of a single time dependent
covariate are used to illustrate the relationship betw&eandt®. The log-linear link
functiony(2) = €% is assumed, wherg is the regression coefficient associated with the
single coariate z. For simplicity, we dop the subscripti" and uset® andt? to denote

the correspondingvent times under baseline andvenate conditions respegtly.

Example 1 (step covariate function)

First, we consider the binary stepvanate case and indicate a biomedical
application. Thera general step a@riate function is considered with \aiate
valuesc; andc,.

(a) Let the coariate be a step function with a jumptat w

z(tz)—go O<st’sw
- z
D1 t“>w.

This type of time dependent\a@iate might appear in a biomedical application

where one leel of covariate (e.g., no drug is tak by the patient) is applied up to



time w and another is applied after time(e.g., drug is taén). Theevent timet®
under baseline conditions arnél under treatment conditions might denote the

times when a patierst’dood pressure falls balo a particular threshold.The

tZ

corresponding® is obtained by usintf :!w(z(uz)) du?,

tO—DtZ Ost’sw
_Bw+eﬂ(tz—w) t?>w.

The "baseline time't?, is identical to time under the influence of theatate, t?,

up to timew. After timew, three special cases exist depending on &hgevof 3,

the reression coditient. If g =0, t° = t? for all values oft?, which means that
the change in the value of thevepnate at timew has no influence on theent
times. If 8> 0, thent® is greater tham? for t? > w, indicating that the treatment
accelerates thevent times. Figure la sk that the link functior®*?" is also a
step function. The relationship betweBrandt? in this case is shown in Figure
1b forw =2.5and B = 0. 5. Note that the slope of the function plotted in Figure
1b changes from 1 betwe¢h=0 to t? = 2. 5to e*° = 1. 6487aftert? = 2.5. If

B <0, thent® is less thart? for t? > w, indicating that the treatment decelerates

the event times.
(b) Let the cwariate be a step function with a jumptat w and

Uc O<st’sw
DCZ W.

This type of time dependent\@iate might appear in an application where one

level of covariate (e.g., the turning speed for a drill bit is 2400 RPM) is applied up



to time w and another is applied after time (e.g., the turning speed increases

from 2400 RPM to 3600 RPM at time). Thecorresponding® is obtained by

tZ

usingt® :‘!z//(z(uz)) du?.

tO_DemltZ Ost’sw
B BweﬂCl +e7%2(t7 - w) 2> w.

The "baseline time"t° is proportional to time under the influence of the
covariate, t?, up to ime w, and the multiplicatre factor ise”. After timew they

are still proportional, hower, the multiplicatie factor becomee?®.

Example 2 (piecewise linear covariate function)
Let the coariate be a constant (equal to one)tfog w. Fort* > w, the covariate

is a linear function.

z(tz)—Dl Ost’sw
_Stz t? > w.

tZ

The correspondintf is obtained by usintf :‘!w(z(uz)) du?,

O

to_gtzeﬂ . oOst’sw
owe’ + = (e - &) s
O

Example 3 (power covariate function)
Let the coariate be a power function, i.e(t?) = (t*)™ for all t* = 0. Thegeneral

expression fot? is



tZ tZ

O :‘!’.',lf(z(uz))duZ = ! ef" du? t? > 0.

Whenm = 1, the relationship can be expressed in closed form
1 2
t0== (e - 1).
B

4. GENERATION OF EVENT TIMES

To determine the appropriate method for generatiregtetimes from an NHPP with
time dependent e@riates, assume that the lasemt in an NHPP has occurred at time
The random ariableT denotes the nextvent time. The cumulae intensity function
for the time of the nextvent given that the lastwent has occurred at tineeis

Arrsa(t; 2(1) =A(t; z(1)) - A(a; (1)),
This expression allows a modeler to calculate the expected numhents after timea.

A result that is useful in variate generation igegiby Gnlar (1975).

Let N(t) be a @unting process and I&{t) be a mndecreasing function of time,
ThenT,, T,,... ae the gent times in a nonhomogeneous Poisson process with
E(N(t))=A() if and only if A(Ty),A(T,),... are the eent times in a
homogeneous Poisson process with rate 1.

According to this result\r 1> 4(t; z(t)) has a unit exponential distribution, whérés the

next event time andT —a is the time to the nextvent. If we can find expressions for

A(t; z(t)) for the proportional intensity and accelerated time models, the vt tene

can be generated by using

t « A" (A(a; z(t)) - log (1-u))
whereu is a random number uniformly distributed onIR, WhenA~%(t) and A(t) are



closed form, the nextvent time can be generated by a closed foxpression. Aseries
of event times of an NHPP can be generated by using the expression repebiaely
that the basic form of variate generation for lifetime or the firattetime of an NHPP
t « H Y(-log(1-u)), is a special case of thigpression sincé\(a)=A(0)=0 and the

cumulatve hazard functiorH (t) is equivalent to the cumulate intensity functiom\(t).

For the accelerated time model, the cumukaintensity function is

w(t)

AL Z(1)) = No(W(1)) = ‘!' Ao(u) du

t
whereW(t) :JI/I(Z(U)) du and A, is the baseline intensity functiorror the proportional

intensity model, the cumulag intensity function is

A(t; z(1)) =‘! @ (z(u)) Ag(u)du
wherey is the link function.

Table 2 presents variate generation algorithms for the time dependentat
cases. Thdirst column contains the algorithmsven in Leemis, Shih and Raertson
(1990) for the accelerated time T)Aand proportional intensity (PI) models when
generation of the firstvent time only or a remvea process is of interest. The second

column contains the corresponding variate generation algorithms for NHPPs.

In the proportional intensity and accelerated time models, a link function is a
multiplication factor of the intensity and time. It is interpreted as the proportion of

contraction or gpansion of the intensity and time for a system undear@ie efects.

-10-



Renaval NHPP
AT t — a+Wi(Hy'(-log (1-u))) t — ATH(A(a; z(t)) - log (1-u))
t Ww(t)
qJ(t)=!l,1/(u)0|u AL z(t)) = ! Ao(u)du
PI t « a+H (-log (1-u)) t « A"Y(A(a; z()) - log (1- u))
H(t; z(t)) = t[ w(z(u))ho(u)du At z(t)) = 4!’ w(z(u))Ao(u)du

Table 2. Formulasfor generating event timeswith time dependent covariates.

There are tw goproaches to studyaviate generation with time dependentvates.

The first approach is to assume that the link function itself is a function of time,
w(z(t)) =w(t). Thesecond approach is to assume a time dependeatiate function

z(t), then construct the link function based on the commonly used log lineaefdfn

The advantage of using the link function as a function of time is that ¥besion of
cumulatve intensity function is often more mathematically tractalid the other hand,

the advantage of defining the vedates as a function of time is that theygical
measurement of the eariates can be directly applied to the models. The first approach

is used in this section.

Two types of time dependent link functions are used to illustrate i@ &mes
generation algorithms for a single time dependenarcate. Four types of baseline
cumulatve intensity functions are assumed associated with tkeriate effects in the

models. Notethat we usebaseline distribution for the condition withz(t) =0 in the

-11-



survival models andaseline process for the condition withe(t) = 0 in the NHPP models.
Table 3 shows the types of the link functiané), the corresponding geriate functions

z(t) and the researchers that used them.

link functiong/ (t) | covariate z(t) | used by

step step Dale (1985), Peterson (1986a)
exponential linear Prentice and Kalbfleisch (1979), Peterson (1986a)
power logarithm Prenticeand Kalbfleisch (1979), Kalbfleisch and Mclintosh (19[77)

Table 3. Relationships between the time dependent link function

and the covariate function.

In the following discussion, a single time dependentitate is consideredWhen
the form of the link function is known, the correspondingadate function is obtained

by ¢(t) = €#2. For example, when a step link function is defined by

Ce, O<t<b
z(t)) =
vE=0 (s
where b, ¢; and c, are constants.If B is the regression cdefient, then the

corresponding c@riate function is

_Ulogc, /s O<t<b

Z(t)_glogczlﬁ t=b

which is also a step function. When the link function hgsoaential formy (t) = ',

the corresponding weriate is a linear functiongz(t) =t, for t 0. Whenthe link

-12 -



function is a power functiong(t) = t¥, the corresponding weriate is a logrithmic

k
function, z(t) = E logt, fort = 0.

In the next tw subsections, step and exponential link functions are used with four
baseline processes to illustrate the algorithms for the accelerated time and proportional
intensity models. The baseline processes are the homogeneous Poisson process, the
power lav process and the processes with log logistic and exponential power intensity
forms. Ahomogeneous Poisson process is defined by the cuveutdgnsity function

No(t) = At t>0
where A is the rate of occurrence ofailures. Br the paver lav process, the
parameterization of the cumublaiintensity function is
No(t) = vt t>0
wherev is a scale parameter aads a shape parameteffor the log logistic process, the

cumulatve intensity and the intensity functions are

k-1
Ao() = log(d + (o1)") a0 = 2

where p is a scale parameter ardis a shape parameteFor the exponential peer

t=>0

process, the cumulaé intensity and the intensity functions are

t
Ao(t) = €8/ = 1 Ao(t) = L 2y et/ t>0
T T
wherer is a scale parameter apdis a shape parameteAll parameters in these four

baseline processes are paesiti

-13-



4.1 Accelerated Time Modd

For the accelerated time model, the cumukaintensity function with ceeriates is

w(t)

AL Z(1)) = No(W(1)) = ‘!' Ao(u) du

t
whereW¥(t) :JI/I(Z(U)) du, ¢ is the link function and is the baseline intensity function.

The subsequentent time can be generated by
t « A" A(a; z(t)) - log (1 - u))
wherea is the last eent time andu is a random number in [Q). Two examples she
the closed form expressions farert time generation with the step and exponential link

functions.

Example 4 (homogeneous Poisson baseline process)

(a) Let the link function be a step function

O, O<t<b
Z(t)) =
vED=D, (e
The cumulatre link function is
Uc,t 0<t<b
Wty =0t

The cumulatre intensity function with ceeriate z(t) is

W(t)
Oac,t 0<t<b
A(t; 2(t)) = 1!’ Adu=g"

nA(Cib+c(t=b)) t=b.
The time dependeg@ssociated with the eariate is efectively absorbed into the

cumulatve intensity function. The werse of the cumulate intensity function is

-14 -



ay
_ O, 0<y<icb
N =0Nt =4
N - =~
DACZ Cz +b yZAClb

The general expression for the generation of the rvexit @éme,t, is dosed form

fora<b
1
Ba - F |Og (1— U) u< 1—e(Acla_b)
| [ 1
0% (a-p)- 0907 s g gmah)
0c ACy

For a = b, the variate for the nexwvent time reduces to

_log(1-u)
Ac,

t—a
Figure 2 shows ho the inversion of cumulatie intensity technique is used to
generate the subsequener timet for a gven previous eent time a. For
illustration, we assume the intensit{t) =0.1,c, =1,c, =2,a=4andb =5.
(b) Let the link function be anxponential function, i.e.y(t) =€’. The

cumulatve link function is

lJJ(t):%(e/”—l) t>0.

The cumulatre intensity function is

A(t; z(t)) = % e -1) t>0.

The inverse of the cumulate intensity function is

yB
A
The &ent time can be generated by the closed form expression

ANy = % log (1+ y = 0.

-15-



B

1 a_ B

Example 5 (power law baseline process)

(a) Let the link function be a step function

Oc, O<t<b
t)) =
vED=0,  (an
As before, the cumulat link function is
D <t<
W(t) = cyt O<t<b
Dbcl + Cz(t - b) t 2 b

The cumulatre intensity function with ceeriate z(t) is

Dvclt" 0O<t<b

A(t; z(t)) = D v(cb+cy(t-h)°  t=h.

The irverse of the cumulate intensity function is

O,y

06" y<veltf
ANy)=0, %1

1( ) —Clb b o4

0c, v y 2 vcibe.

The general expression for variate generation is closed foran<dr

5,0 _ _ 5
B(ad _ V_:(I;o— |Og(1— u))1/5 l/Cla |Og(1 U) < V(Clb)

t<_D 1

- o _ E _ 1/6 _
((Cla v IOg(l U)) Clb)+b Jaé_log(l_u)zv(clb)d.

Fora= b, the expression for the nextent time reduces to

1 1
teo (((cib+cy(a-b))’° - " log(1-u))*'* - ¢;b) + b.
2
(b) Let the link function be anxponential function, i.e.y(t) =€’. The

cumulatve link function is

-16 -



1
llJ(t)=E(e“—1) t>0.
The cumulatre intensity function is

A(t; z(t) =vp? (e -1)° t>0.
The inverse of the cumulate intensity function is

. 1 Y,
N (y) = 3 log (1+5(7)°) y=0.
The next gent time can be generated by the closed form expression

185

t 1 log (€2 - 1)° - = log (1 - u))*’¢ + 1).
B %

4.2 Proportional Intensity Model

For the proportional intensity model, the cumulatiintensity function with

covariates is

A(t; z(t)) :! @ (z(u)) Ao(u)du

wherey is the link function andi, is the baseline intensity function. The subsequent

event time for a single time dependentvaoate, z(t), can be generated by

t « A"Y(A(a; z(t)) - log (1 - u))

given that the last\ent has occurred at time Three examples are used to whmosed

form expressions forvent time generation with step and exponential link functions.

Example 6 (homogeneous Poisson baseline process)

(a) Let the link function be a step function

-17 -



Uc, 0<t<b
vED=00

The cumulatre intensity function with ceeriate is

Oacyt O<t<b
0

NEZOP= [PV, v eyi-ty) 120

The irverse of the cumulate intensity function is

0y
_ Uac, 0<y<Aigb
/\ 1(y) = D y(ilC]_Ab y !
W +b
(] Cz/‘ yZAClb

Not surprisingly the expression for variate generation is the same as that in
accelerated time models (Example 4a). This is because the accelerated time and
proportional intensity models Y& identical intensity functions under \@oiate

effects when the baseline process is a homogeneous Poisson process.

(b) Let the link function be anxponential function, i.e.y(t) =€’. The

cumulatve intensity function is

A
A(t; z(t)) = F; e -1) t>0.
The event time can be generated by the sampression in Example 4b for

accelerated time models.

Example 7 (log logistic baseline process)

Let the link function be a step function

Oc, O<t<b
t)) =
veE=00 (5,
t K KuK-l
The cumulatre intensity function with ceeriate z(t) is ‘!'l//(Z(U)) —f+(pu)K :

-18-



which yields

iy — SC110g(1+ (1)) 0<t<b
A 20)= Bcz log(1+(pt)*) + (¢, —Cy) log(1+(pb)) t=b.

The inverse of the cumulate intensity function is

Bl (eylcl _ 1)1//(

_ y < ¢;log (1+(pb)*)
4 1(y) i DI:[L) (y-( ) (log (1+(pb)))) / - 1
0= (ely=(ci—co) (log (1+(pbyN) /e _ 1Y, p
0o ® 2 y = ¢, log (1+(ob)").

The general expression for variate generation is closed form avidn

|:| K

Dl 1+(,Oa) _ 1)1//(

4 (1-u)ta

O c1log(1+(pa)*) —log(1-u) < ¢, log(1+(pb)*)
t-01 (1+ (pa)* )&/ _ 1y

o @i (e D

O ¢;log(1+(pa)*) —~log(1-u) = ¢, log(1+(ob)).

0

Whena = b, the expression for the nextent time is

oL L(ea)
AR

When the step function has a power or exponential form, the variate generation

_ 1)1/1(.

expression is not closed form.

Example 8 (exponential power baseline process)

Let the link function be a step function

Oc, 0<t<b
vED=00 Sy,

t
.. . . . . . u,, _
The cumulatie intensity function with ceariate |s{w(z(u)) 4 (;)V 1elun)” du,
T

which yields

-19-



0 &y
Oci (e —-1) 0<t<b

c,er’ +(cp—cy)er’ —¢

O t=h.
The inverse of the cumulate intensity function is

0 y 1/
log (— +1))"” .
AY) = ET( 96, ) y<cy (e - 1)
1
Or(og (- (y+ei=(e=ee® ") yze (e -1).
2
The general expression for variate generation is closed foran<dy
0 1
Or(loge®'™" - . log(1-u))*"”
] 1
O ¢ (e®'7" = 1) - log(1-u) <c, (7" 1)
t-D 1 , Oy
Or(log(— (c,€®'™" —log(1-u) - (c, - c)e'” )
0 C2
i c, (€@ =1) - log(1—u) = ¢, (e®'V" -1).
0
For a = b, the expression for the nexteat time is

t — r(log(e" - C_12 log(1-u)))*"”.

When the step function has awsr or exponential form, the expression is not

closed form.

Two tables are presented to summarize the results in Sectidabde 4 indicates
whether closed form expressions available for lifetime (first gent time) generation
when different baseline distributions andraate functions are assumedable 5 shavs
whether closed form expressions aveilable for e/ent times generation when tfent

baseline processes andvagate functions are assumed.
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AL PH
Baseline: link: step exponential power step exponential W@
Exponential C C C C C C
Weibull C C C C N C
Log logistic C C C C N N
Exponential pwer C C C C N N

Table4. Summary of lifetime variate generation with time dependent covariates.

AT Pl
Baseline: link: step &ponential pwer step rponential pwer
HPP C(4a) C(4b) C C (6a) C (6b) C
Pawver C(5a) C(5b) C C N N
Log logistic C C C C (7) N (9) N
Exponential pawer C C C C 8 N N

Table5. Summary of event times variate generation with time dependent covariates.

In each box, we use "C" to denote that a closed forpression for the vent time
generation is \@ilable. The number in the parenthesis indicates the example that
includes the devetion of the e&pression. W use "N" (not closed form) when a closed

form expression is nowailable.

When there is no closed formpmession using wersion of the cumulate intensity,
more complicatedariate generation techniques, such as thinning, can be considered for
generating eent times for the models. Example 9 illustrates the use of thinning,

assuming the log logistic baseline process and the exponential link function.
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Example 9 (baseline process with log logistic intensity)
There is no closed form expression for variate generationveysion when the
baseline process is log logistic (with shape parametef) and the link function

is exponential. Théaseline cumulate intensity and intensity functions are

pKKtK—l

No(t) =log (1 + (1)) Ao(t) = 1T+ (ot

The link functiony (z(t)) is
w(z(t) = e
where B is the regression cdefient. The intensity function under the

proportional intensity assumption is

K K—leﬂt
A 20) = 5

In this example, thinning can be used since the baseline intensity function has an
upside down bathtub shape whei 1 and the intensity function under aiate
effectsA(t; z(t)) remains finite when the geession coefficient is getive. When
thinning is used, a majorizing function needs to be defined. One simple, albeit
computationally indfcient, choice for the majorizing function is the maximum
vaue of the intensity function(t; z(t)). Thistypically requires much more CPU
time since the probability of a rejection is fairly high for most time values.

To generate eent times for the baseline process, the majorizing functipis
required. Thepoint that maximizes the baseline intensity can be obtained by
equating the first derstive d Ay(t) with respect tot to zero. The maximum

(K _ 1)1//(

baseline intensity is at, = , Where superscript *" denotes the
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maximum point. The maximum of baseline intensigyt,) = A, = p(x — 1)/
is therefore used as a majorizing (constant) function to geneeitetine for the
baseline process-ar example, whenx = 2 and p = 0. 5,the majorizing function
is Ay = 0. 5andt, = 2. 0.
For the process under eariate effects, the maximum value aft; z(t)) is
obtained by equating the first destive d A(t; z(t)) with respect ta to zero.
Bp = pt + pt+k —1=0.
In general, there is not a closed form solutiontfowhich solves the equation.
One specific value for the shape parameter 2, is used here to illustrate the
algorithm. Inthis case, the equation reduces to the cubic equation
Bp’t3-p?t2+ pt+1=0.
To illustrate, we further assume that=0.5and 8 =-0.1. The maximum of
A(t; z(t)) is obtained by solving a nonlinear equation with the bisection method.
The solution ist; = 1. 6868, where subscript 'c’ denotes the condition under
covariate efects. Thecorresponding maximumalue A(t.; z(t.)) = A, = 0. 4164
can be used as the majorizing function to genenatet éimes under oc@riate
effects. Figure3 shows the tvo intensity functions and their majorizing functions,
Ay andA;, wherex =2, p =0.5andg = —0. 1are assumed.
To illustrate the ariate generation algorithm for the process undear@ie
effects using thinning, the reevent timet,.; iS generated gen that the last

event has occurred at tinee

1. [Set the currentvent time.] t — a
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2. [Generate random numbersi], u, 1D U(O, 1)

. _ -1
3. [Determine the nextvent time.] t — t + (A* log (1- uy))

c

4. [Thinning.] ifu, > A(t; z(t)) / A, goto 2

5. [Set the nextvent time.] t,o¢ « t

Figure 4 depicts thevent time generation by thinning, wheaedenotes the gen
last event time, t, IS the next gent time andt’s are the rejectedvent times by
thinning in step 4.To generate thevent time for baseline process, the majorizing

function is replaced by, andA(t; z(t)) is replaced byl,(t) in steps 3 and 4.
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