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NONPARAMETRIC ESTIMATION OF THE CUMULATIVE 

INTENSITY FUNCTION FOR A NONHOMOGENEOUS 


POISSON PROCESS " 

LAWRENCE M .  LEEMIS 


The CTniversity of Oklahoma, School of Indz~strial Engineering, 202 West Boyd, Room 124, 

Norman, Oklahoma 73019 


A nonparametric technique for estimating the cumulative intensity function of a nonhomo- 
geneous Poisson process from one or more realizations is developed. This technique does not 
require any arbitrary parameters from the modeler, and the estimated cumulative intensity function 
can be used to generate a point process for Monte Carlo simulation by inversion. Three examples 
are given. 
(NONSTATIONARY POISSON PROCESS; REPAIRABLE SYSTEMS; TIME-DEPENDENT 
ARRIVALS; SIMULATION; VARIATE GENERATION ) 

1. Introduction 

A nonhomogeneous Poisson process (NHPP) is often suggested as an appropriate 
model for a system whose rate (e.g. arrival rate in a queuing system) varies over time. 
This paper illustrates a nonparametric technique for estimating the cumulative intensity 
function of a NHPP on the time interval (0, S ]  from one or more realizations. This 
procedure only applies to terminating simulations. Unlike many existing techniques, this 
method does not require the modeler to specify any parameters or weighting functions. 
If the NHPP is used as an input to a Monte Carlo simulation, inversion can be used to 
generate event times so that variance reduction techniques can be implemented. Although 
the discussion here is oriented towards arrivals to queuing systems, the estimation tech- 
nique applies to any sequence of events occurring over time or space, such as earthquake 
times, failure times of a repairable system or defect positions on a magnetic tape. 

A NHPP is a generalization of an ordinary Poisson process where events occur randomly 
over time at the rate of X events per unit time. The rate at which events occur in a NHPP 
varies over time as determined by the intensity function, X(t). The czlrnulative intensity 
filnction is defined by 

and is interpreted as the expected number of events by time t. The probability of exactly 
n events occurring in the interval (a ,  b] is given by 

for n = 0, 1, . . . (Cinlar 1975 ) . 
Many simulation textbook authors (e.g., Bratley, Fox and Schrage 1987, Fishman 

1978, Lavenberg 1983, Law and Kelton 199 1, Lewis and Orav 1989, Morgan 1984 and 
Ross 1990) suggest the use of NHPPs for modeling systems with inputs whose rates vary 
over time. Schmeiser ( 1980) reviews variate generation techniques for NHPPs, including 

* Accepted by James R. Wilson; received March 18, 1988. This paper has been with the author 15 months 
for 2 revisions. 
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887 NONHOMOGENEOUS POISSON PROCESS ESTIMATION 

thinning (Lewis and Shedler 1979b), where a NHPP can be simulated when the intensity 
function is not tractable and inversion is not closed form. 

There have been several parametric techniques suggested for estimating the cumulative 
intensity function from a data set. One of these efforts assumes that A(t) = (at) ' ,  t > 0, 
which is often called a power law or Weibull process (Bain and Engelhardt 1982, Jang 
and Bai 1987, Rigdon and Basu 1989, 1990). Lee, Wilson and Crawford ( 1991) suggest 
a general model that uses an exponential-polynomial-trigonometric function in the in- 
tensity function 

m 

a f t f+ y sin ( a t  + 4)  

which they apply to modeling off-shore weather events in the Arctic Sea involving both 
a cyclic component and a trend. Kao and Chang ( 1988) model the times of calls for 
analysis of electrocardiograms at a hospital over several days using a piecewise-polynomial 
intensity function. Law and Kelton ( 1991, p. 407) suggest a nonparametric procedure 
for estimating X(t) with a piecewise-constant function. Their procedure requires the 
modeler to divide the time axis into nonoverlapping time intervals where the intensity 
function is assumed to be fairly constant, and estimate a single rate for each interval. 
While this procedure is simple to implement, the modeler must make arbitrary decisions 
concerning the number and widths of the intervals. Lewis and Shedler ( 1976b) illustrate 
techniques for estimating X(t) to model the transactions in a database system. One non- 
parametric estimator that they define is 

where to is the upper limit of the time interval, n is the number of observations in (0, 
to],  T I ,  . . . , T, are the observations, W is a bounded, nonnegative, integrable weight 
function satisfying SZm W(u)du = 1, and b(n)  is a bandwidth function that tends to 
zero as n approaches infinity. Nelson ( 1988) considers nonparametric estimates for the 
cumulative cost and repair functions for repairable system data that include right censored 
observations. Vallarino ( 1988) uses a time scale transformation of a Brownian bridge 
on [O, 11 to derive simultaneous confidence bands around an estimator that is similar to 
the one given here. 

Other articles on NHPPs and their application to queuing systems include Albin ( 1982), 
Chouinard and McDonald ( 1985), Foley ( 1986) and Thorisson ( 1985). Work on gen- 
erating variates from a NHPP includes Devroye ( 1986), Fishman and Kao ( 1977), 
Kaminsky and Rumph ( 1977), Klein and Roberts ( 1984), Lee, Wilson and Crawford 
( 1991), Lewis and Shedler ( 1976a, 1979a), and Shanthikumar ( 1986). 

2. Estimation Procedure 

The intensity function, X(t), for a NHPP is assumed to be positive for all t E (0, S ]  
and is continuous for almost every t E (0, S ] .  The cumulative intensity function is to 
be estimated from k realizations of the NHPP on (0, S ] ,  where S is a known constant. 
The interval (0, S ]  may represent the time a system allows amvals (e.g., 9 AM to 5 PM 
at a bank) or one period of a cycle (e.g., one day at a 24-hour drive-up window). The 
estimation procedure described in this section is nonparametric and does not require 
any arbitrary decisions (e.g. parameter values) from the modeler. Let n, ( i  = 1, 2, . . . , 
k) be the number of observations in the ith realization, n = C!=l n,,  and let t ( l ) ,  t(2),  
. . . ,t(,, be the order statistics of the superposition of the k realizations, t(o) = 0 and t(,,+l) 
= S .  Setting A(s) = n l k  yields a process where the expected number of events by time 
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S is the average number of events in k realizations, since A ( S ) is the expected number 
of events by time S .  The piecewise-linear estimator of the cumulative intensity function 
between the time values in the superposition is 

as illustrated in Figure 1. This estimator passes through the points ( t ( , ) ,  i n / ( n  + 1)k ) ,  
for i = 1, 2,  . . . , n + 1 .  The n / ( n  + 1) factor in the value of the estimate for the 
cumulative intensity function at the data values accounts for the fact that there are n + 1 
"gaps" created on ( 0 ,  S ]  by the data values. 

The assumption that there will not be any ties, i.e., t ( , )< t ( ,+l)for i = 0,  1, . . . , n ,  
may not always be satisfied in practice due to rounding. The estimate for h ( t ) given 
above should be modified so that there is a discontinuity at the value where tied values 
occur. For example, if t(,,, = t(l,+l)for some nz, then 

In other words, there is a jump in the estimate of the cumulative intensity function of 
n / ( n+ 1)k where the tie occurs. Multiple tied values are handled analogously. An example 
containing tied values is given in g5. Note that the variate generation algorithm described 
in the next section will not be affected by tied observations, although there may be 
multiple event times generated at the values where ties occur in the data set. 

The rationale for using a linear function between the data values is that inversion can 
be used for generating realizations (as shown in $3) without having tied events. If the 
usual step-function estimate of A( t )is used (see the Appendix for a definition), only the 
t ( ,) values could be generated. 

r 

FIGUREI .  Nonparametric Estimator of A( I )  
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Some empirical justification for the use of the proposed estimator is provided in Figures 
2a, 2b, 2c, and 2d, where the population cumulative intensity function (smooth curves) 
and the proposed estimator (piecewise-linear curves) are plotted for four different pro- 
cesses. The k = 5 realizations are generated by thinning. The four parent intensity functions 
are the piecewise-linear intensity function 

lot + 1, 0 < t 5 1 . 5 ,  

X(t) = I16, 1.5 < t 5 2.5, 

-6t + 31, 2.5 < t 5 4.5, 

from Klein and Roberts ( 1984), 

X(t) = 1 + cos t, 0 < t I47r, 

yielding a cyclic arrival rate, 

X(t) = e2'-l, 0 < t I3, 

from Lewis and Shedler ( 1976a) and 

X(t) = t', 0 < t I5, 

FIGURE2a. Piecewise-Linear Intensity Function ( n  = 247).  
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1 

FIGURE2b. Cyclic Intensity Function ( n  = 45) 

a special case of a power law process. The sample sizes for the four processes are n = 247, 
45, 39, 216, respectively. In all four plots, the estimator roughly follows the shape of the 
parent cumulative intensity function, and improves with n ,  the number of observations 
collected in the five realizations. 

Since the number of events that occur in the NHPP of interest by time t has the Poisson 
distribution with mean A ( t ) ,a strong consistency result is obtained, i.e., 

lim i i ( t )= h ( t )  with probability one. 
k-. .r: 

The proof, given in the appendix, uses the fact that the proposed estimator can be expressed 
as a function of the usual step-function estimator for the cumulative intensity function. 
The appendix also contains a derivation of an asymptotically exact 100( 1 - a )% con-
fidence interval for i i ( t )  

where zn12is the 1 - a / 2  fractile of the standard normal distribution. 
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FIGURE2c. Exponential Intensity Function ( n  = 39). 

3. Variate Generation 

The cumulative intensity function for a NHPP is often estimated in order to generate 
variates for Monte Carlo simulation. Using a time transformation (Cinlar 1975, p. 96 ), 
the event times from a unit Poisson process, El,E2,. . . ,can be transformed to the event 
times of a NHPP via Ti= A-'(Ei).For the NHPP estimate considered here, the events 
at times T1,T2, . . can be generated for Monte Carlo simulation by the algorithm 
below, given n ,  k, S and the superpositioned values. 

1. i + 1, 
2. generate Ui-- U ( 0 ,  1), 
3. El + -log,(l - Ui), 
4. while Ei< n l k d o ,  

begin 
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FIGURE2d. Power Law Intensity Function ( n  = 216) 

i + i +  1, 

generate Ui - U(0, 1), 

El +El-,  - log, ( 1 - Ui), 

end. 

Thus, it is a straightforward procedure to obtain a realization of i - 1 events on (0, S ]  
from the superpositioned process and U(0, 1 ) values Lr,, U2, . . . ,Ui . Inversion has been 
used to generate this NHPP, so certain variance reduction techniques, such as antithetic 
variates or common random numbers, may be applied to simulation output. Replacing 
1 - U, with U, in steps 3 and 4 will save CPU time although the direction of the mono- 
tonicity is reversed. Tied values in the superposition do not pose any problem to this 
algorithm although there may be tied values in the realization. As n increases, the amount 
of memory required increases, but the amount of CPU time required to generate a re- 
alization depends only on the ratio n l k ,  the average number of events per realization. 
Thus collecting more realizations (resulting in narrower confidence intervals) increases 
the amount of memory required, but does not impact the expected CPU time for gen- 
erating a realization. 
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4. Examples 

Two examples will be given in this section. The first contains a rush hour situation, 
and the second contains an arrival pattern which is cyclic. 

The procedure for computing the nonparametric estimate of h ( t )  is illustrated using 
k = 3 realizations of a process on ( 0 ,  4.51. The events in this example are arrivals to a 
lunchwagon between 10:OO AM and 2:30 PM (Klein and Roberts 1984). and the three 
realizations ( n , = 46, n2 = 69, n3 = 49)and their superposition ( n  = 164)were generated 
by thinning. The realizations were generated from a population with parent cumulative 
intensity function 

The parent cumulative intensity function, the estimated cumulative intensity function 
and 95% confidence bands are shown in Figure 3. The smooth curve is the parent cu- 
mulative intensity function, the piecewise-linear function is i ( t )  for the n = 164 

FIGURE3. Parent Cumulative Intensity Function and Nonparametric Estimator (Lunchwagon Example). 
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observations in the superpositioned process and the dashed lines are 95% confidence 
bands. Since the intensity function increases linearly initially, is constant between 1 1 :30 
AM and 12:30 PM, then decreases linearly, the nonparametric approach provides a more 
accurate model than using a parametric model, such as a power law process. 

A Monte Carlo experiment was conducted to assess the accuracy of the confidence 
intervals in the lunchwagon example with three realizations at times 1.5, 2.5, and 3.5. 
For 100,000 replications of the experiment at nominal coverage 0.95, the actual coverages 
at the three points in time were 0.94754, 0.94779, and 0.94675. This experiment indicates 
that the approximate confidence intervals for the cumulative intensity function estimate 
are fairly accurate for a large sample size n .  This is not a surprising result since the 
Poisson distribution coverages to a normal distribution as its mean increases. 

The second example illustrates how the estimator tracks the cyclic intensity function 
considered earlier 

X( t )  = 1 + cos ( t ) ,  0 < t I 47 r ,  

which corresponds to a cumulative intensity function 

A( t ) = t + sin ( t ) ,  0 < t r 47r. 

In this case, k = 10 realizations of the process were generated by thinning yielding n 
= 120 observations. Figure 4 shows the parent cumulative intensity function, the estimated 

FIGURE4. Parent Cumulative Intensity Function and Nonparametric Estimator (Cyclic Amvals Example). 
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cumulative intensity function and 9570 confidence bands for the cumulative intensity 
function. The parent cumulative intensity function falls outside the 9570 confidence bands 
at approximately t = 0.4 and t = 1.6. It was determined that this was due to sampling 
variability since a Monte Carlo study using 100,000 replications yielded coverages of 
0.94542, 0.947 14, and 0.94839 at times t = 0.4, t = 1.6 and t = 25r, respectively, for 95% 
confidence intervals. 

5. Extensions 

This section presents two extensions to the nonparametric cumulative intensity function 
estimator given in 42. The first extension accommodates time intervals on (0, S ]  where 
events cannot occur. The second extension involves the use of a piecewise-quadratic, 
rather than a piecewise-linear estimate of the cumulative intensity function. 

In the discussion so far. it has been assumed that X(t) > 0 for all t in (0, S ] .  The 
cumulative intensity function estimation technique in 42 does not account for periods 
of time (e.g., lunchbreaks) where events cannot occur. If the beginning and ending times 
of these breaks are known, they are easily incorporated into the cumulative intensity 
function estimator. 

Consider the interval ( a ,  b] (with a and b known) where the intensity function is 
assumed to be zero. Let t( ,)  be the time of the most recent event prior to a and t ( ,+l ,  be 
the time of the first event after b. The dashed line in Figure 5 shows ii(t)  on ( t ( , ) ,  t ( ,+,)]  
without a lunchbreak, and the solid line shows the modifications proposed below. The 
cumulative intensity function estimate should be constant on ( a ,  b]  and the piecewise- 
linear segments on (t(,,, a ]  and (b ,  t( ,+,)] follow the usual pattern. On the interval (t( , , ,  
t(r+l one estimator is 

r 

which is determined by setting the cumulative intensity on a < t 5 b to i ( ( a  + b) /2) ,  
and using a linear estimate on the other intervals. A second way of accommodating 
lunchbreaks is to match the slopes of the cumulative intensity function estimates on the 
intervals ( t ( , ) ,  a ]  and (b ,  t ( ,+ l j ] .  This results in a slightly more tractable cumulative 
intensity estimate 

r 

The two estimators are almost identical when the lunchbreak is short relative to t ( ,+l)  
- t( ,)  (i.e., ( b  - a) / ( t ( i+ l  - t(,)) is small), and are identical when a - t(,, = t( ,+,)- b. 

One drawback with the assumption of a piecewise-constant intensity function is the 
possibility of unrealistic jumps in i ( t )  at the data values. This may cause problems if n 
is small or if there is considerable nonlinearity in the intensity function. Figure 6 shows 
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t 

FIGURE5 .  Modeling the Time Interval ( a ,  b]  Where X ( t )  = 0. 

the estimator for the cumulative intensity function estimate for k = 1 realization of 
unscheduled maintenance action times on the U.S.S.Halfbeak No. 3 main propulsion 
diesel engine (Ascher and Feingold 1984, p. 7 5 ) . Scheduled engine overhauls are not 
treated separately for this data set of n = 78 event times, and the ending time of the 
observation interval is assumed to be S = 25,600 hours. There appears to be significant 
degree of nonlinearity after 20,000 hours, and the adjustment to the estimator outlined 
below may be warranted. There are tied values at times 11993, 24006 and 25000, and 
the cumulative intensity function is discontinuous at these values. 

The estimator can be easily modified when there are no ties to be a piecewise-linear 
intensity function by joining the midpoints of the intensity function values between each 
of the data points as shown for n = 4 by the dashed line in Figure 7 .  Since the value of 
the intensity function for the nonparametric estimator between t ( , )and t ( ,+ l )is 

the midpoints can be joined with a line to yield the piecewise-linear estimator 

4 1 )  + l ( , + l )  t(i+l)+ t(r+2)for < t 5  and i = 0 ,  1, . . . ,n - 1 .  
2 2 

This accounts for all time periods except the intervals ( 0 ,  t(i)l21 and ( ( t ( , , )+ S ) / 2 ,  S l ,  



t 

FIGURE6. Nonparametric Estimator for the Unscheduled Maintenance Action Times. 

FIGURE7. Piecewise-Linear Intensity Function i3(t)When n = 4. 
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where the corresponding i ( t )value can be used. Variate generation may be performed 
by using the technique in Lee, Wilson and Crawford ( 1991), deleting Step 7 in their 
event time generation algorithm, where thinning is performed. 

6. Summary 

A method has been presented for the nonparametric estimation of the cumulative 
intensity function for a NHPP from one or more realizations. The method does not 
require any arbitrary parameters to be specified, and is easily generated via inversion. 
Time intervals where events cannot occur are easily accommodated, and the method 
can be extended to a piecewise-quadratic estimate. 

As in classical statistics, an estimate from a single realization ( k  = 1) or a small total 
number of observations (i.e., n small) should be considered cautiously due to sampling 
variability. Estimates containing uncharacteristically clustered event times, for example, 
will produce simulations with the same feature. It is worthwhile having several, rather 
than one realization (to see the variability from one realization to the next and since the 
confidence interval is asymptotically valid with respect to the number of realizations), 
and the sample size should be large enough so that the halfwidth of the confidence 
interval for b(t)is sufficiently small.' 

I The author thanks Jim Wilson for providing the proof given in the Appendix and editing the manuscript, 
Carlos Vallarino, Jerry Lawless and two referees for their help with the contents of the paper, and Bryan Norman 
and Todd Tillinghast for their assistance in preparing the figures for this paper. 

Appendix 

This appendix contains ( i)  a proof of strong consistency for H(t) i.e., the estimate l i ( t )  +h(t)  with probability 
one as the number of realizations collected, k ,  approaches infinity for all t E (0,  S ]  and (ii) a derivation of an 
asymptotically valid 100( 1 - oc)% confidence interval for h ( t )  for all t E (O? S ] .  

Consider first the corresponding properties of the usual step-function estimator of h ( t ) .  For the jth independent 
replication of the target NHPP ( j  = 1, . . . , k),  let lV,(t) denote the number of events observed in the time 
interval (0, t ]  and let 

A 

hr,*(t) - C A;([) for all r E (0, S ]  
, = I  

denote the aggregated counting (or superposition) process so that ii = iV: (S) .  The usual step-function estimator 
of h ( t )  is 

- 1 "
a ( t )  - - 2 q ( t )  = -Ar"" for all t E (0, S ]  

k ,=, k 

Now the {iV,(r): j = 1, . . . , k }  are IID Poisson variates with mean i l ( t ) ;  and it follows immediately that 

~ [ i ( t ) ]= h ( t )  
for all t E (0,  S ] .  

l'[H(t)l = i l ( t ) /kI 

Given an arbitrary t E (0, S ] ,  we can apply the Strong Law of Large Numbers to conclude that 

lim H(t) = A(t) with probability one; ( 4 )
A-cc 

moreover by the Central Limit Theorem, equation (4) ,  and Slutsky's Theorem (Serfling 1980), we have 
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i t )  - i t )  - la(t) i ( t )  - ~ ( t )D - \, I-. + 1  0  I  - 0 1)  as k- ,  x. 
i ( ) m k 

( 5 )  

From ( 5 )  we can construct the following asymptotically exact 100( 1 - a ) %  confidence interval for i l ( t ) :  

./b(-l l ( i )  * 242 (6)'! , 

k . \! 

Objectives ( i )  and (ii) are shown by relating the proposed estimator h( t )  to the step-function estimator b(t). 
For any fixed t E (0,  S ] ,  we have 

.i(t) = c;H(t) + ~ , ( t ) ,  ( 7 )  

where the random variables C; and Rk(t)  are given by 

In view of (2)  and ( 4 ) ,  we must have 

lim K: ( S )  = JI 
h-cc 

with probability one; (10)  

and combining (8)  with ( l o ) ,  we have 

lim Uk = 
k- cc 

1 with probability one. (11) 

Moreover we observe that the random term enclosed in large square brackets on the right-hand side of ( 9 )  is 
always bounded between 0 and I ;  and thus for an arbitrary fixed t E (0, S ] ,  we have 

and using ( l o ) ,  this implies that 

lim Rk( t )  = 0 with probability one. (13) 
k-cc 

Combining ( 4 ) ,  (7 ) ,  ( I 1 ), and ( 13),  we finally obtain the desired strong consistency property: given an arbitrary 
t E (0, S ] ,  we have 

lim &t)  = h ( t )  with probability one. (14) 
k- cc 

Moreover, the relation (7)  coupled with ( 4 ) , (5) ,  (1 I ) ,  (13), (14), and Slutsky's Theorem implies that ,i(t) is 
asymptotically normal: 

A r ( O . l ) + O t O - - X ( 0 . 1 )  as k + m .  (15) 

From ( I:) we can construct the following asymptotically exact 100( 1 - a ) %  confidence interval for h ( t ) :  
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