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Results useful to: Reliability beginners

Abstract-Five ways of representing the distribution of a continuous
nonnegative random variable T are used extensively in the reliability
literature: the probability density function, the reliability (survivor func-
tion), the hazard rate, the cumulative hazard function, and the mean
residual life function. Properties, identities, and intuitive interpretations
of the five representations are discussed. Several examples are given.

Although there are other functions, such as normalized mean
residual life for studying replacement policies, these five distribution
representations have surfaced as vehicles for representing a lifetime
distribution. The choice of which distribution representation to use
depends on whether -

1. The representation has a tractable form
2. Intuition is gained concerning the distribution by seeing a plot of

the representation.

1. INTRODUCTION

In reliability, a continuous nonnegative random
variable typically represents the lifetime of an element.
There are several functions which completely specify the
distribution of the random variable. Examples of these
functions include the probability density function,
characteristic function, Mellin transform, and cumulative
distribution function. Five mathematically equivalent,
popular representations have evolved: the probability den-
sity function, the reliability, the hazard rate, the
cumulative hazard function, and the mean residual life
function. Each of these functions completely describes the
distribution of a lifetime, and any one of the functions
determines the other four. This paper examines the reasons
why these five have emerged as popular ways to describe a
lifetime distribution in the reliability literature, and sum-
marizes their useful properties and identities.

2. ASSUMPTIONS, NOMENCLATURE
AND NOTATION

Discussion is limited to describing properties of
populations of items or components, as opposed to pro-
perties of samples. Thus, the distribution representations
refer to mathematical properties of random variables, not
statistical inference on samples. Also, discussion is limited

to nonrepairable items such as fuses or lightbulbs, as op-
posed to items which can be renewed via preventive
maintenance or repair. The origins of the use of these
distribution representations and their applications date
back to the 1950's in papers such as Epstein & Sobel [4].

These five representations are not the only possible
ways to represent a nonnegative random variable T. Other
representations include the moment generating function
E{e }, the characteristic function E{e }, the Mellin
transform E{T}, the density quantile function f(F1(u)),
and the total time on test transform F- ( R(x)dx, for 0 c
t c 1, where F1 is the inverse-Cdf. The density quantile
function is discussed in Parzen [10], and the total time on
test transform is discussed in Barlow [1] and Gupta &
Michalek [6].

Each of the distribution representations described in
sections 3-7 follow similar presentations. First, the name
of the representation is given, along with any other names
the representation is known by (eg, force of mortality for
the hazard rate). Second, conditions for existence are
given. Finally, a list of properties, intuitive interpretations,
and definitions associated with the representations are
listed.

Notation

T
It

f(t)
R(t)
h(t)
H(t)
L(t)
U(O,

a continuous nonnegative random variable
E{ T}
implies "is distributed as"
pdf for T
reliability (survivor function) for T
hazard rate for T
cumulative hazard function for T
mean residual life for T

1) uniform distribution on [0, 1]

Other, standard notation is given in "Information for
Readers & Authors" at rear of each issue.

Acronyms

IFR
DFR
NBU
NWU
NBUE
NWUE
IMRL
DMRL
i.i.d.

Increasing Failure Rate
Decreasing Failure Rate
New Better than Used
New Worse than Used
New Better than Used in Expectation
New Worse than Used in Expectation
Increasing Mean Residual Life
Decreasing Mean Residual Life
statistically independent and identically

distributed
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LEEMIS: LIFETIME DISTRIBUTION IDENTITIES

3. PROBABILITY DENSITY FUNCTION

The pdf satisfies

5. HAZARD RATE

The hazard rate (also known as the rate function, in-
tensity function, force of mortality) can be defined by -

f(t) > 0, for all t
00

io f(t)dt =1 .
h(t) = f(t)/R(t)

The pdf is useful because the probability of failure between
times a and b is the integral of f(t) between a and b. Pro-
perties of the pdf include:

1. f(t)At = Pr{t < T < t + At} for small At.
2. If f(t) has only one mode which occurs at the

origin, the distribution is DFR (Watson & Wells [13]).
3. f(ti) is the appropriate factor in the likelihood

function for an uncensored data value ti, eg, a failure time.
4. Finite mixture models for m populations of com-

ponents may be modeled using the pdf:
m

f(t) = S pfi(t), wherefi(t) is the pdf for population i,
i= 1

and pi is the probability of selecting a component from
population i, i = 1, ..., m.

4. RELIABILITY (SURVIVOR FUNCTION)

The reliability (also known as the survivor function
and complementary Cdf) is defined by

R(t) = Pr{T> t} = it f(r)dr

which is a nonincreasing function of t satisfying R(0) = 1

and lim R(t) = 0. The reliability is important in the studyt-X
of systems of components since it is the appropriate argu-
ment in the structure function to determine system
reliability. Properties of R(t) include:

1. R(t) is the fraction of the population which will
survive to time t. It is also the probability that one single
item will survive to time t.

2. R(t) is uniformly distributed between zero and one
by the probability integral transformation. Thus, R (U)
generates a lifetime variate for Monte Carlo simulation
where U is distributed as U(0, 1).

3. R(ti) is the appropriate factor in the likelihood
function for a right censored (ie, only a lower bound on the
failure time is known) data value ti.

4. The NBU and NWU distribution classes are easily
defined in terms of R(t). Barlow & Proschan (2] define
these distribution classes, as well as other distribution
classes cited in this paper. A distribution is NBU if and
only if -

R(x + y) c R(x)R(y) for x 2 0 and y > 0;

and NWU if and only if

R(x + y) < R(x)R(y) for x 2 0 and y 2 0.

and satisfies

h(t) . 0 for all t and XO h(r)dT = oo.

The reciprocal of the hazard function is also known as
Mill's ratio. The hazard rate is popular in reliability work
because it has the intuitive interpretation as the amount of
risk associated with a component which has survived to
time t. Properties of h(t) include:

1. h(t)At = Pr{t < T <t + At T>t}for small At.
2. h(t) is a special form of the complete intensity

function at time t for a point process (Cox & Oakes (3]). In
other words, the hazard function is mathematically
equivalent to the intensity function for a nonhomogeneous
Poisson process, and the failure time corresponds to the
first event in the process.

3. The IFR and DFR distribution classes are easily
defined in terms of h(t). A distribution is IFR if and only if
h(t) is nondecreasing in t. A distribution is DFR if and only
if h(t) is nonincreasing in t.

4. Competing risks models are easily formulated in
terms of h(t). If h1(t), h2(t), ..., hk(t) are the k causes of
failure acting in a population, and T = min{ T1, T2, ....
Tk}, then the hazard function for the time to failure is h(t)

k

= hj(t).
j=1
5. When the event of concern is failure, h(t) = X(t) is

the failure rate.

6. CUMULATIVE HAZARD FUNCTION

The cumulative hazard function can be defined by
t

H(t) = 0h(r)dT

and is a nondecreasing function of time which satisfies:
H(O) = 0 and lim H(t) = m. The cumulative hazard func-

tion has utility in reliability work because of the following
properties:

1. Since H(t) = -log R(t), H(t) has an exponential
distribution with a mean of one. Thus, H'( - log(1 - U))
generates a variate for Monte Carlo simulation when U is
distributed as U(0, 1), as shown in Griffith [5].

2. The cumulative hazard function parallels the
renewal function from renewal theory. Renewal theory, as
described in Karlin & Taylor [7], examines a process with
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i.i.d. times between events. The renewal function is the
mean number of events by time t.

3. The IFRA and DFRA distribution classes are easily
defined in terms of H(t). A distribution is IFRA if and only
if H(t)/t is nondecreasing in t. A distribution is DFRA if
and only if H(t)/t is nonincreasing in t.

7. MEAN RESIDUAL LIFE

The mean residual life can be defined by -

X R(T)dT
L(t) -t R(t)

and satisfies the three conditions given by Swartz [121:

dL(t) X 1
L dt - 1, JO L(t)

Properties of the mean residual life include:

1. L(t) has the intuitive interpretation as the mean re-
maining lifetime of an item which has survived to time t,
ie, L(t) = E{T - tjT>t}.

2. = E{T} = L(O); it is the mean lifetime of the
unit.

3. Burn-in and replacement models often make deci-
sions based on the ratio of L(t) to L(O), as indicated in
Watson & Wells [13] and Muth [9].

4. The IMRL, DMRL, NBUE and NWUE classes are
easily defined in terms of L(t). A distribution is IMRL if
L(t) is nondecreasing in t. A distribution is NBUE if

L(t) 2 It for all t.

A distribution is DMRL if L(t) is nonincreasing in t. A
distribution is NWUE if

L(t) c it for all t.

Mantel [8] gives an ordering of distributions based on
their mean residual life in the right hand tail. The mean
residual life has special meaning for heavy tailed distribu-
tions with low failure rates. If a distribution has an ex-
ponential tail, for example, with a failure rate of 106 per
hour, the mean residual life value in the tail is 100 years!
Thus, the chances are rather slim of observing a failure
once the component survives to the tail of the lifetime
distribution.

8. IDENTITIES

The five distribution representations defined in sec-
tions 3-7 are related to one another by (where a prime im-
plies the first derivative with respect to t)

1. f(t) = - R'(t)
2. H(t) = - log R(t)
3. h(t) =H'( ()

4. L(t) = R(t) dT

5. h(t) L(t) = 1 + L'(t)

Any one of the distribution representations implies the
other four, parallel to trigonometric identities. For exam-
ple, if the second identity is differentiated,

d fit)
h(t) = - dt log R(t) = R(t)

If both sides of the second identity are exponentiated,

R(t) = e - h(7-)dT

Thus, from these five identities, and the definitions of
each representation, many other identities can be
calculated.

9. EXAMPLES

Four examples of the distribution representations are
illustrated in this section: the exponential, Weibull, gam-
ma, and the exponential power distributions. The ex-
ponential, Weibull, and gamma are surveyed in Barlow &
Proschan [2], and the exponential power distribution is
given in Smith & Bain [11]. Figure 1 showsf(t), R(t), h(t),
H(t), L(t) for various parameter values for all four
distributions with a scale parameter of unity. In all of the
distributions, a is a positive scale parameter and A is a
positive shape parameter.

9.1 The exponential distribution has a single scale
parameter a, and distribution representations are all closed
form:

f(t) = ae -', R(t) = eca, h(t) - a, H(t) = at, L(t) = -

The exponential distribution is the only distribution which
belongs to all of the distribution classes (eg, IFR, DFR,
IFRA) mentioned in this paper.

9.2 The Weibull and gamma distributions are both
generalizations of the exponential distribution, with pdfs:

f(t) = aft -1 et

and

f(t) = r - le-Ft
respectively. Both are IFR when f > 1 and DFR when d < 1.
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R(t) h(t) H(t) L(t)
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(a) The exponential distribution
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(b) The Weibull distribution

h(t)

= 0.5

(t)

= 0.5

~ ~ t

R(t)

= 0.5

-----t

(c) The gamma distribution

h(t)

= 0.5

H(t)

= 0.5

t

L(t)

0.5

-t

(d) The exponential power distribution

Fig. 1. Distribution representations

The graph of h(t) shows that all gamma distributions have ex-

ponential right hand tails, since lim h(t) = oa for all ,B values.
t-Xo

9.3 The exponential power distribution is one of the few
tractable two parameter distributions which can achieve a

bathtub shaped hazard rate:

h(t) = a4t'3 el'e.

When: < 1, a hazard function achieves a minimum at

Correspondingly, the mean residual life

function increases initially (ie, after surviving infant mor-

tality), then decreases.
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Correction to: Age Replacement Policies for
Weibull Failure Times

Tom Y. Liang, Senior Member IEEE
Hughes Support Systems Group, Long Beach

Key Words-Age replacement, Optimal policy, Weibull distribution.

Abstract-Table 1 in the original paper is practical and useful. But a

normalization factor needs to be pointed out to make the table ready to
use.

Consider the numerical example in section 4 of [1],
and see that paper for notation. Without applying the age
replacement policy, the failure rate is 1/14 per hr and the
cost-rate of operation is $20/14 hours = $1.43/hour. And
yet, under the optimum age replacement, the $(T), cost-
rate of operation was $17.61/hour.

The reason for the apparent discrepancy is an implicit
normalization. $(7) is normalized by the Weibull distribu-
tion scale parameter, a. Namely $(1) is actually the mean
cost of operation per a units of time.

Now, rewrite (2) & (3) of [1] as follows:

$(t)a = [1 + (c - 1) weifc(t/a; ,B)] cl/[ML(t)/a] (2)'

1 + (c - 1) weifc(t/a; 13) + 3(c - 1)(t/Q)u-' [ML(t)/a] = 0

(3)'

By using this numerical example, eq. (3)' can be checked
to satisfy the new interpretation of $(t):

a = 15.8, 1 = 1.8, T/a = 0.541,

By (2)', ML(I)/a = 0.4829 when $(T)a/cl (rather than
$(7)/c1) is taken as 0.881. Substituting these values into
(3)' yields:

0.4254 + 1.8 (-0.8)(0.541)° 8(0.4829) = 0.

This shows that $(T) as used in [1] is in fact a times the cost
rate, eg, for the example-

$(T) = $17.61/ae - $17.61/15.8 hours = $1.11/hour.

Author Reply

Pandu R. Tadikamalla
University of Pittsburgh, Pittsburgh

I thank T. Y. Liang for calling this oversight to the at-
tention of myself and the readers. Please note that the
decision-maker chooses only T, and that calculation is cor-
rect.
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weifc(T/a; 13) = 0.7182
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