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Abstract

Relative hemisystems on the Hermitian surface are a concept in finite geometry,
first defined by by Penttila and Williford in 2011. They were introduced as an
analogous and fruitful concept to hemisystems, another class of geometric objects
which have had a compelling history since their introduction by B. Segre almost 50
years ago. Penttila and Williford’s definition of relative hemisystems was motivated
by the desire to generate a class of previously undiscovered association schemes
which are primitive, Q-polynomial and do not arise from distance regular graphs.
Since their definition, only three families and one supposedly sporadic example of
relative hemisystems have been found.

In this thesis, after covering some background theory on finite geometry and
group theory, we explore the rich history of hemisystems and relative hemisystems.
We examine in depth the geometric objects arising from these structures and pro-
vide constructions of the known examples of relative hemisystems. We subsequently
discuss the results of our quest to classify and find new examples of relative hemisys-
tems. We present the findings from our independent discovery of two recent examples
of relative hemisystems and from these produce a previously unknown set of crite-
ria sufficient to determine a relative hemisystem. These criteria provide the basis
for new constructions of the Penttila-Williford and a Cossidente family of relative
hemisystems. We also completely classify the relative hemisystems on the Hermitian
space H(3, 16), and some of the relative hemisystems on H(3, 64) with certain primes
dividing their collineation groups. Finally, we reflect on our results and provide some
open problems and ideas for future work.
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1CHAPTER 1

Introduction

“Get up and commit, show the power
trapped within. Do just what you want to,
and now stand up and begin.”

Muse, Panic Station

Consider a complex train network, like the Paris Métro, where each station may
be on more than one train route. Is there a way that we can make the system more
efficient? We could begin by attempting to select a set of train lines such that every
station is visited exactly once.

Figure 1.1: A section of a
map of the Paris Métro [46].

Let us create an abstract version of this situation
by defining an incidence structure (P ,L, I), where
the set of points denoted P correspond to train sta-
tions, the set of lines L correspond to train lines, and
an incidence relation I, that tells us which stations
are on each train line. The problem of choosing a set
of train lines that visits every train station exactly
once turns into a problem of choosing lines such that
every point lies on exactly one line in the set. If such
a set of lines exists, it is called a spread of the incidence structure.

We can generalise the concept of a spread to sets of lines such that every point
of the geometric structure has exactly m lines on it. We call this a regular system of
order m. Beniamino Segre, who was one of the founders of combinatorial geometry,
was particularly interested in regular systems of order m on Hermitian spaces.

A Hermitian space H(3, q2) is the set of totally isotropic subspaces of a Hermitian
form in PG(3, q2). A Hermitian space with these parameters is also a generalised
quadrangle of order (q2, q).

In an epic 200 page treatise, Segre proved that the only value of m for which
H(3, q2), q odd, has a regular system is q+1

2
[51]. He called a regular system of order

q+1
2

a hemisystem, because there are q + 1 lines on every point in the Hermitian
space, and so a hemisystem is exactly half of these lines.

The history of hemisystems is quite astounding. When Segre defined them in
1965, he gave an example of a hemisystem on the Hermitian space H(3, 9) and
proved this was the sole example up to equivalence on a Hermitian space with
these parameters. For the next forty years, there was an unsuccessful search by
many members of the mathematical community to find a different example of a
hemisystem. Along the way, many properties and consequences of hemisystems
were proven, but these gave no insight into other hemisystems that may exist. In
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fact, in 1995, Thas conjectured that there are no hemisystems on any Hermitian
spaces apart from Segre’s [55]. Then, forty years after Segre’s original treatise,
Penttila and Cossidente found an infinite family of hemisystems [23]. Since then,
several infinite families of hemisystems have been found by a variety of authors
[3, 4, 25]. In addition to being interesting structures in their own right, various
authors have proved that hemisystems give rise to partial quadrangles, strongly
regular graphs and rare association schemes that are 4-class, imprimitive, cometric,
and Q-antipodal [43, 53].

In 2011, Penttila and Williford defined relative hemisystems as an analogous
concept to hemisystems for q even, motivated by the desire to generate a previ-
ously undiscovered type of association scheme, which is 3-class, primitive and Q-
polynomial.

Let S be a generalised quadrangle of order (q2, q) containing a generalised quad-
rangle S ′ of order (q, q). Then all lines of S meet S ′ in q + 1 points or are disjoint
from S ′. We call a subset H of the lines disjoint from S ′ a relative hemisystem of
S with respect to S ′ provided that for each point x of S \ S ′, exactly half the lines
through x disjoint from S ′ lie in H.

In order to make sense of this definition, we will construct an example of a dual
relative hemisystem using the game SET.1 In other words, we will demonstrate a
set of points R in a generalised quadrangle S̃ of order (2, 4) such that every line
in S̃ which is disjoint from the embedded generalised quadrangle of order (2, 2) is
incident with one point of R.

In the game SET, there are 81 cards, each with four symbol traits – shape,
shading, colour and number, with three variations of each trait. The aim of the
game is to make SETs of three cards where each of these four traits is either all
the same or all different across the three cards. We visualise SET cards as points,
with lines joining three points if the corresponding cards form a SET. Using this
model, we can create the generalised quadrangle S of order (2, 4) with the generalised
quadrangle S ′ of order (2, 2) inside it from SET cards, and we exhibit this in Figure
1.2. For simplicity, we call the points and lines that are included in S but are
disjoint from S ′ external points and external lines respectively. Notice that we can’t
quite draw this generalised quadrangle in a planar fashion and so have two points
off to the side. The top card forms SETs with the pairs of cards on the edges of
the pentagon, and the bottom card forms SETs with pairs of cards corresponding
to a card above a vertex of the pentagon, and the card on the opposite edge of the
pentagon.

The cards with yellow bordering correspond to the points that form a dual rel-
ative hemisystem in the generalised quadrangle. Notice that since we are choosing
half of the external points to form the dual relative hemisystem, the remaining ex-
ternal points (cards), which have green bordering also form a relative hemisystem.

1SET is a registered trademark of Set Enterprises, Inc.. All rights reserved.
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Figure 1.2: A SET card representation of the generalised quadrangle of order (2, 4),
with dual relative hemisystems highlighted in yellow and green.

This is the smallest possible example of a dual relative hemisystem. The num-
ber of lines contained in a relative hemisystem increases rapidly as q increases and
it soon becomes unfeasible to describe relative hemisystems by the lines they con-
tain. Instead, we choose to describe them using groups. A collineation is an in-
cidence preserving automorphism from an incidence structure to itself. The set of
all collineations of an incidence structure form a group under composition, called
the collineation group of the incidence structure. We may therefore classify relative
hemisystems by their collineation groups. We say that a relative hemisystem ad-
mits a group if it is a subgroup of the relative hemisystem’s collineation group. By
using collineation groups to describe geometric structures, we can take advantage of
the symmetry inherent in group theory to give us neat and sometimes unexpected
results, as we will see in later chapters.

The known examples of relative hemisystems are reasonably few. When they first
defined the notion of relative hemisystems in [49], Penttila and Williford gave an
example of an infinite family that admits PΩ−(4, q) as a collineation group for each
q, a power of two. Cossidente subsequently discovered two more infinite families of
relative hemisystems admitting PSL(2, q) and a group of order q2(q+1) respectively,
which were mild perturbations of the Penttila-Williford family of relative hemisys-
tems [20, 21]. Cossidente and Pavese also discovered a supposedly sporadic example
of a relative hemisystem arising from a Suzuki-Tits ovoid [22].

The objective of this project was to attempt to find more examples of relative
hemisystems on H(3, q2), and to classify all of the relative hemisystems on H(3, 64).
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We worked towards this aim by designing programs in GAP [30] and Gurobi [38] to
exhaustively search for new relative hemisystems. Despite large improvements in the
efficiency of our computation, we found the problem of classification to be intractable
with our current methods. However, we did manage to independently discover the
infinite family of relative hemisystems admitting an automorphism group of order
q2(q+1) originally found by Cossidente and the conjectured sporadic example found
by Cossidente and Pavese. We subsequently completed some analysis on them before
their discoveries were published by the respective authors. In doing so, we found a
new construction of the infinite family of relative hemisystems admitting a group of
order q2(q + 1) as well as the Penttila-Williford family. We also formulated a set of
previously unknown sufficient criteria for a relative hemisystem. We show that the
Penttila-Williford family and the q2(q+1) Cossidente family satisfy these conditions,
and provide a partial proof of the PSL(2, q) Cossidente family, for q = 4, 8, 16. We
also classify all of the relative hemisystems on H(3, 16), a result that was previously
unknown. All of these results will be discussed in depth later in this dissertation.

In Chapters 2 and 3, we present the foundations of finite geometry and group
theory necessary for the study of relative hemisystems. In Chapter 4, we explore
the history and properties of hemisystems and relative hemisystems, as well as
give a survey of the known examples of relative hemisystems and their construc-
tions. In Chapter 5, we present the outcomes of this research project, starting with
the attempt to computationally classify all relative hemisystems on H(3, 64), which
lead to the independent discovery of two recently discovered examples of relative
hemisystems. We also present a new set of sufficient criteria to determine a rela-
tive hemisystem, and prove that the Penttila-Williford and Cossidente families of
relative hemisystems satisfy them.

For clarity throughout this dissertation, we will mark an original proof by an
asterisk ∗.
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Projective Geometry

“A straight line may be the shortest
distance between two points, but it is by no
means the most interesting.”

The Third Doctor, Doctor Who

This chapter introduces many of the structures and concepts that will be used
extensively in this dissertation. Projective geometry is a level of abstraction above
the Euclidean geometry that we are accustomed to in every day life. We will begin
by discussing finite fields and then introduce projective spaces using a series of
axioms. We will build on these concepts and describe objects that can be embedded
in projective spaces, such as quadrics, Hermitian spaces and symplectic spaces, all of
which are crucial to the discussion of relative hemisystems in subsequent chapters.

2.1 Finite fields

Definition 2.1. A field is a set F equipped with two associative binary opera-
tions called addition and multiplication, denoted + and × that satisfy the following
properties.

i) (F,+) is an Abelian group1.

ii) For all a, b, c ∈ F, a× (b+ c) = a× b+ a× c, and (b+ c)× a = b× a+ c× a.

iii) There exists a multiplicative identity 1F such that 1F × a = a for all a ∈ F.

iv) Multiplication is commutative on F, i.e., a× b = b× a for all a, b ∈ F.

v) For all nonzero a ∈ F, there exists an element a−1 ∈ F such that a × a−1 =
a−1 × a = 1F.

We usually omit the multiplication sign × when multiplying elements of the
field, and denote repeated multiplication using index notation. We also sometimes
omit the subscript F on 1F if it is clear which field is being discussed. An example
of a field that is very familiar to us is the real numbers. This is an example of
an infinite field; most of the fields of interest to us will be finite. For example,
Zp, the integers modulo p, where p is a prime, is a finite field with addition and
multiplication modulo p. Finite fields are always of order q = pk, for some prime
number p, and for some k ∈ N [29]. Furthermore, there is a unique finite field of
order q up to isomorphism. We denote a finite field by GF(q), where q is the number

1See Appendix B for missing definitions from elementary group theory.
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of elements in the field. We also call q the order of the field. The notation GF(q)
arises from the alternate name for finite fields, Galois fields, after Évariste Galois,
who made large contributions to finite field theory. The field characteristic is the
smallest positive integer η ∈ N such that ηa = 0 for all a ∈ F. In the infinite case,
if there is no such η, we define the characteristic to be zero.

Example 2.2 ([29]). Let p be a prime. The characteristic of any finite field GF(pk)
is p.

Notice that GF(q) \ {0} forms a group under the multiplication × of the field.
We call this the multiplicative group of the field, and it is a cyclic group of order
q − 1. This implies that for any nonzero x ∈ GF(q), xq = x.

A subfield is defined as a subset of a field that is a field itself when equipped with
the addition and multiplication of its parent field. For example, the real numbers
are a subfield of the complex numbers. In the finite case, since all fields have prime
power order, any subfield must have order which is a smaller power of the same
prime2. A field automorphism is a bijection from a field F to itself that preserves
addition and multiplication. Symbolically, a field automorphism α : F→ F satisfies
α(ab) = α(a)α(b) and α(a + b) = α(a) + α(b) for all a, b ∈ F. In the case of finite
fields, if q = pk for some prime number p, then the automorphisms of GF(q) are
the maps that raise each element to a power pj, where 0 < j ≤ k [42, p. 53].
Notice that the structure preserving property of automorphisms implies that for all
a, b ∈ GF(q), (a+ b)p

j
= ap

j
+ bp

j
.

We now have enough to prove the following lemma. This lemma will prove useful
later in Chapter 5 when constructing relative hemisystems.

Lemma 2.3. Suppose q = 2n. Then for all z ∈ GF(q2) that satisfy z + zq = 1, the
polynomial zq+1x2

2 + x1x2 + x2
1 is irreducible over GF(q).

Proof. ∗ Firstly notice that zq+1 ∈ GF(q), because (zq+1)q = zq+1. Suppose that
zq+1x2

2+x1x2+x2
1 was reducible. Then zq+1x2

2+x1x2+x2
1 = 0 for some x1, x2 ∈ GF(q),

with at least one of x1, x2 nonzero. Now, notice that (zx2 + x1)q+1 = zq+1xq+1
2 +

xq+1
1 + zx2x

q
1 + zqxq2x1 = zq+1x2

2 + x2
1 + zx2x1 + zqx2x1. Then, from the definition of

z,

zq+1x2
2 + x1x2 + x2

1 = (zx2 + x1)q+1 + zx2x1 + zqx2x1 + x1x2

= (zx2 + x1)q+1 + (zq + z + 1)(x1x2)

= (zx2 + x1)q+1

So (zx2 +x1)q+1 = 0. Since a field has no zero divisors3, we must have zx2 +x1 = 0.
Since GF(q) is a field and is therefore closed under addition and multiplication,

2See Lagrange’s Theorem in Appendix B.
3nonzero elements whose product is zero.
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z ∈ GF(q). It follows that zq + z = z + z = 0, which is a contradiction because
by definition, z must satisfy z + zq = 1. Therefore, zq+1x2

2 + x1x2 + x2
1 must be

irreducible.

Notice that this is only guaranteed to hold for q even, since we extensively make
use of the characteristic of GF(q).

2.2 Projective spaces

We will introduce projective spaces in an axiomatic fashion, building up from in-
cidence structures and projective planes, and making use of the finite fields discussed
in the previous section.

Definition 2.4. ([61, p. 215]) A point-line incidence structure is a triple (P ,L, I),
with points P , lines L and a symmetric incidence relation I ⊆ P × L. We say the
incidence structure is finite when P is finite.

A point P is said to be incident with a line ` if (P, `) ∈ I. Since I is symmetric, we
also say that ` is incident with P . We describe two points as being collinear if they
are incident with the same line. Furthermore, we say that two lines ` and m meet
if there exists a point P such that (P, `) ∈ I and (P,m) ∈ I. We sometimes denote
that a point or line x is incident with another point or line y by x I y. Although
we have defined incidence structures using points and lines, there are other higher
dimensional structures such as planes and solids, which will be discussed later in
Section 2.2.2. We will also always assume that our incidence structures are finite.

2.2.1 Projective planes

Definition 2.5. A projective plane is an incidence structure such that:

1. Any two points span a unique line.

2. Any two lines meet in a unique point.

3. There exist four points such that there is no line which meets three of them.

Notice that if P is a point and ` is a line not incident with P , there exists a
line for every point on ` that is incident with P . Additionally, each line through P
must meet ` in a single point. Since these statements hold for every pair P and `,
there must be the same number of points incident with each line as there are lines
incident with each point. If there are q + 1 points incident with every line, then we
say that a projective plane has order q.

The Fano plane is the smallest example of a projective plane, illustrated in Figure
2.1. It has seven points, and seven lines and has order two. We may assign non-zero
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vectors from GF(2)3 to each of the points in the Fano plane,4 with lines forming the
span of two points.

(0,0,1)

(1,0,1)

(1,0,0)(0,1,0)

(0,1,1)

(1,1,0)

(1,1,1)

Figure 2.1: The Fano
plane, a projective plane
of order two.

We say that two triangles are in perspective from a
point P if their corresponding vertices lie on lines that
are incident with P . Similarly, we say that two trian-
gles are in perspective with respect to a line ` if the lines
forming the corresponding edges of the triangles meet on
`. A projective space is said to be Desarguesian if when-
ever two triangles are in perspective from a point, they
are also in perspective with respect to a line, and vice
versa. This property is named after Desargues, a 17th
century mathematician who proved that the projective
spaces over the real numbers are Desarguesian [68]. For
example, the Fano plane is Desarguesian. See Figure 2.2
for an example of two triangles in the Fano plane that
satisfy the Desarguesian property. Projective spaces that are not Desarguesian are
said to be non-Desarguesian, and the first examples of non-Desarguesian planes
were discovered by Veblen and Wedderburn [63]. The smallest non-Desarguesian
projective planes are three examples of order nine, which each have 91 points and
91 lines. For a survey of the known non-Desarguesian planes, see [68]. As we will
find out in the next section, all projective spaces which have higher rank than a two
dimensional projective plane are Desarguesian.

P

`

Figure 2.2: Two triangles
in the Fano plane which
are in perspective from P
and in perspective with
respect to `.

2.2.2 Projective spaces

Definition 2.6. A projective space is an incidence struc-
ture Π = (P ,L, I) which obeys the following set of ax-
ioms.

i) Any two points P and Q are incident with exactly
one common line, denoted PQ,

ii) Each line is incident with at least three points,

iii) Suppose A,B,C,D are distinct points. Then, if AB
intersects CD, then AC intersects BD.

The last axiom is called the Veblen-Young axiom, first
described by the axiom’s namesakes in 1908 [64]. It en-
sures that every pair of lines on a plane meet in a point.
An illustration of the axiom is given in Figure 2.3. If
we know that two lines in the incidence structure always
meet, we are not required to prove that the Veblen-Young axiom holds to show that
the incidence structure is a projective space.

4That is, non-zero, three dimensional vectors over GF(2).
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C

D

B

A

Figure 2.3: An illustration of
the Veblen-Young axiom.

A projective space is said to be nondegenerate
when it contains at least two lines. We assume that
all of the projective spaces we work with are nonde-
generate.

We will now describe an intuitive way of building
projective spaces by considering vector spaces over
fields. Let V be an (n+ 1)-dimensional vector space
over a finite field GF(q), where q is a prime power.
We will define the incidence structure PG(n, q) as
follows. Define the set of points of PG(n, q) as the
set of one dimensional subspaces of V . In the same way, define the set of lines of
PG(n, q) to be the set of two-dimensional subspaces of V and so on. We define
the incidence relation I associated with PG(n, q) by taking a symmetric version of
inclusion on subspaces. Given a subspace of dimension k, we define its codimension
to be n− k. A hyperplane is defined to be a subspace with codimension 1. We also
sometimes refer to the dimension of a projective space as its rank.

Theorem 2.7. PG(n, q) satisfies the axioms for a projective space.5

Moreover, every Desarguesian projective space can be constructed from PG(n, q).

Example 2.8. The Fano plane is isomorphic to PG(2, 2).

In fact, Vahlen [59] and Hessenberg [34] showed that not only does PG(n, q) meet
the conditions for a projective space, but every projective space of rank n ≥ 3 can
be constructed from it. This gives us a nice way of visualising projective spaces in
terms of the less abstract notion of vector spaces. Despite Vahlen and Hessenberg’s
earlier proof of the following theorem, it is almost universally attributed to Veblen
and Young.

Theorem 2.9 (The Veblen-Young Theorem [65, 66]). Any finite projective space
with rank n ≥ 3 is isomorphic to the Desarguesian projective space PG(n, q), with
the same order.

This immediately implies that the only non-Desarguesian projective spaces have
rank less than or equal to two. We sometimes take advantage of the Veblen-Young
Theorem and denote lines by a 2× (n+ 1) matrix whose rowspace is the associated
vector subspace of that line. We will see this notation used extensively in the
discussion of reguli. We can also now consider higher dimensional subspaces of
projective spaces in terms of the underlying vector space. If U is an m-dimensional
subspace of an (n + 1)-dimensional vector space V over GF(q), then U is a (m −
1)-dimensional subspace of PG(n, q). For example, if m = 3, the corresponding
subspace of PG(n, q) is a plane, and if m = 4, the corresponding subspace is a solid.
Furthermore, if m = n, then the corresponding subspace of PG(n, q) is a hyperplane.

5The proof is omitted here, see [8].
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2.2.3 Collineations Let PG(n, q) be a projective space. A collineation ϕ is
a permutation of the points of PG(n, q) which maps every subspace to a subspace
of the same dimension [14]. Collineations preserve incidence, namely if U and W
are subspaces of the underlying vector space V of PG(n, q), then φ(W ) ⊆ φ(U) if
and only if W ⊆ U . The set of all collineations of PG(n, q) forms a group6 under
composition. A collineation group acting on a geometric structure is an example of
a group action, which will be covered further in Chapter 3. Collineation groups form
the basis for the Fundamental Theorem of Projective Geometry, which will also be
discussed in Chapter 3. We sometimes denote the collineation group of an incidence
structure T by Coll(T ).

In the study of relative hemisystems, we also frequently encounter Baer involu-
tions. Suppose Θ is a subspace of a finite Desarguesian projective space PG(n, q2)
such that Θ has dimension n and order q. Then, we call Θ a Baer subspace of
PG(n, q2). Furthermore, if ϕ is a non-identity collineation that fixes a Baer sub-
space, we say that ϕ is a Baer collineation, or a Baer involution if ϕ has order
two.7

2.2.4 Generalised quadrangles Generalised polygons were introduced by
J. Tits in 1959 in order to describe the rank two residues of irreducible spherical
buildings [56]. Amongst the generalised polygons are the generalised quadrangles,
which are of particular interest to us.

Definition 2.10. A generalised quadrangle of order (s, t) is an incidence structure
of points and lines such that:

i) Any two points are incident with at most one line.

ii) Every point is incident with t+ 1 lines.

iii) Every line is incident with s+ 1 points.

iv) For any point P and line ` that are not incident, there is a unique point K on
` that is collinear with P .

P

K

`

Figure 2.4: An
illustration of the
GQ axiom.

We sometimes denote the generalised quadrangle of order (s, t)
by GQ(s, t). The last axiom is often called the ‘GQ axiom’ be-
cause it is a distinguishing feature of generalised quadrangles. If
we take the point-line dual of a generalised quadrangle of order
(s, t), we have another generalised quadrangle, of order (t, s). A
simple counting argument shows that a generalised quadrangle of
order (s, t) has (s + 1)(st + 1) points and (t + 1)(st + 1) lines.
There are many examples of generalised quadrangles, for a good

6See Appendix B for background on elementary group theory.
7For more background on Baer subplanes and collineations, see [7].
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reference for the finite cases, see [48]. A trivial example of a generalised quadrangle
is of order (n, 1), which can be visualised as a grid.

Example 2.11. The symplectic space W(3, q), which will be explored further in
Section 2.4.1, is an example of a family of generalised quadrangles of order (q, q). The
points of the symplectic space are the points of a projective space PG(3, q). Recall
that points are the one dimensional subspaces of the underlying four dimensional
vector space. The lines of W(3, q) are exactly the lines of PG(3, q) that are fixed
under the map:

`τ =
⋂

(x1,x2,x3,x4)∈`

{(y1, y2, y3, y4) ∈ PG(3, q) | x1y4 − x4y1 + x2y3 − x3y2 = 0}.

The smallest nontrivial example of a generalised quadrangle is the symplectic
space W(3, 2). It is sometimes called the ‘doily’ because of its shape in certain
representations. See Figure 2.5.

GQ(3, 1). The doily - GQ(2, 2).

Figure 2.5: Two examples of generalised quadrangles.

2.2.5 Partial quadrangles Cameron defined partial quadrangles in 1975 as
a generalisation of generalised quadrangles [17]. Later in Chapter 4, we will show
that every hemisystem give rise to a partial quadrangle.

Definition 2.12. A partial quadrangle is an incidence structure with parameters
(s, t, µ), s ≥ 2, t ≥ 2, µ ≥ 1 that satisfies

i) every point is incident with t+ 1 lines,

ii) every line is incident with s+ 1 points,

iii) any two points are on at most one line together,

iv) there are no triangles, and

v) any two noncollinear points have µ points collinear with both of them.



12 CHAPTER 2. PROJECTIVE GEOMETRY

When µ = t+ 1, then the partial quadrangle is also a generalised quadrangle.

Surprisingly, examples of partial quadrangles which are not generalised quad-
rangles are scarce. Out of the known partial quadrangles, the only examples are
those arising from taking away points from a generalised quadrangle of order (s, s2),
three exceptional examples, and triangle-free strongly regular graphs [3]. The three
exceptional examples were discovered by Calderbank when he almost completely
classified the partial quadrangles arising from linear representations in [16].

2.2.6 Dualities

Definition 2.13. Suppose Π = (P ,L, I) is a projective space. We define the dual
projective space Π∗ = (P∗,L∗, I∗) with the following properties:

i) The set of points P∗ consists of the subspaces of Π with codimension 1.

ii) The set of lines L∗ consists of the subspaces of Π with codimension 2.

iii) The incidence relation I∗ is identical to I, i.e., two elements V and W are
incident in Π∗ if they are incident in Π.

Note that the dimension of Π∗ is the same as the dimension of Π. If Π has finite
dimension n then for every subspace V of Π, we have dimΠ∗(V ) = (n−1)−dimΠ(V )
[58].

Definition 2.14. Suppose Π is a projective space and Π∗ is its dual projective
space. Then a collineation γ : Π → Π∗ from Π to Π∗ is called a duality . A duality
of order two, is called a polarity .

The map τ in Example 2.11 is an instance of a duality. It is also of order two,
and is hence a polarity. A natural question to ask about dualities concerns the
relationship between the image of a subspace of projective space under a duality
and the images of its subspaces under the same duality.

Theorem 2.15. Suppose Π is a projective space, and γ is a duality of Π. If U is a
subspace of Π, then

Uγ =
⋂
u∈U

uγ.

Proof. Since γ is a collineation, the set SU := {uγ | u ∈ U} is a subspace of Π∗.
Therefore,

Uγ = SU = 〈uγ | u ∈ U〉 =
⋂
u∈U

uγ

as required.

For the purposes of this dissertation, we are mainly concerned with polarities
and the polar spaces associated with them.
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2.2.7 Polarities We first state an important and useful theorem about the
properties of polarities.

Proposition 2.16 ([58]). Suppose Π is a projective space, and let γ be a bijection
not equal to the identity map from the set of points of Π to the set of hyperplanes
of Π. Then the following statements are equivalent:

i) The map γ is a polarity.

ii) If P,Q are points of Π, then P ∈ Qγ implies Q ∈ P γ.

We say that a point P contained in a projective space Π is absolute with respect
to a polarity γ if P ∈ P γ. On the other hand, a subspace V of Π is said to be
absolute with respect to γ if V ⊆ V γ.

Proposition 2.17 ([58]). Suppose Π is a projective space and γ is a polarity of Π.
Then:

i) If a subspace V of Π is absolute with respect to γ, then every point of V is
absolute with respect to γ.

ii) If P and Q are two points of Π that are absolute with respect to γ, then the
line PQ is absolute with respect to γ if and only if Q is contained in P γ.

Proof. i): For any point R ∈ V , we have by definition of a polarity, R ∈ V ⊆ V γ ⊆
Rγ.
ii): Forward direction: Suppose ` = PQ is an absolute line with respect to γ. By
Theorem 2.15, we have Q ∈ ` ⊆ `γ ⊆ Qγ.
Backward direction: Suppose P and Q are two absolute points of Π such that Q ∈
P γ. Since γ is a polarity, we also have P ∈ Qγ. Furthermore, since P and Q are
absolute, we have P ∈ P γ and Q ∈ Qγ. This implies that ` = PQ ⊆ P γ ∩ Qγ.
Suppose that R is a point incident with ` but is distinct from P and Q. Since γ is a
polarity, we have P γ ∩Qγ ⊆ Rγ and so ` ∈ Rγ. Thus, `γ =

⋂
R∈`R

γ ⊇ `. Therefore,
` is absolute.

We now present the following theorem which states how we can construct a polar
space from a polarity. We leave the proof until later in the chapter, when we have
more closely studied the definition and properties of polar spaces.

Theorem 2.18. Suppose Π is a projective space, and let γ be a polarity of Π such
that there is at least one absolute line with respect to γ. Then the absolute lines
and absolute points with respect to γ define a polar space.
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2.3 Polar Spaces

We now discuss polar spaces at length, because they constitute many of the
structures we need to discuss relative hemisystems in following sections. The notion
of a polar space was first introduced in 1959 by Veldkamp [67] and the area grew
rapidly in subsequent years. In this context, we will only consider finite polar spaces.
The following definition is taken from Buekenhout and Shult [15].

Definition 2.19. An incidence structure (P ,L, I) is said to be a finite polar space
if it satisfies the following properties

i) Any line contains at least three points,

ii) No point is collinear with all other points,

iii) If P is a point and ` is a line not incident with P , then P is collinear with
exactly one or all of the points of `.

P
`

P
`

Figure 2.6: An
illustration of
the “one-all”
axiom for polar
spaces.

The last axiom is sometimes called the ‘one or all’ axiom, and
a depiction of the axiom is given in Figure 2.6. If we always have
exactly one point on ` incident with P , then our finite polar space
is a generalised quadrangle. The traditional way of constructing
polar spaces arises from forms on vector spaces. Polar spaces
which are created in this way are the classical polar spaces.

2.4 Classical Polar Spaces

The dualities that we explored in Section 2.2.6 can be defined
algebraically by sesquilinear forms. Furthermore, polarities are
defined algebraically by reflexive sesquilinear forms, and along
with quadratic forms, these forms are used to define classical polar
spaces. In addition, sesquilinear and quadratic forms are used to
define classical groups, which will be discussed in Section 3.4 and
are strongly linked to classical polar spaces. For background on
reflexive sesquilinear forms and quadratic forms, see Appendix C.

The type of form used to define a classical polar space dictates how many points
the space contains. We explicitly state the number of points in types of classical
polar spaces in Table 2.1 below. More explicit proofs of these results may be found
in [35].

Let us now examine the classical polar spaces over GF(q) in depth.
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Classical Polar Space Number of Points
Q+(2n− 1, q) (qn−1 + 1)(qn − 1)/(q − 1)
Q−(2n+ 1, q) (qn−1 + 1)(qn − 1)/(q − 1)
Q(2n, q) (q2n−1)/(q − 1)

W (2n− 1, q) (q2n − 1)/(q − 1)
H(2n, q2) (q2n − 1)(q2n+1 + 1)/(q2 − 1)

H(2n− 1, q2) (q2n − 1)(q2n+1 + 1)/(q2 − 1)

Table 2.1: The number of points in classical polar spaces

2.4.1 Symplectic spaces A symplectic polar space, or symplectic space is the
set of totally isotropic subspaces of a vector space V (n+ 1, q), the underlying vector
space of PG(n, q) with respect to an alternating form. We denote a symplectic space
by W(n, q), as in Example 2.11. A nondegenerate symplectic form, and therefore a
symplectic space, only exists on V (n+ 1, q) if n is odd because there exists a totally
isotropic subspace of dimension n+1

2
with respect to the form. When n = 3, the

resulting symplectic space W(3, q) is a generalised quadrangle of order (q, q) and
therefore has (q+ 1)(q2 + 1) points and the same number of lines [48]. The smallest
non-trivial example of a symplectic space for n = 3 is the doily.

2.4.2 Hermitian spaces A Hermitian polar space, or Hermitian space, of
PG(n, q2), denoted H(n, q2) is the set of totally isotropic points of a Hermitian form
over the vector space V (n+1, q2). By the definition of a Hermitian form, we require
an involutary automorphism. This only exists when the order of the field is a square,
and the unique involutory field automorphism of GF(q2) is x 7→ xq.

Consequently, the points of a Hermitian space satisfy an equation of the form∑n
i,j=0 bijxix

q
j , with some of the bij coefficients nonzero and bqij = bji for all values

of i, j ∈ {0, 1, . . . n}. The latter condition ensures that the form obeys the property
β(x, y) = β(y, x)q, which is required for a Hermitian form. Furthermore, if n is even,
there is an n

2
-dimensional totally isotropic subspace of V (n+1, q2) with respect to the

Hermitian form. If n is odd, then there exists an n+1
2

-dimensional totally isotropic
subspace [26]. When n = 3, the resulting Hermitian space H(3, q2) is isomorphic to
a generalised quadrangle of order (q2, q) and therefore has (q2 + 1)(q3 + 1) points
and (q + 1)(q3 + 1) lines [48].

2.4.3 Quadrics A quadric in a projective space PG(n, q) is the set of totally
singular subspaces of the underlying vector space with respect to a quadratic form.
Suppose Q is a nondegenerate quadratic form on the (n + 1)-dimensional vector
space over GF(q), V (n + 1, q). If n is even, then we can choose a suitable basis of
V (n+1, q) such that Q can be expressed as Q(x0, x2, . . . xn) = x2

0 +x1x2 +. . . xn−1xn.
We say that the corresponding quadric is parabolic. On the other hand, if n is
odd, then by a suitable choice of basis for V (n + 1, q), we can write Q in one of
two ways – either as Q(x0, x2, . . . xn) = x0x1 + . . . xn−1xn, or Q(x0, x2, . . . xn) =
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x0x1 + . . . xn−3xn−2 + f(xn−1xn), where f is an irreducible homogeneous degree two
polynomial over GF(q). In the former case, the corresponding quadric is called
hyperbolic, and in the latter case, elliptic [26].

A nondegenerate quadric in PG(2, q) has q + 1 points and is called a conic. In
fields of even characteristic, all tangent lines8 to a conic meet in a single point, called
the nucleus of the conic [14, p. 121]. In this dissertation, we will predominantly
be working in PG(3, q2) and so only hyperbolic and elliptic quadrics are of interest
to us. We denote a hyperbolic quadric by Q+(n, q), and an elliptic quadric by
Q−(n, q).Notice that we only used nondegenerate forms when constructing quadrics.
If we instead use a degenerate form, we do not create a quadric, rather, we create a
cone [36].

Let PG(n, q) be a projective space, and suppose U and V are two subspaces of
PG(n, q). Then we say that U and V are skew if they do not intersect. Furthermore,
if R is a set of pairwise skew subspaces of PG(n, q), a line ` ∈ PG(n, q) is said to
be a transversal of R if ` intersects every subspace in R in a single point.

Proposition 2.20. Suppose ` and m are two skew lines of PG(3, q) and let P be a
point that is not incident with ` or m. Then there exists a single line n through P
that intersects each of ` and m in a point.

Proof. Existence: Let α be the plane that is generated by P and `. Now, since we
are working in PG(3, q), α meets m in a point Q. Now, the lines ` and n := PQ are
contained in α and so they meet in a point R.
Uniqueness: Suppose there are two distinct lines `1 and `2 incident with P that
intersect each of ` and m in a point. Then the plane β spanned by `1 and `2

contains both ` and m, which contradicts our initial assertion that they are skew
lines.

This proposition leads to a direct corollary which builds on the properties of
transversals.

Corollary 2.21. Let L be a set of three pairwise skew lines in PG(3, q) and let T
be the set of transversals on L . Then,

1. Any two lines of T are skew,

2. Any point on a line contained in L is incident with exactly one transversal,

3. The lines in L are transversals of T .

We may now define reguli on PG(3, q), a concept integral to our study of hemisys-
tems and relative hemisystems in future chapters.

8i.e., points that meet the conic in one point.
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Definition 2.22. Suppose R is a set of pairwise skew lines in PG(3, q). We say
that R is a regulus if it satisfies the following conditions.

1. Each point incident with a line of R is also incident with a transversal of R.

2. Each point on a transversal of R is incident with a line of R.

The set of transversals T of R also forms a regulus, called the opposite regulus9

of R.

We now have the following theorem which aids in the visualisation of reguli.

Theorem 2.23. Suppose R is a regulus of PG(3, q) with opposite regulus T , and
let S be the set of points on the lines of R. Then,

i) Each line ` ∈ PG(3, q) intersects the regulus in up to two points, or is contained
in S,

ii) A line is in S if and only if it is in R ∪T ,

iii) Every point of S is incident with exactly one line of R and one line of T

Proof. i) and ii): Suppose that ` ∈ PG(3, q) intersects S in at least three points.
Then, ` either meets three lines m1,m2,m3 ∈ R in a point or is completely contained
in R. If it is the latter case, then the statement is proven. So suppose we have the
former case. Let P be intersection of ` and m1. By Corollary 2.21, ` must be the
unique transversal of m1,m2 and m3 through P . So ` is a transversal of R through
P and so by the definition of a regulus, ` ∈ R.
iii): Since R and T are composed of pairwise skew lines, every point of S must be
incident with one line of R and one line of T .

We can construct a hyperbolic quadric on PG(3, q2) by using the Segre product
of points to generate reguli. The Segre product10 takes points P = (x1, x2) and
Q = (y1, y2) in PG(1, q), to (x1y1, x1y2, x2y1, x2y2). We fix the point P and let Q
vary over all possible points in PG(1, q). This generates a line in the Segre prod-
uct, and by fixing P on each point in PG(1, q) and then varying over all possible
points Q, we generate a set of lines that form a regulus in PG(3, q2). The oppo-
site regulus is obtained by instead fixing Q at each point of PG(1, q) and letting P
vary over all possible points. This implies that the points of the hyperbolic quadric
are all points for the form (x1y1, x1y2, x2y1, x2y2), where x1, x2, y1, y2 ∈ GF(q2).
Consider the form Q(z1, z2, z3, z4) = z1z4 − z2z3. Substituting the points of the hy-
perbolic quadric formed from the Segre product, we have Q(x1y1, x1y2, x2y1, x2y2) =

9See [58, p. 199].
10Named after Corrado Segre. See [36].
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x1y1x2y2−x1y2x2y1 = 0. Therefore, the points of the hyperbolic quadric are totally
singular points of Q(z1, z2, z3, z4). Further, there are q4−1

q2−1
= q2 +1 points in PG(1, q)

and therefore (q2 + 1)2 points in the Segre product. This is the exact number of
points in a hyperbolic quadric on PG(3, q2). Therefore, Q(z1, z2, z3, z4) = z1z4−z2z3

is the defining equation for the hyperbolic quadric formed from the Segre product.
Recalling that we can represent lines in a projective space as the span of two points,
and therefore the rowspace of a 2 × (n + 1) matrix, the reguli of this hyperbolic
quadric are as follows:

R1 = {[ 1 0 λ 0
0 1 0 λ ] | λ ∈ GF(q2)} ∪ {[ 0 0 1 0

0 0 0 1 ]}

and
R2 = {[ 1 λ 0 0

0 0 1 λ ] | λ ∈ GF(q2)} ∪ {[ 0 1 0 0
0 0 0 1 ]}

We will call this hyperbolic quadric the canonical hyperbolic quadric and use it to
find the reguli of other quadrics using a change of basis.

As discussed in Appendix C, we can use a Gram matrix to represent a quadratic
or reflexive sesquilinear form. Suppose A1 and A2 are the Gram matrices for hy-
perbolic quadrics Q+

1 and Q+
2 respectively. If we can find a matrix B such that

BA2B
> = A1, then we call B the change of basis matrix from Q+

2 to Q+
1 . We

may use the change of basis matrix B to find the reguli of Q+
2 from the reguli of

Q+
1 . Notice that for all lines ` ∈ PG(3, q2), `BA2B

>`> = `A1`
> is equal to zero

if and only if ` ∈ Q+
1 , i.e., ` is contained in one of the reguli of Q+

1 . Since matrix
multiplication is associative, `BA2B

>`> = (`B)A2(`B)>. Therefore, `B is totally
singular in Q+

2 if and only if ` is totally singular in Q+
1 . Therefore, we can find

the reguli of Q+
2 by simply finding the images of the reguli of Q+

1 under the change
of basis matrix from Q+

2 to Q+
1 . This technique will be used in Chapter 5. We

now revisit Theorem 2.18. From a finite polar space perspective, we can produce
polarities using the associated form. The classical polar spaces are constructed by
taking all of the totally singular subspaces of an (n + 1)-dimensional vector space,
where n ≥ 3, over a field F with respect to a reflexive σ-sesquilinear or quadratic
form, together with the natural incidence relation. For a quadratic form Q, let f be
the associated symmetric bilinear form, and for a σ-sesquilinear form g, let f = g.
Then, if W is a subspace of a vector space V (n+ 1, q), we define

W⊥ = {v ∈ V | ∀w ∈ W : f(v, w) = 0}

Now, viewing W as a set of subspaces of PG(n, q), the map ⊥ that takes W to W⊥

is a polarity. The subspaces of a polar space are exactly those that satisfy W ⊆ W⊥.

If n = 2, then the totally isotropic subspaces with respect to the form create a
generalised quadrangle . We may therefore think of polar spaces as substructures
of PG(n, q). Tits showed in [57] that classical polar spaces are the only finite polar
spaces with rank at least three. Note that this is not the case when we consider
infinite polar spaces.
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Group Theory

“It has long been an axiom of mine that the
little things are infinitely the most
important.”

Arthur Conan Doyle, The Memoirs of
Sherlock Holmes

In this chapter, we explore group actions and how they may be used to describe
polar spaces and other geometric structures defined in Chapter 2. For a background
of basic group theory, see Appendix B.

3.1 Group actions

Definition 3.1. A group action of a group G on a set Ω is a function G× Ω→ Ω
defined by (g, ω) 7→ ωg satisfying the following two properties.

i) (ωg1)g2 = ω(g1g2) for all ω ∈ Ω and g1, g2 ∈ G.

ii) ωe = ω, for all ω ∈ Ω and where e is the identity of G.

We say that a group action is faithful if it is injective. When we have a group
action of a group G on a set Ω, we say that “G acts on Ω”, and similarly for elements
of Ω.

Example 3.2. A group G acting on itself by right multiplication is a group action
with trivial kernel, since for g, h, h′ ∈ G, gh = gh′ ⇒ h = h′.

Another very natural group action is given by the rotational and reflectional
symmetries of a regular n sided polygon. The corresponding group is called the
dihedral group, denoted D2n. It is generated by two elements – a rotation of 2π

n

radians anticlockwise and a reflection along a fixed axis. The dihedral group acts
on the vertices of the regular n-gon by permuting the vertices based on the rotation
and/or reflection that is induced by the group element.

Definition 3.3. Suppose G is a group acting on a set Ω. Then the orbit of ω ∈ Ω
under G is the set ωG = {ωg | g ∈ G}.

We say a group action is transitive on a set if it only has one orbit. In other
words, given two elements ω, ω′ ∈ Ω, there exists a g ∈ G such that ωg = ω′.

Definition 3.4. Suppose G is a group acting on a set Ω. The stabiliser of an
element ω of Ω is the set Gω = {g ∈ G | ωg = ω}.
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If we stabilise a subset of elements S in Ω individually, we say that we have
pointwise stabilised S in G. The pointwise stabiliser of S, that is, the subset of G
that pointwise stabilises S, is the intersection of all of the stabilisers of elements
of S. On the other hand, the setwise stabiliser of S in G is the set of elements of
G that stabilise the elements of S up to permutation. For clarity, if S is pointwise
stabilised in G, we write G(S), and if S is setwise stabilised, we simply write GS.
We say that a group G acts fixed point freely on S if none of the elements of S are
fixed under the action of G.

Proposition 3.5. Suppose G is a group acting on a set Ω. The stabilisers GS and
G(S) are both subgroups of G.

Proof. Suppose g, h ∈ GS. Then Sg = S and Sh = S. So for all x ∈ S, there
exist y, z ∈ S such that yg = x and zh = x. Therefore, ygh

−1
= (yg)h

−1
= (x)h

−1
=

(zh)h
−1

= z ∈ S. Therefore, by Proposition B.6, the setwise stabiliser GS is a
subgroup of G. An analogous argument shows that G(S) is a subgroup of G as
well.

We now state one of the most powerful theorems in group theory, which ties
together the concepts of orbits and stabilisers.

Theorem 3.6 (Orbit-Stabiliser Theorem). Suppose G is a group acting on a set Ω.
Then for ω ∈ Ω, |G| = |Gω||ωG|.

Proof. Define the function f : ωg 7→ Gωg for g ∈ G. We first show that this function
is well-defined. Suppose ωg = ωh for some g, h ∈ G. Then ωgh

−1
= ωhh

−1
= ωe = ω.

So gh−1 ∈ Gω and Gωg = Gωh. Therefore, f is well-defined. It is onto because the
preimage of any coset Gωg contains ωg. Suppose f(ωg) = f(ωh) for some g, h ∈ G.
Then Gωg = Gωh and by the converse argument used to show f is well-defined
above, ωg = ωh. Therefore, f is a bijection and so |ωG| = |G|/|Gω|.

3.2 Permutation groups

Permutation groups give us a way of considering a group G that acts on a set Ω
as a collection of permutations on Ω.

A permutation group is a set of permutations of a set Ω, which forms a group
under function composition. All permutations on n elements can be written as the
product of transpositions [29]. If a permutation can be written as an odd number of
permutations, we call it an odd permutation and similarly, an even permutation is a
permutation that can be written as a product of an even number of transpositions.
This distinction is well defined, i.e., a permutation cannot be written as both an
even and an odd number of transpositions [29]. We call the group consisting of
all of the permutations of n elements the symmetric group on n elements , denoted



3.2. PERMUTATION GROUPS 21

Sn, or Sym(Ω) if we are considering the permutations of a particular set Ω with n
elements. The order of the symmetric group on n elements is n!, because there are
n! ways to permute the elements. Also notice that we may generate the symmetric
group by transpositions, since every permutation may be written as the product of
transpositions.

The set of all even permutations in Sn forms a group called the alternating
group, denoted An. The alternating group has index two in the symmetric group,
and therefore has order n!/2. For example, the dihedral group D2n can be viewed
as a set of permutations of the vertices of a regular n-gon.

Notice that if we have a group G acting on a set Ω faithfully, then G is isomorphic
to a subgroup of Sym(Ω) because G permutes the elements of Ω. We now state the
following theorem, which relates to a group acting on itself.

Theorem 3.7 (Cayley’s Theorem). Every group G is isomorphic to a subgroup of
the symmetric group Sym(G).

Proof. By Example 3.2, G acts by right multiplication on itself, and it acts faith-
fully. Therefore, each element g of G can be regarded as a permutation ϕg of G.
We can define the map φ : G → Sym(G) by g 7→ ϕg. This is a homomorphism
because for g, h ∈ G, φ(gh) = ϕgh = ϕgϕh = φ(g)φ(h). The kernel of φ is exactly
{eG} because it is the only element which fixes every element of G. Therefore, φ is
injective and by the First Isomorphism Theorem, G ∼= φ(G) ≤ Sym(G).

Definition 3.8. Suppose G and H are groups which act on sets Ω and ∆ respec-
tively. We say that G and H are permutation isomorphic if there is an isomorphism
ϕ : G→ H and a bijective function from f : Ω→ ∆ such that

f(ωg) = f(ω)ϕ(g)

for all ω ∈ Ω and g ∈ G.

Example 3.9. Consider a group G acting on itself by right multiplication, and by
left inverse multiplication. Now, the identity map on G is an isomorphism, and let
us define a bijection f : G → G by f(g) = g−1 for all g ∈ G. Now, for g, h ∈ G,
f(gh) = f(gh) = h−1g−1 = f(g)ϕ(h). So the two actions are permutation isomorphic.

The following example relates to the construction of reguli from the points of a
projective line PG(1, q), introduced in Section 2.4.3.

Example 3.10. The group PSL(2, q) acts on a projective line PG(1, q) by permuting
the points on the line. Recall from Section 2.4.3 that we can construct a regulus R
from PG(1, q) by taking the Segre product with another projective line and varying
over the points on that line. We can therefore define a bijection ϕ : PG(1, q) → R
by matching each point P ∈ PG(1, q) with its corresponding line in the regulus
`P . Define an action of PSL(2, q) on R by (`P )g = `P g , for all P ∈ PG(1, q) and
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g ∈ PSL(2, q). Since PSL(2, q) is isomorphic to itself, the action of PSL(2, q) on
PG(1, q) is permutation isomorphic to the action of PSL(2, q) on the lines of the
regulus R.

This permutation isomorphism will prove useful later in Chapter 5.

3.3 Group extensions and semidirect products

Group extensions are used to describe groups in terms of a normal subgroup and
a quotient group. They will prove useful later in Chapters 4 and 5, when we are
describing the stabilisers of hemisystems.

Suppose N E G and let H = G/N . Then, we can write G = N.H and we say
that G is an extension of H by N .

For example, the alternating group An is a normal subgroup of Sn. The quotient
group Sn/An is of order two and is therefore the cyclic group C2. So, we may write
Sn as an extension of C2 by An by having Sn = An.C2. When we have a cyclic
group as an element of the extension, we usually write the order of the cyclic group
instead and so Sn = An.2.

Let N and H be groups, and let φ : H → Aut(N) be a homomorphism. We say
that G is the semidirect product of N and H, denoted G = N oφ H if N E G and
H ≤ G such that N∩H = {eG}. We define multiplication in G by (n1, h1)·(n2, h2) =

(n1n
φ(h1)
2 , h1h2), where n1, n2 ∈ N and h1, h2 ∈ H, and where φ(h1) acts on n2 by

conjugation. For example, Sn is the semidirect product of An and C2 = 〈a〉, where
φ(a) is a transposition. We will use semidirect products in Chapter 4 to describe
the collineation groups of hemisystems and relative hemisystems.

3.4 Classical groups

Classical groups are fundamental in our understanding of the action of groups
on geometric objects in later chapters. All of the families of classical groups apart
from the linear groups arise from the σ-sesquilinear and quadratic forms described
in Appendix C. It is therefore not surprising that there are such strong connections
between classical groups and finite classical polar spaces. For further reading about
classical groups, see Wilson [69].

Let f be a reflexive sesquilinear on a vector space V and let W be a vector space.
An isometry of f is a linear transformation g : V → W such that f(ug, vg) = f(u, v)
for all u, v ∈ V . In other words, an isometry is form preserving. Similarly, an
isometry of a quadratic form Q is a linear transformation g′ : V → W such that
Q(ug

′
) = Q(u) for all u ∈ V . The collection of isometries with respect to a form f

equipped with composition forms a group. We call this the isometry group of f .
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3.4.1 The linear groups A linear transformation is a map f : V → W
between vector spaces V and W which preserves vector addition and scalar multi-
plication. Linear transformations can be represented by matrices, and conversely,
every matrix gives rise to a linear transformation.

Let V be an n-dimensional vector space over the finite field GF(q). The general
linear group GL(n, q) is the set of invertible linear transformations from V to itself.
In other words, it is the set of invertible n × n matrices over GF(q). The centre
Z(GL(n, q)) of the general linear group is the set of nonzero scalar multiples of the
identity matrix λIn, λ ∈ GF(q) \ {0}. Since the centre of a group is a normal sub-
group, we take the quotient group GL(n, q)/Z(GL(n, q)), which we call the projective
general linear group, denoted PGL(n, q). Now, the determinant function on n × n
matrices satisfies det(AB) = det(A) det(B) so it is a group homomorphism between
GL(n, q) and GF(q). Then, from Proposition B.15, the kernel of the determinant
function, that is, the set of matrices with determinant 1, is a normal subgroup of
GL(n, q). This kernel is called the special linear group, denoted SL(n, q). Similarly
to the general linear group, we can quotient SL(n, q) by its centre (which is composed
of only scalars that are roots of unity) to give us the projective special linear group,
denoted PSL(n, q). We can form another group by taking the semidirect product of
GL(n, q) with the group of field automorphisms of GF(q), and we denote this group
ΓL(n, q). For further details on the construction of ΓL(n, q), see [40]. Similarly, we
can construct PΓL(n, q) from PGL(n, q).

3.4.2 The symplectic groups The symplectic group, denoted Sp(2m, q) is
the isometry group of a nonsingular alternating bilinear form on a 2m-dimensional
vector space over GF(q). Since the symplectic group arises from an alternating
bilinear form f , we have f(λu, λv) = λ2f(u, v). This equals f(u, v) if and only if
λ = ±1. Therefore, these are the only scalars in Sp(2m, q). Similar to the linear
groups, we define the projective symplectic group PSp(2m, q) as Sp(2m, q) factored
by its centre, which is the set of scalars of Sp(2m, q). We denote the semidirect
product of Sp(2m, q) or PSp(2m, q) with the group of field automorphisms on GF(q)
by ΓSp(2m, q) or PΓSp(2m, q) respectively.

3.4.3 The unitary groups The general unitary group is defined in a similar
way to the symplectic group – it is the isometry group of a nonsingular Hermitian
form f defined on a vector space V . In other words, it is the subgroup of GL(n, q2)
that contains the elements g satisfying f(ug, vg) = f(u, v) for all u, v ∈ V .

By considering the Gram matrix1 of f , we can also alternatively define the uni-
tary group as the group of unitary matrices2 over GF(q). It is easy to see that this is
a subgroup of the general linear group GL(n, q). The subset of these matrices that
have determinant 1 is a subgroup called the special unitary group, denoted SU(n, q).
The projective general unitary group PGU(n, q) is obtained by factoring GU(n, q) by

1See Appendix C.
2Matrices whose inverse is their conjugate transpose.
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its centre has index q + 1 in GU(n, q) [69]. Similarly, the projective special unitary
group, denoted PSU(n, q), is obtained by factoring the special unitary group by its
centre. We define PΓU(n, q) analogously to the linear and symplectic cases.

3.4.4 The orthogonal groups The remaining class of σ-sesquilinear forms is
the symmetric examples. This family proves more complicated to consider because
the resulting groups vary based on the characteristic of the field the form is defined
over.

Let f be a nondegenerate quadratic form on an m-dimensional vector space V
over GF(q). The orthogonal group O(V, f) is the group of linear maps g which satisfy
f(ug) = f(u) for all u ∈ V .

Recall from Appendix C that if the characteristic of the field is odd, we may
construct a symmetric bilinear form βf from the quadratic form f . Note that all
linear maps which preserve the quadratic form must preserve the corresponding
bilinear form, and so we may equivalently define the orthogonal group as being the
set of linear maps that preserve a symmetric bilinear form.

Alternatively, if B is a Gram matrix for βf with respect to some basis of V , we
may consider the orthogonal group as the set of m×m invertible matrices A which
satisfy A>BA = B. This implies that all of the matrices in the orthogonal group
have determinant ±1, and that the orthogonal group is a subgroup of the general
linear group GL(n, q).

Recall from Example C.4 that when V is even dimensional, there are two equiva-
lence classes of symmetric bilinear forms – plus and minus type. Each of these gives
rise to an orthogonal group – plus type, denoted O+(2n, q), and minus type denoted
O−(2n, q). The groups corresponding to forms of the same type are isomorphic, so
we only need denote the dimension and field order and not the form [69]. On the
other hand, if V is odd dimensional, then there is one orthogonal group O(2n+1, q).

Now, let us consider the case where GF(q) has characteristic 2. When the dimen-
sion of V is odd (i.e., 2n+ 1), the corresponding orthogonal group is isomorphic to
the symplectic group Sp(2m, q), because in even characteristic, symmetric forms are
also alternating [69]. Therefore, we only have orthogonal groups on vector spaces
over fields with characteristic two when the dimension is even.

We describe some groups arising from orthogonal groups. For simplicity, we
omit the plus and minus superscripts, and replace them with an ε, which denotes
any of plus type, minus type, or odd dimensional orthogonal groups.. The subgroup
of the orthogonal group Oε(n, q) containing only matrices with determinant +1
is called the special orthogonal group, denoted SOε(n, q). Notice that when the
chararacteristic of the field is two, −1 = +1 and therefore SOε(n, 2k) is identical
to Oε(n, 2k). Quotienting an orthogonal group Oε(n, q) by its centre gives us the
projective orthogonal group POε(n, q). Similarly, factoring a special orthogonal group
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by its centre results in the projective special orthogonal group, denoted PSOε(n, q).
The derived subgroup of the orthogonal group Oε(n, q) is denoted by Ωε(n, q), and
the group obtained by factoring by its centre is denoted PΩε(n, q). As before, we
denote the semidirect product of an orthogonal group with the set of automorphisms
in GF(q) by ΓOε(n, q), and the projective version by PΓOε(n, q).

3.5 Group theory meets geometry

In this section, we explore the interplay between group theory and finite ge-
ometry, and build on the ideas briefly discussed in Chapter 2. One of the first
mathematicians to explore this relationship in earnest was Felix Klein, in the publi-
cation of his Erlangen program manifesto in 1872 [41]. At the time, many models of
non-Euclidean geometry had emerged, and it was unclear how these models related
to each other. Klein proposed that group theory should be used to describe them
through group actions on elements of these geometries. The starting point for this
analysis is the identification of the group of collineations of a projective space with
a classical group.

3.5.1 Collineation groups of polar spaces

Theorem 3.11 (Fundamental Theorem of Projective Geometry). The collineation
group of PG(n, q) is isomorphic to PΓL(n, q) for n ≥ 3.

A proof of the Fundamental Theorem of Projective Geometry may be found in
[28]. Therefore, we may describe a subspace of a projective space by stating the
set of collineations that setwise stabilise it, which is isomorphic to a subgroup of
PΓL(n, q). In particular, due to the dependence of both classical groups and classical
polar spaces on σ-sesquilinear and quadratic forms, we find that the subgroups of
PΓL(n, q) which stabilise classical polar spaces in PG(n, q) are classical groups. The
classical polar spaces and their stabilisers are shown in Table 3.1.

Classical Polar Space Collineation Group
Q+(2n− 1, q) PΓO+(2n, q)
Q−(2n+ 1, q) PΓO+(2n+ 2, q)
Q(2n, q) PΓO(2n+ 1, q)

W (2n− 1, q) PΓSp(2n, q)
H(n, q2) PΓU(n+ 1, q2)

Table 3.1: The collineation groups of the classical polar spaces.

We very quickly find that it is much easier and much more concise to give a
description of an arbitrary geometric object by the group that stabilises it, rather
than attempting to list its subspaces.
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3.5.2 Embeddings Much of our work on relative hemisystems relies on hav-
ing a way to view classical polar spaces as subgeometries within a projective space.
In order to reconcile the concepts of polar and projective spaces, we use embeddings.

Definition 3.12. Suppose S and T are projective spaces. An embedding of S in T
is an injective, incidence preserving map φ : S → T which maps lines to lines. We
say that S is embedded in T , and denote it by S ↪→ T .

Theorem 3.13 ([14] pg. 668). A finite polar space of rank at least 3 arises from a
vector space equipped with a bilinear, Hermitian, or quadratic form, and therefore
has an embedding into a projective space.

In particular, Theorem 3.13 shows that we can embed Hermitian spaces and
symplectic spaces into PG(3, q2), which is exactly what we need in order to describe
relative hemisystems. Suppose we have embedded a Hermitian space H(3, q2), q
even, in a projective space PG(3, q2) by taking the totally isotropic subspaces under
the form xq+1

1 + xq+1
2 + xq+1

3 + xq+1
4 = 0. The set of points W = {(x, xq, y, yq) |

x, y ∈ GF(q2)} are the points of a symplectic subgeometry W(3, q) embedded in
H(3, q2) [21]. This means that the collineation group of W(3, q), PΓSp(4, q), is a
subgroup of PΓU(4, q2), which is the collineation group of H(3, q2). In the same
way, by Theorem 3.13, the collineation group of any polar space with rank n ≥ 3
is a subgroup of PΓL(n, q), the collineation group of the projective space PG(n, q)
that it is embedded in.

Now that we are able to embed polar spaces in projective spaces, we can examine
how they interact and intersect. The following proposition in particular will prove
extremely useful in our study of relative hemisystems.

Proposition 3.14 (Aguglia and Giuzzi, [1]). Suppose q is even and let H(3, q2) be
a Hermitian space and Q+ an irreducible hyperbolic quadric of PG(3, q2) that share
the same tangent plane to some non-singular point P . Then the intersection of Q+

and H(3, q2) has size q2 + 1 and is an elliptic quadric Q−(3, q).
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Hemisystems and Relative Hemisystems

“Prove, disprove or salvage.”

Arnold Ross

We now introduce the main topics of this dissertation: hemisystems and relative
hemisystems. The motivation for Beniamino Segre’s definition of hemisystems in
1965 stemmed from the generalisation of spreads of Hermitian spaces [51].

A spread of an incidence structure is a set of lines L such that every point lies
on exactly one line of L.

Example 4.1. The symplectic space W(3, 2), nicknamed the ‘doily’, contains a
spread. Here, it is highlighted in red. Notice that all fifteen points in this structure
lie on exactly one of the red lines.

Figure 4.1: A spread of the
symplectic space W(3, 2).

In his epic treatise on Hermitian spaces, Segre
[51] generalised the idea of a spread to a regular sys-
tem of order m.

A regular system of order m of a Hermitian space
H(3, q2) is a set of lines such that each point of the
Hermitian space lies on exactly m lines of the set.
We place the restriction 0 < m < q + 1 on m to
eliminate the trivial cases. Note that the Hermitian
space H(3, q2) is a generalised quadrangle of order
(q2, q).

Segre went on to explore what sorts of regular
systems are possible in H(3, q2) for different values of q and found that for q odd,
the only regular system was of order m = (q + 1)/2. In order to prove this, we
require some facts about partial quadrangles, which will be covered later in this
chapter. The (q+ 1)/2 case was of great interest to Segre. Since (q+ 1)/2 is exactly
half the lines incident with a point in H(3, q2), Segre called this regular system of
order (q + 1)/2 a hemisystem.

Definition 4.2. A hemisystem on the Hermitian space H(3, q2) is a set of lines L
such that every point in H(3, q2) is incident with (q + 1)/2 lines of L.

Segre constructed an example of a hemisystem on H(3, 32), admitting PSL(3, 4)
as a setwise stabiliser and proved that this hemisystem is the unique hemisystem
up to equivalence (collineations) on H(3, 32) [51]. This was the sole example given
of a hemisystem, and for many subsequent years, the search was on to find another
example.
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The next major development in regular systems and hemisystems was by Bruen
and Hirschfeld in 1978 who showed that there are no regular systems on H(3, q2), q
even [13]. This theorem provided part of the motivation for the definition of relative
hemisystems more than thirty years later. Also in 1978, Cameron, Goethals, and
Seidel explored the dual idea of a hemisystem on generalised quadrangles of order
(s, s2) [18].

An ovoid of an incidence structure is a set of points O such that every line in the
incidence structure is incident with exactly one point of O. This is the dual concept
of a spread. Therefore, a dual hemisystem or hemisystem of points is a set of points
T such that every line of the generalised quadrangle meets T in (s+ 1)/2 points, or
half of its points. Cameron, Goethals, and Seidel provided a construction of Segre’s
hemisystem in this dual setting and proved that the collinearity graph of a dual
hemisystem of a generalised quadrangle of order (s2, s) is strongly regular. In 1981,
Thas proved that every hemisystem on H(3, q2) gives rise to a partial quadrangle
[54] and therefore, by Cameron’s paper [17], a strongly regular graph.

Despite these developments in the area of hemisystems, no examples of hemisys-
tems different to Segre’s were found for four decades following his original treatise.
In fact, thirty years after Segre’s original paper, Thas conjectured that there were
no hemisystems on H(3, q2) for q > 3 [55]. Interest waned in the subject because of
the lack of new developments.

However, forty years after Segre’s original treatise, Penttila and Cossidente con-
structed an infinite family of hemisystems for all q ≥ 3, q odd, as well as a sporadic
example [23]. The Penttila-Cossidente family of hemisystems admit PΩ−(4, q) as
a setwise stabiliser for each odd prime power q, and the sporadic example admits
3.A7.2 as an automorphism group. Penttila and Cossidente also used the results
of Cameron, Goethals and Seidel to reveal a new family of strongly regular graphs
and examples of partial quadrangles with previously unknown parameters for both
the infinite family and the sporadic example. Through finding these two different
examples (as well as stating some found computationally), Penttila and Cossidente
showed that there was no uniqueness result like that for the hemisystem on H(3, 9),
which opened the door for more infinite families to be found.

Since Penttila and Cossidente’s breakthrough, there have been more than a dozen
papers published on the topic of hemisystems, revealing the existence of several more
infinite families. In 2009, Penttila and Cossidente provided a new construction
of Segre’s original hemisystem and used this to give an alternate construction of
McLaughlin’s strongly regular graph on 275 vertices [24]. In the same year, Bamberg,
De Clerck and Durante constructed a sporadic example of a hemisystem on the non-
classical Fisher-Thas-Walker-Kantor generalised quadrangle of order (52, 5) [3]. This
example also gives rise to a previously unknown partial quadrangle, and allows a new
construction of Penttila and Cossidente’s family of hemisystems admitting 3.A7.2 as
a setwise stabiliser. Penttila and Cossidente went further, constructing three infinite
families in a single paper [25], making use of the theory of orthogonal polarities
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commuting with unitary polarities. They also show how to procure hemisystems
in H(n, q2) using hemisystems in higher dimensions, and show that not all regular
systems of H(n, q2) are hemisystems if n 6= 3. Bamberg, Giudici, and Royle also
proved that all of the known generalised quadrangles of order (s2, s), s odd, called
the flock generalised quadrangles , contain a hemisystem [4]. Note that there exist
generalised quadrangles with parameters (q2, q) that are not isomorphic to H(3, q2)
[48]. In 2011, Vanhove generalised the results of Cameron, Goethals, and Seidel
to prove that distance regular graphs can be obtained from a (q + 1)/2-ovoid of a
regular near 2d-gon of order (q, t) [62].

There is also a strong link between hemisystems and intriguing sets. A set of
points I of a partial quadrangle G is said to be intriguing if there exist positive
integers m,n such that every point P ∈ I is collinear with m points of I and every
point Q /∈ I is collinear with n points of I [5]. The intriguing set is said to be
negative if m − n is negative. Bamberg, Law and Penttila proved in [5] that every
intriguing set of a generalised quadrangle is either an m-ovoid (the dual concept
to a regular system of order m) or a tight set (see [47]). They also constructed an
infinite family of hemisystems of points of W(3, q) using reguli of parabolic quadrics.
Bamberg, De Clerck, and Durante subsequently proved in [3] that every negative
intriguing set of a partial quadrangle gives rise to a hemisystem of points and in
certain circumstances, the converse is true. They also prove some strong results
about intriguing sets of partial quadrangles arising from hemisystems [3, Section 6].

In 2013, Martin, Muzychuk, and van Dam proved that in addition to a strongly
regular graph and a partial quadrangle, every hemisystem on H(3, q2) gives rise to
a 4-class imprimitive cometric Q-antipodal association scheme [60]. We will explore
these association schemes in more depth in the next section.

4.1 Structures that arise from hemisystems

Hemisystems are of particular interest to mathematicians from a variety of fields
because, as mentioned earlier, they give rise to partial quadrangles, strongly regular
graphs and association schemes [23].

4.1.1 Partial quadrangles Partial quadrangles were defined in Section 2.2.5.
Thas was the first to prove in [53] that regular systems give rise to partial quadran-
gles. Since a hemisystem is a regular system of order (q + 1)/2, it follows that we
can construct a partial quadrangle from it.

Suppose K is a regular system of order m of H(3, q2). Let φ be an isomorphism
between H(3, q2) and its dual Q−(5, q) which preserves incidence. Then φ(K) is a
set of points of Q−(5, q) which meets every line of Q−(5, q) in m points. Define the
incidence structure S = (P ,L, I) set out in the following table.

Theorem 4.3 ([53]). S = (P ,L, I) is a partial quadrangle with parameters s =
q −m, t = q2 and µ = q2 + 1−m(q + 1).
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P Q−(5, q) \ φ(K)
L The lines of Q−(5, q)
I The inherited incidence relation of Q−(5, q).

Table 4.1: The parameters of an incidence structure arising from a hemisystem.

Proof. Firstly, notice that every point of P lies on q2 + 1 lines of L, and every line
in L lies on q −m + 1 points of P . Let ` ∈ L, P ∈ P such that P is not incident
with `. Then ` contains at most one point which is collinear with P in S. Consider
two points P,Q ∈ P which are not collinear in S. Let µ be the number of points in
P collinear with both P and Q. The q2 +1 points in Q−(5, q) that are collinear with
P and Q (in Q−(5, q)) are the points of an elliptic quadric in PG(3, q). Now, let us
consider the q + 1 hyperplanes, each of the form PG(4, q) containing PG(3, q) and
take their intersections with φ(K). Every two distinct hyperplanes intersect in an
elliptic quadric Q−(3, q), excluding the points collinear with both P and Q. Now,
let ρ be the polarity associated to Q−(5, q). Then each of the q + 1 hyperplanes
are of the form Rρ for some point R on the line PQ. Each Rρ is a set of q2 + 1
lines incident with R and the points on those lines. There are m points on each of
these q2 + 1 lines contained in φ(K). Furthermore, since Q−(5, q) is a generalised
quadrangle of order (q, q2) (since it is the dual of H(3, q2)), it contains (q2 +1)(q3 +1)
lines. Each line of Q−(5, q) contains m points in φ(K) and so the total number of

points in φ(K) is m(q2+1)(q3+1)
q2+1

. Combining these ideas, we obtain

2((q2 + 1)m− (q2 + 1− µ))

+ (q − 1)

(
(q2 + 1)(q + 1)m

q + 1
− (q2 + 1− µ)

)
+ (q2 + 1− µ) = |φ(K)| = m(q2 + 1)(q3 + 1)

q2 + 1

Rearranging, µ = q2 + 1 − m(q + 1). Therefore, S is a partial quadrangle with
parameters s = q −m, t = q2 and µ = q2 + 1−m(q + 1).

Note that this implies that a hemisystem gives rise to a partial quadrangle with
parameters ((q−1)/2, q2, (q−1)2/2). Also note that the points of this partial quad-
rangle are simply the points of H(3, q2) and the lines of the partial quadrangle are the
lines of the corresponding hemisystem [3]. This connection has enabled authors who
have found families of hemisystems to uncover some previously unknown examples
of partial quadrangles. We now have everything we need to prove that hemisystems
are the only regular systems on H(3, q2), q odd.

Theorem 4.4. For q odd, the only value of m for which H(3, q2) has a regular
system is (q + 1)/2.

Proof. We follow Thas’ proof in [54]. Suppose K is a regular system of order
m, 0 < m < q + 1. Let S = (P ,L, I) be the corresponding partial quadrangle



4.1. STRUCTURES THAT ARISE FROM HEMISYSTEMS 31

constructed from K. Then, from [17],

|P| = 1 + (t+ 1)s

(
1 +

ts

µ

)
Now, substituting in the parameters from Theorem 4.3, we have

|P| = 1 + (q2 + 1)(q −m)(1 + q2(q −m))/(q2 + 1−m(q + 1))

Then, from [48], the number of points in Q−(5, q) is (q3 + 1)(q+ 1). Moreover, from
the construction of the partial quadrangle for K in Section 4.1.1, φ(K) contains
(q3 + 1)m points and so |P| = (q3 + 1)(q + 1 −m). Solving the two equations for
|P| gives m = (q + 1)/2.

4.1.2 Strongly regular graphs For missing definitions from the basics of
graph theory, the reader is directed to [32].

Definition 4.5. A graph Γ of order ν is said to be strongly regular with parameters
(ν, k, λ, µ) when

i) Every vertex is adjacent to k other vertices,

ii) Every pair of adjacent vertices share λ common neighbours, and

iii) Every pair of non-adjacent vertices share µ common neighbours.

Example 4.6. A pentagon is a strongly regular graph, with parameters (5, 2, 0, 1).

Note that the parameters of a strongly regular graph do not uniquely determine
it. For example, there are two non-isomorphic strongly regular graphs that both
have the parameter set (16, 6, 2, 2). These are the Shrikande graph and the lattice
graph L4,4 illustrated in Figure 4.2 [32]. We also exclude complete and empty graphs
from consideration as strongly regular graphs because µ and λ respectively are not
well defined.

The point graph of an incidence structure is constructed by assigning a vertex
to every point in the incidence structure, and drawing an edge between two ver-
tices if and only if the corresponding points are collinear in the incidence structure.
Cameron showed in [17] that a partial quadrangle gives rise to a strongly regular
graph. Therefore, from Theorem 4.3, every hemisystem gives rise to a strongly reg-
ular graph. A strongly regular graph is said to have a strongly regular decomposition
if its vertex set V can be partitioned into two subsets {V1, V2} such that the induced
subgraphs Γ1 and Γ2 on V1 and V2 respectively are strongly regular [33].
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Figure 4.2: Two non-isomorphic strongly regular graphs with parameters (16,6,2,2)
[39].

4.1.3 Association schemes Association schemes were initially devised in
statistics for the analysis of variance by Bose and Shimamoto [10] . Since then,
they have proven to be useful in a wide range of algebraic and combinatorial appli-
cations, from coding theory [19] to character theory [6].

Definition 4.7. Let X be a finite set equipped with a set of binary relations
R0, R1 . . . Rd which satisfy the following conditions:

i) R0 = {(x, x) | x ∈ X}.

ii)
⋃d
i=0Ri = X ×X and Ri ∩Rj = ∅ if i 6= j.

iii) R′i = Ri for all i ∈ {0, 1, . . . , d}, where R′i = {(y, x) | (x, y) ∈ Ri}.

iv) For all i, j, k ∈ {0, 1, . . . , d}, there exist integers pkij such that for every x, y ∈ X
with (x, y) ∈ Rk, we have

pkij = |{z ∈ X | (x, z) ∈ Ri, (y, z) ∈ Rj}|.

Then (X, {R0, . . . , Rd}) is called a d-class symmetric association scheme.

Notice that the criteria imply that the relations of an association scheme are
symmetric and partition the associated set X ×X.

We can define matrices Ai for each of the relations Ri of an association scheme
by setting (Ai)xy = 1 if and only if (x, y) ∈ Ri, and 0 otherwise. We then have
an alternative set of statements to those given in Definition 4.7 for the defining
properties of an association scheme.

i) A0 = I,
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ii)
∑

iAi = J , where J is the matrix with all entries equal to one (called the
all-ones matrix),

iii) Ai = A>i

iv) AiAj =
∑d

k=0 p
k
ijAk for some integers pkij,

Example 4.8. Let Γ = (ν, k, λ, µ) be a strongly regular graph. Take V to be the
set of vertices of Γ and consider the following relations

i) R0, the equality relation defined by {(v, v):v ∈ V },

ii) R1, the adjacency relation defined by {(v, w):v, w ∈ V, v ∼ w},

iii) R2, the non-adjacency relation defined by {(v, w):v, w ∈ V, v 6= w, v � w}.

Then (V, {R0, R1, R2}) is a 2-class association scheme.

We define the Bose-Mesner algebra to be the vector space over C generated by
the set of matrices {Ai}di=0 equipped with matrix multiplication. We see that {Ai}di=0

is the natural basis for the Bose-Mesner algebra. An idempotent is an element E of
this algebra that satisfies E2 = E, under matrix multiplication. An idempotent is
said to be minimal if it cannot be written as the sum of two non-zero idempotents.
By [31, p. 224], there is a unique basis {Ei}di=0 of the Bose-Mesner algebra composed
of minimal idempotents. Furthermore, these minimal idempotents are orthogonal.
In other words, EiEj = δijEi, where δ is the Kronecker delta function. In addition,
the minimal idempotents satisfy

d∑
i=0

Ei = I

and

Ei ◦ Ej =
1

|X|

d∑
k=0

qkijEk

where ◦ denotes the Hadamard product , or entrywise multiplication of matrices. The
coefficients qkij are called the Krein parameters .

Now, suppose E0, E1, . . . Ed are the minimal idempotents of the Bose-Mesner
algebra corresponding to a d-class symmetric association scheme on a set X. We
define the first eigenmatrix P = (Pij)

d
i,j=0 and the second eigenmatrix Q = (Qij)

d
i,j=0

to be the (d+ 1)× (d+ 1) matrices satisfying

Aj =
d∑
i=0

PijEi
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and

Ei =
1

|X|

d∑
j=0

QjiAj

for all i in the range 0 ≤ i ≤ d.

Definition 4.9. A symmetric d-class association scheme is said to be a P -polynomial
or metric association scheme with respect to an ordering {Ai}di=0 if for each i ∈
{0, 1, . . . , d}, there is a polynomial αi of degree i such that pi(j) = αi(p1(j)) for all
j ∈ {0, 1, . . . , d}.

Delsarte observed that P -polynomial association schemes are exactly the associ-
ation schemes that are generated by distance regular graphs [27]. We can also define
a Q-polynomial scheme in a dual setting to a P -polynomial association scheme.

Definition 4.10. A symmetric d-class association scheme is said to be Q-polynomial
or cometric if for each i ∈ {0, . . . d}, there is a polynomial βi of degree i such that
Ei = βi(E1), where βi is applied entrywise to E1.

There are very few known examples of Q-polynomial schemes that are neither P -
polynomial schemes or duals of P -polynomial schemes. We say that a Q-polynomial
scheme is Q-antipodal when qj1,j+1 = qj1,d−(j+1) for all j, except perhaps when j is

the integer part of d/2 [43].

Furthermore, we say that a Q-polynomial scheme is imprimitive when for some
i > 0, Ei has repeated columns i.e., it does not have full rank.

Martin, Muzychuk and van Dam proved in [60] that any strongly regular graph
with a strongly regular decomposition gives rise to a 4-class imprimitive cometric
Q-antipodal association scheme. They show that the strongly regular graph corre-
sponding to a hemisystem has a strongly regular decomposition and therefore gives
rise to such a scheme. These Q-polynomial association schemes do not arise from
distance regular graphs, and so are one of the few examples which do not arise from
P -polynomial or dual P -polynomial association schemes.

Proposition 4.11 ([60], Corollary 7.8). Suppose (P ,L, I) is a generalised quadran-
gle of order (t2, t), with t odd and let C denote the set of all ordered pairs of distinct
intersecting lines from L. Now, suppose L = U1 ∪ U2 is a partition of the lines into
hemisystems. Then the relations

R0 = {(`, `) | ` ∈ L},

R1 = C ∩ ((U1 × U2) ∪ (U2 × U1)),

R2 = C ∩ ((U1 × U1) ∪ (U2 × U2)),

R3 = ((U1 × U2) ∪ (U2 × U1))−R1,
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R4 = ((U1 × U1) ∪ (U2 × U2))−R0 −R2

give a cometric Q-antipodal association scheme on X = L.

4.2 Relative hemisystems

As mentioned earlier, hemisystems only exist for q odd, because (q+1)/2 must be
an integer. This prompted questions about whether there is an analogous and fruitful
concept of hemisystems on H(3, q2), for q even. In 2011, Penttila and Williford
answered these questions by defining relative hemisystems [49].

Definition 4.12 (Penttila and Williford [49]). Let S be a generalised quadrangle
of order (q2, q) containing a generalised quadrangle S ′ of order (q, q). Then all lines
of S meet S ′ in q + 1 points or are disjoint from S ′. We call a subset H of the lines
disjoint from S ′ a relative hemisystem of S with respect to S ′ provided that for each
point x of S \ S ′, exactly half the lines through x disjoint from S ′ lie in H.

When constructing a relative hemisystem, we are only concerned with the set of
points of H(3, q2) which are outside of W(3, q) and the lines of H(3, q2) disjoint from
W(3, q). For conciseness, we call the former the set of external points , denoted PE
and the latter the set of external lines , denoted LE.

Although relative hemisystems do not give rise to strongly regular graphs and
partial quadrangles like their predecessors, they do give rise to a completely new
type of Q-polynomial association schemes which does not arise from distance regular
graphs. Let ` ∈ LE and let O` be the set of lines of the Hermitian space H(3, q2)
which meet both ` and the embedded W(3, q).

Theorem 4.13 ([49]). If H(3, q2), q > 2 has a relative hemisystem R with respect
to W(3, q), then a primitive Q-polynomial 3-class scheme can be constructed on the
lines of the relative hemisystem with the following relations:

R0 = {(`, `) | ` ∈ R};

R1 = {(`,m) | `��I m : |O` ∩ Om| = 1};

R2 = {(`,m) | `��I m : |O` ∩ Om| = q + 1};

R3 = {(`,m) | ` Im}.

Until Penttila and Williford’s result, the only known examples of Q-polynomial
association schemes not arising from distance regular graphs were imprimitive, and
either Q-antipodal or both Q-antipodal and Q-bipartite [49]. Therefore, the associ-
ation schemes arising from relative hemisystems are completely uncharted territory,
and are of great interest to algebraic graph theorists.
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4.3 The known families of relative hemisystems

In this section, we give a survey of the known examples of relative hemisystems,
and briefly describe their constructions. Using the equations given in Sections 2.4.1
and 2.4.2, we find that |PE| = q(q2 + 1)(q2 − 1) and |LE| = q2(q2 − 1). This in turn
means that the number of lines in a relative hemisystem is q2(q2 − 1)/2.

4.3.1 The Pentilla-Williford relative hemisystems The first example of
an infinite family of relative hemisystems, admitting PΩ−(4, q) as an automorphism
group, was given by Penttila and Williford in their paper introducing the concept
[49]. The full proof is outside the scope of this dissertation, but we give an outline
of it to aid us in describing the Cossidente constructions in the next subsection.

Suppose S is a generalised quadrangle of order (s, t). Also suppose S contains
a generalised subquadrangle S ′ of order (s, t′). Then, we find that for all points
P ∈ S \S ′, P⊥∩S ′ is an ovoid of S ′. Let τ be the Baer involution that fixes W(3, q)
in H(3, q2). Then the antipode of a line ` of H(3, q2) not contained in W(3, q), is the
image of the line under the Baer involution `τ .

They subsequently compute the point and line orbits in the Hermitian space of
the action of PΩ−(4, q). They show that PΩ−(4, q) is transitive on points of H(3, q2).
Next, they consider the action of a dihedral group D of order 2(q2 + 1) that is the
normaliser of a Singer cyclic group (see [37, p. 187]) of PΩ−(4, q) on H(3, q2). Let
A be a subgroup of D with prime order p. Since q2(q2 − 1), the number of external
lines, is congruent to 2 modulo p, A must fix at least two external lines. Let one of
these be ` and let its antipode be `τ . Then A commutes with the Baer involution
τ fixing every point of W(3, q) and interchanging ` and `τ . Therefore, A also fixes
`τ . Some representation theory (namely Maschke’s Theorem) is used to show that `
and `τ are the only lines fixed by A1. They use this to prove that PΩ−(4, q), q even,
q ≥ 2 has two orbits on external lines. These orbits are two relative hemisystems,
H1 and H2. They further show that the Baer involution τ swaps H1 and H2 [49,
Theorem 5].

4.3.2 The Cossidente relative hemisystems Excluding the family of rel-
ative hemisystems discovered by Penttila and Williford, the only other known ex-
amples are the two infinite families discovered by Cossidente, and one apparently
sporadic example discovered by Cossidente and Pavese [21, 20, 22]. Both of the in-
finite families are perturbations of the Penttila-Williford relative hemisystems, and
the sporadic example is derived from a Suzuki-Tits ovoid of W(3, 8).

The first family on H(3, q2), q even and q > 4 admits the linear group PSL(2, q)
as an automorphism group [21]. Cossidente constructed it by considering the two
Penttila-Williford relative hemisystems H1 and H2. He then took the stabiliser of

1We think that this implication is not true in general, and that it is possible that A could have
fixed more than two lines.
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a conic section of the elliptic quadric Q−(3, q) fixed by PΩ−(4, q) in W(3, q). This
stabiliser is isomorphic to PSL(2, q) and does not act transitively on H1 and H2.
Cossidente then uses the involution τ , which switches H1 and H2 from the Penttila-
Williford proof (mentioned above in Subsection 4.3.1), to delete some orbits of H1

under PSL(2, q) and replace them with their images under τ . Every time this is
done, it creates a distinct pair of relative hemisystems. Since the number of ways
this can be done is greater than the number of Pentilla-Williford relative hemisys-
tems for a given q, a power of two, Cossidente has constructed a new infinite family.

The second infinite family of relative hemisystems discovered by Cossidente ad-
mits a group of order q2(q + 1) [20]. The construction of this infinite family is very
similar to the last. Choose a point P of an elliptic quadric Q−(3, q) which is an
ovoid of W(3, q). Let M be the subgroup of the stabiliser of P in PΩ−(4, q) of order
q2(q + 1). Instead of orbits under PSL(2, q), Cossidente considers orbits of H1 and
H2 under M , deleting orbits of H1 and replacing them by their image under the invo-
lution τ . Since the number of relative hemisystems invariant under M exceeds that
of the Penttila-Williford relative hemisystems, Cossidente must have found another
infinite family of relative hemisystems.

4.3.3 The Cossidente-Pavese Example Finally, Cossidente and Pavese
showed the existence of a relative hemisystem on H(3, 64) admitting a group of
order 168 as a setwise stabiliser computationally [22]. Let W(3, 22n+1) be a sym-
plectic space. Then there is a polarity θ on W(3, 22n+1) [48]. The set of all ab-
solute points of θ forms an ovoid of W(3, 22n+1). This ovoid is called a Suzuki-
Tits ovoid, and its stabiliser up to field automorphisms is defined as the Suzuki
group Sz(22n+1) [52]. Cossidente and Pavese concretely define a Hermitian sur-
face H(3, q2) for q = 8 by the equation xq1x4 + x1x

q
4 + xq2x3 + x2x

q
3 = 0. Then let

W(3, q) be the canonical symplectic space of H(3, q2). Define the Suzuki-Tits ovoid
O by O = {(1, x, y, xσ + xy + yσ+2) | x, y ∈ GF(8)} ∪ {(0, 0, 0, 1)}, where σ is the
automorphism of GF(8) mapping x 7→ x4. This ovoid has automorphism group
G = 2.Sz(8).3. There is a subgroup S of order 168 contained in the stabiliser of
(0, 0, 0, 1) in G. With the help of MAGMA [11], Cossidente and Pavese construct a
relative hemisystem by taking a union of the orbits of external lines under S [22].
Cossidente and Pavese conjecture that this example is sporadic, i.e., it cannot be
extended to an infinite family including examples on higher values of q.
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Results

“A mathematical problem should be difficult
in order to entice us, yet not completely
inaccessible, lest it mock at our efforts.”

David Hilbert (1900)

In this section, we present the results of our search for new relative hemisystems.
We describe our computational approach, which lead to the complete classification
of relative hemisystems for q = 4, as well as the independent discovery of a Cos-
sidente family of relative hemisystems and the Cossidente-Pavese example arising
from a Suzuki-Tits ovoid. We also provide a previously unknown set of three cri-
teria sufficient to determine a relative hemisystem. We show that we may narrow
these criteria down to one condition if we are considering a perturbation of the
Penttila-Williford relative hemisystems. We use this to give a new construction of
the Penttila-Williford relative hemisystems, as well as the Cossidente family admit-
ting a group of order q2(q + 1) for each q even.

5.1 Computation

In early March, we developed a method for finding relative hemisystems on
H(3, q2) for q = 4, 8, 16 using GAP [30] and Gurobi [38]. We made use of the
FinInG [2] package to create the incidence structures and the collineation groups
associated with them. The code for the function may be found in Appendix A. We
also took advantage of Cayley’s theorem for groups and found the corresponding
permutation groups for these collineation groups and indexed the external points
and lines so that the action of the resulting permutation group was permutation
isomorphic to the collineation group. For the rest of this section, the mention
of collineation groups and external points and lines in the context of algorithms
refers to the corresponding permutation groups and indices respectively. We wanted
to create a linear program for solving in Gurobi which would solve for q2(q2 − 1)
binary variables, each corresponding to an external line. If the line was contained
in the relative hemisystem, the corresponding variable would have a value of one
in the solution set, and zero otherwise. The task became to generate constraints
for Gurobi. We found the set of lines SP incident with each external point P and
added a constraint expressing that the variables corresponding to the elements of
Sp should sum to q/2. In other words, only half of the q external lines incident
with P should be contained in the relative hemisystem. We ran this linear program
for q = 4 to completion in Gurobi, and so completely classified all of the relative
hemisystems on H(3, q2). We attempted to run this linear program to find all of the
relative hemisystems on H(3, 82), but it proved to be intractable.
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Next, we broke down the problem in an attempt to make it simpler and therefore
quicker to solve. The basis for the method that we adopted was that Gurobi could
solve several small linear programs with many constraints much faster than it could
solve one large linear program with fewer constraints. We also noticed that there
can exist collineations between relative hemisystems, which make some of them
equivalent, and we only wanted to find non-equivalent examples. So, we could simply
fix some external lines and look for relative hemisystems that contain those lines.
In doing so, we remove the need to search for relative hemisystems containing sets
of lines in the same orbit as those we had fixed, because they would be equivalent.

We adapted an algorithm designed by Bamberg, Martis and Morris in [44], and
based on the ‘orderly algorithm’ described by McKay [45] and Royle [50], to optimise
the search for relative hemisystems. The first step was to use a recursive GAP
function to create a tab delimited computation tree of depth n. The function first
found the orbits of external lines under Coll(H(3, q2))W(3,q) and took a representative
vi from each one to appear in the computation tree. The function then created
an output file for each of the orbits, listing all of the elements in that orbit. The
function proceeded to stabilise the first orbit representative v1 and repeat the process
to generate the orbits of all two tuples {v1, w} for w in the set of external lines. The
process was repeated until the conclusion of the iteration on n-tuples. The algorithm
returned and completed the remaining part of the computation tree in the same way,
and generated the corresponding orbit enumeration files.

Once the computation tree was complete, another algorithm external to GAP
ran to generate a shell script from the computation tree. This script listed the
commands needed to run the separate Gurobi computations for each member of the
computation tree and provided information about the progress of the computation.

5.1.1 Classification of examples for q = 4. Despite only being one power
of two smaller than 8, the classification of relative hemisystems on H(3, q2) for q = 4
was a significantly easier problem. We were able to successfully run the original
relative hemisystem finder program to completion and found that there were 240
relative hemisystems on H(3, 16) and they are all equivalent (i.e., the same up to a
collineation) to the Penttila and Williford example on q = 4. This was a previously
unknown result, as none of the published literature has attempted to classify all
examples of relative hemisystems for a fixed value of q.

5.1.2 Independent discovery of Cossidente relative hemisystems. Af-
ter running the program for several hours for q = 8, we terminated the process
and examined the returned solutions. The linear program had found three solutions
given in the form of sets of 2016 numbers corresponding to lines. One solution was
found to be isomorphic to a Penttila-Williford relative hemisystem and the other two
were seemingly unknown examples. Despite our best efforts, it seemed that finding
all non-equivalent examples of relative hemisystems on H(3, 64) was intractable.
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We therefore began processing the two unknown examples we had found, be-
ginning with the example which was subsequently found to be isomorphic to Cos-
sidente’s most recent infinite family discussed in [20]. The analysis of this example
laid the groundwork for the new sufficient conditions for relative hemisystems dis-
cussed in the next section, and through these conditions, we have a new proof of
Cossidente’s result.

The second seemingly unknown example was explored later in the project. This
example had a stabiliser G of order 168. We found that by “fusing” some of the
orbits of G on external points, i.e., investigating the groups that are transitive on
some of the orbits of G, we were able to fix a Suzuki-Tits ovoid that lies in W(3, 8).
Cossidente and Pavese’s paper verifying our results appeared in subsequent days
[22]. However, there is still future work to be done on producing a construction of
this relative hemisystem beyond computation.

5.1.3 Stabiliser factorisation. Using the algorithm described above, we also
attempted to characterise the relative hemisystems on H(3, 64) based on the order
of their stabilisers. We first obtained the conjugacy classes of Coll(H(3, q2))W(3,q)

and then found those that contain collineations of a particular order m, and took
a conjugacy class representative ci from each of these. We then computed the
collineation group Gi generated by each representative and calculated its normaliser
Ni in Coll(H(3, q2))W(3,q). We examined the orbits of Gi on external lines and the
action of Ni on these orbits. This action can be considered as a homomorphism from
Ni to the symmetric group of the orbits of Gi on external lines. The image of this
homomorphism forms the group used for the algorithm described at the beginning
of this section.

The results of our computation are described in the table below. Note that
the full collineation group of external points and lines Coll(H(3, q2))W(3,q) has prime
factorisation 212 × 34 × 5× 72 × 13.

Stabiliser divisor Classification of Relative Hemisystems
13 Penttila-Williford example
7 Penttila-Williford example or

Cossidente example admitting PSL(2, 8)
5 Penttila-Williford example

Table 5.1: The classification of relative hemisystems of H(3, 82) with stabiliser orders
divisible by certain primes.

We attempted to classify examples of relative hemisystems with stabiliser orders
divisible by three and nine, but we were unsuccessful, and it seems that with our
current method, this problem is intractable.
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5.2 New sufficient conditions for relative hemisystems

We now give a set of new sufficient criteria to determine a relative hemisystem,
and show that all but one of the known examples of relative hemisystems satisfy
these criteria. We use Ω/G to denote the set of orbits of a set Ω under a group G.
Note that if N is a normal subgroup of G, then G acts on Ω/N in its action on sets.

Let Q+ be a hyperbolic quadric which intersects H(3, q2) in an elliptic quadric
isomorphic to Q−(3, q). The stabiliser of Q+ in PΓU(4, q) is isomorphic to the or-
thogonal group PSO−(4, q) [49]; and the subgroup of PΓU(4, q)Q+ that stabilises
the two families of reguli of Q+ is isomorphic to PΩ−(4, q) [49]. Penttila and Willi-
ford go on to prove in [49] that PΩ−(4, q) has two orbits on external lines, and
PSO−(4, q) is transitive on external lines. Taking ` ∈ LE, the size of the orbit
of ` under PSO−(4, q) is twice as large as the orbit of ` under PΩ−(4, q). By the
Orbit-Stabiliser Theorem, |PSO−(4, q):PSO−(4, q)`| = |PΩ−(4, q):PΩ−(4, q)`|. Since
|PSO−(4, q):PΩ−(4, q)| = 2 [40, Table 2.1d], we have PSO−(4, q)` = PΓU(4, q)Q+,` =

PΩ−(4, q)`. Therefore, the size of the orbit of `PΩ−(4,q) under PSO−(4, q) is

|PSO−(4, q):PSO−(4, q)` · PΩ−(4, q)| = |PSO−(4, q):PΩ−(4, q)| = 2

and hence PSO−(4, q) = PΓU(4, q)Q+ acts fixed point freely on the orbits of PΩ−(4, q)
on external lines.

Proposition 5.1. Let G be a subgroup of PΓU(4, q)Q+ , where Q+ is a hyper-
bolic quadric meeting H(3, q2) in an elliptic quadric. Let D be the subgroup of
PΓU(4, q)Q+ that stabilises the two family of reguli of Q+. If G is not contained in
D, then G acts fixed-point-freely on the orbits of G ∩D on external lines.

Proof. ∗ Suppose the contrary, that G fixes an orbit `G∩D. Note that `G = `G∩D

because if there exists g ∈ G such that `g /∈ `G∩D then G does not fix the orbit `G∩D,
a contradiction. Then by the Orbit-Stabiliser Theorem we have

|G ∩D:(G ∩D)`| = |`G∩D| = |`G| = |G:G`|

and hence
|G:G ∩D| = |G`:(G ∩D)`| (5.1)

Now from the discussion at the beginning of this section, we have PΓU(4, q)Q+,` =
D`. Since G is a subgroup of PΓU(4, q)Q+ , G` is a subgroup of D`. Hence G` =
(G∩D)`, and so by Equation 5.1, |G:G∩D| = 1. This implies that G = G∩D and
hence G is a subgroup of D. This is a contradiction since G is not contained in D,
by our initial assumptions.. Therefore, G must act fixed-point-freely on the orbits
of G ∩D on external lines.

Theorem 5.2. Suppose G < G, where G is a subgroup of the collineation group
of H(3, q2), stabilising W(3, q). Further suppose that G and G satisfy the following
conditions:
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1. |G:G| = 2,

2. G acts fixed point freely on LE/G,

3. PE/G = PE/G.

Write LE/G = {`G1 , `G2 , . . . `Gn }. Then
⋃n
i=1 `

G
i is a relative hemisystem .

Proof. ∗ Let X be an external point. For ` ∈ LE, we define the line orbit incidence
number as

nGX,` = |{m ∈ `G | X Im}|

First note that for all g ∈ G,
nGX,` = nGXg ,` (5.2)

because X Im ⇔ Xg Img. Now, since |G:G| = 2, for all ` ∈ LE, there exist

`1, `2 ∈ LE such that `G = `G1 ∪ `G2 . Then, we can find t ∈ G such that (`G1 )t = `G2 .
Since G acts fixed point freely on LE/G, the orbits of G on LE/G have size two
and G is the kernel of the action. Therefore, there exists an element t ∈ G such
that for all ` ∈ LE, we have `G = `G∪̇(`t)G. We then have nGX,` = nGX,`t + nGX,`.

Consider nGX,`t = |{m ∈ (`t)G | X Im}|. Since G has index two and is therefore

a normal subgroup of G, nGX,`t = |{nt ∈ (`G)t | X Int}| = |{n ∈ (`G) | X t−1
In}|.

Now, since G and G have the same orbits on external points, there exists u ∈ G
such that X t−1

= Xu. So nGX,`t = |{n ∈ (`G) | Xu In}| = nGXu,` = nGX,`, by Equation
5.2. Therefore,

nGX,` = 2nGX,` (5.3)

Consider the orbit representatives `1, `2, . . . `n of LE/G. The number q of external
lines incident with X is then equal to the sum of the line orbit incidence numbers
nGX,`i , for i ∈ {1, . . . n}. Then, from Equation 5.3, q/2 =

∑n
i=1 n

G
X,`i

. So the number
of lines of

⋃n
i=1 `

G
i incident with X is q/2. Therefore, since X was any external

point,
⋃n
i=1 `

G
i is a relative hemisystem.

When we are dealing with the Penttila-Williford relative hemisystems and per-
turbations of them, we can condense the criteria given in Theorem 5.2 to two suffi-
cient criteria to determine a relative hemisystem. We state these conditions in the
following corollary to Theorem 5.2.

Corollary 5.3. Suppose G is a subgroup of PSO−(4, q) and G is the intersection
of G and PΩ−(4, q). Further suppose that GP is not contained in PΩ−(4, q) for all
external points P ∈ PE. Then (G,G) satisfies the conditions given in Theorem 5.2
and thus determines a relative hemisystem.

Proof. ∗ First notice that if GP is not contained in PΩ−(4, q) for all external
points P ∈ PE, then there exists an element g ∈ G such that g /∈ PΩ−(4, q).
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So G is not contained in PΩ−(4, q). We have |G:G| = |G:G ∩ PΩ−(4, q)| = |G ·
PΩ−(4, q):PΩ−(4, q)| = |PSO−(4, q):PΩ−(4, q)| = 2. Let ` ∈ LE. Now, the discus-
sion at the beginning of Section 5.2 implies that for any ` ∈ LE, PSO−(4, q)` =
PΩ−(4, q)`. Thus G` = PSO−(4, q)` is contained in PΩ−(4, q). Therefore, G` = G`∩
PΩ−(4, q) = G`. Now, since GP is not contained in PΩ−(4, q), GP 6= GP ∩PΩ−(4, q).
So the stabiliser of P under G is not equal to the stabiliser under G. By the Orbit-
Stabiliser Theorem,

|PG|
|PG|

=
|G:GP |
|G:GP |

=
|G:G|
|GP :GP |

Since |G:G| = 2, |GP :GP | = 2 and therefore PG = PG. Therefore, (G,G) satisfies
the conditions of Theorem 5.2.

Let ψ(x1, x2) = x2
1 +υq+1x2

2 +x1x2 be a form with υ ∈ GF(q2) satisfying υq +υ = 1,
implying by Lemma 2.3 that ψ is irreducible over GF(q). Then

Q+(3, q2):x2
1 + υq+1x2

2 + x1x2 + x3x4 = 0 (5.4)

is a hyperbolic quadric that intersects the Hermitian space defined by the form
x1x

q
2 + x2x

q
1 + x3x

q
4 + x4x

q
3 = 0 over GF(q2) in an elliptic quadric. This elliptic

quadric’s defining equation is simply the equation for Q+(3, q2) restricted to GF(q).
We may use a change of basis from Q+(3, q2) to the canonical hyperbolic quadric to
obtain the reguli of Q+(3, q2). The change of basis matrix is

B =

(
υq 1 0 0
0 0 1 0
0 0 0 1
υ 1 0 0

)
The reguli of Q+(3, q2) are therefore

R1 = {[ 1 0 λ 0
0 1 0 λ ]B | λ ∈ GF(q2)} ∪ {[ 0 0 1 0

0 0 0 1 ]B}
= {[ υq 1 0 λ

λυ λ 1 0 ] | λ ∈ GF(q2)} ∪ {[ 0 0 0 1
υ 1 0 0 ]}

R2 = {[ 1 λ 0 0
0 0 1 λ ]B | λ ∈ GF(q2)} ∪ {[ 0 1 0 0

0 0 0 1 ]B}
= {[ υq 1 λ 0

λυ λ 0 1 ] | λ ∈ GF(q2)} ∪ {[ 0 0 1 0
υ 1 0 0 ]}

Proposition 5.4. The Penttila-Williford family of relative hemisystems, admitting
PΩ−(4, q) as an automorphism group for each q even, satsfies Corollary 5.3.

Proof. ∗ Take G = PΩ−(4, q) and G = PSO−(4, q), and let H(3, q2) be the Hermitian
space defined by the form x1x

q
2 +x2x

q
1 +x3x

q
4 +x4x

q
3 = 0 over GF(q2). The embedded

symplectic space W(3, q) is the restriction of the Hermitian form to GF(q). Recall
from the beginning of the section that PSO−(4, q) is isomorphic to the stabiliser of
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Q+(3, q2), and PΩ−(4, q) is isomorphic to the stabiliser in PSO−(4, q) of the reguli
of Q+(3, q2). Consider g ∈ G defined by

g =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
We claim that g does not fix the reguli of the hyperbolic quadric Q+(3, q2). Finding
the image of R1 under g gives us

[ υ
q 1 0 λ
λυ λ 1 0 ]

g
= [ υ

q 1 λ 0
λυ λ 0 1 ]

for λ ∈ GF(q2), and
[ 0 0 0 1
υ 1 0 0 ]g = [ 0 0 1 0

υ 1 0 0 ]

which are exactly the lines of R2. Since g has order two, g−1 = g and so R2 must
map to R1 under the action of g. Therefore, since G stabilises the reguli of the
hyperbolic quadric from the discussion at the beginning of this section, g ∈ G \ G.
Now, notice that Pω = (ω, 0, 1, 1) ∈ H(3, q2) for all ω ∈ GF(q2), and if we take
ω ∈ GF(q2) \ GF(q), then Pω is an external point. Let ω ∈ GF(q2) \ GF(q). Then
P g
ω = (ω, 0, 1, 1)g = (ω, 0, 1, 1) and therefore g fixes Pω. So g ∈ GPω , but g /∈ GPω

because g /∈ G. Therefore, GPω 6= GPω = GPω ∩ G and GPω is not contained in
PΩ−(4, q). Finally, from [49], G = PΩ−(4, q) is transitive on external points. It
immediately follows that G = PSO−(4, q) is transitive on external points as well.
This implies that GQ is not contained in PΩ−(4, q) for all external points Q ∈ PE.
Therefore, (G,G) determine a relative hemisystem for every q even, and this relative
hemisystem belongs to the Penttila-Williford family of relative hemisystems.

Proposition 5.5. The first family of Cossidente relative hemisystems admitting
PSL(2, q) as a setwise stabiliser (described in [21]) satisfies Corollary 5.3 for q =
4, 8, 16.

Proof. ∗ Let H(3, q2) be the Hermitian space in PG(3, q2) with defining Gram matrix

H =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
.

Let Q+(3, q2) be the hyperbolic quadric described in Equation 5.4. Recall that the
reguli of this quadric are:

R1 = {[ υq 1 0 λ
λυ λ 1 0 ] | λ ∈ GF(q2)} ∪ [ 0 0 0 1

υ 1 0 0 ]

R2 = {[ υq 1 λ 0
λυ λ 0 1 ] | λ ∈ GF(q2)} ∪ [ 0 0 1 0

υ 1 0 0 ]

The Baer subspace that contains the symplectic space W(3, q) and the elliptic
quadric Q−(3, q) = Q+(3, q2) ∩ H(3, q2) consists of points whose coordinates lie
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solely in GF(q). Define collineations τ and φ as follows.

τ :(x1, x2, x3, x4) 7→ (x1, x2, x4, x3)

φ:(x1, x2, x3, x4) 7→ (xq1, x
q
2, x

q
3, x

q
4)

Notice that H(3, q2) and the Baer subspace are fixed under both τ and φ. Recall from
Section 4.3.2 that the construction of this family of relative hemisystems stemmed
from stabilising a conic of the elliptic quadric Q−(3, q) fixed by PΩ−(4, q) in W(3, q)
[21]. Notice that τ does not fix the reguli because it is the same collineation as g in
the proof of Proposition 5.2. Now, consider the application of φ to the reguli. For
R1, we have the following:

[ υ
q 1 0 λ
λυ λ 1 0 ]

φ
=
[

(υq)q 1q 0 λq

λqυq λq 1q 0

]
= [ υ 1 0 λq

λqυq λq 1 0 ]

= [ λ
qυq λq 1 0
υ 1 0 λq ]

=
[
υq 1 µ 0
µυ µ 0 1

]
∈ R2

where µ = λq
2−q−1. Additionally,

[ 0 0 0 1
υ 1 0 0 ]φ = [ 0 0 0 1

υq 1 0 0 ] ∈ R2

Therefore, φ maps R1 to R2. Since φ has order 2 and so φ−1 = φ, R2 must map to
R1 under φ. Consider the product τφ. Since we have already proved that τ and φ
individual interchange the reguli of Q+(3, q2), it follows that their composition fixes
reguli. Let K = 〈τ, φ〉, which is isomorphic to Z2 × Z2. Now, take the collineation
group isomorphic to PSL(2, q) that fixes the hyperplane x3 = x4. Define G =
PSL(2, q) × K and G = PSL(2, q) × 〈τφ〉. We claim that these groups satisfy the
conditions of Corollary 5.3. Firstly, notice that G is contained in the intersection of
G and PΩ−(4, q) because PSL(2, q) is a subgroup of PΩ−(4, q) [69], and τφ fixes the
reguli of Q+(3, q2), just as PΩ−(4, q) does. Furthermore, if g ∈ G ∩ PΩ−(4, q), then
g must fix reguli, since PΩ−(4, q) does. Therefore, g ∈ G and we have shown that
G = G∩PΩ−(4, q). Furthermore, G is not contained in PΩ−(4, q) because τ and φ do
not fix the reguli. We were able to show computationally in GAP [30] for q = 4, 8, 16
that for any external point P ∈ PE, GP is not contained in PΩ−(4, q).

We are yet to discover a constructive proof to show that the first family of Cossidente
relative hemisystems satisfies the second criterion of Corollary 5.3; however, we are
confident that they do, and we leave this as future work.

We claim that Cossidente’s second family of relative hemisystems, admitting a
group of order q2(q + 1), for each q even, described in [20], also satisfy these new
conditions. To prove this, we first provide a concrete construction of this family of
relative hemisystems. As before, we consider the Hermitian space H(3, q2) defined by
the form x1x

q
2 +x2x

q
1 +x3x

q
4 +x4x

q
3 = 0 over GF(q2), with the embedded symplectic
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space W(3, q) defined as the restriction of the form to GF(q). We explicitly define
the following two hyperbolic quadrics.

Q+
1 (3, q2) : αx2

1 + βx2
2 + x1x2 + x3x4 (5.5)

Q+
2 (3, q2) : βx2

1 + αx2
2 + x1x2 + x3x4 (5.6)

where α ∈ Fq2 , β = α + 1 and α + αq + 1 = 0.

Now, we may determine the reguli of Q+
1 (3, q2) by taking a suitable change of

basis from Q+
1 (3, q2) to the canonical hyperbolic quadric described in Section 2.4.3.

The change of basis matrix is as follows:

B̃ =

(√
α
√
α 0 0

0 0 1 0
0 0 0 1√
α β/

√
α 0 0

)

We subsequently compute the reguli of Q+
1 (3, q2) by post-multiplying the reguli of

the canonical hyperbolic quadric by the change of basis matrix.

R̃1 = {[ 1 0 λ 0
0 1 0 λ ] B̃ | λ ∈ GF(q2)} ∪ {[ 0 0 1 0

0 0 0 1 ] B̃}

= {
[ √

α
√
α 0 λ

λ
√
α λβ/

√
α 1 0

]
| λ ∈ GF(q2)} ∪ {

[
0 0 0 1√
α β/

√
α 0 0

]
}

= {
[
α α 0 λ

√
α

λα λβ
√
α 0

]
| λ ∈ GF(q2)} ∪ {

[
0 0 0 1
α β 0 0

]
}

R̃2 = {[ 1 λ 0 0
0 0 1 λ ] B̃ | λ ∈ GF(q2)} ∪ {[ 0 1 0 0

0 0 0 1 ] B̃

= {
[ √

α
√
α λ 0

λ
√
α λβ/

√
α 0 1

]
| λ ∈ GF(q2)} ∪ {

[
0 0 1 0√
α β/

√
α 0 0

]
}

= {
[
α α λ

√
α 0

λα λβ 0
√
α

]
| λ ∈ GF(q2)} ∪ {

[
0 0 1 0
α β 0 0

]

Proposition 5.6. Suppose M is the stabiliser in PGU(4, q) of the two hyperbolic
quadrics Q+

1 (3, q2) and Q+
2 (3, q2) described above. Now, let M be the stabiliser in

M of a class of reguli in Q+
1 (3, q2). Then M is the group admitted by Cossidente’s

second family of relative hemisystems, and M and M satisfy Corollary 5.3.

Proof. ∗ Firstly we claim that, M = M × Z, where Z is the group generated by
the involution z defined by (x1, x2, x3, x4) 7→ (xq2, x

q
1, x

q
4, x

q
3). From Example 3.10,

we know that the action on lines of R̃1 (for instance) is permutation isomorphic to
a group action on a projective line PG(1, q2). Now, M fixes two lines which are in
the intersection of Q+

1 (3, q2) and Q+
2 (3, q2), namely `1 = [ 1 1 0 0

0 0 1 0 ] and `2 = [ 1 1 0 0
0 0 0 1 ].

Notice that `1 ∈ R̃1 and `2 ∈ R̃2. The group M fixing `1 is permutation isomorphic
to AGL(1, q2) fixing a point on PG(1, q2). Now, AGL(1, q2) is transitive on the
remaining points of PG(1, q2) [40], and so M is transitive on R̃1 \ {`1}. Therefore,
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to show that z maps R̃1 to R̃2, it is sufficient to prove it for `1 and another line of
R̃1. Let `∞,1 =

[
0 0 0 1
α β 0 0

]
. Now,

`z1 = [ 1 1 0 0
0 0 1 0 ]q

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
= [ 1 1 0 0

0 0 0 1 ] ∈ R̃2

`z∞,1 =
[

0 0 0 1
α β 0 0

]q ( 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
=
[

0 0 1 0
α β 0 0

]
∈ R̃2

A similar argument yields that the image of any line in R̃2 under z is contained in
R̃1. Therefore, the involution z switches the reguli of Q+

1 (3, q2) and so M = M ×Z.
Let D1 be the subgroup of PΓU(4, q)Q+

1
that stabilises two family of reguli on Q+

1 .

Similarly, let D2 be the subgroup of PΓU(4, q)Q+
2

that stabilises two family of reguli

on Q+
2 . We now prove that the orbits of M and M on external points are identical.

Since M = M × Z, it is sufficient to prove that for all x ∈ PE, xz ∈ xM Since
D1 is transitive on PE, this is equivalent to showing that for all g ∈ D1, we have
(P g

0 )z ∈ (P g
0 )M for all P0 ∈ PE.

Claim: Given a point P0 ∈ PE, we have P z
0 = Pm

0 and P0 = (P z
0 )z = (Pm

0 )m for
some m ∈ M . Since D1 acts transitively on PE, it is sufficient for us to prove this
claim for a specific point. Let P0 = 〈(1, 0, 1, 0)〉. Then we have the following

P z
0 = (1, 0, 1, 0)q

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
= (0, 1, 0, 1).

Now, we must find an involution m ∈ M such that Pm
0 = P z

0 = (0, 1, 0, 1). This
equivalent to finding m ∈ M such that P zm−1

0 = P zm
0 fixes P0. Take m to be the

following collineation:

m = φ

(
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
where φ is the automorphism x 7→ xq. Then,

Pm
0 = (1, 0, 1, 0)q

(
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
= (0, 1, 0, 1)

because we are working in a field with characteristic two. Furthermore,

P zm
0 = (1, 0, 1, 0)q

2

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
= (1, 0, 1, 0)

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
= (1, 0, 1, 0).

It remains to show that m ∈ M . To show that m ∈ M , we must show that it is an
involution and that it fixes the two hyperbolic quadrics that define M and also each
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of the reguli in the intersection of the two hyperbolic quadrics. Firstly recalling that
we are working with a field with characteristic 2,

m2 =

(
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)(
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
= I4.

Secondly, we must show that m fixes the two hyperbolic quadrics Q+
1 (3, q2) and

Q+
2 (3, q2). Recall the defining quadratic forms of the two hyperbolic quadricsQ+

1 (3, q2)
andQ+

2 (3, q2) given in Equations 5.5 and 5.6 respectively. Any point (x1, x2, x3, x4) ∈
Q+

1 (3, q2) maps to (xq1 + xq3 + xq4, x
q
2 + xq3 + xq4, x

q
1 + xq2 + xq3, x

q
1 + xq2 + xq4) under m.

Substituting this into the form corresponding to Q+
1 (3, q2), we have

α(xq1 + xq3 + xq4)2 + β(xq2 + xq3 + xq4)2 + (xq1 + xq3 + xq4)(xq2 + xq3 + xq4)

+ (xq1 + xq2 + xq3)(xq1 + xq2 + xq4)

= (α + 1)x2q
1 + (β + 1)x2q

2 + xq1x
q
2 + xq3x

q
4 + (α + β + 1)x2q

3 + (α + β + 1)x2q
4

= (αx2
1 + βx2

2 + x1x2 + x3x4)q

= 0.

So m fixes Q+
1 (3, q2), and by symmetry, it fixes Q+

2 (3, q2) as well. Finally, we show
that m fixes the reguli of Q+

1 (3, q2). Again, we only need to test two lines from each
regulus - the line that is fixed by M and another line. For `1, `∞,1 ∈ R̃1:

`m1 = [ 1 1 0 0
0 0 1 0 ]q

(
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
= [ 1 1 0 0

1 1 1 0 ] = [ 1 1 0 0
0 0 1 0 ] ∈ R̃1,

`m∞,1 =
[

0 0 0 1
α β 0 0

]q ( 1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
=
[

1 1 0 1
β α 0 0

]
=
[√

α
√
α 0
√
α

α β 1 0

]
∈ R̃1.

Using a similar argument, m fixes the reguli of R̃2 as well. Therefore, m preserves
the reguli and so m ∈M . Now that we have proved the claim, we continue with the

proof as before. We have P gz
0 ∈ P

gM
0 if and only if P gzg−1

0 ∈ P gMg−1

0 for all g ∈ D1.
This is equivalent to P0 having identical orbits under M

g
and M g for all g ∈ D1. By

the Orbit-Stabiliser Theorem and since |M :M | = 2, it follows that |M g

P0
| = 2|M g

P0
|.

Finally, this holds if and only if |MP0| = 2|MP0|, which is true by the claim proven
above. Since MP0 = MP0 ∩ PΩ−(4, q), we have shown that MP0 * PΩ−(4, q) and
since D1 is transitive, this holds for all external points P ∈ PE. Therefore, M and
M determine a relative hemisystem.

Interestingly, we have found by computation in GAP [30] that the relative
hemisystem on H(3, q2) arising from a Suzuki-Tits ovoid does not satisfy the cri-
teria for Lemma 5.2.
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Concluding Remarks

“At the end of the day there’s another day
dawning, and the sun in the morning is
waiting to rise.”

At the End of the Day, Les Misérables

Relative hemisystems are a new and exciting topic in finite geometry and group
theory. Since not much is known about them, both in terms of properties and
examples, there is a large potential for new work and it is reasonably straightforward
to find a new section of the topic to work on.

One of the opportunity costs of researching such a new area is that publication
rates are quite high. As a result, if new findings are not published in a timely manner,
then it is likely they will be discovered and published by another author, as I have
experienced in this project. Nevertheless, there are great benefits to completing the
research for myself, as I have developed heuristics which will be helpful as I explore
this area further in the future.

During this dissertation, we saw the interplay between group theory and finite
geometry in describing abstract geometric objects like hemisystems and relative
hemisystems. We have also followed the epic history of hemisystems, originating
from B. Segre’s definition and first example in 1965 [51], through the breakthroughs
of the subsequent decades about the properties of hemisystems and the drought of
new examples to Thas’ conjecture about the non-existence of hemisystems apart
from Segre’s example [55]. The infinite family of hemisystems found by Penttila
and Cossidente [23], ten years after Thas’ conjecture and forty years after Segre’s
original paper, proved to be the start of many discoveries of families of relative
hemisystems by a large variety of authors. We came to Penttila and Williford’s
definition of a relative hemisystem in [49], as an analogous concept to hemisystems
for q even, and described how they give rise to a rare and previously undiscovered
class of association schemes, We also discussed the constructions of the three known
infinite families of relative hemisystems, as the conjectured sporadic example arising
from a Suzuki-Tits ovoid.

The main outcomes of this research project were discussed in Chapter 5. We
described the computation carried out with GAP [30] and Gurobi [38] in an effort
to find and classify all of the relative hemisystems on H(3, 64). This computation
lead to the independent discovery of an infinite family of relative hemisystems dis-
covered by Cossidente in [25] and the conjectured sporadic example discovered by
Cossidente and Pavese in [22]. Additionally, we were able to classify all of the rel-
ative hemisystems on H(3, 16) and determine that they were all members of the
Penttila-Williford infinite family, a previously unknown fact. Finally, we described
our use of the relative hemisystem finder and computation tree algorithm to find
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and classify relative hemisystems on H(3, 64) with stabilisers which have 5, 7 or 13
as divisors.

Furthermore, we presented a set of three criteria which are sufficient for deter-
mining a relative hemisystem. We refined these criteria down to a single condition
for perturbations of the Penttila-Williford family of relative hemisystems. Using this
condition, we were able to give new constructions of the Penttila-Williford family,
the Cossidente family admitting a group of order q2(q + 1) for each q even, and the
Cossidente family admitting PSL(2, q) for q = 4, 8, 16. We conjecture that the con-
dition holds on the Cossidente family of relative hemisystems admitting PSL(2, q)
for q > 16 and we leave this as future work.

There are many avenues for further work to be done on relative hemisystems.

One of the most obvious open problems is the classification of all relative hemisys-
tems on H(3, q) for q = 8 and beyond. The attempts that we have made prove that it
is not as easy as it may seem to have such a classification, but with the development
of new methods and larger computing power, it does not seem far out of reach.

Another open question related to the original work presented in Chapter 5 is
whether most examples of relative hemisystems satisfy the conditions given in The-
orem 5.2. We have proved that all of the known infinite families satisfy the condi-
tions, but given that we have a counterexample in the relative hemisystem arising
from a Suzuki-Tits ovoid and our lack of knowledge about how many non-equivalent
examples of relative hemisystems exist, it is hard to say whether this set of criteria
describes most of the examples or not.

Another avenue for further research could also be to investigate whether we can
construct relative hemisystems using the conditions given in Theorem 5.2. This
could open the door to finding new infinite families of relative hemisystems.

Finally, there is future work to be done on proving or disproving that the
Cossidente-Pavese relative hemisystem arising from a Suzuki-Tits ovoid, described
in [22] is sporadic. Since these ovoids only exist on W(3, q) for q an odd power of
two, it seems difficult to investigate the next possible occurence on q = 32. The
number of lines in a hemisystem for q = 32 is 523776, which is a far cry from the
mere 2016 lines for q = 8.



53

Index

σ-sesquilinear form, 26

absolute, 13
alternating group, 21
antipode, 36
association scheme, 29, 32–35

P -polynomial, 34
Q-antipodal, 34
Q-polynomial, 34
imprimitive, 34

Baer
involution, 10
subspace, 10

Bose-Mesner algebra, 33

Cayley’s Theorem, 21
change of basis, 18
classical group, 22, 25
collineation, 10
collineation group, 10, 25
cone, 18
conic, 16
Cossidente, 28, 36–37, 41

Desarguesian, 8
dimension, 9
doily, 11, 27
duality, 12

embedding, 26
even permutation, 20
external lines, 35
external points, 35

faithful, 19
Fano plane, 7, 9
fields, 5
FinInG, 39
fixed point freely, 42
Fundamental Theorem of Projective Ge-

ometry, 25

GAP, 39, 49
generalised quadrangle, 10, 18

flock, 29
group action, 19
group extension, 22
Gurobi, 39, 40

Hadamard product, 33
hemisystem, 1, 27, 30

dual, 28
of points, 28

Hermitian space, 15, 26, 27
hyperplane, 9

idempotent, 33
in perspective

from line, 8
from point, 8

incidence structure, 1, 7
intriguing set, 29
isometry, 22

Krein parameters, 33

line orbit incidence number, 43
linear group, 23

non-Desarguesian, 8
nondegenerate

projective space, 9

odd permutation, 20
orbit, 19
Orbit-Stabiliser Theorem, 20
order

generalised quadrangle, 10
projective plane, 7

orthogonal group, 24
ovoid, 28, 29

partial quadrangle, 11, 28–31
Penttila, 28, 35
permutation group, 20
permutation isomorphic, 21
point graph, 31
polar space, 13, 14, 25, 26
polar space



54 Index

classical, 14–18
polarity, 12–13, 28

and polar spaces, 13, 18
projective plane, 7
projective space, 8, 26

dual, 12

quadric, 15–18
canonical hyperbolic, 18
elliptic, 15, 42
hyperbolic, 15, 42
parabolic, 15

rank, 9
regular system, 27, 30
regulus, 16, 42

change of basis, 18, 44, 47
opposite, 17

relative hemisystem, 35–37, 40, 43, 45,
47

classification, 40, 41

Segre
Beniamino, 27
product, 17

Segre product, 21
semidirect product, 22
SET, 2
skew, 16
spread, 27
stabiliser, 19

pointwise, 20
setwise, 20

strongly regular decomposition, 31
strongly regular graph, 28, 31
Suzuki-Tits ovoid, 37, 41
symmetric group, 20
symplectic group, 23
symplectic space, 14, 26

transitive, 19
transversal, 16

unitary group, 23

Veblen-Young axiom, 8
Veblen-Young Theorem, 9



55

Bibliography

[1] A. Aguglia and L. Giuzzi. Intersections of the Hermitian surface with irreducible
quadrics in even characteristic. preprint.

[2] John Bamberg, Anton Betten, Philippe Cara, Jan De Beule, Michel Lavrauw,
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Relative Hemisystem Finder for GAP

Below is the code produced in an attempt to find new relative hemisystems on
H(3, 64).

#######

#Relative Hemisystem Finder

#Melissa Lee (UWA)

#Version Gamma

#

# We find the relative hemisystems using Gurobi by writing

# the problem as a linear program.

# The objective function is trivial and we have equations

# xM = (y,y,.....,y)

# Where y = half the number of external lines

# running through an external point.

# Each row of M is an incidence vector of a line such that

# M_{ij} =1 <=> point extpts[j] is on line extlines[i]

# and zero otherwise.

#######

LoadPackage("fining");

LoadPackage("Gurobify");

q:= 4;

H:=HermitianPolarSpace(3,q^2);

W:= SymplecticSpace(3,q);

em:= NaturalEmbeddingBySubfield(W,H);

Wpts := Points(W);

Hpts := Points(H);

Hpts := AsList(Hpts);

Wpts := AsList(Wpts);

Wpts2:= ImagesSet(em, Wpts);

Hlines := List(Lines(H));

Wlines := List(Lines(W));

Wlines2 := ImagesSet(em, Wlines);

#points external to W

extpts := Difference(Hpts, Wpts2);

#lines external to W

extlines:=Filtered(Hlines, l -> Filtered(Wpts2, p -> p * l) = []);

#choose an external point

pt := extpts[1];

#Find no. lines through external pts in the relative hemisystem

y :=Size(Filtered(extlines, l -> (pt*l)))/2;

#Objective is to make sure all points have the

# necessary number of lines in RH
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b:=Concatenation(ListWithIdenticalEntries(Size(extpts), y), [1]);

#Make matrix of all constraints

matrix:= NullMat(Size(extlines),Size(extpts)+1);

#incidence matrix

for i in [1..Size(extlines)] do

for j in [1..Size(extpts)] do

if extpts[j] * extlines[i] then

matrix[i][j] := 1;

fi;

od;

matrix[i][Size(extpts)+1] := 0;

od;

matrix[1][Size(extpts)+1] := 1;

#defining things for the linear program

comparisons := ListWithIdenticalEntries(Size(extpts)+1, ’=’);

objective:=ListWithIdenticalEntries(Size(extpts)+1, 0);

variables := ListWithIdenticalEntries(Size(extlines), "Binary");

lp := LinearProgram( objective, matrix, comparisons, b, variables );

#Use gurobi to find the solutions

allsolutions := GurobiFindAllSolutions(lp);

RH := List(allsolutions,

t -> Filtered([1..Size(extlines)], i -> t[i] = 1));

col := CollineationGroup(H);

stab := FiningSetwiseStabiliser(col, Wlines2);

act := ActionHomomorphism(stab, extlines, OnProjSubspaces);

perm := Image(act);

uptoeq := Set(RH, t -> SmallestImageSet(perm,t));

Print(Size(uptoeq), " relative hemisystems found up to equivalence");
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Group Theory

Here we introduce the basics of group theory. Groups are one of the most important
algebraic structures in mathematics. In addition to being significant in their own
right, groups are also critical to finite geometry.

B.1 Some Basics and Examples

Definition B.1. A group (G, ·) is a set G equipped with a binary operation · on
elements of G, that satisfies the following conditions.

i) There exists an identity element e ∈ G such that e · g = g = g · e for all g ∈ G.

ii) The operation · is associative. In other words, for every x, y, z ∈ G, we have
(x · y) · z = x · (y · z).

iii) For all g ∈ G, there exists an inverse of g, h ∈ G such that g · h = e.

There are many familiar examples of groups. For example, consider the integers,
denoted Z with regular addition. This forms a group, with identity e = 0. Further,
consider the integers {1, . . . , n − 1} with multiplication modulo n. These form a
group if n is a prime. If n is not prime, then integers in Zn that are not coprime to
n will not have an inverse.

A group (G, ·) is said to be Abelian when its binary operation is commutative.
Notice that the integers with addition and the integers with multiplication modulo p
(p prime) described above are Abelian groups. However, there are many important
examples of non-Abelian groups.

Example B.2. The set of n×n invertible matrices over the reals, denoted GL(n,R)
with matrix multiplication form a group. However, the group is not Abelian for
n > 1, since matrix multiplication is not commutative in general.

B.1.1 Simplifying notation It is common to simplify the group notation to
make it easier to write and read. We often omit the · symbol when applying the
binary operation to two elements of the group. So, for example, we write gh instead
of g · h. We call this the ‘product’ of g and h.

We also use index notation to denote the repeated application of the operation to
a single element of the group. For example, we will write g3 for ggg. By convention,
we define g0 = e.

We will also say “G is a group” instead of “(G, ·) is a group”. The group operation
will usually be apparent and we will use the notation described in this section.
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Another important concept is the order of a group G, denoted |G|, which is the
total number of distinct elements the group contains. Note that this quantity might
be finite or infinite.

On the other hand, the order of an element g in a group G is the smallest natural
number n such that gn = e. Again, this may be finite or infinite. We now prove
some basic facts about groups.

Lemma B.3. A group (G, ·) has exactly one identity element.

Proof. We know that G must contain an identity element, otherwise it wouldn’t be
a group. Suppose G contains two distinct identity elements e and e′. Then, consider
e ·e′. Now, since e is an identity, e ·e′ = e′. However, e′ is also an identity so e ·e′ = e.
This implies that e = e′.

Lemma B.4. Let (G, ·) be a group. Then, each element g ∈ G has exactly one
inverse in G.

Proof. Suppose g ∈ G. Then, g must have at least one inverse, otherwise G would
not be a group. Suppose g had two inverses, h and j. Then, consider h · g · j. Since
h is an inverse of g, we have h · g · j = e · j = j. We know j is also an inverse of g
so h · g · j = h · e = h. So j = h.

B.2 Subgroups

Many groups have nonempty subsets which also form groups under the same
operation as the larger group. These nonempty subsets are called subgroups. Notice
that this subset does not need to be proper; indeed, a group is a subgroup of itself.
The subset containing just the group identity e also forms a subgroup; it is called
the trivial group. If H is a subgroup of G, then we sometimes write H ≤ G.

Example B.5. The set of integer multiples of n, denoted nZ is a subgroup of the
integers with addition, (Z,+).

Rather than checking all three of the group axioms if we wish to say that H is
a subgroup of G, we may instead use the following result.

Proposition B.6. Suppose G is a group and H is a nonempty subset of G. Then
H is a subgroup of G if and only if for all x, y ∈ H, xy−1 ∈ H.

Proof. Forward direction: Suppose H is a subgroup of G. Then H is closed under
multiplication and every element y ∈ H has y−1 ∈ H. Therefore, xy−1 ∈ H for all
x, y ∈ H.

Backward direction: Suppose xy−1 ∈ H for all x, y ∈ H. Then, since H is
nonempty, there exists an element x ∈ H and xx−1 = e ∈ H. Also, H is associative
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because the property is inherited from G. Any element y ∈ H also has its inverse in
H because ey−1 = y−1 ∈ H. Finally, for every two elements x, y ∈ H, since y−1 ∈ H,
we have x(y−1)−1) = xy ∈ H. So H is closed under multiplication. Therefore, H is
a subgroup of G.

There are many special types of subgroups which are important in the study
of groups. The first of these are subgroups which are invariant under conjugation
by elements of the parent group. These are called normal subgroups, and if H is a
normal subgroup of G, we denote this H C G. Notice that it is not necessary for
gh = hg for all h ∈ H and g ∈ G. There must simply exist h, h′ ∈ H satisfying
hg = gh′ for all g ∈ G. Pre-multiplying by g−1 gives an equivalent definition of a
normal subgroup – H is a normal subgroup of G if g−1hg ∈ H for all g ∈ G, h ∈ H.
A group is said to be simple if its only normal subgroups are the trivial group and
itself.

Let us now alter our perspective slightly and rather than having a conjugation
condition that a subgroup must satisfy, we instead fix a subgroup and examine the
elements that leave it invariant under conjugation. The normaliser NG(H) of a
subgroup H ≤ G is the set of elements of G such that ghg−1 ∈ H for all g ∈ NG(H)
and h ∈ H.

We may strengthen this condition to consider group elements that fix all group
elements under conjugation. The centre of a group G, denoted Z(G) is the set
of elements in G that commute with all other elements of G. The notation Z(G)
originates from the German word zentrum, meaning centre. The centre of a group
is a normal subgroup of the parent group [29]. A similar concept is the centraliser
CG(g) of a group element g ∈ G. It is the set of elements of G that commute with g.
Notice that if G is Abelian, then the centre and the centraliser of any group element
will be the entire group.

B.2.1 Generators A natural question that arises in the study of groups is
whether we can write all of the elements of a group in terms of a smaller set of
elements. This is the motivation for the notion of generators.

Definition B.7. Let G be a group. We say that G is generated by a set of elements
S ⊆ G if every element of G can be written as the product of elements of S and
their inverses. We call the elements of S generators for G and write G = 〈S〉.

We say a group is cyclic if it is generated by a single element. For example,
the group of the integers with addition modulo n is generated by any integer in the
group which is coprime to n. If we have an element g of a group G, we define the
set generated by g by 〈g〉 = {gk | g ∈ Z} [29].

Proposition B.8. Let G be a group. Then for any element g ∈ G, 〈g〉 is a cyclic
subgroup of G.
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Proof. Firstly, 〈g〉 is non empty, since g ∈ 〈g〉. Since G is closed under multipli-
cation and taking inverses, 〈g〉 is a subset of G. Also note that the elements of
〈g〉 are of the form gk for some integer k. By Proposition B.6, we only need prove
that xy−1 ∈ 〈g〉 for all x, y ∈ 〈g〉. We have xy−1 = gk(gm)−1 = gk−m ∈ 〈g〉 as
required.

As an example, 〈3〉 = {3, 6, 9, 0} is a subgroup of Z12. As we will see in Section
B.4.2, we may think of the collection of cyclic groups of order n as being equivalent,
because we can define a structure preserving bijective map between cyclic groups.

B.2.2 Direct Products Suppose G and H are groups. We define the direct
product G×H as the set of ordered pairs (g, h) such that g ∈ G and h ∈ H.

Proposition B.9. The set G×H is a group with componentwise multiplication.

Proof. ∗ The identity of the group is (eG, eH) because for any (g, h) ∈ G × H,
(eG, eH) · (g, h) = (eGg, eHh) = (g, h). In addition, G × H is closed under compo-
nentwise multiplication and associative because G and H are. Finally, the inverse
of any element (g, h) ∈ G×H is (g−1, h−1).

The smallest example of a direct product of groups is the Klein-four group, which
is isomorphic to Z2 × Z2. We can think of this group as being generated by two
elements a and b of order 2. Its multiplication table is given below.

1 a b ab
1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

Table B.1: The multiplication table for the Klein-four group.

B.3 Cosets and Quotients

The concept of cosets in group theory was first formulated by Galois in 1830 [29].
They are an important notion that leads us to one of the most important results in
finite group theory, Lagrange’s Theorem.

Suppose H is a subgroup of a group G, and let g ∈ G. We define gH = {gh |
h ∈ H} to be a left coset of H and Hg = {hg | h ∈ H} to be a right coset of H.
Notice that any statement we prove about right cosets is also true of left cosets by
using an analogous argument.

We now state some basic properties about cosets.
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Proposition B.10. Suppose H is a subgroup of G and x, y ∈ G. Then:

i) x ∈ Hx

ii) |Hx| = |Hy|

iii) Hx = H if and only if x ∈ H

iv) The set of right cosets partition G.

Proof. i): We have x = ex ∈ Hx, since H is a group and so must contain the
identity.
ii): To prove that Hx and Hy have the same size, we simply define a bijection
between them. Define

f : Hx −→ Hy

by

hx 7−→ hy

for all h ∈ H. This is clearly onto because the preimage of any element hy ∈ Hy
is hx. Suppose that f(hx) = f(h′x) for some h, h′ ∈ H. Then by the definition of
f , we have hy = h′y and multiplying on the right by the inverse of y gives h = h′.
Therefore, f is a bijection and |Hx| = |Hy|.
iii): Firstly, assume that Hx = H. Then, x = 1ẋ = h for some h ∈ H and therefore
x ∈ H. Conversely, suppose that x ∈ H. Then, since H is a group, it is closed
under multiplication and hx ∈ H for all h ∈ H. So Hx ⊆ H. Furthermore, since
x ∈ H, we have hx−1 ∈ H for all h ∈ H. So multiplying on the right by x gives us
h ∈ Hx and therefore Hx = H.
iv) Firstly, any element x ∈ G is contained in Hx by i) and so the cosets cover the
whole of G. Suppose there exist two cosets Hx and Hy such that Hx ∩ Hy 6= ∅.
Let g ∈ Hx ∩Hy. Then there exist elements h1, h2 ∈ H such that h1x = g = h2y.
Rearranging, x = h−1

1 h2y and y = h−1
2 h1x. So any element of Hx is of the form

hh−1
1 h2y ∈ Hy for some h ∈ H and therefore Hx ⊆ Hy. Similarly, any element

of Hy is of the form hh−1
2 h1x ∈ Hx for some h ∈ H. Thus Hy ⊆ Hx and so

Hx = Hy.

Theorem B.11 (Lagrange’s Theorem). Suppose G is a finite group and H is a
subgroup of G. Then the order of H divides the order of G. Furthermore, the
number of distinct right cosets of H in G is |G|/|H|.

Proof. Let Hg1, Hg2 . . . Hgk be all of the distinct left cosets of H. Then for all
g ∈ G, Hg = Hgi for some i ∈ {1, 2, . . . k}. Also recall that g ∈ Hg for all g ∈ G.
So G = Hg1 ∪Hg2 ∪ · · · ∪Hgk. Since the cosets of H partition G, they are disjoint.
So |G| = |Hg1|+ |Hg2|+ · · ·+ |Hgk|. By Proposition B.10, every coset has the same
size. So since H is one of the cosets, |G| = k|H|.
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The index of a subgroup H in the parent group G, denoted |G : H| is defined as
the order of G divided by the order of H. A direct corollary of Lagrange’s Theorem
is that the index |G : H| will always be an integer.

Proposition B.12. If H is a subgroup of G of index two, then H is a normal
subgroup of G.

Proof. Consider the left cosets of H in G. Since the set of cosets partition G,
and H has index two, there must be exactly two left cosets, H and gH for some
g ∈ G \H. Similarly, there must be only two right cosets of H, namely H and Hg.
So gH = Hg and there exist h, h′ ∈ H such that gh = h′g and so H is a normal
subgroup of G.

Apart from being used to prove Lagrange’s Theorem, cosets arise most frequently
as elements of quotient groups. A quotient group is the set of all of the right cosets
of a normal subgroup. The next proposition proves that this is indeed a group.

Proposition B.13. Let G be a group and H E G. The set G/H := {Hg | g ∈ G}
forms a group with binary operation defined by (Hx)(Hy) = H(xy) for all x, y ∈ G.

Proof. The set has identity H, since for all x ∈ G, (H)(Hx) = H(eGx) = Hx
where eG is the identity element of G. To prove associativity of G/H, consider
(Hx)(Hy)(Hz), for x, y, z ∈ H. Now, since G is associative, ((Hx)(Hy))(Hz) =
(H(xy))(Hz) = H((xy)z) = H(x(yz)) = (Hx)(H(yz)) = (Hx)((Hy)(Hz)). Next,
we claim that the inverse of an element Hx ∈ G/H is Hx−1. We have (Hx)(Hx−1) =
H(xx−1) = H, as required. Finally, sinceG is closed under multiplication, it is trivial
that G/H is closed under multiplication.

Perhaps the most natural example of a quotient group is Z/nZ, where the opera-
tion on both groups is addition. The resulting cosets (here using addition notation)
are 0 + nZ, 1 + nZ, . . . , (n− 1) + nZ. Notice that if we have k+ nZ for some k ≥ n,
we can split k up into r+ qn, for q, r ∈ Z, 0 ≤ r < n, and so k+nZ = (r+ qn)+nZ.
Since n ∈ nZ, from Proposition B.10, k + nZ = r + nZ and so is equivalent to one
of the cosets listed earlier. The ‘factoring out’ by multiples of n is reminiscent of
the group formed by Zn under addition, and as we will see, the two have the same
structure and are isomorphic.

The derived subgroup of a group G is the smallest normal subgroup of G such
that G/N is Abelian. It is generated by all of the elements of G of the form g−1h−1gh
for g, h ∈ G. Elements in this form are called commutators of G. Notice that if G
is Abelian, then the derived subgroup of G is the trivial group.
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B.4 Homomorphisms and Isomorphisms

There are many groups that have the same algebraic structure but are presented
to us differently. We say that such groups are isomorphic to each other. However, to
begin to discuss isomorphisms in a formal sense, we must first introduce the notion
of group homomorphisms.

B.4.1 Group Homomorphisms

Definition B.14. A homomorphism φ : G → G′ is a function between groups G
and G′ that preserves the group operation, i.e., φ(gh) = φ(g)φ(h) for all g, h ∈ G.

We define the kernel of a homomorphism φ, denoted Ker(φ), to be the set of
elements of G whose image under the homomorphism is the identity of G′. We now
state some fundamental properties of homomorphisms.

Proposition B.15. Suppose φ : G → G′ is a homomorphism between two groups
G and G′, and suppose g ∈ G.
Then:

i) φ(eG) = eG′ ,

ii) φ(gk) = (φ(g))k for all k ∈ Z.

iii) If the order of g is finite, then the order of φ(g) divides the order of g,

iv) The kernel of φ, denoted Ker(φ) is a normal subgroup of G.

v) The image of φ, denoted Im(φ), is a subgroup of G′

Proof. i): By the definition of a homomorphism, φ(g) = φ(eGg) = φ(eG)φ(g) for
all g ∈ G. Multiplying on the right by (φ(g))−1 on both sides (which exists because
G′ is a group), we have eG′ = φ(eG) as required.
ii): This follows directly from the operation preserving property of the homomor-
phism. We have φ(gk) = φ(g)φ(g) . . . φ(g)︸ ︷︷ ︸

k times

= (φ(g))k.

iii): Suppose that the order of g is n, i.e., gn = eG. Then, by i) and ii), (φ(g))n =
φ(gn) = φ(eG) = eG′ . So the order of φ(g) must divide n, which is the order of g.
iv): Firstly, by i), Ker(φ) contains the identity of G. The kernel is associative
because the property is inherited from G. Suppose g ∈ Ker(φ). Then, from i)
eG′ = φ(eG) = φ(gg−1) = φ(g)φ(g−1) = eG′φ(g−1) = φ(g−1). Therefore, every ele-
ment in the kernel also has its inverse in the kernel. Finally, if g, h ∈ Ker(φ), then
φ(gh) = φ(g)φ(h) = eG′ . Therefore, the kernel of φ is closed under multiplication
and is therefore a group. Furthermore, it is a normal subgroup of G because for
all x ∈ G and g ∈ Ker(φ), φ(x−1gx) = φ(x−1)φ(g)φ(x) = φ(x−1)φ(x) = eG′ , so
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x−1gx ∈ Ker(φ).
v): Firstly, by i), eG′ ∈ Im(φ). The image of φ is associative because G′ is associative.
It is also closed because for every φ(g), φ(h) ∈ Im(φ), φ(g)φ(h) = φ(gh) ∈ Im(φ) by
the structure preserving property of φ. Finally, for g ∈ G, eG′ = φ(eG) = φ(gg−1 =
φ(g)φ(g−1) and so φ(g)−1 = φ(g−1) ∈ Im(φ). Therefore, Im(φ) is a subgroup of G′.

B.4.2 Isomorphisms Consider an Australian and a Frenchwoman counting
baguettes. The Australian counts the baguettes saying “One, two, three ...” and
so on, whereas the Frenchwoman counts “Un, deux, trois ...”. Although these two
people are counting in different languages, they are still completing the same task.
Similarly, when the Australian says “four times four equals sixteen”, and the French-
woman says “quatre multiplié par quatre égale seize”, they are both conveying the
same idea, just using different languages. In the same way, isomorphic groups have
the same structure but are described with different ‘terminology’.

Definition B.16. An isomorphism ϕ : G → G′ between groups G and G′ is a
bijective homomorphism. When such an isomorphism exists, G and G′ are said to
be isomorphic, and we denote this by G ∼= G′.

We define the kernel of an isomorphism analogously to the kernel of a homomor-
phism. Additionally, all of the properties described in Proposition B.15 also hold
for isomorphisms, since isomorphisms are themselves homomorphisms.

The First Isomorphism Theorem relates all of the concepts described in this
section. It was first described by Camille Jordan in 1870 [29].

Theorem B.17 (First Isomorphism Theorem). Let G be a group and φ : G → G′

be a homomorphism between groups G and G′. Then G/Ker(φ) ∼= Imφ.

Proof. Let ϕ : G/Ker(φ) → Imφ be defined by Ker(φ)g 7→ φ(g). We first check
that this function is well-defined, i.e., if Ker(φ)g = Ker(φ)h for some g, h ∈ G,
then ϕ(Ker(φ)g) = ϕ(Ker(φ)h). Suppose Ker(φ)g = Ker(φ)h. Then multiplying on
the right by g−1 gives Ker(φ)hg−1 = Ker(φ) and hg−1 ∈ Ker(φ). Then φ(hg−1) =
eG′ . Since φ is a homomorphism, φ(h)φ(g)−1 = eG′ and multiplying on the right
by φ(g) gives φ(g) = φ(h). Therefore, ϕ is well-defined. It is easy to see that
the converse of the set of implications given to prove ϕ is well-defined also hold,
and these prove that φ(g) = φ(h) ⇒ Ker(φ)g = Ker(φ)h. This shows that ϕ is
injective. Moreover, ϕ is surjective because the preimage of any element φ(x) ∈
Imφ is Ker(φ)x. Finally, we need to check that ϕ is a homomorphism. We have
ϕ(Ker(φ)gKer(φ)h) = ϕ(Ker(φ)gh) = φ(gh) = φ(g)φ(h) = ϕ(Ker(φ)g)ϕ(Ker(φ)h),
as required.

We apply the First Isomorphism Theorem to prove an intuitive result about
cyclic groups.
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Proposition B.18. All cyclic groups of order n are isomorphic.

Proof. Suppose G = 〈g〉 and H = 〈h〉 are cyclic groups of order n. Then, define φ :
G→ H by gk 7→ hk for k in the range 0 ≤ k < n. We claim this is a homomorphism.
Suppose k, l ∈ {0, 1, . . . , n − 1} We have φ(gk)φ(gl) = (hk)(hl) = hk+l = φ(gk+l)
as required. Now, the kernel of φ is trivial because φ(gk) = hk = eH ⇒ gk = eG,
because g and h have the same order. The image of φ is the whole of H because
the preimage of hk ∈ H is gk. Therefore, by the First Isomorphism Theorem,
G = G/Ker(φ) ∼= Im(φ) = H.

Therefore, there is one cyclic group up to equivalence, and we denote it Cn.

An automorphism is an isomorphism from a group to itself. For our purposes,
we will mostly consider automorphisms which permute elements of a set.
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Sesquilinear and Quadratic Forms

Definition C.1. Suppose σ is an automorphism of a finite field GF(q). A σ-
sesquilinear form of a vector space V over GF(q) is a map β : V × V → GF(q)
such that for any u, v, w ∈ V and a, b ∈ GF(q), β satisfies the following properties.

i) β(u+ v, w) = β(u,w) + β(v, w)

ii) β(u, v + w) = β(u, v) + β(u,w)

iii) β(au, bv) = abσ(u, v)

Notice that the definition implies that σ-sesquilinear forms are linear in the first
coordinate, but semilinear in the second. If σ is the identity automorphism, then
clearly the corresponding σ-sesquilinear form is linear in both arguments and we
call it a bilinear form.

A quadratic form Q : V → GF(q) is a second degree homogeneous map.

When the characteristic of GF(q) is odd, we may use the quadratic form Q to
define a symmetric bilinear form as follows

βQ(u, v) =
1

2
(Q(u+ v)−Q(u)−Q(v))

for u, v ∈ V . We may obtain a quadratic form back from a symmetric bilinear form
β by simply letting Q′(x) = 1

2
β(x, x). Notice that this does not apply when q is

even because there is no well defined concept of a half.

A σ-sesquilinear form is said to be degenerate if there is a nonzero element v ∈ V
such that β(v, w) = 0 for all w ∈ V , and the vector v is called singular with respect
to the form. A vector v ∈ V is said to be singular with respect to a quadratic
form if Q(v + w) = Q(w) for all w ∈ V [26]. Moreover, a form is reflexive if
β(v, w) = 0⇔ β(w, v) = 0.

The following theorem was first proved by Brauer in [12], but is universally
known as the Birkhoff-von Neumann theorem.

Theorem C.2 (Birkhoff and von Neumann [9]). Suppose V is a vector space with di-
mension at least three. Then, up to a scalar multiple, a nondegenerate σ-sesquilinear
reflexive form on V is one of the following types:

i) alternating: σ = 1 and β(v, v) = 0 for all v ∈ V .

ii) Hermitian: σ2 = 1, σ 6= 1, and β(u, v) = β(v, u)σ for all u, v ∈ V .

iii) symmetric: σ = 1 and β(u, v) = β(v, u).
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Furthermore, when GF(q) is a finite field with odd characteristic, there are ex-
actly two equivalence classes of symmetric bilinear forms on a vector space V up to
the choice of basis.1.

Suppose B = {b1, b2, . . . , br} is a basis of a finite vector space V . Given a σ-
sesquilinear form β, we can define a matrix (MB)ij = β(bi, bj). Then β(u, v) =

[u]BMB[v]>B and MB is called a Gram matrix.

A subspace W of a vector space V is said to be totally isotropic with respect to
a σ-sesquilinear form when β(u, v) = 0 for all points u, v ∈ W , and totally singular
with respect to a quadratic form when Q(v) = 0 for all points v ∈ W .

Theorem C.3 (Witt’s Theorem). Suppose V and W are projective spaces equipped
with non-singular forms f and g respectively, which are both either both reflexive
sesquilinear forms or quadratic forms. Then any isometry from a subspace Y of V
to a subspace Z of W can be extended to an isometry from V to W .

A direct consequence of Witt’s Theorem is that the isometry group of a non-
singular reflexive sesquilinear or quadratic form f is transitive on totally isotropic
subspaces of the same dimension. Another corollary of Witt’s Theorem is that all
maximal totally isotropic subspaces with respect to f have the same dimension,
termed the Witt index of f .

Example C.4. The two equivalence classes of symmetric bilinear forms on a 2n-
dimensional vector space are the plus type, which contains forms with Witt index n,
and the minus type, which contains forms with Witt index n− 1 [69].

1For further discussion, see [69].
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