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Abstract

It is well-known that every automorphism of the full matrix algebra
is inner. We give a short proof of this statement and disscuss several
extensions of this theorem including structural results for multiplicative
maps on matrix algebras, characterizations of monotone and orthogonal-
ity preserving maps on idempotent matrices, some non-linear preserver
results, and some recent theorems concerning geometry of matrices. We
show that all these topics are closely related and point out the connections
with physics and geometry. Several open problems are posed.

Dedicated to Richard Brualdi on the occasion of his sixtyfifth birthday

1 Introduction

Let F be an arbitrary field. We denote by M, (F) the algebra of all n x n
matrices over [F. It is well-known that every automorphism of this algebra is
inner. More precisely, we have the following result.
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Theorem 1.1 Let F be an arbitrary field and ¢ : M, (F) — M, (IF) a bijective
linear map satisfying $(AB) = ¢(A)p(B), A, B € M, (F). Then there exists an
invertible matriz T € M, (F) such that

¢(A) =TAT!
for every A € M, (IF).

Every map A — TAT~!, where T is any invertible matrix, will be called a
similarity transformation.

The above theorem can be easily improved. Namely, every nonzero endo-
morphism of the algebra M, (IF) is inner. Indeed, the kernel of an endomorphism
is an ideal in M, (F). The algebra M, (IF) is simple, that is, there are no non-
trivial two-sided ideals in M, (F). So, if ¢ : M,(F) — M,(F) is a nonzero
endomorphism, it must be injective and thus, automatically bijective.

Theorem 1.1 is usually derived as a straightforward consequence of Noether-
Skolem theorem [12, p.93, Theorem 3.14] considering homomorphisms from a
simple algebra into a finite-dimensional central simple algebra. We were able
to find also several direct proofs in the literature. Here we will present the
simplest of all proofs that we know. Although this proof is known to several
mathematicians working on this kind of problems we were unable to find it
in the literature. The idea comes from the paper of Chernoff [8] who studied
representations of some operator algebras.

Let us first describe the idea. We identify n xn matrices with linear operators
acting on the n-dimensional space " of all n x 1 matrices over IF. If z,y € F"
are nonzero column matrices then

T

ay' =1 lm - ynl

LTn

is a rank one n x n matrix and every n X n matrix of rank one can be represented
in the above form. By linearity, any automorphism ¢ : M, (F) — M, (F) is
uniquely determined by its behaviour on the set of all rank one matrices. If ¢
is an inner automorphism induced by an invertible matrix 7', then

o(xy') = Tay' T~

for every rank one matrix zy’. Multiply this equation on the right hand side by
a vector z with the property that y*T 'z = X is a nonzero scalar. We get

d(xy)z = Nz

where ) is as above. Note also that TAT~! = (AT)A(AT)~! for every nonzero
scalar A and every A € M, (IF). In other words, if an inner automorphism ¢ of
M, (F) is induced by an invertible matrix T, then it is induced by any nonzero



scalar multiple of T. Hence, the above equation gives the idea how to find T
appearing in the conclusion of our theorem for a given automorphism ¢. Based
on this simple observation we get the following short proof.

Proof of Theorem 1.1. Choose and fix a pair of nonzero vectors u,y € F™.
Since ¢ is injective we can find z € F" such that ¢(uyt)z # 0. Define T : F* —
F" by Tz = ¢(xyt)z, © € F*. The linearity of T follows from the linearity of ¢.
Moreover, T is nonzero since Tu # 0. For arbitrary A € M, (F) and z € X we
have

TAx = ¢((Ax)y")z = (A - ay)z = ¢(A)g(ay’)z = ¢(A)Tx,

and consequently,

TA = ¢(A)T.

Let w be any vector in ™. Since Tu # 0 and because ¢ is surjective we can
find B € M, (F) such that ¢(B)Tu = w = TBu. Thus, T is surjective, and
therefore invertible. It follows that ¢(A) = TAT !, A € M, (FF), as desired.

O

A more general approach is to consider M, (F) only as a ring. Then we
are interested in ring automorphisms of M, (F), that is, bijective maps ¢ :
M, (F) — M, (F) satistying 6(A + B) = 6(A) + 6(B) and ¢(AB) = o(4)é(B),
A, B € M, (IF). The easiest way to treat such maps is to note that the center
Z(M,(F)) = {A e M,(F) : AB = BA for every B € M, (F)} of the ring
M, (F) is the set of all scalar matrices AI, A € F. Clearly, ¢ maps the center

of M, (IF) onto itself. Thus, ¢(AI) = f(MI for some function f : F — F.
Obviously, f is an automorphism of the field F. For any matrix A we denote by
Aj-1 the matrix obtained from A by applying f~* entrywise, Aj-1 = [a;;] ;-1 =
[f~(aij)]. The map A — Aj-1 is a ring automorphism of M, (IF). It follows that
¢ : M,,(IF) — M, (F) defined by p(A) = ¢(As-1) is again a ring automorphism
of M, (IF). Moreover, it is linear. Indeed,

p(AA) = ¢(fTHNIAf—1) = S(fTH AN S(Af-1) = Ap(Ag-1) = Ap(A).

The structural result for ring automorphisms follows now immediately from
Theorem 1.1.

Corollary 1.2 Let F be an arbitrary field and ¢ : M, (F) — M, (F) a bijective
additive map satisfying $(AB) = ¢p(A)op(B), A,B € M, (F). Then there exist
an automorphism f of the field F and an invertible matriz T € M, (F) such that

p(A) =TA; T

for every A € M, (IF).



Let f : F — F be an automorphism of the field F. Then the map A — Aj
will be called a ring automorphism of M, (IF) induced by f.

Recall that a map ¢ : M, (F) — M, (IF) is called an anti-automorphism of the
algebra M, (IF) if it is bijective, linear, and satisfies ¢(AB) = ¢(B)p(A), A, B €
M,,(F). The transposition map A — A is an example of such maps. Moreover,
if we compose any anti-automorphism of M, (') with the transposition we get an
automorphism of M, (F). Thus, we have another straightforward consequence
of Theorem 1.1.

Corollary 1.3 Let F be an arbitrary field and ¢ : M, (F) — M, (F) a bijective
linear map satisfying $(AB) = ¢(B)p(A), A, B € M, (F). Then there exists an
invertible matriz T € M, (F) such that

$(A) =TAT?
for every A € M, (IF).

Let T be an arbitrary invertible matrix. Then the map A — TA'T~! will
be called an anti-similarity transformation.

A map ¢ : M, (F) — M, (F) is called a Jordan automorphism of the algebra
M, (TF) if it is bijective, linear, and satisfies ¢p(A?) = ¢(A)? for every A € M, ().
Obviously, every automorphism as well as every anti-automorphism is a Jordan
automorphism of M, (IF).

It follows from [23, 78] that every Jordan automorphism ¢ of M,,(F), char F #
2, is either an automorphism, or an anti-automorphism. This together with the
above structural results for automorphisms and anti-automorphisms yield the
following result.

Corollary 1.4 Let T be an arbitrary field, charF # 2, and ¢ : M, (F) — M, (IF)
a Jordan automorphism. Then there exists an invertible matriz T € M, (IF) such
that either

p(A) =TAT!

for every A € M, (F), or
p(A) =TAT!

for every A € M, (IF).

In this paper we will disscuss several generalizations of the above theorems.
Endomorphisms of matrix algebras are linear multiplicative maps. In the next
section we will omit the linearity assumption and consider multiplicative maps
on matrix algebras. Besides multiplicative maps on full matrix algebras we
will be interested also in maps defined on some (Jordan, Lie) subalgebras that
are multiplicative with respect to the usual product or Jordan product or Lie
product. Multiplicative maps on M, (IF) map every idempotent matrix into an
idempotent. Moreover, such maps preserve orthogonality and the usual order on



the set of idempotent matrices. We will survey some recent results on monotone
and orthogonality preserving maps on idempotent matrices and point out the
connection with physics. Observe that every Jordan automorphism of M, (IF)
has many nice preserving properties: it preserves invertibility, rank, commuta-
tivity,... The natural question is whether every linear map on M, (IF) having a
certain preserving property is a Jordan automorphism (or a map of a similar
form). There is vast literature on these so called linear preserver problems. Be-
sides linear also additive, multiplicative, and quadratic preservers were studied
by many authors. Here we will be interested in general preservers, that is, maps
on M, (IF) having a certain preserving property that are not assumed to satisfy
any additional algebraic assumption. In particular, we will disscuss adjacency
preserving maps on matrices. We will pay a special attention to connections
between the above mentioned problems and show that they are also closely re-
lated to some problems in geometry. Several open problems will be posed. At
the end we will give a long list of references. Although some of them will not
be cited in the paper we decided to include them because of being so closely
related to the research topics treated in this survey.

2 Multiplicative maps on matrix algebras

We started with the description of all bijective linear multiplicative maps on
M, (IF) and then presented a more general structural result for bijective additive
multiplicative maps. Now we will go even one step further by omitting all but
the multiplicativity assumption. So we will be interested in the description of
all maps ¢ : M, (F) — M, (IF) satisfying ¢(AB) = ¢(A)¢p(B), A, B € M, (IF).
Let us start with some examples. Assume that k& < n. Following Jodeit and
Lam [34] we will call a multiplicative map ¢ : M, (F) — My (F) degenerate if
¢»(A) = 0 for every singular matrix A. The structure of such maps is quite well
understood. Namely, if ¢(I) = 0, then ¢ = 0. Otherwise, ¢(I) is a nonzero
idempotent and the image of ¢ is contained in PMy(F)P, where P = ¢(I).
Now, PMy(F)P is in a natural way isomorphic to M,.(IF), where r = rank P.
This natural isomorphism maps P into the identity r X r matrix. Thus, if we
want to understand the structure of degenerate multiplicative maps from M, (IF)
into My (IF) we have to understand the structure of unital degenerate multiplica-
tive maps from M, (F) into M, () where r is any positive integer < n. Every
such map sends invertible matrices into invertible matrices. And because the
restriction of such a map to the set of all singular matrices is the zero map, we
only need to understand the structure of homomorphisms between the general
linear groups GL(n,F) and GL(r,F). Clearly, GL(r,F) can be embedded into
GL(n,F). Thus, understanding the structure of degenerate multiplicative maps
is the same as understanding the structure of endomorphisms of the general lin-
ear group. The structural theory for endomorphisms of the general linear group
based on classical Borel-Tits results is highly nontrivial but well developed.



Let us now turn to nondegenerate multiplicative maps ¢ : M,,(F) — M, (FF).
Every similarity transformation and every ring endomorphism of M,, (F) induced
by an endomorphism of the underlying field IF is a nondegenerate multiplicative
map on M, (). The map A — (adj A)* which sends every matrix to its matrix
of cofactors is also a multiplicative nondegenerate map. And finally, let r be
an integer, 0 < r < n, and ¢ : M,(F) — M,.(FF) any degenerate multiplicative
map. Then the formula

A [@(A) 0 ]

0 Infr

defines another nondegenerate multiplicative map on M, (IF).

Clearly, any product of multiplicative maps on M, (IF) is again a multiplica-
tive map. In 1969 Jodeit and Lam [34] proved that every multiplicative map on
M, (F) is a product of maps described above. More precisely, we have

Theorem 2.1 Let n be a positive integer and F any field. Suppose that ¢ :
M, (F) — M, (F) is a multiplicative map. Then either ¢ is degenerate, or there
ezist an endomorphism f :F — F and an invertible matriz T such that

p(A) =TA;T™, A€ M,(F),
or there exist an endomorphism f : I — IF and an invertible matriz T such that
¢(A) =T(adjAy)'T", A€ M,(F),

or there exist a degenerate multiplicative map ¢ : M, (F) — M,(F) and a
nonzero idempotent P € M, (IF) such that

p(A) = p(A)+ P, Aec M,(F).

It should be mentioned that Jodeit and Lam proved the above theorem under
the weaker assumption that [F is a principal ideal domain.

There are plenty of open problems here. Namely, M, (IF) can be equipped
with other products like Lie product [A,B] = AB — BA or Jordan product
Ao B = AB+ BA (if the underlying field is not of characteristic 2 then Jordan
product is usually defined by Ao B = %(AB + BA)). Thus, instead of studying
maps that are multiplicative with respect to the usual product one can study
maps that are multiplicative with respect to Lie or Jordan product, that is,
maps satisfying one of the following equations

$(AB — BA) = ¢(A)p(B) — 6(B)¢(A), (1)
P(AB + BA) = ¢(A)p(B) + 6(B)o(A),

o (50484 B)) = J6(A10(B) + oBo(A)



for all A, B € M, (F). The last two equations look very similar. So it is inter-
esting to observe that Molnér [53] had to use completely different approaches
when characterizing their solutions. A related problem is to characterize maps
that are multiplicative with respect to Jordan triple product, that is, maps ¢
on M, (IF) satisfying

H(ABA) = 6(A)6(B)6(A)

for all A, B € M, (IF).

Next, instead of considering maps that are multiplicative with respect to one
of the above products on the full matrix algebra we can consider such maps on
any subset that is closed under this product. For example, we can ask what is
the general form of maps ¢ acting on upper triangular matrices that are mul-
tiplicative with respect to one of the above products. The set of all symmetric
matrices and the set of all complex hermitian matrices are closed under any of
the above mentioned Jordan products, while the set of skewsymmetric matrices
and the set of skewhermitian complex matrices are closed under Lie product.
So, we can study Jordan multiplicative or Lie multiplicative maps on these sets.
Further, we can try to solve this kind of problems on matrices over certain rings
or general division rings. And finally, instead of multiplicative maps on n x n
matrices we can study such maps between multiplicative semigroups of matri-
ces of different sizes. For example, we started this section with the result of
Jodeit and Lam on multiplicative maps from M, (IF) into M, (). The special
case of multiplicative maps f from M, (IF) — F (this is indeed a special case
since every multiplicative map f : M,,(F) — T gives rise to a multiplicative map
from M, (IF) into M,,(IF) defined by A — f(A)I) has been treated much earlier.
It is well-known that every multiplicative map f : M, (IF) — F is of the form
f(A) = g(det A), where g : F — TF is a multiplicative function. It is much more
difficult to treat multiplicative maps from M, (F) — M,,(F) with n < m (see
(36, 37]).

Let us disscuss here as an example the case of Lie multiplicative maps. If ¢ :
M, (C) — M, (C) is a bijective map satisfying (1) then there exist an invertible
matrix 7' € M, (C), a function ¢ : M, (C) — C satisfying ¢(C) = 0 for every
trace zero matrix C' and an automorphism f of the complex field such that either
¢(A) = TA;T~ + p(A)I for every A € M, (C), or $(A) = —TAT™! + p(A)]
for every A € M,,(C). If we do not assume that ¢ is bijective, then we conclude
that ¢ must be either of one of the above forms (with f being a not necessarily
bijective endomorphism), or the image of ¢ is contained in some subset of M, (C)
consisting of pairwise commuting matrices (in this case we have (AB—BA) =0
for every pair A, B € M, (C), or equivalently, ¢(C) = 0 for every trace zero
matrix C'). This has been recently proved by Dolinar [15]. Now we have here
a whole set of open questions as described above. Can we extend this result to
matrices over general fields or even general division rings? What happens on
matrices over rings? It would be also natural to study Lie multiplicative maps
on upper triangular or even more general block upper triangular matrices, on



skewsymmetric matrices, on skewhermitian matrices, etc. Can we say something
about Lie multiplicative maps ¢ : M,,(C) — M,,(C) when m > n?

We conclude this section by listing some papers treating this kind of problems
that we are aware of. These are [1, 7, 15, 20, 22, 34, 36, 37, 40, 41, 42, 43, 49,
51, 53, 54, 62, 67, 82].

3 Maps on idempotent matrices

In this section we will consider matrices over any division ring ). A matrix
P € M,(DD) is called an idempotent if P> = P. The set of all n x n idempotent
matrices with entries in D will be denoted by P, (D). For any integer k, 1 < k <
n, we denote by P¥(D) and P=F(DD) the set of all n x n idempotent matrices of
rank k, and the set of all n x n idempotents of rank at most k, respectively.

In the previous section we have considered multiplicative maps on the set
of all n x n matrices. Clearly, if ¢ : M, (D) — M, (D) is a multiplicative map
(with respect to the usual matrix product), then ¢(P, (D)) C P, (D).

There are two natural relations on the set P,(ID). First, it is well-known
that P, (D) is a poset (partially ordered set) with the partial order defined by

P<Q < PQ=QP=P, PQcecP,D).

Clearly, if P=0or Q =1 or P = @, then P < Q. Otherwise, P < @ implies
that P and @ are simultaneously similar to

I 00 I 00
0 0 0] and |O I O],
0 00 0 0 0

respectively.
The second natural relation on P, (ID) is the orthogonality relation defined
by
P1lQ < PQ=QP=0, PQeP,D).

Obviously, P L Qif P=0or Q@ =0or P=1—-Q. If P 1 @ and we do not
have one of the trivial possibilities mentioned in the previous sentence, then P
and @) are simultaneously similar to

I 0 O
0 0 O and
0 0 O

o O O
S ~N O

respectively.

We already know that the set P, (D) is invariant under every multiplicative
map acting on the whole matrix space M, (D). Moreover, it is obvious that
for every multiplicative map ¢ : M,(D) — M, (D) satisfying ¢(0) = 0 the



restriction ¢|p, ) : Pn(D) — P, (ID) preserves order and orthogonality, that is,
for every P,Q € P, (D) we have

and
PL1Q=9¢(P)LoQ).

The natural question here is, of course, what is the general form of maps on
P, (D) satisfying the first or the second condition above.

We started with the structural result for automorphisms of the algebra of
all square matrices over a given field, in the next step we considered maps on
matrix algebras that are merely multiplicative, and now we have arrived to
an even more general problem of characterizing maps on idempotent matrices
preserving order or orthogonality. The study of this kind of problems has been
motivated also by some problems in mathematical physics. In particular, the
first result on automorphisms of the poset of idempotent matrices was obtained
by Ovchinnikov [57]. The motivation for his work came from quantum mechanics
(see the review MR 95a:46093). His result recently proved to be useful also in
the study of quantum mechanical invariance transformations. Molnar [52] used
it to considerably improve the classical Wigner’s unitary-antiunitary theorem.
Later a shorter proof of Molnar’s theorem was found based on some structural
results for maps on rank one idempotents preserving zero products, or more
generally, preserving orthogonality [73, 75]. Other applications of structural
results for order preserving and orthogonality preserving maps on idempotents
include theorems on automorphisms of operator and matrix semigroups [73, 77/,
general preserver problems (see the next section) and geometry of matrices and
Grassmanians (see the last section).

Thus, we are interested in the structure of maps on P,(ID) that preserve
either order, or orthogonality. The relations < and L are closely connected.
Indeed, for every pair of idempotents P, Q € P, (D) we have P < @ if and only
if @+ C PL. Here, P* denotes the set of all idempotents R € P, (ID) that are
orthogonal to P. Moreover, if P < @, then P and ) commute. Also, if P and
Q@ are orthogonal then they commute. So, the problem of characterizing order
preserving maps on idempotent matrices is closely related to the problem of
characterizing orthogonality preserving maps on idempotent matrices and both
problems are related to the structural problem for commutativity preserving
maps on idempotent matrices. Of course, a map ¢ : P, (D) — P, (D) is called
a commutativity preserving map if ¢(P)o(Q) = ¢(Q)d(P) for every pair of
commuting idempotents P, Q € P, (D).

First observe that if we want to get reasonable structural results for maps
¢ : P,(D) — P,(D) that preserve one of our relations (order, orthogonality,
commutativity) then we have to restrict ourselves to the case when n > 3.
Indeed, the set of all rank one idempotents in Py(ID) is a disjoint union of
pairs {P,I — P} of orthogonal idempotents of rank one. Clearly, two distinct



rank one idempotents in Py(ID) commute if and only if they are orthogonal.
Every bijective map ¢ : Po(D) — P»(ID) sending every pair of orthogonal rank
one idempotents into a pair of orthogonal rank one idempotents and satisfying
#(0) = 0 (note that then automatically ¢(I) = I) preserves order, orthogonality,
and commutativity in both directions. Recall that a map ¢ : P,(D) — P,(DD)
preserves order in both directions if for every pair P,Q € P,,(D) we have P <
Q if and only if ¢(P) < ¢(Q). In the same way we define maps preserving
orthogonality or commutativity in both directions.

So, in this section we will always assume that n > 3. For every invertible
matrix T’ € M, (D) and every automorphism o of D the map ¢ : P, (D) — P, (D)
defined by

(b(P) = TPoTilv Pe Pn(]D))a (2)

is a bijective map preserving order, orthogonality, and commutativity in both
directions.

Assume that A, B € M,,(ID). Since the multiplication in D is not necessarily
commutative we do not have (AB)! = B* A" in general. But if 7 is an anti-
endomorphism of D then [(AB),]' = BL AL. Tt follows that for every invertible
matrix T' € M, (D) and every anti-automorphism 7 of D the map ¢ : P,,(D) —
P, (D) defined by

6(P) = T(P,)'T~!, P& Py(D), (3)

is a bijective map preserving order, orthogonality, and commutativity in both
directions. Every map of the form (2) or (3) will be called a standard map on
P,(D). In other words, we get a standard map in two ways. We can either
start with a similarity transformation on the whole space M, (D), compose
it with a ring automorphism of M, (D) induced by an automorphism of the
underlying division ring I, and then restrict the obtained map to the set of
all idempotents, or we do the same with a similarity transformation composed
with the transposition and a map on M,,(ID) induced by an anti-automorphism
of the underlying division ring ID.

If o and 7 in (2) and (3) are assumed to be a nonzero (not necessarily bijec-
tive) endomomorphism and anti-endomomorphism of I, respectively, then the
map ¢ is an injective map preserving order, orthogonality, and commutativity
in both directions. We will call such maps almost standard maps on P, (ID).

Choose any positive integer k, 1 < k <n —1. A map ¢ : P,(D) — P,(D),
which maps every idempotent of rank at most k into the zero idempotent and
every idempotent of rank larger than k into itself preserves commutativity, order,
and orthogonality. As most of us are used to work with matrices over fields it
should be mentioned here that the definition of a rank of a matrix is slightly
more complicated in the noncommutative case. The details will be given in
the last section. Any map ¢ : P,(D) — P, (D) whose image is contained in a
simultaneously diagonalizable subset of P,(ID) preserves commutativity. Any
map ¢ : P,(D) — P,(D) with the property ¢(P) < P, P € P,(ID), preserves
orthogonality. Let ¢ : P}(D) — P,(D) be an arbitrary map. We will extend

10



it inductively to an order preserving map ¢ : P,(ID) — P, (D). As the starting
map was chosen in an arbitrary way such maps are in general far from being of a
standard or an almost standard form. We first define ¢(0) = 0. Assume that we
have already extended ¢ to a map ¢ : P=F(D) — P,(ID), where k is a positive
integer 1 < k < n — 1, and that for every P,Q € P=F(D) the relation P < Q
yields that ¢(P) < ¢(Q). For every P € P*1(ID) we can find Q € P, (D) such
that ¢(R) < Q for every R € P,(D) satisfying R < P, R # P. Indeed, the
choice @ = I works always but in general we have more freedom. We complete
the inductive step by defining ¢(P) = Q.

These examples show that the maps ¢ : P,(D) — P,(D) preserving one
of our relations (commutativity, order, orthogonality) may be very far from
being standard or almost standard. For more examples of such preservers with
wild behaviour we refer to [77]. So, if we want to have reasonable structural
results we have to impose additional conditions. The natural choices are the
injectivity or the surjectivity assumption. We can also study such maps under
the stronger assumption that the relation under the consideration is preserved
in both directions.

Our conjecture when starting our work in this direction was that surjective
maps on P, (D) preserving one of our relations must be of a standard form. Sur-
prisingly, it turned out that this is not true. Examples of non-standard surjective
preservers of order or orthogonalty or commutativity on complex idempotent
matrices can be found in [77]. The construction of these counterexamples is
based on the fact that there are many “wild” endomorphisms of the complex
field [35]. On the other hand, the only nonzero endomorphism of the real field is
the identity map. Our conjecture is that every surjective order preserving map
on P,(R) is standard. In fact, it is tempting to conjecture that even more is
true. First we need one more definition. A division ring ID is an EAS-division
ring if every nonzero endomorphism of D is automatically surjective (note that
in the EAS-case every almost standard map is automatically standard). Let
us mention here that besides the field of real numbers also the field of rational
numbers and the division ring of quaternions have this property. Assume that
D is an EAS-division ring and n > 3. Is it then true that every surjective order
preserving map on P, (D) is of a standard form? We conjecture that the answer
to this question as well as to the analogous question for orthogonality preserving
maps are in the affirmative. At the end of this section we will consider commu-
tativity preserving maps. It will be then easy to guess what is our conjecture
on the structure of surjective commutativity preserving maps on idempotent
matrices over EAS-division rings.

Let D be an infinite division ring. Then we can find injective maps ¢; :
Pi(D) — D and 5 : P2(D) — D. It is easy to verify that a map ¢ : P3(D) —
P3(D) defined by

11



1 0
p(P)=10 0 0|, PePyD),
0 0

(. 0 -
and ~ _
1 0 0
¢(Py=10 1 0|, PePD),
10 w2(P) 0]
is an injective order preserving map. In fact, all we have to do is to verify that
1 % 0 1 00
0 00|<|0 1 0
0 0 0 0 = 0

holds true for any choices of the entries denoted by . If we compose such a
map with the transposition then the obtained map is again an injective order
preserving map on P3;(ID). We have obtained two types of injective order pre-
serving maps and if we compose any of them with a similarity transformation
we again arrive at an injective order preserving map. Any such map will be
called a degenerate injective order preserving map on Ps3(ID). It is quite obvi-
ous how to extend the notion of a degenerate injective order preserving map to
higher dimensions (for the details see [77]). One of the main results in [77] is
the following.

Theorem 3.1 Let D be any EAS-division ring. Assume that n > 3 and let
¢ : Py(D) — P,(D) be an injective order preserving map. Then either ¢ is a
degenerate injective order preserving map, or it is of a standard form.

It is rather easy to prove that every map ¢ : P,,(D) — P, (D) preserving order
in both directions must be injective. Obviously, a degenerate injective order
preserving map cannot preserve order in both directions. Consequently, if ID is
any EAS-division ring, n > 3, and ¢ : P,(D) — P,(ID) a map preserving order
in both directions, then ¢ is standard. In [77] one can find a counterexample
showing that the EAS-assumption is indispensable in the above theorem as well
as in its corollary. We have already mentioned that surjective order preserving
maps may have a wild behaviour if the underlying division ring is not EAS.
However, the bijectivity assumption is strong enough to give the expected nice
structural result for general division rings. Namely, in [77] it was proved that
for any division ring D every bijective order preserving map on P,(D), n > 3,
is standard.

We continue with maps ¢ : P,(D) — P, (D) preserving orthogonality. We
already know that surjective orthogonality preserving maps are not necessarily
standard. For rather “wild” examples of such maps we refer to [77]. As in
the case of order preserving maps it is a rather simple observation that maps
preserving orthogonality in both directions are automatically injective. Thus,
the main problem here is to characterize injective orthogonality preserving maps.
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Because of some already mentioned applications in physics and some applica-
tions in the theory of general preservers (see the next section) we are interested
also in orthogonality preserving maps acting on the subset of rank one idempo-
tents. Let D be any division ring and n an integer > 3. In [77] it was proved that
every injective orthogonality preserving map ¢ : P} (D) — P! (D) is a restriction
of an almost standard map.

If ¢ is an injective orthogonality preserving map defined on the whole set
P, (D) then a rather simple argument shows that it maps rank one idempotents
into rank one idempotents, and therefore, by the previous statement, the re-
striction of ¢ to the set of rank one idempotents is of an almost standard form.
At this point it would be tempting to conjecture that it is of an almost stan-
dard form on the whole set P, (ID). However, this is not true in general. The
counterexample can be found in [77]. Once again, the conjecture holds true for
idempotent matrices over EAS-division rings.

Theorem 3.2 Let D be any EAS-division ring. Assume that n > 3 and let
¢ : P,(D) — P,(D) be an injective orthogonality preserving map. Then ¢ is of
a standard form.

As in the case of order preserving maps we can replace in the above theorem
the two assumptions, that is the injectivity assumption and the orthogonality
preserving assumption, by a single assumption of preserving orthogonality in
both directions and get the same conclusion. To get the same conclusion for
idempotent matrices over an arbitrary division ring we need stronger assump-
tions. In order to get a standard form in the general case we have to assume
that either ¢ is a bijective map preserving orthogonality, or a surjective map
preserving orthogonality in both directions.

It would be interesting to prove analogous results for orthogonality preserv-
ing maps on P¥(D), 1 < k < n/2. For the results on orthogonality preserv-
ing maps defined on idempotents or projections of a fixed finite rank in the
infinite-dimensional case we refer to [21, 50, 74, 76]. In these four papers and
references therein one can find further results on order preserving, orthogonal-
ity preserving, and commutativity preserving maps on idempotent operators on
infinite-dimensional spaces. It should be mentioned here that for all known re-
sults in the infinite-dimensional case we need much stronger assumptions than
in the finite-dimensional case. In contrast to the finite-dimensional case we
have no counterexamples showing the optimality of the theorems in the infinite-
dimensional case and in fact we conjecture that all known infinite-dimensional
results are far from being optimal.

Let ¢ : P,(D) — P,(D) be any map which sends every idempotent either
into itself, or into its orthocomplement, that is, ¢(P) € {P,I — P}, P € P,(D).
Then ¢ preserves commutativity in both directions. Such maps will be called
orthopermutations. So, on one hand, the study of commutativity preservers on
P, (D) is slightly more complicated than the study of order or orthogonality
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preservers because we have to take into consideration besides almost standard
and standard maps also orthopermutations. But on the other hand, it turns out
that we do not need to deal with the EAS-assumption as in the case of order
and orthogonality preservers. Namely, the following was proved in [77].

Theorem 3.3 Let D be any division ring. Assume that n > 3 and let ¢ :
P,(D) — P,(D) be an injective commutativity preserving map. Then ¢ is an
almost standard map composed with a bijective orthopermutation.

If we replace the injectivity assumption and the preserving property in the
above theorem by a single assumption of preserving commutativity in both
directions then we get the same conclusion with the only difference that the
orthopermutation appearing in the assertion need not be bijective.

Let us conclude this section with a rather general open problem. Throughout
this section we have considered maps acting on the set of all n x n idempotents
or on the set of all n x n idempotents of a fixed rank. We can restrict our atten-
tion to the set of all idempotents belonging to some multiplicative subsemigroup
of M,,(ID) and then try to characterize order and orthogonality preserving maps
on this set. For example, we can consider such maps on upper triangular idem-
potent matrices or more generally, on block upper triangular idempotents. We
are aware of only one paper [17] treating this kind of problems. The results
and examples in this paper show that the structure of order preserving maps on
upper triangular idempotents is essentially more complicated than in the case
of the set of all idempotents.

4 (General preservers

In the last few decades a lot of results on linear preservers on matrix algebras
have been obtained. Also, a more general problem of characterizing additive
preservers and a related problem of characterizing multiplicative preservers on
matrix algebras were studied a lot. It is surprising that in some special cases we
can get nice structural results for preservers without any algebraic assumption
like linearity, additivity or multiplicativity. In this section we will briefly survey
some recent results on general preservers and explain the main ideas in their
proofs.

We start with spectrum preserving maps. Given a complex matrix A we will
denote its spectrum by o(A) with the convention that eigenvalues are counted
according to multiplicity. A map ¢ : M,,(C) — M, (C) is called spectrum pre-
serving if o(¢(A)) = o(A) for every A € M,,(C). The problem of characterizing
linear maps preserving spectrum on matrix and more general Banach algebras
has a long history (see [2]). In particular, Marcus and Moyls [44] showed that
every linear map ¢ : M,,(C) — M,,(C) preserving spectrum is either a similarity
transformation, or an anti-similarity transformation.
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Let us now give an example of a non-linear spectrum preserving map on
M, (C). For every A € M, (C) we choose an invertible matrix T4 € M, (C).
Obviously, the map A — Ty AT ;1 preserves spectrum. Every such map will be
called a local similarity.

The zero 3 x 3 matrix and

010
0 0 1
0 0 0

have the same spectrum, but they are not similar. Having in mind this and
similar examples it is easy to construct spectrum preserving bijective maps
on M, (C) that are not local similarities. Baribeau and Ransford [3] proved a
surprising result that under the additional differentiability assumption spectrum
preserving bijective maps must be local similarities.

Theorem 4.1 Let ¢ : M,(C) — M,(C) be a spectrum preserving C*-diffeo-
morphism. Then ¢ is a local similarity.

So, if ¢ : M,(C) — M, (C) is a spectrum preserving C'-diffeomorphism
then we can find for every A € M, (C) an invertible T4 € M, (C) such that
$(A) = TAATgl. Of course, there is a certain freedom of choice of T4 and it
is natural to ask whether T4 can be chosen to depend nicely on A. Baribeau
and Ransford observed that there are holomorphic spectrum-preserving bijective
maps for which it is impossible to choose T4 to be a continuous function of A.
The transposition map is an example of such a map. Note that the transposition
map is a local similarity. Namely, every matrix A is similar to its transpose A?.

The proof of the above theorem is not easy to understand. But one can
prove the following much simpler theorem which ilustrates the main idea of the
proof. We say that ¢ : M, (C) — M,(C) is a determinant preserving map if
det p(A) = det A for every A € M,,(C). If we associate to every A € M, (C)
matrices P4 and Q4 with det P4 = det Q4 = 1 then the map A — PaAQA
preserves determinant. However, if ¢ : S, (C) — S,(C) is any bijective map
(here, S, (C) denotes the set of all singular complex n x n matrices) and if we
define ¢ : M, (C) — M,(C) by ¢(A) = ¢(A) if A € S,(C) and ¢(A) = A if
A is invertible, then ¢ is a bijective determinant preserving map which is in
general not of the form A — P4AQ 4. Similarly as above we have the following
statement.

Proposition 4.2 Let ¢ : M,,(C) — M, (C) be a determinant preserving C*-
diffeomorphism. Then for every A € M, (C) there exist Pa,Qa € M,(C) such
that det Py = det Qa4 =1 and ¢(A) = PAAQ 4.

Note that in order to prove this proposition it is enough to show that
rank ¢(A) = rank A for every A € M, (C). Indeed, assume that this is true.
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Then for every A € M, (C) there exist invertible matrices P4 and Q4 such
that ¢(A) = PaAQa. From detp(A) = det A we conclude that det Py =
(det Q4)~!. After replacing Py and Q4 by uP4 and p~'Qa, respectively,
where p" = detQa, we get det Py = det@Q4 = 1. In fact, as ¢! has the
same properties as ¢, it is enough to show only that rank ¢(A) > rank A for
every A € M, (C).

It is now clear that Baribeau and Ransford had to prove that under the
assumptions of Theorem 4.1 we have

rank ((¢(A) — A\)*) = rank (A — \I)* (4)

for every A € C and every k = 1,...,n. Once we have this we can use the
Jordan canonical form to see that because A and ¢(A) have the same spectrum,
they must be similar. Of course, it is much more difficult to get (4) from the
assumptions of Theorem 4.1 than to prove that every determinant preserving
C'-diffeomorphism preserves rank. Still, the proof of this easier fact gives some
insight into the main ideas needed in the proof of (4).

Before proving our proposition we make one more remark. The assumption
that ¢ : M, (C) — M, (C) is a C*-diffeomorphism yields that for every positive
real number p and every A € M,,(C) we can find 6, M > 0 such that

lo(A+ H) — p(A)| < M| H|'™P (5)

for every H € M,,(C) with ||H| < 4.

Proof of Proposition 4.2. As already mentioned we have to show that
rank ¢(A) > rank A, A € M, (C). If A is invertible, then 0 # det A = det ¢(A),
and therefore, ¢(A) is invertible as well. So, assume that rank A = r < n
and rank¢(A) = k < r. In order to get a contradiction we first recall that
singular values of a matrix B are defined as eigenvalues of (B*B)'/2. We usu-
ally order them in decreasing order s1(B) > s2(B) > ... > s,(B). Note that
s1(B) = ||B||. Fix a real number p < . Then

(n—k)(1-p)—(n—r) > (n=k)(1-(1/n))—(n—r) =r—k—14+4— > — > 0. (6)

3| =
3=

There exist invertible matrices P and @ such that
I, 0
amr[t o
For any positive real € define

0 0
n-rly . e
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Clearly,
[He| < [Pl (7)

and
det(¢p(A+ H.)) =det(A+ H.) = det P det Q™. (8)

On the other hand
det(¢(A + Hs)) = det(d)(A) + TE)?

where T, = ¢(A + H.) — ¢(A). Tt follows from (5) and ||H.|| < || P||||Q]le that
there exist d, M > 0 such that

|IT-] < Met™? (9)

for all positive € < §. Assume from now on that ¢ < §. It is well-known that
the k-th singular value of a matrix B can be characterized as

sp(B) = min{||B — C|| : rankC < k}

and that the absolute value of the determinant is majorized by the product of
singular values (see for example [18]). Thus,

| det(¢(A + He))| < Iy s(6(A + He)).
Now, by (9)
s(P(A+ He)) <sp1(d(A+ He)) <. <si((A+ He)) = [|[9(A+ Ho|
< S + 1Tl < Nlg(A)]| + e,

Moreover, we have
Sn(d)(A + Hs)) < Sn—l(d)(A + HE)) <...< 5k+1(¢(A + Ha))
=min{||¢p(A) + T — C|| : rank C < k} < ||¢(A) + T — ¢p(A)|| < Me' P,

Thus,
| det(o(A + He))| < (lo(A)]| + Met =) (Met—P)n—F

= [l p(A)||F M =P A=P)(n=E) (1 teedP 4 4 cksﬂfp)’“)

for some constants ¢y, ..., cg. Putting ||¢(A)[|*M =% det P det Q|~! = L and
comparing the obtained inequality with (8) we get

e " < Le(tmp)(n=k) (1 + e P 44 cks(l_p)k) ,
or equivalently,
1 < Le(=p)(n—k)=(n=r) (1 Yoo e P) 4y Cke(lw)k) ,

According to (6), the right hand side tends to 0 when & — 0. This contradiction
completes the proof.
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A careful reader has observed that we did not need (5) in full generality.
In fact, all we need is that (5) is satisfied for some fixed p < . Thus, the
assumption that ¢ is a C''-diffeomorphism can be replaced by a milder form of
differentiability. Moreover, we do not need to assume that ¢ is defined on the
whole matrix algebra. It is enough to assume that it is defined on some open
subset of M, (C). For the details we refer to [3].

Baribeau and Ransford asked wheather Theorem 4.1 holds true under the
weaker assumption that ¢ is a homeomorphism. A possible strategy to attack
this problem would be to study neighbourhoods of matrices in certain subsets of
M,,(C) satisfying some spectral conditions. Let us explain this in the 2 x 2 case.
So, let ¢ : M3(C) — M3(C) be a spectrum preserving homeomorphism. For
every A € M5(C) with two different eigenvalues ¢(A) has the same eigenvalues,
and so they are both diagonalizable, and thus, similar. So, all we have to do is

o A 1. . - .
to show that every matrix similar to [ 0 )\] is mapped into a similar matrix

and every scalar matrix A\J is mapped into itself. Fix A € C. We know that
the restriction of ¢ to the subset 7 = {4 € Ma(C) : o(4) = (\,A)} is a
homeomorphism of 7 onto itself. We do not know wheather there exists a
neighbourhood of L))\ i\] in 7 that is homeomorphic to {A €T : |[A—-AI| <
1}. If the answer to this question is negative, then obviously ¢ maps scalar
matrices into themselves and the set of matrices similar to [g\ i} onto itself,
and must be therefore a local similarity. If this approach works then we believe
that especially in higher dimensions it requires nontrivial topological tools.

Let us now turn to commutativity preserving maps. A map ¢ : M,(C) —
M,,(C) preserves commutativity if for every pair A, B € M,,(C) we have ¢(A)¢p(B) =
#(B)¢(A) whenever AB = BA. It preserves commutativity in both directions
if for every pair A, B € M, (C) we have ¢(A)p(B) = ¢(B)p(A) if and only if
AB = BA. The study of bijective commutativity preserving linear maps on
matrix algebras started in [81]. After this first paper there have been many oth-
ers treating bijective linear maps preserving commutativity. One motivation to
study such maps comes from the theory of Lie algebras. Namely, the assump-
tion of preserving commutativity can be reformulated as preserving zero Lie
products. The most general result on bijective linear commutativity preserving
maps can be found in [5] where such maps were treated on prime algebras. Only
very recently the first results on non-bijective linear commutativity preserving
maps were obtained first for matrix algebras over algebraically closed fields IF
with char[F = 0 [56] and then for arbitrary finite-dimensional central simple
algebras over such fields [6].

Can we describe the general form of not necessarily linear commutativity
preserving maps on M, (C)? The difficulties that we entered in our attempts
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to solve the problem of characterizing linear maps preserving commutativity
without assuming bijectivity or the stronger both directions preserving prop-
erty suggest that it is reasonable to start with these stronger assumptions when
treating the more difficult non-linear case. So, we will be interested in bijec-
tive maps ¢ : M, (C) — M, (C) preserving commutativity in both directions.
What are examples of such maps? Of course, every similarity transformation is
a bijective map preserving commutativity in both directions. The same holds
true for anti-similarity transformations. To find non-linear examples observe
that if A and B commute and if p and ¢ are arbitrary complex polynomials
then p(A) and ¢(B) commute as well. So, if we associate to each A € M, (C) a
polynomial p4, then the map A +— pa(A) preserves commutativity. Every such
map will be called a locally polynomial map. This kind of maps are in general
neither bijective nor they preserve commutativity in both directions. However,
if such a map ¢ is bijective and if the polynomials p4, A € M,,(C), are chosen
in such a way that for every A € M, (C) we can find a polynomial g4 such
that A = ga(pa(A)) (in other words, if ¢ is bijective and its inverse is again
a locally polynomial map), then it preserves commutativity in both directions.
Such maps will be called regular locally polynomial maps. Another example of a
bijective map preserving commutativity in both directions is the entrywise com-
plex conjugation. The main result in [75] states that every continuous bijective
map on M, (C) preserving commutativity in both directions is a composition of
the maps described above.

Theorem 4.3 Letn > 3 and let ¢ : M, (C) — M, (C) be a continuous bijective
map preserving commutativity in both directions. Then there exist an invertible
matric T € M, and a regular locally polynomial map A — pa(A) such that
either ¢p(A) = Tpa(A)T~L for all A € M, or ¢(A) = Tpa(A)T~ for all
A€ M,, or p(A) = Tpa(A)T! for all A € M, or ¢(A) = Tpa(A)T~L for

all A € M,,. Here, A= [a;;] = [a;;], and A* = a’

The most interesting open problem here is whether an analogue holds true
for real matrices.

The continuity assumption and the assumption that n > 3 are indisepensable
in this theorem (see [75] for counterexamples). Let us just mention that we have
also a rather good understanding of the structure of non-continuous bijective
maps preserving commutativity in both directions (see [75, Theorem 2.1]). The
above result is closely connected with the structural result for maps on matrix
algebras that are multiplicative with respect to Lie product [15]. Here we have
the weaker assumption that only the zero Lie product is preserved. The cost
for obtaining a reasonable structural result under this much weaker assumption
are additional bijectivity and continuity assumptions.

It is much easier to study bijective maps preserving commutativity in both
directions on the real subspace of all self-adjoint matrices. Namely, it is easy
to characterize commuting pairs of self-adjoint matrices. Two such matrices
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commute if and only if they are simultaneously unitarily similar to diagonal
matrices. On the other hand, in the self-adjoint case we can obtain a complete
description of such maps also in the infinite-dimensional case [55].

The proof (see [75]) of Theorem 4.3 is rather long. We will present here
the main ideas in order to point out the connection with some results from
the third section concerning maps on idempotents. Let S C M, (C) be any
subset. We denote by S’ the commutant of S, S’ = {4 € M, (C) : AB =
BA for every B € §}. When § is a singleton we write shortly {A} = A’
Clearly, under assumptions of Theorem 4.3 we have ¢(S’) = ¢(S)’ for every
subset & C M,,(C). The scalar matrices A\I can be characterized as matrices A
with the property that A’ = M,,(C). Therefore, ¢ maps the set of scalar matrices
onto itself. Next we consider nonscalar matrices having maximal or minimal
commutants with respect to inclusion. More precisely, we call a nonscalar matrix
A € M, (C) maximal if every B € M, (C) staisfying A" ¢ B’ and A" # B’
has to be a scalar matrix. Obviously, ¢ maps the set of maximal matrices
onto itself. It is not very difficult to see that a nonscalar matrix is maximal if
and only if it is of the form AP + ul for some scalars A, u, A # 0, and some
nontrivial idempotent P or of the form Al + N for some scalar A and some
square-zero matrix N # 0. Recall that a matrix is nonderogatory if its Jordan
form has exactly one Jordan block corresponding to each eigenvalue. One can
prove that these are the matrices with minimal commutants, and therefore,
¢ preserves nonderogatory matrices. In the next step we want to prove that ¢
preserves matrices with n distinct eigenvalues. Such matrices are nonderogatory
and to prove our assertion we have to characterize such matrices among all
nonderogatory matrices using the commutativity relation. This requires quite
some work but the basic idea can be explained with the following 4 x 4 example.
The matrices

A 0 0 0 010 0
10 x 0 0 oo 10
A_OO/\3OandB_OOOI
0 0 0 M\ 000 0

with A\; # A; whenever i # j, are both nonderogatory. We want to show that A
cannot be mapped into B by a bijective map preserving commutativity in both
directions. To show this we observe that any matrix C' € A’ is of one of the
following forms:

O OO0 O oo
OO0 O oo o
oOR OO0 oL oo
S oo mo oo
| |
1 T
OO o omo o

Qooco L ooo
OO0 O oo Q o

cCoOoOWLWO oo R o
1
1
[N eNoho e NeNo el
SO OoORQ oo op

OO QD oo o
]

DO
jen



a 0 0 0 a« 0 0 0 a 0 0 0
0 8 0 0 0 8 0 0 0 a 00
00 a 0" |00 B 0] |00 8 0]
00 023 00 0 a 00 0 ~
ra 0 0 0] T[a 0 O 0] T8 0 0 07
08 0 0 0 8 0 0 0 a 0 0
00 a 0|’ |00~ 0| |00 a0
Lo 00 vJ Lo oo al Lo o 0 ~l
3 0 0 07 B3 0 0 07 f[a 0 0 07
0 a 0 0 0 v 0 0 0 8 00
00~ 0l |00 a0l |0OO0~o0]|
L0 00 al Lo o0 o0 al Lo 0 0 41

where «, 3,7, § are any pairwise distinct scalars. Thus, all the matrices belong-
ing to A’ were divided into 15 classes. Any two matrices belonging to the same
class have the same commutant. For example the commutant of

S oOowWOo
o0 oo

o
0
0
0

=2 oo o

where «, (8, and y are pairwise distinct, is the space of all matrices of the form

* 0 % 0
0 = 0 O
* 0 x 0’
0 0 0 =«

no matter what are the values of «, 3, and ~. It is also clear that matrices from
A’ belonging to different classes have different commutants. We have shown
that the set {C’ : C € A’} has cardinality 15. If A was mapped by a bijective
map preserving commutativity in both directions into B, then B would have
the same property, that is, we would have #{C’ : C € B’} = 15. But clearly,

C, =

o O O
o O O
OO =

w
1
0
0 0 0 O
belongs to B’ for every w € C and C/, # C. whenever w # 7. Thus, the set
{C’ : C € B'} is not finite, and consequently, A cannot be mapped into B.
This kind of reasoning brings us to the conclusion that ¢ maps matrices
with n distinct eigenvalues into matrices of the same kind. Now, it is easy

to see that diagonalizable matrices are exactly those matrices that commute
with some matrix having n distinct eigenvalues. So, ¢ preserves diagonalizable
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matrices. We denote by Dy, k = 1,...,n, the set of all diagonalizable matrices
with exactly k eigenvalues. The set D; is the set of all scalar matrices and we
already know that ¢(D1) = D;. In order to see that ¢(Dy) = Dy we only have to
observe that Dy is the intersection of the set of all diagonalizable matrices and
the set of maximal matrices. It is not difficult to verify that for a diagonalizable
matrix A the following two statements are equivalent:

o AcDs,

e A & D; UDy and every matrix B € D satisfying B € A’, A’ C B’, and
A’ # B’ belongs to D; U Ds.

It follows easily that ¢(D3) = D3. Repeating this procedure we get ¢(Dy) = Dy,
k=1,...,n.

In the next step we show that the set of all matrices of the form AP + ul,
where A # 0 and P is an idempotent of rank one, is mapped by ¢ onto itself.
Thus, we have to characterize such matrices among all diagonalizable matrices
with exactly two eigenvalues. If a diagonalizable matrix B has two eigenvalues
none of them being of multiplicity one then we may assume that it is of the

diagonal form
al 0 0 0

0 al, 0 0
0 0 BI; 0
0 0 0 BL

where a # [ and the I;’s are the identity matrices of appropriate sizes. The
matrix

o, 0 0 0
c_| 0 L 0 0
0 0 BI; 0

0 0 0 al

commutes with B and also belongs to Dsy. The first commutant {B, C'} is equal
to the set of all matrices with the block diagonal form

0 0 0
* 0 0
0 = 0}’
0 0 0 =
where the *’s represent arbitrary square matrices of the sizes corresponding to
the above block representation of B. It is then easy to see that the second
commutant {B,C}' = {F € M,(C) : FT = TF for every T € {B,C}'}

contains the diagonal matrix

L 0 0 0
0 2, 0 O
0 0 3I; 0
0 0 0 4I,
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having exatly 4 eigenvalues. It is rather easy to see that if a diagonalizable
matrix A has two eigenvalues one of them being of multiplicity one and if C' € D5
commutes with A, then any diagonalizable matrix contained in {A, C'}” has at
most 3 eigenvalues.

This shows that the set of all matrices of the form AP + ul, where A # 0
and P is an idempotent of rank one, is mapped by ¢ onto itself. If A = AP+ ul
and B = AP+ u1l, where A # 0, A\; # 0, and P is an idempotent of rank one,
then we already know that ¢(A) = a@Q + I and ¢(B) = a1Q1 + (11, where
a#0,a; # 0, and Q and Q1 are idempotents of rank one. As A’ = B’ we
have ¢(A)" = ¢(B)’ which yields that @ = @;. Thus ¢ induces in a natural
way a map ¢ : P}H(C) — PL(C) and this map preserves commutativity. But
two rank one idempotents commute if and only if they are equal or orthogonal.
Thus, ¢ preserves orthogonality and we can apply the results disscussed in
the third section to conclude that ¢ has a desired form on all diagonalizable
matrices with exactly two eigenvalues one of them being of multiplicity one.
From here it is rather easy to conclude that ¢ has the desired form on the set of
all diagonalizable matrices. It is then possible to conclude the proof of Theorem
4.3 using the continuity assumption.

Another recent result on general preservers was motivated by the theory of
Lie algebras. Let £ be a Lie algebra. For some basic definitions and facts con-
cerning Lie algebras we refer to [66]. One of the fundamental concepts in this
theory is that of a solvable Lie algebra. In [64] bijective maps ¢ : £ — £ with
the property that both ¢ and its inverse map every solvable Lie subalgebra into
some solvable Lie subalgebra were characterized in the special case when L is
the Lie algebra M, (C) equipped with the Lie product [-, ], [4, B] = AB — BA.
The famous Lie’s theorem [66, pp.21-23] states that every solvable Lie subalge-
bra of M, (C) is similar to a triangular one. In other words, a Lie subalgebra
L C M, (C) is solvable if and only if there exists a triangularizing chain of in-
variant subspaces for £. Here, of course, by an invariant subspace of £ we mean
a subspace that is invariant under every member of £. Using Lie’s theorem it
is possible to show that preserving solvability in both directions is equivalent to
preserving simultaneous triangularizability of matrix pairs in both directions.
And simultaneous triangularizability of matrices A and B can be considered as
a generalization of commutativity of this matrix pair. Therefore, the study of
solvability preserving maps was based on some ideas from [75]. The obvious
examples of linear bijective maps preserving solvability in both directions are
similarity transformations, anti-similarity transformations and ring automor-
phisms of M,,(C) induced by automorphisms of the complex field. All these
examples are semilinear. To get nonadditive examples we define two matrices
A and B to be lattice-equal, denoted by A ~ B, if they have exactly the same
lattice of invariant subspaces. The complete description of this equivalence re-
lation can be found in [19, Theorem 10.2.1] and [79]. Lie’s theorem yields that a
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bijective map 7 : M,,(C) — M, (C) satisfying 7(4) ~ A, A € M,,(C), preserves
solvability in both directions. Such a map is just an arbitrary permutation on
each of the equivalence classes with respect to ~. Every such map is called a
bijective lattice preserving map. In [64] it was shown that every bijective map
on M, (C) preserving solvability in both directions is a composition of the types
of maps described in this paragraph.

We continue with an infinite-dimensional result on non-linear preservers.
Let X be an infinite-dimensional real or complex Banach space. A bijective
map ¢ : B(X) — B(X) is called biseparating if AB =0 <= ¢(A)¢p(B) =0,
A, B € B(X). Clearly, every bijective map n : B(X) — B(X) with the property
that Imn(A4) = Im A and Kern(A4) = Ker A, A € B(X), is biseparating. In [76]
we have proved that every bijective biseparating map on B(X) is a composition
of such a map and an inner linear or (in the complex case) conjugate-linear
automorphism of B(X). The main idea was to reduce this problem to the
problem of characterizing bijective maps on rank one idempotents preserving
orthogonality in both directions and then to apply results disscussed in the
third section. How far can we relax the assumptions in the finite-dimensional
case and still get a reasonable result? More precisely, can we omit the bijectivity
assumption or replace it by the weaker injectivity or surjectivity assumption,
can we assume that zero products are preserved in one direction only, and finally,
can we replace the real or the complex field by a more general field or even an
arbitrary division ring?

Note that in contrast to the well-developed theory of linear preservers the
above characterizations of general preservers are all essentially mutually distinct.
Namely, most of linear preservers are of one of the few well-known standard
forms. We have considered here only four types of non-linear preservers and in
order to describe them we needed besides semilinear maps of standard forms
also maps of as different types as local similarities, locally polynomial maps,
lattice preserving maps, and image-kernel preserving maps.

Certainly, these are only the first steps and a lot of work will have to be done
to achieve an understanding of the structure of general preservers comparable
to our understanding of linear preservers.

In [58], [59], and [60] maps on the full matrix algebra as well as on some
subalgebras were considered having more than just one preserving property. If
we have enough preserving properties (for example, if we study continuous maps
preserving spectrum and commutativity in both directions), then such maps
must be necessarily linear Jordan automorphisms. It would be intersting to find
other collections of sets, properties or relations whose preservation characterizes
Jordan automorphisms.

When disscusing possible applications of the structural results for maps on
idempotents [72] we suggested that several preserver problems concerning partial
orders on matrices can be solved without the linearity assumption and indicated
how to reduce this kind of problems to the structural problems for order preserv-
ing maps on idempotents. Following this idea Legisa [38] recently characterized
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surjective maps on matrix algebras preserving minus partial ordering in both
directions. It is interesting to note that such maps are automatically semilinear.
It is remarkable that in some preserver problems the semilinear character of the
maps under consideration is not an assumption but we get it as a conclusion.
The most important examples of this phenomenon are so called fundamental
theorems of geometry of matrices that will be considered in our last section.

5 Geometry of matrices

The study of geometry of matrices was initiated by Hua in [24]-[31]. Let D be
any division ring and M., x, (D) the set of all m x n matrices over . Tt is
easy to verify that this is a metric space with the distance defined by d(A4, B) =
rank (A—B), A, B € M,,,xn(D). In fact, all we have to know to check this is that
rank is subadditive, that is, rank (A+ B) < rank A+rank B, A, B € M,,,x, (D).
Note that since ID is not necessarily commutative we have to be careful when
defining the rank of a matrix A. We denote by D™ the set of all 1 x n matrices
and consider it always as a left vector space over ID. Correspondingly, we have
the right vector space of all m x 1 matrices (D™)". We first take the left vector
subspace of D™ generated by the rows of A (the row space of A) and define the
row rank of A to be the dimension of this subspace. The column rank of A is
the dimension of the right vector space generated by columns of A. This space
is called the column space of A. These two ranks are equal for every matrix
over ID and this common value is called the rank of a matrix. If rank A = r then
there exist invertible matrices T' € M,,(D) and S € M,,(ID) such that

I. 0
ras-[5 9.

Here, I, is the r x r identity matrix and zeroes stand for zero matrices of the
appropriate size. Note also that rank of a matrix and its transpose are not
necessarily the same. However, if 7 is a nonzero anti-endomorphism of ID then
rank A = rank A.

Two matrices A, B € M, x,(D) are said to be adjacent if d(A4,B) = 1.
Suppose that T € M,,(D) and S € M, (D) are invertible matrices and R €
M xn (D) any matrix. Then, obviously, the map ¢ defined by A — TAS+ R is
a bijective map on M,,x,(ID) preserving adjacency in both directions, that is,
for every pair A, B € M,,x» (D) the matrices A and B are adjacent if and only
if p(A) and ¢(B) are adjacent. If A € M,,x,(D) is any matrix and o : D — D
an automorphism of division ring D then the matrix A, has the same rank as
A. So, the map A — A, is bijective and preserves adjacency in both directions.
Similarly, if m = n and 7 is an anti-automorphism of D then A — Al is a
bijective map preserving adjacency in both directions.

The fundamental theorem of the geometry of matrices states that every bi-
jective map ¢ : My, xn (D) — M, %, (D) preserving adjacency in both directions
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is of the form A — T A,S+ R, where T, S, R, and o are as above. If m = n, then
we have the additional possibility that ¢(A) = TALS+R where T, S, R € M, (D)
with T and S invertible and 7 is an anti-automorphism of ). This theorem was
proved by Hua [31] under the additional assumption that D # F5. The special
case D = [Py was solved by his followers (see [80], where also similar results for
symmetric matrices, skew-symmetric matrices, and hermitian matrices can be
found). In the case of upper triangular matrices the structure of bijective maps
preserving adjacency in both directions is more complicated [9, 10].

It is remarkable that we get such a strong conclusion (the map ¢ has a
very simple form and in particular, up to a translation it is additive and even
semilinear when I is a field) under rather weak assumptions of bijectivity and
preserving adjacency in both directions. It is therefore not surprising that this
theorem has many applications. Let us mention just the most important ones.
Hua obtained the structural results for Jordan and Lie automorphisms of ma-
trix rings as easy consequences of the fundamental theorem of the geometry of
matrices. The most frequently used method in the theory of linear preservers
is the reduction of a problem of characterizing certain linear preservers to the
problem of characterizing linear maps preserving rank one matrices. Obviously,
linear maps preserving rank one matrices preserve the pairs of adjacent matri-
ces. Therefore, the fundamental theorem of the geometry of matrices can be
applied when studying linear preservers. And finally, some theorems considering
the geometry of Grassman spaces can be deduced from the fundamental theo-
rem of the geometry of matrices. Let us explain this very briefly. Let m,n be
positive integers. We will consider the Grassman space of all vector subspaces
of D™*" of dimension m. Chow [11] and Dieudonné [13, 14] studied bijective
maps on the Grassman space preserving adjacent pairs of points in the Grass-
man space (vector subspaces of dimension m) in both directions. Recall that the
m-dimensional subspaces U and V are adjacent if dim(U + V) = m + 1. Now,
to each m-dimensional subspace U of D™+™ we can associate an m x (m + n)
matrix whose rows are coordinates of the vectors that form a basis of U. Each
m X (m + n) will be written in the block form [X Y], where X is an m x n
matrix and Y is an m x m matrix. Two matrices [X Y] and [X’ Y] are as-
sociated to the same subspace U (their rows represent two bases of U) if and
only if [X Y] = P[X’ Y] for some invertible m x m matrix P. If this is the
case, then Y is invertible if and only if Y is invertible. So, we have associated
to each point in a Grassman space a (not uniquely determined) matrix [X Y.
If Y is singular, we call the corresponding point in the Grassman space point
at infinity. Otherwise, we observe that this point can be represented also with
the matrix [Y "X []. The matrix Y ~*X is uniquely determined by the point
in the Grassman space. So, if U and V' are two m-dimensional subspaces that
are finite points in the Grassman space, then they can be represented with two
uniquely determined m x n matrices T and S and it is easy to see that the sub-
spaces U and V are adjacent if and only if the matrices 7' and S are adjacent.
Using this connection it is possible to deduce the result of Chow on bijective
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maps on a Grassman space preserving adjacency in both directions from the
fundamental theorem of geometry of matrices.

We hope that we have succeeded to convience the reader that the funda-
mental theorem of the geometry of matrices is a strong result with important
consequences. When we say strong we mean that we get a strong conclusion un-
der very weak assumptions. Still, one may ask if we can get the same conclusion
under even weaker assumptions.

Can we get an almost the same conclusion without the bijectivity assumption
(with an almost the same conclusion we mean the same assertion with the only
difference that o and 7 are not necessarily bijective)? Surprisingly, the answer
depends on the underlying division ring. In [68] it was proved that the answer
is in the affirmative for real matrices but negative for complex matrices. Is this
really surprising? It is perhaps less surprising if we recall structural results for
maps on idempotents. There we get nice structural results for idempotents over
EAS-division rings and many counterexamples in the complex case.

We have already mentioned that besides the fundamental theorem of the ge-
ometry of matrices we have also fundamental theorems of the geometry of sym-
metric matrices, skew-symmetric matrices, and hermitian matrices [80]. These
theorems, of course, characterize bijective maps preserving adjacency in both
directions on the set of symmetric matrices, skew-symmetric matrices, and her-
mitian matrices, respectively. As far as we know the problem of validity of these
results without the bijectivity assumption is still open.

Can we get the same conclusion as in the fundamental theorem of the geom-
etry of matrices under the weaker assumption that the adjacency is preserved
in one direction only? This long standing open question has been recently an-
swered in the affirmative by Huang and Wan [33]. The same authors together
with Hofer solved positively also the analogous problem for symetric and her-
mitian matrices [32]. Everybody working in linear preservers knows that char-
acterizing linear maps preserving a certain property or relation in one direction
only is usually more difficult than characterizing linear maps preserving this
property or relation in both directions. This holds even more in the absence of
the linearity assumption. So, the above results are substantial improvements of
the fundamental theorem and we believe they will prove to be important in the
theory of linear and general preservers.

Let us conclude with the connection between the geometry of matrices and
the structural results for order preserving maps on idempotents discovered in
[72]. To present the most important idea we consider just the special case that
¢ is a map on the set of all n X n matrices preserving adjacency. Moreover, we
assume that ¢(0) = 0 and ¢(I) = I. We then claim that ¢ maps idempotents
into idempotents and that the restriction of ¢ to the set of idempotents preserves
order. Indeed, let P and @Q be idempotents with P < . Then, up to a
similarity, P and @) are diagonal idempotents, and therefore, we can find a
chain of idempotents 0 = Py < P, < P, < ... < P,_1 < P, = I such that
rank P, =k, k=0,1,...,n, P, and Py are adjacent, K =0,1,...,n— 1, and
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P and @ are members of this chain. We denote ¢(Py) = Qi, kK = 0,1,...,n.
We know that Qg = 0 and @,, = I. Now, @) is adjacent to 0, and therefore, Q1
is of rank one. Since Q)5 is adjacent to @1, it is of rank at most two. Proceeding
in the same way we conclude that rank Qy < k, £ = 0,1,...,n. In particular,
@ —1 is a matrix of rank at most n—1 adjacent to I. One can prove that then it
must be an idempotent of rank n— 1. Further, Q),,_» is a matrix of rank at most
n — 2 that is adjacent to @,,—; which is an idempotent of rank n — 1. It follows
rather easily that @, _o is an idempotent of rank n — 2 satisfying Q,,_o < Q1.
Continuing in this way we conclude that all the Qp’s are idempotents with
Qr < Qk+1, k=0,1,...,n — 1. In particular, ¢(P) and ¢(Q) are idempotents
satisfying ¢(P) < ¢(Q), as desired. Thus, the results from the third section can
be applied to study adjacency preserving maps.

In our forthcoming paper we will use this approach to unify and extend some
of the above results and to clarify the problem of characterizing (not necessarily
bijective) maps preserving adjacency in both directions.
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