The Counterfeit Coin Problems

Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795 ckli@math.wm.edu

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Solution If there are 3^m coins, we need only m weighings.

Problem Suppose 27 coins are given. One of them is fake and is lighter. Given a (two pan) balance, find the minimum number of weighing needed to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Solution If there are 3^m coins, we need only m weighings.

More generally, if there are k coins with $3^{m-1} < k \leq 3^m$, then we need only m weighings.

k:	1 – 3	4 – 9	10 - 27	28 - 81	82 – 243	
m:	1	2	3	4	5	

k:	1 – 3	4 - 9	10 - 27	28 - 81	82 - 243	
m:	1	2	3	4	5	

k:	1 – 3	4 - 9	10 - 27	28 - 81	82 – 243	
m:	1	2	3	4	5	

Deeper Ideas Tree diagram/graph. Divide and conquer algorithm.

k:	1 – 3	4 - 9	10 - 27	28 - 81	82 – 243	
m:	1	2	3	4	5	

Deeper Ideas Tree diagram/graph. Divide and conquer algorithm.

Generalization Suppose you have a three pan balance. Then one can find the fake coin out of k coins by m weighings if $4^{m-1} < k \le 4^m$.

k:	1 – 3	4 – 9	10 - 27	28 - 81	82 – 243	
m:	1	2	3	4	5	

Deeper Ideas Tree diagram/graph. Divide and conquer algorithm.

Generalization Suppose you have a three pan balance. Then one can find the fake coin out of k coins by m weighings if $4^{m-1} < k \leq 4^m$.

If there is a p pan balance, then one can find the fake coin out of k coins by m weighings if $(p+1)^{m-1} < k \le (p+1)^m$.

A More Difficult Problem

Suppose 12 coins are given such that one of them has a different weight. Use three weighings to find the different coin, and determine whether it is heavier or lighter.

A More Difficult Problem

Suppose 12 coins are given such that one of them has a different weight. Use three weighings to find the different coin, and determine whether it is heavier or lighter.

More challenging problems

- * How many weighings to find a different coin from k given coins.
- * What if there are two lighter / different coins?
- * What if there are three lighter / different coins?