
TOPOLOGICAL GROUPS

MATH 519

The purpose of these notes is to give a mostly self-contained topological background
for the study of the representations of locally compact totally disconnected groups, as in
[BZ] or [B, Chapter 4]. These notes have been adapted mostly from the material in the
classical text [MZ, Chapters 1 and 2], and from [RV, Chapter 1]. An excellent resource
for basic point-set topology is [M].

1. Basic examples and properties

A topological group G is a group which is also a topological space such that the multi-
plication map (g, h) 7→ gh from G×G to G, and the inverse map g 7→ g−1 from G to G,
are both continuous. Similarly, we can define topological rings and topological fields.

Example 1. Any group given the discrete topology, or the indiscrete topology, is a
topological group.

Example 2. R under addition, and R× or C× under multiplication are topological
groups. R and C are topological fields.

Example 3. Let R be a topological ring. Then GL(n,R) is a topological group,

and Mn(R) is a topological ring, both given the subspace topology in Rn2
.

If G is a topological group, and t ∈ G, then the maps g 7→ tg and g 7→ gt are
homeomorphisms, and the inverse map is a homeomorphism. Thus, if U ⊂ G, we have

U is open⇐⇒ tU is open⇐⇒ Ut is open⇐⇒ U−1 is open.

A topological space X is called homogeneous if given any two points x, y ∈ X, there is
a homeomorphism f : X → X such that f(x) = y. A homogeneous space thus looks
topologically the same near every point. Any topological group G is homogeneous, since
given x, y ∈ G, the map t 7→ yx−1t is a homeomorphism from G to G which maps x to y.

If X is a topological space, x ∈ X, a neighborhood of x is a subset U of X such
that x is contained in the interior of U . That is, U is not necessarily open, but there is
an open set W ⊂ X containing x such that W ⊂ U .

If G is a group, and S and T are subsets of G, we let ST and S−1 denote

ST = {st | s ∈ S, t ∈ T} and S−1 = {s−1 | s ∈ S}.

The subset S is called symmetric if S−1 = S. We will let 1 denote the identity element of
a group unless otherwise stated. The following result, although innocent enough looking,
will be the most often used in all of the results which follow.
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Proposition 1.1. Let G be a topological group. Every neighborhood U of 1 contains an
open symmetric neighborhood V of 1 such that V V ⊂ U .

Proof. Let U ′ be the interior of U . Consider the multiplication map µ : U ′ × U ′ → G.
Since µ is continuous, then µ−1(U ′) is open and contains (1, 1). So, there are open sets
V1, V2 ⊂ U such that (1, 1) ∈ V1×V2, and V1V2 ⊂ U . If we let V3 = V1∩V2, then V3V3 ⊂ U
and V3 is an open neighborhood of 1. Finally, let V = V3 ∩ V −13 , which is open, contains
1, is symmetric, and satisfies V V ⊂ U . �

Proposition 1.2. If G is a topological group, then every open subgroup of G is also closed.

Proof. Let H be an open subgroup of G. Then any coset xH is also open. So,

Y =
⋃

x∈G\H

xH

is also open. From elementary group theory, H = G \ Y , and so H is closed. �

Proposition 1.3. If G is a topological group, and if K1 and K2 are compact subsets of
G, then K1K2 is compact.

Proof. The set K1×K2 is compact in G×G, and multiplication is continuous. Since the
continuous image of a compact set is compact, K1K2 is compact. �

If X is a topological space, and A is a subset of X, recall that the closure of A,
denoted A, is the intersection of all closed subsets containing A. A necessary and sufficient
condition for x to be an element of A is for every open neighborhood U of x, U ∩ A is
nonempty, which may be seen as follows. If x 6∈ A, then there is a closed set F which
contains A, but x 6∈ F . Then U = X \ F is an open neighborhood of x such that
U ∩ A = ∅. Conversely, if U is an open neighborhood of x such that U ∩ A = ∅, then
X \ U is a closed set containing A which does not contain x, so x 6∈ A.

Proposition 1.4. If G is a topological group, and H is a subgroup of G, then the topo-
logical closure of H, H, is a subgroup of G.

Proof. Let g, h ∈ H. Let U be an open neighborhood of the product gh. Let µ : G×G→ G
denote the multiplication map, which is continuous, so µ−1(U) is open in G × G, and
contains (g, h). So, there are open neighborhoods V1 of g and V2 of h such that V1×V2 ⊂
µ−1(U). Since g, h ∈ H, then there are points x ∈ V1 ∩ H 6= ∅ and y ∈ V2 ∩ H 6= ∅.
Since x, y ∈ H, we have xy ∈ H, and since (x, y) ∈ µ−1(U), then xy ∈ U . Thus,
xy ∈ U ∩H 6= ∅, and since U was an arbitrary open neighborhood of gh, then we have
gh ∈ H. Now let ι : G→ G denote the inverse map, and let W be an open neighborhood
of h−1. Then ι−1(W ) = W−1 is open and contains h, so there is a point z ∈ H∩W−1 6= ∅.
Then we have z−1 ∈ H ∩W 6= ∅, and as before this implies h−1 ∈ H. �

Remark. Note that in the last part of the proof of Proposition 1.4, we have shown that
the closure of a symmetric neighborhood of 1 is again symmetric.

Lemma 1.1. Let G be a topological group, F a closed subset of G, and K a compact
subset of G, such that F ∩K = ∅. Then there is an open neighborhood V of 1 such that
F ∩ V K = ∅ (and an open neighborhood V ′ of 1 such that F ∩KV ′ = ∅).
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Proof. Let x ∈ K, so x ∈ G\F , and G\F is open. So, (G\F )x−1 is an open neighborhood
of 1. By Proposition 1.1, there is an open neighborhood Wx of 1 such that WxWx ⊂
(G \ F )x−1. Now, K ⊂ ∪x∈KWxx, and K is compact, so there exists a finite number of
points x1, . . . , xn ∈ K, such that K ⊂ ∪ni=1Wixi, where we write Wi = Wxi . Now let

V =
n⋂
i=1

Wi.

For any x ∈ K, x ∈ Wixi for some i. Now we have

V x ⊂ Wix ⊂ WiWixi ⊂ G \ F.
In other words, F ∩ V x = ∅. Since this is true for any x ∈ K, we now have F ∩ V K =
∅. �

Remark. Note that from Proposition 1.1, the neighborhood V in Lemma 1.1 may be
taken to be symmetric.

Proposition 1.5. Let G be a topological group, K a compact subset of G, and F a closed
subset of G. Then FK and KF are closed subsets of G.

Proof. If FK = G, we are done, so let y ∈ G \ FK. This means F ∩ yK−1 = ∅. Since
K is compact, yK−1 is compact. By Lemma 1.1, there is an open neighborhood V of 1
such that F ∩ V yK−1 = ∅, or FK ∩ V y = ∅. Since V y is an open neighborhood of y
contained in G \ FK, we have FK is closed. �

2. Separation properties and functions

A topological space X is said to be T1 if for any two distinct points x, y ∈ X, there
is an open set U in X such that x ∈ U , but y 6∈ U . This is equivalent to one-point sets
being closed. If G is a topological group, then G being T1 is equivalent to {1} being a
closed set in G, by homogeneity.

A topological space X is said to be Hausdorff (or T2) if given any two distinct points
x, y ∈ X, there are open sets U, V ⊂ X, x ∈ U , y ∈ V , such that U ∩ V = ∅. Recall the
following basic properties of Hausdorff spaces.

Exercise 1. If X is a Hausdorff space, then every compact subset of X is closed.

Exercise 2. Let X be a topological space, and let ∆ = {(x, x) |x ∈ X} ⊂ X × X
be the diagonal in X ×X. Then X is Hausdorff if and only if ∆ is closed in X ×X.

Of course, if X is T2, then X is T1, but the converse does not hold in general. If G
is a topological group however, the converse is true, which we now show.

Proposition 2.1. Let G be a T1 topological group. Then G is Hausdorff.

Proof. Given distinct g, h ∈ G, take an open set U containing 1, such that gh−1 6∈ U ,
which we may do since G is T1. Applying Proposition 1.1, let V be an open symmetric
neighborhood containing 1, such that V V ⊂ U . Now, V g is open and contains g, and V h
is open and contains h. We must have V g ∩ V h = ∅, otherwise there are v1, v2 ∈ V such
that v1g = v2h, which would mean

gh−1 = v2v
−1
1 ∈ V V −1 = V V ⊂ U,
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while gh−1 was chosen to be not an element of U . Thus G is Hausdorff. �

We can say even more than Proposition 2.1. A topological space X is called regular or
T3 if X is T1, and for any point x ∈ X and any closed subset F ⊂ X such that x 6∈ F ,
there is an open set U containing x and an open set V containing F such that U ∩V = ∅.
The space X is called completely regular or Tychonoff or T3 1

2
if it is T1 and for any

point x ∈ X and any closed set F ⊂ X such that x 6∈ F , there is a continuous function
f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for every y ∈ F . Every space which is
completely regular is also regular, since, for example, f−1([0, 1/3)) and f−1((2/3, 1]) are
disjoint open sets in X containing x and F , respectively. We now see that any topological
group which is T1 is also completely regular, and thus regular.

Theorem 2.1. Let G be a topological group, let 1G denote the identity element in G,
and let F be a closed subset of G such that 1G 6∈ F . Then there is a continuous function
f : G→ [0, 1] such that f(1G) = 0 and f(y) = 1 for every y ∈ F .

Proof. See Problem Set 1. �

Corollary 2.1. If G is a topological group which is T1, then G is completely regular and
thus regular.

Proof. Let x ∈ G and let F be a closed subset of G such that x 6∈ F . Then x−1F is
a closed subset of G not containing 1G, and from Theorem 2.1, there is a continuous
function f : G→ [0, 1] such that f(1G) = 0 and f(y) = 1 for y ∈ x−1F . Now the function
h(g) = f(x−1g) is the desired continuous function, and since G is also T1, G is completely
regular, and so is also regular. �

Let f be an R-valued continuous function on a topological group G (we could also
consider C-valued functions). The left and right translates of f , written Lhf and Rhf ,
respectively, are given by

Lhf(g) = f(h−1g) and Rhf(g) = f(gh).

The function f is left uniformly continuous if for every ε > 0, there is a neighborhood V
of 1 such that

h ∈ V =⇒ ||Lhf − f ||∞ < ε,

where ||f ||∞ denotes the supremum norm. We may define a function to be right uniformly
continuous similarly.

The support of a function f on a topological group G, written supp(f), is defined to be
the topological closure of the set of points in G for which f is nonzero. That is,

supp(f) = {g ∈ G | f(g) 6= 0}.
We let Cc(G) denote the set of continuous R-valued functions on G with compact support.
That is,

Cc(G) = {f : G→ R | f is continuous, supp(f) is compact}.

Proposition 2.2. Let G be a topological group, and let f ∈ Cc(G). Then f is left and
right uniformly continuous.

Proof. We will prove that f is right uniformly continuous, as the proof for left uniformly
continuous is exactly analogous. Let K = supp(f), and let ε > 0. Let g ∈ G, and let
Bε/3(f(g)) be the open ball of radius ε/3 in R centered at f(g). Then f−1(Bε/3(f(g))) is
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an open neighborhood of g, call it Wg. Let Ug = g−1Wg, which is an open neighborhood
of 1, and if h ∈ Ug, then gh ∈ Wg. So, we have

h ∈ Ug =⇒ |f(gh)− f(g)| < ε/3.

In other words, f(g′) is within ε/3 of f(g) whenever g−1g′ ∈ Ug, or

(2.1) g−1g′ ∈ Ug =⇒ |f(g′)− f(g)| < ε/3.

Applying Proposition 1.1, let Vg be an open symmetric neighborhood of 1 such that
VgVg ⊂ Ug. K is compact, and

K ⊂
⋃
g∈K

gVg,

so we may take a finite number of g ∈ K, say g1, . . . , gn, such that

K ⊂
n⋃
j=1

gjVgj .

Let us write Vj = Vgj and Uj = Ugj . Now let V = ∩nj=1Vj, which is an open symmetric
neighborhood of 1. This will be the neighborhood which will give right uniform continuity.

Let g ∈ K, so that g ∈ gjVj for some j, and let h ∈ V . Since Vj ⊂ Uj, we have
g−1j g ∈ Uj. Since h ∈ Vj and VjVj ⊂ Uj, we also have g−1j gh ∈ Uj. From (2.1) and our
choice of Uj, we have, for any h ∈ V ,

|f(gj)− f(g)| < ε/3 and |f(gh)− f(gj)| < ε/3.

The triangle inequality now gives

|f(gh)− f(g)| ≤ |f(gh)− f(gj)|+ |f(gj)− f(g)| < 2ε/3,

for any h ∈ V .
Now suppose g 6∈ K, h ∈ V , and that f(gh) 6= 0 (otherwise |f(gh) − f(g)| = 0). For

some j, we have gh ∈ gjVj, so g−1j (gh) ∈ Vj ⊂ Uj, and by continuity f(gh) is within ε/3

of f(gj). Now, h−1 ∈ V −1j = Vj, since Vj is symmetric, and so we have

g−1j g = g−1j ghh−1 ∈ VjVj ⊂ Uj.

By (2.1), f(gj) is within ε/3 of f(g) = 0. Finally, we have

|f(gh)| ≤ |f(gh)− f(gj)|+ |f(gj)| < 2ε/3.

Now, for any g ∈ G, h ∈ V , we have |f(gh)− f(g)| < 2ε/3. So,

h ∈ V =⇒ ||Rhf − f ||∞ ≤ 2ε/3 < ε,

and f is right uniformly continuous. �

3. Quotients

If X is a topological space, and ∼ is an equivalence relation on X, let X/ ∼ denote the
set of equivalence classes in X under ∼, and if x ∈ X, let [x] denote the equivalence class
of x under ∼. We may give the set X/ ∼ the quotient topology as follows. Let

p : X → X/ ∼, p(x) = [x],

be the natural projection map. Define U ⊂ X/ ∼ to be open if and only if p−1(U) is open
in X (forcing p to be continuous). Note that this implies that F ⊂ X/ ∼ is closed if and
only if p−1(F ) is closed in X.
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Now let G be a topological group, and H a subgroup of G. We can look at the collection
G/H of left cosets of H in G (or the collection H\G of right cosets), which defines an
equivalence relation on G. So, we can put the quotient topology on G/H as above. Recall
that G/H is not a group under coset multiplication unless H is a normal subgroup of G.

Proposition 3.1. Let G be a topological group, and H a subgroup of G.

(1) G/H is a homogeneous space under translation by G.
(2) The map p : G→ G/H is an open map.
(3) If H is compact, then p : G→ G/H is a closed map.
(4) G/H is a Hausdorff space if and only if H is closed.
(5) H is open in G if and only if G/H is a discrete space. If G is compact, then H is

open in G if and only if G/H is a finite and discrete space.
(6) If H is a normal subgroup of G, then G/H is a topological group.

(7) If H is the closure of the trivial subgroup, H = {1}, then H is a normal subgroup
of G and G/H is Hausdorff.

Proof. (1): For x ∈ G, left translation by x on G/H gives a map gH 7→ xgH. The inverse
of this map is also a left translation, by x−1, so to show this is a homeomorphism, we
just need to show that it maps open sets to open sets, or is an open map. Let U ⊂ G/H
be open. By definition of the quotient topology, p−1(U) ⊂ G is open. It may be directly
checked that we have p−1(xU) = xp−1(U), which is also open. Since p−1(xU) is open,
then xU is open by the definition of quotient topology, and so translation is an open map.

(2): Let V ⊂ G be open. By the definition of quotient topology, p(V ) ⊂ G/H is open if
and only if p−1(p(V )) ⊂ G is open. It may be checked that p−1(p(V )) = V H. Since V is
open, V h is open for every h ∈ H. Since V H = ∪h∈HV h, V H is open, and so p(V ) is open.

(3): As in the proof of (2), we are reduced to showing that if F ⊂ G is closed, then
FH is closed. But H is compact, and so by Proposition 1.5, FH is closed.

(4): Suppose G/H is Hausdorff, so that it is T1, and one point sets in G/H are closed. In
particular, {H} is closed in G/H. By the definition of the quotient topology, {H} ⊂ G/H
is closed if and only if p−1({H}) = H ⊂ G is closed.

From Exercise 2, to show that G/H is Hausdorff, it is enough to show that the diagonal
∆ = {(gH, gH) | gH ∈ G/H} is closed in G/H × G/H. Through the natural map
f : (g1H, g2H) 7→ (g1, g2)(H×H), the spaceG/H×G/H is homeomorphic toG×G/H×H,
and the image of the diagonal ∆ under this map is f(∆) = {(g, g)(H × H) | g ∈ G}.
From the definition of the quotient topology, f(∆) is closed if and only if

p−1(f(∆)) = {(g1, g2) ∈ G×G | g1g−12 ∈ H}

is closed. But this is the inverse image of H of the continuous map from G × G to G
which maps (g1, g2) to g1g

−1
2 . Since H is closed, then this set is closed as well.

(5): See Problem Set 1.

(6): Let Tg denote left multiplication by g, so that Tg(x) = gx, let ι and ι′ denote
the group inverse maps in G and G/H, respectively, and let p : G→ G/H be the natural
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projection map. Since for any x ∈ G we have

(p ◦ Tg)(x) = gxH = (gH)(xH) = (Tp(g) ◦ p)(x) and (p ◦ ι)(x) = x−1H = (ι′ ◦ p)(x),

the following diagrams are commutative:

G
Tg−−−→ Gyp yp

G/H
Tp(g)−−−→ G/H

G
ι−−−→ Gyp yp

G/H
ι′−−−→ G/H

Since p is an open map by (2), and Tg and ι are continuous, this means Tp(g) and ι′ must
also be continuous, making G/H a topological group.

(7): By Proposition 1.4, H = {1} is a subgroup of G. H is then the minimal closed
subgroup of G containing 1, while for any x ∈ G, xHx−1 is also a closed subgroup of G
containing 1. Thus H ⊂ xHx−1, and so x−1Hx ⊂ H for any x ∈ G, and H is a normal
subgroup of G. Now, G/H is a topological group by (6), and G/H is Hausdorff by (4). �

4. Local compactness and connectedness

A topological space X is called locally compact if for every x ∈ X, there is a compact
neighborhood U ⊂ X of x. Before proving a few basic properties of locally compact
spaces, recall the following, which we will need.

Exercise 3. If X is a compact space, then every closed subset of X is compact.

Lemma 4.1. Let X be a locally compact Hausdorff space. Then X is regular, and any
neighborhood V of any point x ∈ X contains a compact neighborhood K of x.

Proof. Let x ∈ X, and let F be a closed subset in X such that x 6∈ F . Let K be a compact
neighborhood of x. Since K is closed (by Exercise 1), then M = K ∩ F is closed, and so
M ⊂ K is compact (by Exercise 3). For every y ∈ M , choose an open neighborhood Uy
of y, and an open neighborhood Uy

x of x such that Uy ∩ Uy
x = ∅, which we can do since

X is Hausdorff. Since M is compact, there are a finite number of points y1, . . . , yn ∈ M
such that M ⊂ ∪ni=1Ui, where Ui = Uyi . Writing Uyi

x = U i
x, we have

x ∈ W =
n⋂
i=1

U i
x, and W ∩

n⋃
i=1

Ui = ∅,

where W is an open neighborhood of x. Now, if K ′ = K \ (∪ni=1Ui), then K ′ is a
closed subset of K, and so is compact, and it is a neighborhood of x since W ⊂ K ′. In
particular, K ′ is disjoint from F . Now let V = int(K ′) be the interior of K ′, which is an
open neighborhood of x. Then V ′ = X \K ′ is an open set containing F , and V ∩V ′ = ∅.
Thus X is regular.

For the second statement, let V be any neighborhood of x ∈ X, and let V ′ = int(V )
be the interior of V . Let C be a compact neighborhood of x, and let U ′ = int(C). Then
U = U ′ ∩V is an open neighborhood of x. Now X \U is closed, and since we have shown
that X is regular, then there are open sets V1, V2 such that X \ U ⊂ V1, x ∈ V2, and
V1 ∩ V2 = ∅. Now let K = V2. Since V2 ⊂ X \ V1, which is closed, then K ⊂ X \ V1.



8 MATH 519

Then K ⊂ U since X \ U ⊂ V1, and so K ⊂ C. Since C is compact and K is closed, K
is also compact. Now K is a compact neighborhood of x and K ⊂ U ⊂ V . �

We will also need the following statement.

Lemma 4.2. Let X be a Hausdorff space, and A a locally compact subspace of X. If A
is dense in X, that is if A = X, then A is open in X.

Proof. Let x ∈ A. Since A is locally compact, there is an open neighborhood U of x in A,
such that the closure of U in A is compact (see [M, Lemma 8.2]). Let clA(U) denote the
closure of U in A (as opposed to U being the closure of U in X). Since X is Hausdorff,
and clA(U) is compact, then clA(U) is closed in X, by Exercise 1. Since U is open in A,
then U = V ∩ A for some open set V of X. Since clA(U) is closed in X, then V \ clA(U)
is open in X. Since U ⊂ A and U ⊆ clA(U), then we have A ∩ (V \ clA(U)) = ∅. Since
A is dense in X, then we must have V \ clA(U) = ∅. This implies V ⊆ clA(U) ⊆ A. But
now U = V ∩ A = V , and so U is an open set of X which is a neighborhood of x and
contained in A. That is, A is open in X. �

A topological group G is called a locally compact group if it is a locally compact space
and it is Hausdorff.

Proposition 4.1. Let G be a Hausdorff topological group. Any subgroup H of G which
is locally compact (in the subspace topology) is closed.

Proof. Consider the closure H of H in G. First, by definition we have H is dense in H.
Since H is locally compact, then we have H is open in H by Lemma 4.2. By Proposition
1.4, we have H is a subgroup of G, and so H is an open subgroup of H. By Proposition
1.2, H is also a closed subgroup of H. Now H is closed in H and H is closed in G, and
so H is closed in G. �

Remark. In a previous draft of these notes, we followed the proof of Proposition 4.1
that is given in [RV, Proposition 1-6], which begins with the claim that if K is a compact
neighborhood of 1 in H, so K is closed in H, then there is a closed neighborhood F of
1 in G such that K = F ∩ H. However, this does not follow from point-set topology,
as was pointed out to me by David Savitt, who showed me the following counterexample
[DS]. The key is that we are assuming that 1 is in the interior of F , not simply that
F is a closed set containing 1. In particular, if X = {1, 2, 3, 4} with topology given by
{∅, {4}, {1, 4}, {2, 4}, {1, 2, 4}, X}, let H = {1, 2}, which has the discrete topology as a
supspace of X. Then we have K = {1} is a closed neighborhood of itself in H. However,
the only closed neighborhood of 1 in X is X itself, whose intersection with H is not K.
So, the previous proof given here was not complete. The proof for Proposition 4.1 now
given above, using Lemma 4.2, was suggested to me by Santana Afton while he was an
undergraduate at the College of William and Mary. The proof given of Lemma 4.2 above
is adapted from a Mathematics Stack Exchange post by Eric Wofsey [EW].

We will need to apply the following technical lemma later.

Lemma 4.3. Let G be a locally compact group, K a compact subset of G, and U an open
neighborhood of 1 in G. Then there is a neighborhood V of 1 in G such that x−1V x ⊂ U
for every x ∈ K.
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Proof. Let x ∈ K. Then xUx−1 is an open neighborhood of 1. Since G is a locally compact
group, there is a compact neighborhood Vx of 1 such that Vx ⊂ xUx−1 by Lemma 4.1.
Let F = G \ U , then x−1Vxx ∩ F = ∅. From Lemma 1.1, there is a neighborhood W ′

x of
1, which may be chosen to be compact by Lemma 4.1, and symmetric by Proposition 1.1
and the remark after Proposition 1.4 (along with Exercise 3), such that

(x−1Vxx)W ′
x ∩ F = ∅.

The fact that W ′
x is symmetric implies that we also have

x−1Vxx ∩ FW ′
x = ∅.

From Proposition 1.5, FW ′
x is closed, since F is closed and W ′

x is compact. So, again by
Lemma 1.1 and Proposition 1.1, there is a symmetric neighborhood W ′′

x of 1 such that

(4.1) W ′′
x (x−1Vxx) ∩ FW ′

x = ∅.

Now let Wx = W ′
x ∩W ′′

x , which is a symmetric neighborhood of 1. Then we must have

(4.2) Wx(x
−1Vxx)Wx ∩ F = ∅,

otherwise (4.1) would be violated (since Wx and W ′
x are symmetric).

For each x ∈ K, let Ux = int(Wx) be the interior of Wx. Then, the collection of all
xUx, x ∈ K, constitutes an open cover of K, and so there is a finite number of points,
say x1, x2, . . . , xn, such that, writing Wxi = Wi, and Uxi = Ui,

K ⊂
n⋃
i=1

xiUi ⊂
n⋃
i=1

xiWi.

Now let V = ∩ni=1Vi, where Vi = Vxi . If x ∈ K, then x ∈ xiWi for some i, and so
x−1 ∈ Wix

−1
i , since Wi is symmetric. Now, by (4.2), we have

x−1V x ⊂ Wix
−1
i VixiWi ⊂ G \ F = U. �

A topological space X is connected if whenever X = U∪V where U and V are nonempty
open sets, then U ∩ V 6= ∅. That is, X is connected when X has no nonempty proper
subsets which are both closed and open (or clopen). A maximal connected subset of X is
called a connected component of X. The space X is totally disconnected if each one-point
subset in X is its own connected component. Of course, every discrete space is totally
disconnected. One familiar example of a totally disconnected space which is not discrete
is the Cantor middle-thirds set.

Exercise 4. If A ⊂ X is connected, then A is connected. That is, connected com-
ponents are closed sets.

If G is a topological group, then G is totally disconnected if and only if {1} is a con-
nected component, by homogeneity. The connected component of 1 in G will be denoted
G◦, and its basic properties are as follows.

Proposition 4.2. If G is a topological group, then G◦ is a normal subgroup of G, the
connected components of G are all of the form xG◦ for x ∈ G, and G/G◦ is a totally
disconnected group.

Proof. See Problem Set 1. �
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Finally, we turn to the study of spaces which are locally compact and totally dis-
connected. Before proving the main statements, we first need a few more preliminary
lemmas.

A topological space X is called normal or T4 if it is T1 (one point sets are closed) and
for any disjoint closed subsets E and F of X, there are open sets U and V such that
E ⊂ U , F ⊂ V , and U ∩ V = ∅.

Exercise 5. Every compact Hausdorff space is normal. Note that from Lemma 4.1, we
already know compact Hausdorff spaces are regular.

Lemma 4.4. Let X be a compact Hausdorff space, and let x ∈ X. Let Ux denote the
collection of compact open neighborhoods of x. Then ∩U∈UxU is the connected component
of x.

Proof. Let F = ∩U∈UxU , which is a nonempty closed set since X itself is a compact open
neighborhood of x, and each U ∈ Ux is compact and thus closed (by Exercise 3). Suppose
that V ′ and W ′ are closed and open subsets of F (in the subspace topology of F ) such
that

F = V ′ ∪W ′, and V ′ ∩W ′ = ∅.

Since F is closed, then V ′ and W ′ are closed subsets in X. Since X is normal by Exercise
5, then there are disjoint open sets V and W of X such that V ′ ⊂ V and W ′ ⊂ W . To
show F is connected, we must show that one of V ′ or W ′ is empty.

Now, B = X \ (V ∪W ) is closed, and thus compact, and does not intersect F . So, the
sets X \U , U ∈ Ux, cover B, and are all open (and closed) since each U is compact (thus
closed) and open. Since B is compact, there are a finite number of neighborhoods of x,
U1, . . . , Un ∈ Ux, such that B ⊂ ∪ni=1(X \ Ui). In other words, if we let A = ∩ni=1Ui, then
A ∩B = ∅, x ∈ A, and A is compact and open. Now A ⊂ X \B = V ∪W , and so

A = (A ∩ V ) ∪ (A ∩W ),

where A ∩ V and A ∩W are disjoint open sets. Since A is closed, A ∩ V and A ∩W are
also both closed (and thus compact). So, x can only be an element of one of them, say
x ∈ A ∩ V , which means that F ⊂ A ∩ V (since A ∩ V is a compact open neighborhood
of x), while F ∩ (A ∩W ) = ∅. This means we must have F = V ′ and W ′ = ∅, so that
F is connected.

Now let C be the connected component of x, so that F ⊂ C. Suppose that F 6= C, so
that there is a point y ∈ C \ F . Then there must be a compact open neighborhood M of
x such that y 6∈M . Now M ∩ C is closed and open in C, while (X \M) ∩ C contains y,
contradicting the fact that C is connected. Thus F is the connected component of x. �

Lemma 4.5. Let X be a compact Hausdorff space, let C be a connected component of X,
and let F be a closed subset of X such that F ∩C = ∅. Then there is a compact open set
V such that C ⊂ V and F ∩ V = ∅.

Proof. We have F is compact (Exercise 3), and if x ∈ C, then C = ∩U∈UxU , where Ux is
the collection of compact open neighborhoods of x, by Lemma 4.4. The open sets X \U ,
U ∈ Ux cover F , and so for a finite number of sets in Ux, say U1, . . . , Un, F is covered by
∪ni=1(X \ Ui). If we let V = ∩ni=1Ui, we have F ∩ V = ∅, and C ⊂ V , as desired. �
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Theorem 4.1. Let X be a Hausdorff space. Then X is locally compact and totally dis-
connected if and only if every neighborhood of every point x ∈ X contains a compact open
neighborhood of x.

Proof. (⇒): Let x ∈ X, and let U be the interior of an arbitrary neighborhood of x. By
Lemma 4.1, there is a compact neighborhood K of x contained in U . Now let V be an
open neighborhood of x, V ⊂ K, and let F = K \ V . If F = ∅, then V is open and
compact, and we are done. The set F is closed, and {x} is a connected component of
X since X is totally disconnected, and so {x} is a connected component of the compact
subset K. Since F ∩ {x} = ∅, then by Lemma 4.5, there is a compact open set W
containing x such that F ∩W = ∅. That is, W ⊂ V ⊂ U , and W is a compact open
neighborhood of x.

(⇐): First, since every point x ∈ X has a compact neighborhood, then X is locally
compact. Now let S be the connected component of x ∈ X. Suppose that y 6= x and
y ∈ S. Since X is Hausdorff, it is T1, and so x has an open neighborhood W such that
y 6∈ W . Let U be a compact open neighborhood of x which is contained in W . Since X
is Hausdorff, U is closed. So, U ′ = U ∩ S is closed and open in S. But y 6∈ U ′, and so
U ′ is a proper nonempty clopen subset of S, contradicting the fact that S is connected.
Thus, S = {x}, and X is totally disconnected. �

Corollary 4.1. Let G be a locally compact totally disconnected group, and H a subgroup
of G. Then H is closed if and only if H is a locally compact totally disconnected group,
if and only if G/H is a locally compact totally disconnected Hausdorff space.

Proof. First, suppose H is closed, and let x ∈ H, and U any neighborhood of x in H.
Then U = H ∩ V , where V is a neighborhood of x in G. By Theorem 4.1, V contains a
compact open neighborhood of x, say F . By definition, H ∩ F is an open neighborhood
of x in H, and it is contained in U . Since F is compact and G is Hausdorff, then F is
closed, and so F ∩H is closed in G. Moreover, F ∩H is compact in G since it is closed and
contained in F , which is compact. Thus F ∩H is compact in H. Now F ∩H is a compact
open neighborhood of x in H which is contained in U , and H is locally compact and
totally disconnected by Theorem 4.1. Conversely, if H is locally compact in the subspace
topology, then it is automatically closed by Proposition 4.1.

For the second part, suppose that H is closed. Since p : G → G/H is an open map
by part (2) of Proposition 3.1, and is continuous by definition, then the image under p of
compact open sets of G are compact open sets of G/H. If U is an open neighborhood of
xH ∈ G/H, then p−1(U) is an open neighborhood of x ∈ G, which contains a compact
open neighborhood K of x, by Theorem 4.1. Then p(K) is a compact open neighborhood
of xH contained in p(p−1(U)) = U . Thus G/H is locally compact and totally disconnected
by Theorem 4.1. Since H is assumed to be closed, then G/H is Hausdorff by part (4) of
Proposition 3.1. Conversely, if G/H is Hausdorff, then H is automatically closed also by
part (4) of Proposition 3.1. �

Theorem 4.2. Let G be a locally compact totally disconnected group. Every neighborhood
of 1 contains a compact open subgroup of G. If G is a compact totally disconnected group,
then every neighborhood of 1 contains a compact open normal subgroup of G.

Proof. Since G is a locally compact totally disconnected group, each neighborhood of
1 contains a compact open neighborhood V of 1, from Theorem 4.1. Let us denote
V n = V V n−1 for n ≥ 2. Let F = (G \ V ) ∩ V 2. Since V is open, G \ V is closed, and
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since G is Hausdorff and V is compact, V is closed and so V 2 is closed, by Proposition
1.5. Thus F is closed.

We have V ∩F = ∅, where V is compact and F is closed. By Lemma 1.1 and Proposition
1.1, there is an open symmetric neighborhood W of 1, W ⊂ V , such that VW ∩ F = ∅.
Since W ⊂ V , then VW ⊂ V 2. Because F = (G \ V ) ∩ V 2, and VW ∩ F = ∅, then we
must have VW ⊂ V . Now we have

VW 2 ⊂ VW ⊂ V,

and by induction we must have VW n ⊂ V for every integer n ≥ 0. Since W was chosen
to be symmetric, then in fact VW n ⊂ V for every integer n. In particular, since 1 ∈ V ,
we have ⋃

n∈Z

W n ⊂ V.

Now, H = ∪n∈ZW n is a subgroup of G contained in V . Since each W n is open, then H is
an open subgroup, and is thus closed by Proposition 1.2. Since H ⊂ V and V is compact
and H is closed, then H must be compact. Thus, H is a compact open subgroup of G.

Suppose now that G is compact and totally disconnected. Since G is locally compact
and totally disconnected, then any neighborhood of 1 contains a compact open subgroup
H ′, as we have just shown. Now consider

H =
⋂
x∈G

xH ′x−1.

By Lemma 4.3, there is a neighborhood U of 1 such that U ⊂ xH ′x−1 for every x ∈ G
(since G is compact). In other words, H contains an open neighborhood of 1, and is
thus open. H is a subgroup, since it is the intersection of subgroups, and is normal
by construction. Since xH ′x−1 is closed (since it is compact) for every x ∈ G, then H is
closed, and is thus compact since G is compact. So, H is a compact open normal subgroup
of G. �

The following characterization of locally compact totally disconnected groups follows
immediately from Theorems 4.1 and 4.2.

Corollary 4.2. A Hausdorff topological group G is locally compact and totally discon-
nected if and only if every neighborhood of 1 contains a compact open subgroup.
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