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MATH 519

In these notes, we follow [N, Chapter II] most, but we also use parts of [FT, L, RV, S].

1. Absolute values

Let K be a field. An absolute value on K is a function

| · |v : K −→ R

such that

(1) For every x ∈ K, we have |x|v ≥ 0, and |x|v = 0 if and only if x = 0.
(2) For all x, y ∈ K, we have |xy|v = |x|v|y|v.
(3) For all x, y ∈ K, we have |x+ y|v ≤ |x|v + |y|v.

Condition (3) is the triangle inequality. The following stronger condition is called the
ultrametric triangle inequality.

(3∗) For all x, y ∈ K, we have |x+ y|v ≤ max(|x|v, |y|v).
If the function | · |v satisfies the ulatrametric triangle inequality, then it is called a non-
archimedean absolute value, and is otherwise called an archimedean absolute value.

We always have the trivial absolute value on any field K, defined by |x|v = 1 for every
nonzero x ∈ K. In these notes, we will eliminate the trivial absolute value from discus-
sion, and an absolute value will always assumed to be nontrivial.

Example 1. Consider the field Q of rational numbers. There is the typical abso-
lute value | · |, which we will also denote by | · |∞, which is an archimedean absolute value.
For an example of a non-archimedean absolute value, fix a prime number p, and define
an absolute value | · |p on Q as follows. For a nonzero rational number m/n ∈ Q, write
m/n as m/n = pr(a/b), where r is an integer, and p does not divide a or b. Now define
|m/n|p = p−r (and |0|p = 0). By considering divisibility of powers of p, it is apparent
that | · |p is a non-archimedean absolute value. It is called the p-adic absolute value on
Q. Note that the values of the p-adic value are bounded by 1 on Z.

In the above example, we have a non-archimedean absolute value on Q which is bounded
on Z. It turns out that this is always the case.

Proposition 1.1. Let K be a field, let R = {n · 1 | n ∈ Z} ⊂ K, and let | · |v be an
absolute value on K. Then | · |v is non-archimedean if and only if the set of values that it
takes on R is bounded.

Proof. First assume that | · |v is non-archimedean. Then by the ultrametric triangle
inequality, for any n ∈ Z, we have |n · 1|v ≤ |1|v = 1. Therefore the values of | · |v on R
are bounded by 1.
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Coversely, suppose that |x|v ≤ C for any x ∈ R. For any positive integer m, and any
x, y ∈ K, then the Binomial Theorem and triangle inequality give

|x+ y|mv ≤
m∑
i=0

∣∣∣∣(mi
)
· 1
∣∣∣∣
v

|x|iv|y|m−iv ≤ C
m∑
i=0

|x|iv|y|m−iv .

Now, we have |x|iv|y|m−iv ≤ (max(|x|v, |y|v))m, and so for any positive integer m we have

|x+ y|v ≤ (C(m+ 1))1/mmax(|x|v, |y|v).
Since limm→∞(C(1 +m))1/m = 1, it follows that the ultrametric triangle inequality must
hold, and | · |v is non-archimedean. �

Corollary 1.1. Let K be a field which has an archimedean absolute value | · |v. Then K
has characteristic 0.

Proof. If K has characteristic p 6= 0, then R = {n · 1 | n ∈ Z} is finite, and so | · |v is
bounded on R. Thus by Proposition 1.1, | · |v must be non-archimedean. �

An absolute value on a field K defines a metric, and we may thus consider the metric
topology on K induced by an absolute value. We remark here that any absolute value on
K is a continuous function | · |v : K → R, which can be seen as follows. Let {xn} be a
sequence in K which converges to x ∈ K with respect to | · |v, so that |xn − x|v → 0 as
n→∞. Then

∣∣|xn|v − |x|v∣∣ ≤ |xn − x|v by the triangle inequality, and so |xn|v → |x|v as
n→∞.

In Example 1, it may be checked that the absolute values on Q turn it into a topological
field, that is, addition, multiplication, and the additive and multiplicative inverse maps
are all continuous when we give Q these topologies. In fact, we have the following.

Proposition 1.2. Let K be a field, and | · |v an absolute value on K. If K is given the
metric topology induced by | · |v, then K is a topological field.

Proof. See Problem set 2. �

Call two absolute values | · |1 and | · |2 on K equivalent if they induce the same topology
on K. Recall that two metrics induce the same topology if and only if any open ball
centered at any point in one metric contains an open ball centered at the same point
of the other metric, and vice versa. Because we are dealing with a metric spaces which
are also fields, it is enough to check this condition for open balls centered at 0. Note
also that if two absolute values on K are equivalent, then sequences in K converge to
0 simultaneously with respect to each absolute value (Exercise). We have the following
criterion for when two absolute values are equivalent.

Lemma 1.1. Let K be a field with two absolute values | · |1 and | · |2. Then | · |1 and | · |2
are equivalent if and only if there is some λ > 0 such that

|x|1 = |x|λ2 for all x ∈ K.

Proof. First, if | · |1 = | · |λ2 for some λ > 0, then open balls around 0 with respect to one
absolute value may be contained in the other, and so the absolute values are equivalent.

Conversely, suppose | · |1 and | · |2 are equivalent. For any x ∈ K, i = 1, 2, note that
|x|i < 1 is equivalent to the sequence {xn}∞n=1 converging to 0 with respect to | · |i. Since
we are assuming the two absolute values are equivalent, sequences converges to 0 in each
absolute value simultaneously, and so for any x ∈ K, |x|1 < 1 if and only if |x|2 < 1.
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Now let y ∈ K such that |y|1 > 1, which we know exists since these absolute values are
non-trivial. Let x ∈ K, x 6= 0. Then for some α ∈ R, we have |x|1 = |y|α1 . Let a, b ∈ Z
such that a/b > α and b > 0. Then we have |x|1 = |y|α1 < |y|

a/b
1 . We may then conclude

the following:

|xb/ya|1 < 1⇒ |xb/ya|2 < 1⇒ |x|2 < |y|a/b2 .

Since a/b > α was arbitrary, then we have |x|2 ≤ |y|α2 . Now let m,n ∈ Z such that

m/n < α with n > 0, so that |x|1 > |y|m/n1 . Then by the parallel argument as before, we
conclude that |x|2 ≥ |y|α2 . So now |x|2 = |y|α2 . Note that |x|1 = 1 if and only if α = 0,
if and only if |x|2 = 1, in which case |x|1 is |x|2 to any positive power. Now, x ∈ K,
x 6= 0 was arbitrary while y was fixed. For i = 1, 2 we have log |x|i = α log |y|i, for some
α depending on x. For any x 6= 0, |x|i 6= 1, we have

log |x|1
log |x|2

=
log |y|1
log |y|2

.

Defining the constant λ = (log |y|1)/(log |y|2), we have λ > 0 since |y|i > 1 for i = 1, 2,
and |x|1 = |x|λ2 for every x ∈ K. �

It follows immediately from Lemma 1.1 that the p-adic absulute values | · |p on Q are
all inequivalent for different primes p, and they are each inequivalent to the archimedean
absolute value | · |∞. In fact, we now show that every absolute value on Q is equivalent
to one of these.

Theorem 1.1 (Ostrowski). Every absolute value on Q is equivalent to either the archimedean
absolute value | · |∞, or a p-adic absolute value | · |p for some prime p.

Proof. Let | · |v be an absolute value on Q. First suppose that | · |v is non-archimedean, so
that |n|v ≤ 1 for every n ∈ Z. By multiplicativity of absolute values, there must be some
prime number p such that |p|v < 1, otherwise | · |v would be trivial. Now consider the set

I = {x ∈ Z | |x|v < 1}.
Then I is an ideal of Z such that pZ ⊂ I 6= Z, and so I = pZ since pZ is a maximal ideal
of Z. Now let a ∈ Z, and write a = bpm such that p 6 | b, so b 6∈ I. Then |b|v = 1, and we
have |a|v = |p|mv . If we let λ = −(log |p|v)/(log p), then we have |a|v = |a|λp . Since a ∈ Z
was arbitary, then by multiplicativity we have |y|v = |y|λp for every y ∈ Q, and so | · |v is
equivalent to | · |p by Lemma 1.1.

Now suppose that | · |v is archimedean. By the triangle inequality, we have |a|v ≤ a for
any positive integer a. Let m,n > 1 be arbitrary positive integers bigger than 1. Now,
we may write m =

∑r
i=0 ain

i, where 0 ≤ ai ≤ n− 1 for each i and nr ≤ m. So, we have
r ≤ (logm)/(log n), and |ai|v ≤ ai ≤ n for each i. This yields the inequalities

|m|v ≤
r∑
i=0

|ai|v|n|iv ≤
r∑
i=0

|ai|v|n|rv ≤
(

1 +
logm

log n

)
n |n|logm/ logn

v .

We have this inequality for any integers m,n > 1, and so we may replace m by mk for
any positive integer k. After this substitution, and raising each side to the (1/k) power,
we obtain

|m|v ≤
(
n+ nk

logm

log n

)1/k

|n|logm/ logn
v .
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Taking the limit as k →∞, the coefficient on the right side goes to 1, and we obtain

|m|1/ logm
v ≤ |n|1/ logn

v , and so |m|1/ logm
v = |n|1/ logn

v ,

since m and n may switch roles, because they were taken to be arbitrary.

Now let c = |n|1/ logn
v , which is a constant for any integer n > 1. Letting λ = log c,

we have λ = (log |n|v)/(log n) for any integer n > 1, and so |n|v = eλ logn = |n|λ∞ for any
positive integer n. It follows from multiplicativity that |y|v = |y|λ∞ for any y ∈ Q, and so
| · |v is equivalent to | · |∞ by Lemma 1.1. �

2. Completions

A field F with an absolute value | · |v is called complete if every Cauchy sequence in
F with respect to | · |v converges to an element in F . If a field F is not complete with
respect to | · |v, one may construct the completion of F , which we describe now. This
notion is familiar from analysis, and in fact the construction exactly parallels the classical
construction of R from Q with respect to the archimedean absolute value | · |∞, and so we
just outline the construction.

First, the set of all Cauchy sequences in F form a ring R under pointwise addition and
multiplication, the multiplicative identity in which is the sequence consisting of all 1’s.
The sequences in R which converge to 0 form an ideal in R, call it m. Given any Cauchy
sequence {an} in R which is not in m, one may find another Cauchy sequence {bn} in R
such that the product of these sequences, {anbn}, differs from the sequence of all 1’s by

an element in m. In other words, m is a maximal ideal in R, and so F̂ = R/m is a field.

We may view F as embedded in F̂ by mapping a ∈ F to the coset of m in F̂ represented
by the sequence consisting of all a’s. The field F̂ is the completion of F with respect to
| · |v. If {an} = {an}+ m is an element of F̂ , we may define its absolute value by

|{an}|′v = lim
n→∞

|an|v,

which is well-defined since
∣∣|an|v − |am|v∣∣ ≤ |an − am|v. In fact, | · |′v defines an absolute

value on F̂ which extends the absolute value | · |v when viewing F as embedded in F̂ . We
summarize the properties of the completion of F below, a detailed proof of which may be
found in [FT, Section II.3].

Theorem 2.1. Let F be a field with absolute value | · |v, and let F̂ and | · |′v be as described

above, in which F is embedded. Then | · |′v is an absolute value on F̂ which extends | · |v,
and F̂ is a complete field with respect to | · |′v in which F is dense. If K with | · |w is any
other complete field which contains F as a dense subfield, and such that | · |w extends | · |v,
then F̂ and K are isomorphic as topological fields.

Example 2. We have already mentioned the example of R being the completion of
Q with respect to the absolute value | · |∞. Similarly, consider the field Q(i) with the
absolute value |z|∞ =

√
zz̄, where z̄ is complex conjugation. Then the completion of Q(i)

with respect to this absolute value is the complex field C, with the usual absolute value.
Note that the usual absolute value on C extends that of R, and in fact, it is the only
absolute value on C which does so (Exercise). As we see below, these are essentially the
only archimedean examples of complete fields.
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Theorem 2.2 (Ostrowski). Let F be a field which is complete with respect to an archimedean
absolute value | · |v. Then F is isomorphic as a topological field to either R or C, with
their usual archimedean absolute values.

Proof. From Corollary 1.1, we know that F has characteristic zero, and so we may assume
that Q ⊂ F . When restricting to | · |v to Q, we must have a non-trivial absolute value,
otherwise | · |v would be bounded on Z, and by Proposition 1.1 would be non-archimedean.
By Theorem 1.1, we must have that | · |v on Q is equivalent to the archimedean absolute
value | · |∞. We may then replace | · |v by an equivalent absolute value, without loss of
generality, so that | · |v retricts to | · |∞ on Q. Since F is complete, we may assume that
R ⊂ F . If we show that any element of F satisfies a quadratic equation over R, then we
would have F = R or C as a field, and since the only way to extend the archimedean
absolute value on R to C is with the usual archimedean absolute value on C (as in Example
2), the result would follow.

Let α ∈ K. Consider the function f : C→ R defined by

f(z) = |α2 − (z + z̄)α + zz̄|v.
Now, f is continuous, and f(z) → ∞ as |z|∞ → ∞, and so f(z) takes some absolute
minimum m. The goal is to show that m = 0, in which case α is the zero of a quadratic
over R. Letting S = {z ∈ C | f(z) = m}, we see that S is closed since f is continuous,
and is bounded since f(z) → ∞ as |z|∞ → ∞. Since S is then compact, it follows from
the continuity of | · |∞ on C that there is an element z0 ∈ S such that |z0|∞ ≥ |z|∞ for
any z ∈ S.

Suppose that m > 0. Choose ε such that 0 < ε < m, and consider the quadratic
polynomial over R defined as

g(x) = x2 − (z0 + z̄0)x+ z0z̄0 + ε,

and suppose that z1, z̄1 ∈ C are the roots of g(x). Then z1z̄1 = z0z̄0 + ε, and so |z1|∞ >
|z0|∞. By choice of z0, we must have f(z1) > m.

For any positive integer n, consider the polynomial

Gn(x) = (g(x)− ε)n − (−ε)n,
so that Gn(z1) = 0 since g(x) is a factor of Gn(x). Let z1 = w1, w2, . . . , w2n be the zeros
of Gn(x) in C. Since this set of zeros is the same as the set of its conjugates, we have

Gn(x) =
2n∏
i=1

(x− wi) =
2n∏
i=1

(x− w̄i), and Gn(x)2 =
2n∏
i=1

(x2 − (wi + w̄i)x+ wiw̄i).

Substituting α into the polynomial G(x)2
n and applying the absolute value | · |v, we obtain

|Gn(α)|2v =
2n∏
i=1

f(wi) ≥ f(z1)m
2n−1.

But we also have, from the definition of Gn(x) and the triangle inequality,

|Gn(α)|2v ≤ (f(z0)
n + εn)2 = (mn + εn)2,

since |g(α)− ε|∞ = f(z0). So, f(z1)m
2n−1 ≤ (mn + εn)2, which gives

f(z1)

m
≤
(

1 +
( ε
m

)n)2

.
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Since ε < m, and n was an arbitrary positive integer, letting n → ∞ gives f(z1) ≤ m,
contradicting f(z1) > m. Thus m = 0. �

Example 3. Since Theorem 2.1 takes care of all fields which are complete with respect
to an archimedean absolute value, the next case is to consider a non-archimedean absolute
value. Since Q has the p-adic absolute values, we may complete Q with respect to one
of them. The resulting field is denoted Qp, and is called the field of p-adic rationals. We
will study these types of fields in detail in the next section.

3. Non-archimedean local fields

Let F be a field with absolute value | · |v. Since | · |v is not trivial, there is some x ∈ F
such that |x|v > 1. By multiplicativity, |xn|v is unbounded as n → ∞. So, the image of
F under | · |v is not bounded above in R, and so cannot be compact in R. Since | · |v is
continuous, then F cannot be compact with this topology.

So, when studying the topology of fields with an absolute value, the most we can hope
for is local compactness, such as is the case of R with the archimedean absolute value.
We have the following basic properties of a field which is locally compact with respect to
an absolute value.

Lemma 3.1. Let F be a field with an absolute value | · |v. Suppose that F is locally
compact with the topology given by | · |v. Then:

(1) For any r > 0, the set Dr = {x ∈ F
∣∣ |x|v ≤ r} is compact.

(2) The image of F× under | · |v is a closed subgroup Γ of R×.
(3) The map | · |v is an open map onto Γ.

Proof. (1): It is enough to prove the statement for r ≥ 1, since for any positive s < 1, Ds

is closed and Ds ⊂ D1, making Ds compact. If r ≥ 1, let V be a compact neighborhood
of 0 such that V ⊂ Dr, which exists since F is a locally compact Hausdorff space. Since V
is a neighborhood of 0, then there is an ε > 0 such that Dε ⊂ V , and then Dε is compact
since it is closed and V is compact. Now let y ∈ Dε such that |y|v < ε/r and y 6= 0.
Then the set y−1Dε is a compact set containing 0, by continuity of multiplication. Also,
if x ∈ Dr, then x = y−1(yx), and |yx|v = |y|v|x|v < (ε/r)(r) = ε, and so Dr ⊂ y−1Dε.
Now Dr is a closed subset of a compact set, and so Dr is compact.

(2): Let Γ be the image of F× in R× under | · |v, which is a subgroup since | · |v is
a multiplicative homomorphism. Let {an} be a sequence in Γ which converges to some
point a ∈ R×, and let an = |xn|v, for xn ∈ F×. Now, since∣∣|xn|v − a∣∣→ 0 as n→∞,
then the values |xn|v are bounded, and so for some r > 0 and some integer N > 0, xn ∈ Dr

for every n ≥ N . Since Dr is compact in F by (1), then Dr \ {0} is compact in F×, and
its image C under | · |v is compact in R×, and so closed in R×. Now a is a limit point of
C, while C is closed, and so a ∈ C ⊂ Γ. Thus Γ is closed.

(3): Let U ⊂ F× be open, and let V ⊂ Γ be the image of U in R× under | · |v. To
show that V is open, it is enough to show that given any a ∈ V , and any sequence {an}
in Γ which converges to a, there is a subsequence of {an} which eventually is contained
in V (otherwise there is a point in V all of whose neighborhoods are not contained in V ).
Taking such a point a ∈ V and sequence {an} in Γ, we know that a ∈ Γ since Γ is closed
by (2), so let a = |x|v for some x ∈ U . Now, there is a sequence {xn} in F× such that
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|xn|v = an for each n, and since |xn|v converges, then as in the proof of (2), there is some
r > 0 and some integer N > 0 such that xn ∈ Dr for every n ≥ N . Since Dr is compact,
then there is some subsequence {xnj

} of {xn} which converges to some z ∈ F×. Since

| · |v is continuous, then we must have |z|v = a. Now let S1 = {y ∈ F×
∣∣ |y|v = 1}, which

is the kernel of the multiplicative homomorphism | · |v. Since |x|v = |z|v, then we have
z ∈ xS1 ⊂ US1. Since U is open, then US1 is open, and since z ∈ US1 and {xnj

} is a
sequence in F× converges to z, then eventually all of the terms of the sequence {xnj

} are
in US1. The image of U is the same as the image of US1 under | · |v, and so the terms of
the subsequence {anj

} of {an}, where anj
= |xnj

|v, eventually are all in V . �

From Theorem 2.1, we see that any field with an archimedean absolute value may
be embedded topologically as a subfield of C with the usual absolute value, so we now
concentrate on fields with non-archimedean absolute values, dropping the assumption that
the field is locally compact for the moment. If F is a field with non-archimedean absolute
value | · |v, let

O = {x ∈ F
∣∣ |x|v ≤ 1}, and p = {x ∈ F

∣∣ |x|v < 1}.
We have the following.

Proposition 3.1. Let F be a field with a non-archimedean absolute value, and let O and
p be as above. The set O ⊂ F is a ring, with group of units

O× = {x ∈ F
∣∣ |x|v = 1},

and p is the unique maximal ideal of O.

Proof. It follows immediately from the ultrametric triangle inequality and multiplicativity
of absolute values thatO is a ring and p is an ideal ofO. The statement that the units ofO
are exactly those elements with absolute value 1 follows from the fact that |x−1|v = |x|−1

v ,
and since the elements of p are exactly the non-units of O, then it is the unique maximal
ideal of O. �

Call O the ring of integers of F . Since O is a ring and p is a maximal ideal, then O/p
is a field, called the residue field of F . An absolute value | · |v on F is called discrete if the
image of F× under |·|v is discrete in R×. If we assume that a field with a non-archimedean
absolute value is locally compact, then the absolute value is automatically discrete, as we
see now.

Proposition 3.2. Let F be a field which is locally compact with respect to a non-archimedean
absolute value | · |v. Then the image Γ of F× under | · |v is discrete in R×.

Proof. First, 1 + p is an open set in F× containing 1, and for every y ∈ 1 + p, |y|v ≤ 1
since | · |v is non-archimedean. If Γ is the image of F× in R× under | · |v, then by part (3)
of Lemma 3.1, | · |v maps 1 + p onto an open subset V of Γ, which must satisfy V ⊂ [0, 1].
So, V is the intersection of an open subset of R with Γ, and so there is an open interval
containing 1 in R whose intersection with Γ is contained in [0, 1]. If the intersection of
such an open interval with Γ is the singleton {1}, then Γ is discrete by homogeneity. If
this is not the case, there is a sequence {an} in F× such that |an|v gets arbitrarily close to
1, while less than 1, since the intersection of the open interval with Γ is contained in [0, 1].
However, this would mean |a−1

n |v would get arbitrarily close to 1, while greater than 1,
meaning the intersection of the open interval with Γ would have to have elements greater
than 1, a contradiction. Thus Γ is discrete. �
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We now assume that F is a field with a discrete non-archimedean absolute value | · |v,
so by Proposition 3.2, this is the situation if F is locally compact with respect to | · |v. In
particular, this means that | · |v takes some largest positive value less than 1, say β. Then
the values in the image of F× under | · |v must be exactly {βm | m ∈ Z}, otherwise we
could get a value larger than β and smaller than 1 (Exercise). In this case, if π ∈ F is an
element such that |π|v = β, then π is called a uniformizer (or a uniformizing parameter).
Note that we then have

p = {x ∈ F
∣∣ |x|v < 1} = {x ∈ F

∣∣ |x|v ≤ β}.

Proposition 3.3. Let F be a field with a discrete non-archimedean absolute value | · |v,
with π a uniformizer and |π|v = β. Then:

(1) Every element x ∈ F× can be written uniquely as x = uπm, for u ∈ O× and
m ∈ Z.

(2) The ring O is a principal ideal domain, and the nonzero ideals of O are exactly

pn = πnO = {x ∈ F
∣∣ |x|v ≤ βn}, n ≥ 0.

(3) For each n ≥ 0, we have pn/pn+1 ∼= O/p.

Proof. (1): Let x ∈ F×, then |x|v = βm for some m ∈ Z. Then we have |xπ−m|v = 1, so
xπ−m = u ∈ O×, and x = uπm. Uniqueness is immediate.

(2): Let I be a nonzero ideal of O, and let x ∈ I with |x|v = βn such that n is minimal.
Then x = uπn with u ∈ O×, and πnO ⊂ I. If y ∈ I is any other nonzero element of I,
with y = vπm, v ∈ O×, then m ≥ n by choice of n. Then y = (vπm−n)πn ∈ πnO. So,
I = πnO, and O is a principal ideal domain with exactly pn, n ≥ 0, as its ideals.

(3): Let aπn ∈ pn, where a ∈ O. Define the map f : pn → O/p by f(aπn) = a + p.
Then f is a surjective homomorphism of rings, and aπn is in the kernel of f exactly when
a ∈ p, or when aπn ∈ pn+1. �

Now suppose that F is locally compact with non-archimedean absolute value |·|v, which
is discrete by Proposition 3.2. Then by part (1) of Lemma 3.1, each pn = Dβn is compact.
For each n ≥ 1, we see that

pn = {x ∈ F
∣∣ |x|v ≤ βn} = {x ∈ F

∣∣ |x|v < βn−1},
so that pn is also open. Viewing F as an additive group, we have that any neighborhood
of 0 contains some pn, which is a compact open additive subgroup. In particular, F is
locally compact and totally disconnected.

Remark. Let F be a field with a non-archimedean absolute value | · |v. Suppose that
x, y ∈ F are such that |x|v 6= |y|v, and say |x|v > |y|v. Then |x + y|v ≤ max(|x|v, |y|v) =
|x|v. But also, |x|v = |x + y + (−y)|v ≤ max(|x + y|v, |y|v). But since we have assumed
|x|v > |y|v, then we must have |x + y|v = |x|v. That is, for any x, y ∈ F , if |x|v 6= |y|v,
then |x+ y|v = max(|x|v, |y|v).

Suppose again that F is locally compact with non-archimedean absolute value | · |v.
Then we have 1+pn is a compact open neighborhood of 1 for each n ≥ 1. Also 1+pn ⊂ O×,
since by the above remark, if x = 1 + y ∈ 1 + pn, then |x|v = max(1, |y|v) = 1. We also
have that if x ∈ 1 + pn, then

|x−1 − 1|v = |x−1|v|1− x|v = |1− x|v ≤ βn,
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and so x−1 ∈ 1 + pn. Since 1 + pn is also closed under multiplication, then each 1 + pn

is a subgroup of O×, and so of F×. Each neighborhood of 1 in F× (or in O×) contains
some 1 + pn as a compact open subgroup.

We now turn to the case of the completion of a field with some non-archimedean abso-
lute value. What we are most interested in is such a field which is also locally compact. A
local field is a field which is locally compact and complete with respect to some absolute
value. If the absolute value is archimedean, the field is called an archimedean local field,
which we know by Theorem 2.2 is always isomorphic to either R or C, and if the absolute
value is non-archimedean, the field is called a non-archimedean local field.

Now let F be a field with a non-archimedean absolute value | · |v, and let F̂ be the
completion of F with absolute value | · |′v extending | · |v. It is immediate that | · |′v is also

a non-archimedean. If a ∈ F̂×, and {an} is a Cauchy sequence of elements of F which
represents a, then by definition |a|′v = limn→∞ |an|v, and a = limn→∞ an when embedding

F in F̂ , and so for large enough n we have |a− an|′v < |a|′v. For large enough n, then, we
have

|an|v = |an − a+ a|′v = max(|an − a|′v, |a|′v) = |a|′v.
In other words, the absolute values of elements in such a Cauchy sequence eventually
stabilize, and it follows that the image of | · |′v in R must be the same as the image of | · |v.
In particular, if | · |v is discrete, then so is | · |′v, and if π is a uniformizer for F , then it is

for F̂ also.

Proposition 3.4. Let F be a field with a non-archimedean value |·|v, with ring of integers

O, and p the maximal ideal of O. Let F̂ be the completion of F with ring of integers Ô,
and p̂ the maximal ideal of Ô. Then

O/p ∼= Ô/p̂ as fields.

If | · |v is discrete, then for every n ≥ 1,

O/pn ∼= Ô/p̂n as rings.

Proof. Define the map f : O → Ô/p̂ by f(a) = a + p̂. Then f is a ring homomorphism

with ker(f) = p, and we must show f is surjective. If α ∈ Ô, we need to show that there
is an a ∈ O such that a−α ∈ p̂, or |a−α|′v < 1. We can assume α 6= 0 since f(0) = p̂. We

may choose a Cauchy sequence {ak} in F , viewed as embedded in F̂ , such that ak → α

in F̂ . As in the discussion above, the absolute values of the ak eventually stabilize, so we
may choose n0 such that |an0 |v = |α|′v ≤ 1, so an0 ∈ O. Also, |ak − α|′v → 0, and so we
may choose m ≥ n0 large enough so that |am−α|′v < 1. Then am ∈ O, and f(am) = α+ p̂.

If | · |v is discrete and n ≥ 1, we define h : O → Ô/p̂n by h(a) = a + p̂n. Then h is a

ring homomorphism and ker(h) = pn, and so we must show h is surjective. Let α ∈ Ô,

with α 6= 0 say, and let π be a uniformizer for F (and so for F̂ ), with |π|′v = β. As before,

we choose {ak} a Cauchy sequence in F which converges to α in F̂ , and now we may
choose m large enough so that |am|′v ≤ 1 and |am − α|′v ≤ βn, so am − α ∈ p̂n. Then
h(am) = α + p̂n, and h is surjective. �

Let {an} be some sequence in a field F with non-archimedean absolute value | · |v. For
any distinct positive integers m and n with m > n, we have

|am − an|v ≤ max(|am − am−1|v, |am−1 − am−2|v, . . . , |an+1 − an|v).
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So, if |an+1−an|v → 0 as n→∞, then the sequence {an} is Cauchy. If we further assume
that F is complete, then this means an infinite series

∑∞
i=0 ci converges if and only if

|ci|v → 0 as i→∞.

Lemma 3.2. Let F be a field with discrete non-archimedean absolute value | · |v, with ring
of integers O, uniformizer π, and p = πO. Let S ⊂ O be a set of representatives for O/p
such that 0 ∈ S, and let F̂ be the completion of F with | · |v, with ring of integers Ô, and

p̂ = πÔ. Then every nonzero x ∈ F̂ may be written uniquely as a convergent series

x = πm
∞∑
i=0

aiπ
i, ai ∈ S, a0 6= 0,m ∈ Z.

Proof. Let x ∈ F̂×, and write x = πmu, with u ∈ Ô× and m ∈ Z, which can be done
uniquely by Proposition 3.3(2). We prove by induction that for any n ≥ 0, we can write
u as

u = a0 + a1π + · · ·+ an−1π
n−1 + anπ

n + πn+1bn+1,

for some bn+1 ∈ Ô, and for unique ai ∈ S with a0 6= 0. First, from the proof of Proposition
3.4, there is a unique a0 ∈ S such that u−a0 ∈ p̂, so we have u = a0+πb1 for some b1 ∈ Ô,
and a0 6= 0. Now assume that there are unique a0, . . . , an−1 ∈ S, and some bn ∈ Ô, such
that

u = a0 + a1π + · · ·+ an−1π
n−1 + πnbn.

Again, from the proof of Proposition 3.4, there is a unique an ∈ S such that bn − an ∈ p̂,
so then πnbn = πn(an + πbn+1) = anπ

n + bn+1π
n+1 for some bn+1 ∈ Ô, and the claim in

proven. So now,
∑∞

i=0 aiπ
i converges to u in F̂ since the terms go to 0. �

Suppose that F is complete with respect to a discrete non-archimedean absolute value,
with ring of integers O, and uniformizer π, with p = πO. Since each pn is open in O, the
quotient topological rings O/pn have the discrete topology. The natural projection maps
ρmn : O/pm → O/pn, with m ≥ n, form an inverse system of homomorphisms, and we
may consider the inverse limit

lim
←−
n

O/pn,

giving a topological ring. We also have the projections ρn : O → O/pn, which are
compatible with the maps ρmn , giving a map

ρ : O → lim
←−
n

O/pn.

In fact, this gives an isomorphism of topological rings.

Theorem 3.1. Let F be a field which is complete with respect to a non-archimedean
discrete absolute value | · |v, with O the ring of integers with maximal ideal p. Then

O ∼= lim
←−
n

O/pn as topological rings.

Proof. We show that the map ρ defined above is both an isomorphism of rings, and a
homeomorphism. First, ker(ρ) = ∩n≥1p

n = 0, and so ρ is injective.
Let π be a uniformizer for F , and let S be a set of representatives for O/p with 0 ∈ S.

It follows from Lemma 3.2 that for any n ≥ 1, any element of O/pn may be written
uniquely as

(a0 + a1π + · · ·+ an−1π
n−1) + pn,
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where a0, a1, . . . , an−1 ∈ S. From this and by the definition of the inverse limit, any
element

x ∈ lim
←−
n

O/pn

may be written uniquely as a sequence

x = (a0 + p, a0 + a1π + p2, . . . , a0 + a1π + · · ·+ an−1π
n−1 + pn, . . .), ai ∈ S, i ≥ 0.

Also from Lemma 3.2, the element y =
∑∞

i=0 aiπ
i is an element of O, and now we have

ρ(y) = x, and ρ is surjective.
We now show that ρ is a homeomorphism. Since ρ is a ring isomorphism, if we show that

ρ−1 of a basis neighborhood of the additive identity in the image is a basis neighborhood
of 0 in O, then ρ is continuous. Then, since O is compact and the image is Hausdorff
(since each O/pn is discrete), then ρ will be a homeomorphism (by Exercise 2 of the Direct
Limits, Inverse Limits, and Profinite Groups notes). Now, in the space

∏∞
i=1O/pi, the

sets

Bm =
m∏
i=1

{pi} ×
∞∏

j=m+1

O/pj,

where pi is the additive identity in O/pi, form a basis for neighborhoods at the additive
identity

∏∞
i=1 pi. Then we have the sets

B′m = Bm ∩ lim
←−
n

O/pn

form a basis for the additive identity in the inverse limit, and we claim that ρ−1(B′m) = pm,
where the sets pm, m ≥ 1, form a basis of neighborhoods of 0 in O. If ρ(y) ∈ B′m, then
we must have y ∈ pm, and to see that pm surjects onto B′m, we may again apply Lemma
3.2. The elements of pm are of the form

∑∞
i=m+1 aiπ

i, and these elements map exactly to
the elements in B′m. Thus ρ is a homeomorphism. �

Finally, we have the following description of non-archimedean local fields.

Theorem 3.2. Let F be a field which is complete with respect to a non-archimedean
absolute value | · |v, and let O be the ring of integers with maximal ideal p. Then F is
locally compact (so a non-archimedean local field) if and only if | · |v is discrete and O/p
is finite.

Proof. First suppose that F is locally compact. Then | · |v is discrete by Proposition 3.2,
and O is compact by part (1) of Lemma 3.1. Since | · |v is discrete, then p is open in O.
Since p is an additive open subgroup of the compact group O, then it must have finite
index, and so O/p is finite.

Now suppose that | · |v is discrete and O/p is finite. By part (3) of Proposition 3.3,
for each n ≥ 1, pn/pn+1 ∼= O/p is also finite. Then O/pn is also finite for every n ≥ 1.
By Theorem 3.1, O under addition is a profinite group, and is thus compact (and totally
disconnected). Since O is compact, each pn is compact also, and then every neighborhood
of 0 in F contains some pn as a compact neighborhood of 0. Thus F is locally compact. �

Example 4: The p-adic rationals. On Q, we have the non-archimedean p-adic
absolute value | · |p. The image of | · |p on Q× is exactly {pn | n ∈ Z}, and so | · |p is
discrete. The ring of integers in Q with respect to | · |p is exactly

Z(p) = {a/b ∈ Q | a, b ∈ Z, (b, p) = 1},
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which is called the ring Z localized at p. The unique maximal ideal of Z(p) is exactly pZ(p),
and the ideals of Z(p) are all of the form pnZ(p) for n ≥ 1. Define a map f : Z→ Z(p)/p

nZ(p)

by f(m) = m + pnZ(p). Then f is a ring homomorphism with ker(f) = pnZ. Also, if
a/b ∈ Z(p), then since (b, pn) = 1, we can write a = bk + pnl for some k, l ∈ Z. Then
a/b = k + pnl/b, where pnl/b ∈ pnZ(p). That is, f(k) = a/b + pnZ(p) and f is surjective,
so Z/pnZ ∼= Z(p)/p

nZ(p).
Completing Q with respect to |·|p gives us the field Qp of p-adic rationals. The extended

absolute value on Qp is non-archimedean and discrete, and let O be the ring of integers
in Qp, which has maximal ideal pO, and all ideals of the form pnO. From Proposition
3.4 and the above discussion, we have O/pO ∼= Z/pZ, which is of course finite. Since
the absolute value is discrete, then by Theorem 3.2, Qp is locally compact. Again by
Proposition 3.4 and the above calculation, we have for every n ≥ 1, O/pnO ∼= Z/pnZ.
Then from Theorem 3.1, we have

O ∼= lim
←−
n

O/pnO ∼= lim
←−
n

Z/pnZ = Zp.

That is, the ring of integers of Qp is exactly the ring of p-adic integers Zp, constructed as
an inverse limit. Now, note that the set {0, 1, 2, . . . , p − 1} is a set of representatives of
the residue field Z(p)/pZ(p). Applying Lemma 3.2, every element of Q×p may be written

uniquely as pm
∑∞

i=0 aip
i, where m ∈ Z and each ai ∈ {0, 1, . . . p − 1}, a0 6= 0, and each

element of Zp may be written uniquely as
∑∞

i=0 bip
i, where each bi ∈ {0, 1, . . . , p− 1}.

4. Classification of local fields

In this section we give an outline of the proof of the classification of local fields. One
of the main steps is to analyze finite extensions of local fields.

Let K/F be a finite extension of fields, and let x ∈ K. Viewing K as a vector space
over F , multiplication of elements in K by x is an F -linear transformation, which we
denote by µx. Define the norm of x from K to F , denoted NK/F (x), as the determinant
of the F -linear transformation µx : K → K, so NK/F (x) = det(µx). It is immediate from
this definition that for any x ∈ K, we have NK/F (x) ∈ F . If the extension K/F is Galois,
then the norm of x is in fact just the product of the Galois conjugates of x. The next
result uses the norm to extend absolute values of complete fields to finite extensions. See
[N, Theorem 4.8] for a proof, which requires just a bit more algebraic number theory.

Theorem 4.1. Let F be a field which is complete with respect to an absolute value | · |v,
and let K be a finite extension of F of degree n. The absolute value | · |v may be extended
uniquely to an absolute value | · |w of K, given by the formula

|x|w = (|NK/F (x)|v)1/n.

Furthermore, K is complete with respect to the absolute value | · |w.

Using Theorem 4.1 and the previous results on local fields, we have the following.

Proposition 4.1. If F is a local field, and K is a finite extension of F given the unique
absolute value extended from F , then K is a local field.

Proof. First, if F is an archimedean local field, then by Theorem 2.2, F is either R or C.
Since C has no proper finite extensions, and the only one for R is C, then the statement
follows in this case and we may assume that F is a non-archimedean local field.
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If | · |v is a non-archimedean absolute value on F , then the extended absolute value | · |w
from Theorem 4.1 must be non-archimedean on K, since it is still bounded on the prime
subring, applying Proposition 1.1. Let OF be the ring of integers of F with maximal ideal
pF , and let OK be the ring of integers of K with maximal ideal pK . By Theorem 3.2, K
is a local field if and only if | · |w is discrete and OK/pK is finite.

From the formula in | · |w in Theorem 4.1, the discreteness of | · |w follows from the
discreteness of | · |v. Since we have OF ⊂ OK and pF ⊂ pK , the map OF → OK/pK
defined by a 7→ a+pK has kernel exactly pF , and so we may view OK/pK as an extension
of OF/pF . Now let x1, . . . , xn ∈ OK , and suppose these are linearly dependent over F ,
so that there are α1, . . . , αn ∈ F , not all 0, such that α1x1 + · · ·+ αnxn = 0. Divide this
equation by whichever αi has the largest absolute value, and then we obtain an equation
λ1x1 + · · · + λnxn = 0, where each λi ∈ OF , but not all λi are in pF . Reducing modulo
pK , we obtain

∑n
i=1 λ̄ix̄i = 0̄, where ȳ = y + pK , which gives a linear dependence of

elements in OK/pK over OF/pF . In other words, if any n elements of OK/pK are linearly
independent over OF/pF , then they may be pulled back to elements of OK which are
linearly indepedent over F . So, we have [OK/pK : OF/pF ] ≤ [K : F ] <∞. Since OF/pF
is a finite field, then the finite extension OK/pK is also finite, and thus K is local. �

Let F be a topological field. A topological vector space over F is a vector space over V
which is a topological group as a group under addition, and such that scalar multiplication
F × V → V is continuous. We next state a key result on topological vector spaces over
locally compact fields, a proof of which can be found in [RV, Proposition 4-13] and uses
some machinery of the Haar measure.

Theorem 4.2. Let V be a topological vector space over a nondiscrete locally compact field
F . If V is locally compact, then V is finite dimensional over F .

We now have the following characterization of extensions of local fields.

Corollary 4.1. Let F be a local field, and let K be an extension of F , where K has some
absolute value which extends that of F . Then K is a local field if and only if K is a finite
extension of F .

Proof. If K/F is a finite extension, then we know K is a local field from Proposition 4.1.
If we assume K is a local field, then it is in particular locally compact. But then we have
that K is a locally compact topological vector space over F , which is locally compact. By
Theorem 4.2, K must be finite dimensional as an F -vector space, so that K/F is a finite
extension. �

The last set of examples of local fields are of characteristic p. There is no non-trivial
absolute value on any finite field Fq, since the multiplicative group F×q is cyclic, and also
no non-trivial absolute value on any algebraic extension of Fq, since it is a union of finite
fields. So, we must look at a transcendental extension Fq(t), where q is a power of some
prime p, and t is a transcendental element over Fq.

We have Fq[t] is a principal ideal domain, and is a subring of Fq(t), and so we define an
abolute value based on the same idea as the p-adic absolute value on Q. Let f(t) ∈ Fq[t] be
an irreducible polynomial. For any g(t)/h(t) ∈ Fq(t), write g(t)/h(t) = f(t)m(a(t)/b(t)),
where f(t) does not divide a(t) or b(t). Define the f(t)-adic absolute value on Fq(t) by∣∣∣∣g(t)

h(t)

∣∣∣∣
f(t)

= (qd(f))−m, where d(f) = deg(f).
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Then | · |f(t) is a discrete non-archimedean absolute value on Fq(t) (where f(t) is a uni-
formizer) for the exact same reason that | · |p is a discrete non-archimedean absolute value
on Q. Now define the degree absolute value on Fq(t), denoted | · |∞, by∣∣∣∣g(t)

h(t)

∣∣∣∣
∞

= qdeg(g)−deg(h).

Then | · |∞ is also a discrete non-archimedean absolute value on Fq(t), where 1/t is a
uniformizer. In fact, these are all of the possible inequivalent absolute values on Fq(t).

Theorem 4.3. Every absolute value on Fq(t) is equivalent to either | · |∞ or | · |f(t) for
some irreducible polynomial f(t) ∈ Fq[t].

Proof. See Problem set 2. �

To understand the completions of Fq(t) with respect to these absolute values, we can
apply Lemma 3.2. First we need the residue fields.

Lemma 4.1. The residue field of Fq(t) with respect to the absolute value |·|∞ is isomorphic
to Fq, and the residue field of Fq(t) with respect to the absolute value | · |f(t) is isomorphic
to Fqd(f), where d(f) = deg(f).

Proof. See Problem set 2. �

So, by Theorem 3.2, the completions of Fq(t) with respect to these absolute values are
local fields. Now, according to Lemma 3.2 and Lemma 4.1, the completion of Fq(t) with
respect to | · |f(t) is isomorphic algebraically to Fqd(f)((f(t))), the field of Laurent series in
f(t) with coefficients in Fqd(f) . In particular, if we specialize to the irreducible polynomial
f(t) = t, then the completion of Fq(t) with the absolute value |·|t is just the field Fq((t)) of
Laurent series in t over Fq. Similarly, the completion of Fq(t) with respect to the absolute
value | · |∞ is isomorphic to Fq((1/t)), the field of Laurent series in 1/t over Fq. It turns
out that these are, in fact, all basically same as topological fields.

Proposition 4.2. If Fq((1/t)) is given the topology from | · |∞ and Fq((t)) is given the
topology from | · |t, then Fq((1/t)) ∼= Fq((t)) as topological fields. If Fqd(f)((f(t))) is given
the topology from |·|f(t), and Fqd(f)((t)) is given the topology from |·|t, then Fqd(f)((f(t))) ∼=
Fqd(f)((t)) as topological fields.

Proof. See Problem set 2. �

We are finally at the point where we may list all local fields.

Theorem 4.4 (Classification of Local Fields). The only archimedean local fields are R
and C, the only characteristic 0 non-archimedean local fields are finite extensions of Qp,
and the only characteristic p non-archimedean local fields are finite extensions of Fp((t)).

Proof. The archimedean local fields were classified in Theorem 2.2, so assume that F is
a non-archimedean local field. If char(F ) = 0, then we have Q ⊂ F , and from Theorem
1.1, we may replace the absolute value of F by an equivalent one so that it restricts to
Q ⊂ F as the p-adic absolute value | · |p for some prime p. Since F is complete, then we
have Qp ⊂ F . By Corollary 4.1, we must have F is a finite extension of Qp.

Now assume that F is a non-archimedean local field of positive characteristic p. Then
we have Fp ⊂ F , and since we have a non-trivial absolute value on F , we must have
Fp(t) ⊂ F for some element t which is transcendental over Fp. Theorem 4.3 tells us that
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we may replace the absolute value on F by one which restricts to Fp(t) as either | · |∞
or | · |f(t) for some irreducible f(t) ∈ Fp[t]. By Proposition 4.2, and since F is complete,
we see that F must contain Fq((t)) for some q a power of p. If Fq = Fp(γ), then in fact
Fq((t)) = Fp((t))(γ) (Exercise), and so Fq((t)) is a finite extension of Fp((t)). By Corollary
4.1, we must have that F is a finite extension of Fq((t)), and is therefore a finite extension
of Fp((t)). �

5. Definition and examples of p-adic groups

Let F be a non-archimedean local field, and consider the group GL(n, F ) of invertible
n-by-n matrices over F , given the subspace topology in Mn(F ) (which has the product

topology of F n2
). Since F is locally compact and totally disconnected, then so is Mn(F ).

The determinant map det : Mn(F ) → F is a continuous function, and GL(n, F ) is the
inverse image of the open set F× under this map, and so GL(n, F ) is an open subset of
Mn(F ). Thus GL(n, F ) is a locally compact totally disconnected group. If O is the ring
of integers of F , then we know that Mn(O) is compact and totally disconnected, since
O is. Now GL(n,O) is the intersection of Mn(O) with GL(n, F ), and so GL(n,O) is a
compact totally disconnected subgroup of GL(n, F ).

Another way to prove that GL(n, F ) is a locally compact disconnected group is to
give explicit compact open subgroups of GL(n, F ) which are contained in arbitarily small
neighborhoods of the identity. If π is a uniformizer for F , and I is the identity matrix,
then such subgroups are given by Km = I+πmMn(O), which are also normal subgroups of
GL(n,O) (see Problem set 2). In the case n = 1, then GL(1, F ) = F×, and Km = 1 +pm,
where p = πO. In Section 3, we saw that the Km are arbitarily small compact open
subgroups of F×.

An algebraic subgroup of GL(n, F ) is a subgroup H such that there are a finite number
of polynomials f1, f2, · · · , fk ∈ F [x11, x12, . . . , xnn] with

H = {g = (gij) ∈ GL(n, F ) | f1(gij) = · · · = fk(gij) = 0}.

For example, SL(n, F ) is an algebraic subgroup of GL(n, F ) since its elements (gij) are
defined such that the entries gij satisfy the polynomial det((xij)) − 1. Also, GL(n, F ) is
an algebraic subgroup of itself since the entries of each element are the zeros of the zero
polyonmial. A p-adic group over a non-archimedean local field F is defined to be a closed
algebraic subgroup of GL(n, F ). Note that since a p-adic group is a closed subgroup of
the locally compact disconnected group GL(n, F ), then every p-adic group is a locally
compact totally disconnected group.

Below are just a few important examples of p-adic groups.

General and Special Linear Groups: We have mentioned that GL(n, F ) is an
algebraic subgroup of itself, and since it is also closed, then it is a p-adic group. Since
SL(n, F ) is an algebraic subgroup of GL(n, F ), and it is the inverse image under the de-
terminant map of the closed subset {1} of F , then it is a p-adic group as well.

Borel and Unipotent Subgroups: The Borel subgroup of GL(n, F ), denoted B(n, F ),
is the subgroup of upper triangular matrices in GL(n, F ). In other words, the elements
of B(n, F ) are exactly the elements (gij) of GL(n, F ) such that gij = 0 whenever i > j,
1 ≤ i, j ≤ n, making B(n, F ) an algebraic subgroup of GL(n, F ). Since this may be
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viewed as the intersection of a copy of F (n2+n)/2 in F n2
with GL(n, F ), then B(n, F ) is

a closed subgroup of GL(n, F ), and so it is a p-adic group. The unipotent subgroup of
GL(n, F ), denoted N(n, F ), is the subgroup of B(n, F ) which has only 1’s on the diagonal
entries. That is, in addition to being in B(n, F ), the elements (gij) of N(n, F ) also satisfy
gii − 1 = 0 for each 1 ≤ i ≤ n. Topologically, N(n, F ) may be viewed as the intersection

of a copy of F (n2−n)/2 in F n2
with GL(n, F ), making it a closed algebraic subgroup of

GL(n, F ), and thus a p-adic group.

Orthogonal and Symplectic Groups: Consider the vector space F n, and let S(·, ·)
be a non-degenerate symmetric form on F n, so that S(v, w) = S(w, v) for all v, w ∈ F n

(symmetric), and if S(v, w) = 0 for all w ∈ F n, then v = 0 (non-degenerate). The orthog-
onal group for the form S, denoted OS(n, F ), or just O(n, F ) if the form S is implicit, is
the subgroup of GL(n, F ) consisting of elements g such that S(gv, gw) = S(v, w) for all
v, w ∈ F n. Choosing a basis for F n, one can find an invertible symmetric matrix A such
that OS(n, F ) is exactly {g ∈ GL(n, F ) | tgAg = A}, where tg denotes the transpose of
g. That is, if g = (gij) in OS(n, F ), then (gji)A(gij)A

−1 − I = 0. Considering each entry
of this matrix equation, we get a set of n2 polynomials which gij must satisfy, making the
orthogonal group an algebraic subgroup of GL(n, F ). Since the map g 7→ tgAgA−1 is a
continuous map on GL(n, F ), and OS(n, F ) is the inverse image of the identity under this
map, then the orthgonal group is also closed, and thus a p-adic group.

Now consider the vector space F 2n, and let T (·, ·) be a non-degenerate skew-symmetric
form on F 2n, so that T (v, v) = 0 for all v ∈ F 2n (or if char(F ) 6= 2, T (v, w) = −T (w, v)
for all v, w ∈ F 2n), and if T (v, w) = 0 for all w ∈ F 2n, then v = 0. One may check that
in order to have a non-degenerate skew-symmetric form on a finite-dimensional vector
space, the space must have even dimension. The symplectic group for the form T , denoted
SpT (2n, F ), or Sp(2n, F ) if T is understood, is the set of elements g in GL(2n, F ) such
that T (gv, gw) = T (v, w) for all v, w ∈ F 2n. One may choose a basis for F 2n, and find an
invertible skew-symmetric matrix J such that SpT (2n, F ) = {g ∈ GL(2n, F ) | tgJg =
J}. Similar to the orthogonal case, one can use this definition to see that the symplectic
group is a p-adic group (Exercise).

The orthogonal and symplectic groups are both examples of classical groups, a classifi-
cation of which over arbitrary fields may be found in [G].
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