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MATH 519

The first three sections of these notes are compiled from [L, Sections I.10, I.11, III.10],
while the fourth section follows [RV, Section 1.3].

1. Universal objects

A category C is a collection of objects, denoted Ob(C), together with a collection of
morphisms, denoted Ar(C) (standing for “arrows”), such that for any A,B ∈ Ob(C),
there is a set of morphisms Mor(A,B), called the morphisms from A to B, which satisfy
the following:

(1) For any f ∈ Ar(C), there are unique objects A and B such that f ∈ Mor(A,B).
(2) For any three objects A,B,C ∈ Ob(C), there is a map, called the composition

map,

Mor(B,C)×Mor(A,B)→ Mor(A,C),

denoted (f, g) 7→ f ◦ g, where f ∈ Mor(B,C), g ∈ Mor(A,B), such that
(a) For every A ∈ Ob(C), there is a morphism idA ∈ Mor(A,A), such that for

any B ∈ Ob(C), f ∈ Mor(A,B), g ∈ Mor(B,A), we have f ◦ idA = f and
idA ◦ g = g.

(b) For any A,B,C,D ∈ Ob(C), and any f ∈ Mor(A,B), g ∈ Mor(B,C), h ∈
Mor(C,D), we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Condition (a) above says that there are always morphisms which act as the identity
under composition, and condition (b) says that the composition law is associative. Gener-
ally speaking, morphisms may be thought of as functions between objects which preserve
certain defining structures of objects, and for this reason we use the notation f : A→ B
if f ∈ Mor(A,B).

A morphism f ∈ Mor(A,B) is called an isomorphism if there exists a morphism g ∈
Mor(B,A) such that f ◦ g = idB and g ◦ f = idA. An isomorphism in Mor(A,A) is called
an endomorphism of A.

The following are typical examples, which can be checked directly to satisfy the above
conditions.

Example 1. If Ob(C) is the collection of all sets, and morphisms are functions be-
tween sets, then C is a category. Bijective correspondences between sets are isomorphisms
in Ar(C).

Example 2. Let Ob(C) be the collection of topological spaces, with morphisms be-
ing continuous maps. This is the category of topological spaces. Homeomorphisms are
isomorphisms in this category.
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Example 3. Consider the collection of all groups, which are viewed as objects with
group homomorphisms as morphisms. This is the category of groups, which we will de-
note Grp. We could also restrict the objects to consist of abelian groups, with group
homomorphisms as morphisms, which is the category of abelian groups, denoted Ab.
Similarly, we have the category of rings with ring homomorphisms, denote Rng, or given
a ring R, the category of modules over R with homomorphisms of R-modules, denoted by
R-Mod. Note that since abelian groups are exactly modules over Z, then the category
Ab may be identified with the category Z-Mod. Another example which we have dealt
with quite a bit is the category of topological groups, TopGrp, with morphisms being
continuous homomorphisms.

Example 4. Fix some set S. Consider objects to be functions from S to some group,
so any function f : S → G, where G is any group. If f1 is a function from S to a group
G1, and f2 is a function from S to a group G2, define a morphism from f1 to f2 to be any
homomorphism φ : G1 → G2 such that φ ◦ f1 = f2. It is straightforward to check that
this is indeed a category.

If C is a category, then an object A of C is called universally attracting if for every
object B of C, there is a unique morphism from B to A (that is, Mor(B,A) is a singleton
set). An object A of C is called universally repelling if for every object B of C, there is a
unique morphism from A to B (that is, Mor(A,B) is a singleton set). An object which is
universally attracting or universally repelling is more generally called a universal object,
and will be referred as such if the context makes it clear as to whether it is attracting
or repelling. The following tells us that universal objects are unique up to isomorphism
within a category.

Proposition 1.1. Let C be a category, and let A,B ∈ Ob(C) be two universal objects
of C, either both attracting or both repelling. Then there exist unique isomorphisms f ∈
Mor(A,B), g ∈ Mor(B,A).

Proof. SinceA andB are both universal objects, we know that there are unique morphisms
f ∈ Mor(A,B), g ∈ Mor(B,A). It also follows that idA and idB are the unique morphisms
in Mor(A,A) and Mor(B,B), respectively. Since f ◦g ∈ Mor(B,B) and g◦f ∈ Mor(A,A),
we must have f ◦ g = idB and g ◦ f = idA, hence f and g are isomorphisms. �

Exercise 1. Suppose that A is a universal object (either attracting or repelling) in the
category C. Let B ∈ Ob(C) such that there is an isomorphism f ∈ Mor(A,B). Prove that
B must also be a universal object (the same type as A).

Example 5. Let S be a set, and consider the category C described in Example 4,
where objects are pairs (f,G), where G is a group and f : S → G is a function. Let
F (S) denote the free group on the set S, which is constructed in every graduate algebra
text. Let f : S → F (S) be the function which maps s ∈ S to the equivalence class of
words [s] ∈ F (S). Then (f, F (S)) is a universally repelling object in C, in that given any
(h,G) ∈ Ob(C), there is a unique homomorphism φ : F (S)→ G such that φ ◦ f = h.

As in the case of free groups, it is typical that a universal object is defined by its
universal property in a category, but then must be specifically constructed in order to
show that it exists.
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2. Direct limits

Let (I,�) be a partially ordered set. Then (I,�) is a directed set if for any elements
α, β ∈ I, there exists an element γ ∈ I such that α � γ and β � γ.

Now let A be a category, let (I,�) be a directed set, and let {Ai}i∈I be a set of objects
of A indexed by I. A directed family of morphisms for {Ai}i∈I is a collection of morphisms
{f i

j}i,j∈I,i�j such that f i
j ∈ Mor(Ai, Aj), f

i
i = idAi

, and if i � j � k, then f j
k ◦ f i

j = f i
k.

Given {Ai}i∈I a directed family of morphisms in A, now consider the following category
C. Let the objects of C consist of pairs (A, (f i)i∈I), where A is an object of A, and (f i)i∈I

is a collection of morphisms f i : Ai → A of A such that for every j ∈ I, i � j, we have
f i = f j ◦ f i

j . If (A, (f i)i∈I) and (B, (hi)i∈I) are objects of C, then a morphism in C from

the first to the second is a morphism φ : A→ B of A such that hi = φ◦f i for every i ∈ I.
The direct limit of {Ai}i∈I with respect to the morphisms {f i

j}i,j∈I,i�j is defined to be a

universally repelling object in the category C. If (A, (f i)i∈I) is the direct limit of {Ai}i∈I ,
we write

A = lim
−→
i

Ai.

Note that this is a very slight abuse of notation, since the universal object A could be
replaced by another object B if there is an isomorphism in Mor(A,B), by Exercise 1.
But we usually think of objects in a category as the same in the case that there is an
isomorphism between them, as is usual in all of the examples we have seen so far.

So, if (A, (f i)i∈I) is the direct limit of {Ai}i∈I with respect to a directed family of
morphisms, and if (B, (hi)i∈I) is any other object in the category C described above, then
there is a unique morphism φ : A→ B such that, for every i ∈ I, hi = φ ◦ f i.

Theorem 2.1. For any ring R, direct limits exist in the category R-Mod of R-modules.
In particular, direct limits exist in the category Ab of abelian groups.

Proof. Let (I,�) be a directed set, and let {Mi}i∈I be a directed system of R-modules,
with {f i

j}i∈I,i�j a corresponding directed family of R-homomorphisms. Define M to be
the direct sum of the Mi,

M =
⊕
i∈I

Mi.

Now let N be a submodule of M which is generated by elements xij, i � j, which has
component x ∈ Mi in position i, and component −f i

j(x) ∈ Mj in position j, and 0
in all other positions, where we range over all x ∈ Mi, i, j ∈ I, i � j. That is, if
ιi : Mi →M is the natural injection map, then N is generated by all elements of the form
xij = ιi(x)− ιj(f i

j(x)), for x ∈Mi, i, j ∈ I, i � j.
Now let M/N be the quotient module, where p : M → M/N is the projection map,

and for each i ∈ I, let f i : Mi → M/N be defined by f i = p ◦ ιi. The claim is that
(M/N, (f i)i∈I) is a direct limit. Given any object (B, (hi)i∈I), we must show that there
is a unique R-module homomorphism φ : M/N → B such that φ ◦ f i = hi for every
i ∈ I. Given x ∈ Mi, the only choice is that we must have φ(ιi(x) + N) = hi(x). This
is well defined, since hi(x) = hj ◦ f i

j(x) by definition, and this extends by linearity to a
homomorphism on all of M/N . Thus M/N is the desired direct limit. �

Example 6. Let X be a topological space. By a presheaf of abelian groups on X,
written F , we mean the following. For every open set U ⊂ X, there is assigned to U an
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abelian group, written F(U). If V is another open subset of X such that V ⊂ U , there
is a group homomorphism called the restriction homomorphism, ρU

V : F(U) → F(V ),
such that ρU

U is the identity, and if W ⊂ V ⊂ U are open sets, then ρV
W ◦ ρU

V = ρU
W . In

addition, we assume that F(∅) is the trivial group. One natural example of a presheaf
is on C, where if U ⊂ C is open, let F(U) be the set on analytic functions on U , which
is an abelian group under addition. In this case, if V ⊂ U , then ρU

V is just restriction of
domains.

If F is a presheaf on the topological space X, and x ∈ X, consider the collection Ux of
open neighborhoods of x. Partially order Ux by reverse inclusion, so that U � V means
V ⊂ U . This makes Ux a directed set, since if U, V ∈ Ux, then U ∩ V ∈ Ux. By the
definition of a presheaf, the collection {ρU

V |V ⊂ U} of restriction homomorphisms form a
directed family of morphisms for the family {F(U)}U∈Ux of abelian groups. We may then
look at the direct limit

lim
−→
U

F(U),

which is called the stalk at the point x ∈ X, and is denoted Fx. We will encounter
presheaves and sheaves later in the context of representation theory.

3. Inverse limits

Inverse limits (also called projective limits) are defined similarly to direct limits, except
that arrows are reversed. Again let (I,�) be a directed set, A a category, and {Ai}i∈I a
set of objects in A indexed by I. An inverse family of morphisms for {Ai}i∈I is a collection
{f j

i }i,j∈I,i�j such that f j
i ∈ Mor(Aj, Ai), f

i
i = idAi

, and if k � i � j, then fk
i ◦ f

j
i = f j

k .

Now let {Ai}i∈I be a set of objects in A, with {f j
i } an inverse family of morphisms.

Define C to be the category with objects (A, (fi)i∈I), where A ∈ Ob(A), and for each i,
fi : A → Ai is a morphism such that fi = f j

i ◦ fj for every j ∈ I such that i � j. The
morphisms of C from (B, (hi)i∈I) to (A, (fi)i∈I) consist of morphisms φ : B → A from A
such that hi = fi ◦ φ for every i ∈ I. A universally attracting object in the category C is
called the inverse limit of {Ai}i∈I with respect to the inverse family of morphisms {f j

i }.
If (A, (fi)i∈I) is the direct limit, then we write

A = lim
←−
i

Ai.

So, if (B, (hi)i∈I) is any object in C and (A, (fi)i∈I) is the direct limit, then there is a
unique morphism φ : B → A such that hi = fi ◦ φ.

As is done for direct limits, the existence of inverse limits in categories is proven by
construct the inverse limit.

Theorem 3.1. Inverse limits exist in the categories TopGrp of topological groups (and
so in Grp), Rng of rings, and R-Mod of modules over a given ring R.

Proof. The construction of the inverse limit in each of these categories is the same, and
so we just look at the category of topological groups. Let {Gi}i∈I be a collection of
topological groups indexed by the directed set i ∈ I, and let {f j

i }i,j∈I,i�j be an inverse
system of continuous homomorphisms. Now let G be the direct product of all of the Gi,
so

G =
∏
i∈I

Gi,
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and let Γ consist of all elements of G of the form (gi)i∈I such that whenever i � j, we have
f j

i (gj) = gi. Let fi : Γ→ Gi be the natural projection map. The claim is that (Γ, (fi)i∈I)
is the inverse limit.

It follows immediately that we have fi = fj ◦f j
i whenever i � j. Given any other object

(B, (hi)i∈I), we need to show that there is a unique continuous homomorphism φ : B → Γ
such that fi ◦ φ = hi for every i ∈ I. If x ∈ B and φ(x) = (gj)j∈I , then we must have
gj = hj(x) for this to be possible. So, we need only check that this φ is a well-defined
continuous homomorphism from B to Γ. If i � j, then we have

f j
i (gj) = (f j

i ◦ hj)(x) = hi(x) = gi,

so that φ(x) ∈ Γ, and φ : B → Γ is a well-defined map. It follows immediately that φ is
a continuous homomorphism since each hj is. �

Example 7. Let p be any prime, and consider the rings Z/pnZ for each n ≥ 1. When
n ≤ m, we have the natural projection map

fm
n : Z/pmZ→ Z/pnZ,

which gives an inverse family of homomorphisms. We may then take the inverse limit,
denoted Zp,

Zp = lim
←−
n

Z/pnZ,

which is called the ring of p-adic integers. In particular, Zp is an additive group which
is the inverse limit of finite groups, and is thus an example of a profinite group which we
discuss in the next section.

We could also partially order the positive integers by letting n � m when n|m. This
gives rise to the inverse family of homomorphisms for the rings Z/nZ, where if n|m,

fm
n : Z/mZ→ Z/nZ

is the natural projection. In this case, the inverse limit is denoted Ẑ,

Ẑ = lim
←−
n

Z/nZ,

and is called the profinite completion of Z. In fact, we have an isomorphism of rings:

Ẑ ∼=
∏

p prime

Zp.

4. Profinite groups

A profinite group is the inverse limit of finite groups. Both Ẑ and Zp are examples, as
we saw above. The main purpose of this section is to give a characterization of profinite
groups as a topological group.

Let (I,�) be a directed set, let {Gi}i∈I be a collection of finite groups indexed by I,
and let {f j

i }i,j∈I,i�j be an inverse family of homomorphisms. Now let G be the inverse
limit,

G = lim
←−
i

Gi.

Each Gi may be viewed as a topological group with the discrete topology, and the product∏
iGi may be given the product topology. Now, as in Theorem 3.1, G may be constructed



6 MATH 519

as a subgroup of the product
∏

iGi, and so we may give G the subspace topology. This
is called the profinite topology.

Lemma 4.1. Let G be a profinite group with the profinite topology, as defined above.
Then G is a compact Hausdorff topological group which is a closed subset of

∏
iGi.

Proof. Each Gi is Hausdorff, and so their product is Hausdorff. Since G is the subspace of
a Hausdorff space, it is also Hausdorff. Since each Gi is also compact, then their product is
also compact by Tychonoff’s theorem. To conclude that G is compact, then, it is enough
to show it is closed in

∏
k∈I Gk, where (I,�) is the indexing directed set.

Let {f j
i }i,j∈I,i�j be the inverse system of homomorphisms. Fix i, j ∈ I, i � j, and fix

gj ∈ Gj. Consider the set

{(xk)k∈I ∈
∏
k∈I

Gk | xj = gj, xi 6= f j
i (gj)}.

Since every subset of each Gk is open, then this set is open in
∏

k∈I Gk. Now we have⋃
gj∈Gj

{(xk)k∈I ∈
∏
k∈I

Gk | xj = gj, xi 6= f j
i (gj)} = {(xk)k∈I ∈

∏
k∈I

Gk | xi 6= f j
i (xj)}

is open. Finally, we have that G as a subset of
∏

k∈I Gk is exactly the complement of the
open set ⋃

i∈I

⋃
j∈I,i�j

{(xk)k∈I ∈
∏
k∈I

Gk | xi 6= f j
i (xj)}.

Thus, G is closed in
∏

k∈I Gk. �

Let G be a compact group, and let N be the collection open normal subgroups of G, all
of which have finite index. For each N ∈ N , we know that G/N is a finite group, and we
may N as a directed set by reverse inclusion, so that M � N is defined to mean N ⊂M ,
where we have M �M ∩N and N �M ∩N .

Now, whenever M � N , we have the natural projection pN
M : G/N → G/M , where

pN
M(gN) = gM . It immediately follows that if L � M � N , then pM

L ◦ pN
M = pN

L , giving
us an inverse system of homomorphisms.

Lemma 4.2. Let G be a compact group, and N the collection of open normal subgroups
of G. Let G̃ be the profinite group

G̃ = lim
←−

N∈N
G/N,

defined by the maps pN
M : G/N → G/M when N ⊂ M . Then there exists a surjective

continuous homomorphism α : G→ G̃.

Proof. First, notice that since each N ∈ N is open, each G/N is discrete in the quotient
topology, and is a finite group. By Theorem 3.1, the inverse limit exists, and we have a
specific construction of it. For each N ∈ N , let pN : G̃→ G/N be the projection map, as
in the construction of the inverse limit in Theorem 3.1, so that pN

M ◦ pN = pM for every
N,M ∈ N with N ⊂M . Now let αN : G→ G/N be the natural projection map for each
N ∈ N , which is continuous. Also, whenever N ⊂ M , we have pN

M ◦ αN = pM . By the

definition of inverse limit, there is a unique continuous homomorphism α : G → G̃ such
that αN = pN ◦ α for all N ∈ N . We must show that α is surjective.
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Since G is compact, α(G) is compact, and G̃ is Hausdorff by Lemma 4.1. Therefore
α(G) is closed in G̃. So, it is enough to show that α(G) is dense in G̃ to conclude that α
is surjective.

Let U ⊂ G̃ be an arbitrary open set, and we will show U ∩ α(G) is nonempty. Every
subset of each G/N , N ∈ N , is open in G/N , and so by the construction of G̃ in Theorem
3.1, and the definition of product topology, the open sets of G̃ are generated by sets of
the form p−1

N (SN), for arbitrary subsets SN ⊂ G/N . In other words, there are a finite
number N1, . . . , Nr ∈ N , and subsets SNj

⊂ G/Nj, j = 1, . . . , r, such that

U = {(xN)N∈N | xN ∈ G/N, xN ∈ SN if N = Nj for some j = 1, . . . r}.
Let M = ∩r

j=1Nj. If (xN)N∈N ∈ U , then since M ⊂ Nj for each j = 1, . . . , r, then

xNj
= pM

Nj
(xM). In other words, each coordinate xNj

is determined by xM , by the definition

of an inverse system. Since αM : G→ G/M is surjective, there is a t ∈ G such that

αM(t) = (pM ◦ α)(t) = α(t)M = xM .

Now, for each j = 1, . . . , r, we have

αNj
(t) = α(t)Nj

= (pNj
◦ α)(t) = (pM

Nj
◦ pM ◦ α)(t) = pM

Nj
(xM) = xNj

.

But now we have α(t)Nj
∈ SNj

for each j = 1, . . . , r, so that α(t) ∈ U . Now α(G)∩U 6= ∅,
as claimed. �

We will apply the following in the proof of the main result of this section.

Exercise 2. Let X be a compact space and Y a Hausdorff space, and suppose that
f : X → Y is a continuous bijection. Prove that f is a homeomorphism by showing that
f is an open map (consider the image of the complement of an open set).

Theorem 4.1. Let G be a topological group. Then G is profinite if and only if G is
compact and totally disconnected.

Proof. (⇒): Assume that G is profinite, so let (I,�) be a directed set, {Gi}i∈I an inverse
family of finite groups with some inverse family of homomorphisms, and let

G = lim
←−
i∈I

Gi,

with projection maps fi : Gi → G. From Lemma 4.1, we know that G is compact, and so
we must show that G is totally disconnected, or G◦ = {1}.

Since G is a compact Hausdorff space, then we know that G◦ is the intersection of all
compact open neighborhoods of 1 in G (from the Topological Groups notes). If U is the
collection of compact open neighborhoods of 1 in G, then we have

G◦ =
⋂
U∈U

U.

Now let y = (yi)i∈I ∈ G, with y 6= 1. That is, there is some index j ∈ I such that
yj is not the identity in Gj, which we denote 1j. Now let V = f−1

j (1j). Since Gj is
discrete and the projection maps are continuous homomorphisms, then V is a compact
open neighborhood of 1 (since it is both closed and open) in G. (V is actually a compact
open subgroup.) However, since fj(y) 6= 1j, then y ∈ V . Since y was arbitrary, we now
have G◦ = ∩U∈UU = {1}, and G is totally disconnected.
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(⇐): As in Lemma 4.2, let N be the collection of all open normal subgroups of G, and
let G′ be the inverse limit of the G/N , N ∈ N , with respect to the natural projection
maps pN

M : G/N → G/M , N ⊂ M . Then by Lemma 4.2, there is a surjective continuous

homomorphism α : G → G̃. We will show that α is a homeomorphism of topological
groups, showing that G is profinite. Since G is compact and G̃ is Hausdorff, then by
Exercise 2 it is enough to show that α is injective.

Suppose that g ∈ G and g ∈ ker(α). Then α(g)N is the identity in G/N for each
N ∈ N , which means we must have g ∈ ∩N∈NN . Since G is compact and totally
disconnected, then every open neighborhood of 1 contains an open normal subgroup (from
the Topological Groups notes). Since G is Hausdorff, then for each point x ∈ G, x 6= 1,
there is an open neighborhood of 1 not containing x. This means that ∩N∈NN = {1},
and thus ker(α) is trivial and α is injective. �

Example 8: Infinite Galois Theory. Let K/F be a separable and normal algebraic
extension, or Galois extension. of fields, but not necessarily a finite extension. That is,
the minimal polynomial over F of any element a ∈ K has no repeated roots (separable),
and every embedding of K into an algebraic closure F which fixes F pointwise is an
automorphism of K (normal). Let Gal(K/F ) be the group of automorphisms of K which
fix F pointwise. It follows immediately that if K/F is Galois, and F ⊂ L ⊂ K, then K/L
is Galois, and Gal(K/L) is a subgroup of Gal(K/F ).

If S is a set of automorphisms of the field K, let KS denote the set of points in K fixed
by every automorphism in S, which is a subfield of K. Now let N be the collection of
all normal subgroups of finite index in G = Gal(K/F ). Then N is a directed set ordered
by reverse inclusion, and if N,M ∈ N with M ⊂ N , then there is a natural projection
map pM

N : G/M → G/N giving an inverse system of homomorphisms. We also have the
projections pN : G → G/N , which corresponds to restricting the action of elements in
Gal(K/F ) to acting on KN , giving an element of Gal(KN/F ). Note that we have, when
M ⊂ N , pN = pM

N ◦ pM , and we also have a projection from G to the inverse limit of all
G/N ,

p : G→ lim
←−

N∈N
G/N.

In fact, we see now that p is an isomorphism, so that the infinite Galois group is actually
a profinite group.

Proposition 4.1. Let K/F be a Galois extension of fields, G = Gal(K/F ), and N the
collection of normal subgroups of finite index in G, with projection maps as above. Then
the projection map

p : G→ lim
←−

N∈N
G/N

is an isomorphism of groups.

Proof. We first show that p is injective. If σ ∈ G, we have p(σ) is the identity in the
inverse limit if and only if p(σ)N is the identity in G/N for each N ∈ N . That is, we have

ker(p) =
⋂

N∈N

N.

Let σ ∈ ker(p). For an arbitrary α ∈ K, we may adjoin to F the roots of the minimal
polynomial of α over F to obtain a finite Galois extension F̃ of F , where F ⊂ F̃ ⊂ K.
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Now consider the map
resF̃ : G→ Gal(F̃ /F ),

which restricts the action of an element in G = Gal(K/F ) to acting on F̃ . Then resF̃ is

a group homomorphism with kernel equal to Gal(K/F̃ ). So now Gal(K/F̃ ) is a normal
subgroup of G which is necessarily of finite index, since F̃ /F is a finite extension. But
since σ ∈ ker(p), then σ ∈ Gal(K/F̃ ), and in particular, σ(α) = α. Since α was arbitrary,
then we must have that σ is the trivial automorphism, and so p is injective.

To prove that p is surjective, let (σN)N∈N be an arbitrary element of the inverse limit of
the G/N . If α ∈ K, then as above we find a finite Galois extension F̃ of F containing α,
and Ñ = Gal(K/F̃ ) is a normal subgroup of finite index in G, and every element of G/Ñ
may be viewed as an element of Gal(F̃ /F ). Now define σ on α by σ(α) = σÑ(α). The
claim is that this defines an element of G. If E is any other finite Galois extension of F
containing α, then L = EF̃ is another, which contains E and F̃ . Letting Gal(K/E) = M ,
Gal(K/L) = H, we have H ⊂ M, Ñ . By the construction of the inverse limit, we have
pH

Ñ
(σH) = σÑ and pH

M(σH) = σM , while these projection maps do not change the action on
α, as they amount to being restriction maps on Galois elements. Thus, σ is a well-defined
automorphism on all of K. Since the projection map pN is also a restriction map of Galois
elements, then we have σN = pN(σ) for each N ∈ N , and thus p(σ) = (σN)N∈N . �

So, Galois groups of infinite Galois extensions may be given the profinite topology, and
viewed as compact totally disconnected groups. One may formulate the Fundamental
Theorem of Galois Theory for infinite extensions, where intermediate fields correspond to
closed subgroups, and intermediate fields which are Galois over the ground field correspond
to closed normal subgroups. A concise discussion of this is given in [RV, Theorem 1-20].
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