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1. Smooth and admissible representations

Let G be a locally compact totally disconnected group. Recall that every neighborhood
of 1 in G contains a compact open subgroup. If G is assumed to be compact, then every
neighborhood of 1 in G contains a compact open normal subgroup. On the other hand,
it follows from properties of Lie groups that the group GL(n,C) has the property that
there is some neighborhood of the identity which contains no nontrivial subgroups. That
is, GL(n,C) has no small subgroups. This may be used to obtain the following description
of finite dimensional continuous representations of compact totally disconnected groups.

Proposition 1.1. Let Γ be a compact totally disconnected group, and let

π : Γ→ GL(n,C)

be a homomorphism. Then π is continuous if and only if ker(π) is open in Γ.

Proof. See Problem set 4. �

So, if (π, V ) is a continuous finite dimensional representation of a compact totally
disconnected group Γ, then N = ker(π) is an open normal subgroup of Γ, and is in
particular of finite index, since Γ is compact. Thus, we may consider (π, V ) to be a
representation of the finite group Γ/N . For any compact totally disconnected group Γ
(including finite groups), we let Irr(Γ) denote the collection of isomorphism classes of
irreducible continuous finite dimensional representations (π, V ) of Γ.

If G is a locally compact totally disconnected group, we define a smooth representation
of G to be a pair (π, V ), where V is any nonzero vector space over C (possibly infinite
dimensional, but not necessarily with any topology), and π : G→ Aut(V ) is a homomor-
phism such that the stabilizer in G of any vector v ∈ V is open. Here, the stabilizer of
v ∈ V in G is the subgroup

stabG(v) = {g ∈ G | π(g)v = v} ⊂ G.

If (π, V ) is a smooth representation of G, then we call it an admissible representation of
G if, for every open subgroup H ⊂ G, the space of H-invariants in V ,

V H = {v ∈ V | π(h)v = v for all h ∈ H} ⊂ V,

is a finite dimensional subspace of V . If (π, V ) is a smooth representation of G, a subspace
W ⊂ V is called G-invariant if π(g)w ∈ W for every g ∈ G and w ∈ W . If W is a G-
invariant subspace of V , then we have a homomorphism πW : G → Aut(W ) defined by
πW (g)w = π(g)w. It is an exercise to check that if (π, V ) is a smooth or admissible
representation of G and W is a G-invariant subspace of V , then (πW ,W ) is also a smooth
or admissible representation of G, respectively. A smooth representation (π, V ) of G is
called irreducible if V contains no nonzero nontrivial G-invariant subspaces.
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If (π1, V1) and (π2, V2) are two smooth representations of G, a linear transformation
T : V1 → V2 such that

T ◦ π1(g) = π2(g) ◦ T for all g ∈ G

is called an intertwining map from (π1, V1) to (π2, V2). If there is an intertwining map T
which is a bijection, then we say that (π1, V1) and (π2, V2) are isomorphic and T is an iso-
morphism, and we write π1

∼= π2, or V1
∼= V2. Note that if π1

∼= π2, then ker(π1) = ker(π2).

Example 1. Let G be a compact totally disconnected group, and let (π, V ) be a
finite dimensional continuous representation of G. From Proposition 1.1, we know that
ker(π) is open in G. For any v ∈ V , we have ker(π) ⊂ stabG(v). Since stabG(v) is a
subgroup of G which contains an open subgroup, then stabG(v) is also open, since any
element g ∈ stabG(v) is contained in a coset of ker(π). Thus, (π, V ) is smooth, and since
it is assumed to be finite dimensional, then it is also admissible.

Example 2. Let F be a non-archimedean local field with absolute value | · |v and
ring of integers O. Then G = F× is a locally compact totally disconnected group. Let
V = C2, and consider the homomorphism π : F× → GL(2,C) given by

π(a) =

(
1 log |a|v
0 1

)
.

If v =

(
x
y

)
∈ V , then for y 6= 0, we have

stabG(v) = {a ∈ F× | log |a|v = 0} = O×,

which is open in G. For the case that y = 0, we have stabG(v) = G, which is of course
open in G. So, (π, V ) is smooth, and is admissible since V is finite dimensional.

We have noticed that the one-dimensional subspace

W =

{(
x
0

)
| x ∈ C

}
is invariant under all of G, and so (π, V ) is not irreducible. Suppose that W ′ is some

one-dimensional subspace of G, and let w =

(
x′

y′

)
∈ W ′, with w 6= 0. Then, if W ′ is

G-invariant, then we must have, for any a ∈ G, π(a)w = λw for some λ ∈ C. We have

π(a)w =

(
x′ + y′ log |a|v

y′

)
,

and if this is to equal λw for some λ ∈ C, then either y′ = 0, in which case W ′ = W , or
λ = 1, in which case the equality is not satisfied unless a ∈ O×. In other words, W is
the only G-invariant one-dimensional subspace of V . In particular, W has no G-invariant
direct complement in V , and we see that reducible admissible representations are not
necessarily completely reducible.

If G is a locally compact totally disconnected group, (π, V ) is a smooth representation
of G, and H is a closed subgroup of G (and so locally compact totally disconnected),
then let (π|H , V ) denote the representation of H obtained by restricting π to H. It is
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immediate that (π|H , V ) is smooth, since for any v ∈ V we have

stabH(v) = H ∩ stabG(v),

which is open in H. If K is a compact totally disconnected group, (π, V ) is a smooth
representation of K, and (ρ,Wρ) is an irreducible finite dimensional continuous represen-
tation of K, or ρ ∈ Irr(K), then the ρ-isotypic part of (π, V ), denoted V (ρ), is the sum of
all K-invariant subspaces W of V which are isomorphic to Wρ as smooth representations,
so πW ∼= ρ. That is,

V (ρ) =
∑
W⊂V
W∼=Vρ

W.

Recall that in the case that Γ is a finite group, and (π, V ) is any representation of Γ (not
necessarily finite dimensional), then we have

V =
⊕

ρ∈Irr(Γ)

V (ρ).

We have a similar situation when we restrict a smooth representation of a locally compact
totally disconnected group to a compact open subgroup, as we see now.

Theorem 1.1. Let G be a locally compact totally disconnected group, and let K be a
compact open subgroup of G. If (π, V ) is a smooth representation of G, then

(1.1) V =
⊕

ρ∈Irr(K)

V (ρ),

where V (ρ) is the ρ-isotypic part of (π|K , V ).
The representation (π, V ) of G is admissible if and only if each V (ρ) in (1.1) is finite

dimensional. In this case, the sum (1.1) is a direct sum of irreducible finite dimensional
continuous representations of K, and thus (π|K , V ) is completely reducible.

Proof. We know that
∑

ρ∈Irr(K) V (ρ) ⊂ V , and we now show the other containment. Let

v ∈ V . Since (π, V ) is smooth, then H = stabG(v) is open in G. Then H ′ = H ∩ K
is a compact open subgroup in K which also stabilizes v. Since K is a compact totally
disconnected group, then we can find a compact open normal subgroup K0 which is
contained in H ′, so that K0 stabilizes v, and v ∈ V K0 . Let k ∈ K, h ∈ K0, and w ∈ V K0 .
Since K0 is normal in K, then hk = kh′ for some h′ ∈ K0. This implies that V K0 is a
K-invariant subspace of V , since we have

π(h)π(k)w = π(k)π(h′)w = π(k)w,

so that w ∈ V K0 and k ∈ K implies that π(k)w ∈ V K0 . Since K is compact, K0 must
have finite index in K, so Γ = K/K0 is a finite group, and we may consider V K0 to be a
representation space for Γ with the action of π|K . In particular, any representation of Γ
may be considered a representation on K with kernel containing K0. So, we have

v ∈ V K0 =
⊕

ρ∈Irr(Γ)

V K0(ρ) ⊂
∑

ρ∈Irr(K)

V (ρ).

Now we have V =
∑

ρ∈Irr(K) V (ρ), and we must show that the sum is direct. If it is

not, then there is some finite collection {ρ1, . . . , ρm} ⊂ Irr(K) such that
∑m

i=1 civi = 0,
where vi ∈ V (ρi), and the ci are scalars in C which are not all 0. Each ker(ρi) is open by
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Proposition 1.1, and we let K̃ = ∩mi=1ker(ρi), which is also open. By the same argument

as before, V K̃ is a K-invariant subspace of V , and letting Γ̃ = K/K̃, we have

(1.2) V K̃ =
⊕

ρ̃∈Irr(Γ̃)

V K̃(ρ̃).

Since K̃ ⊂ ker(ρi) for each i, each ρi may be considered as a representation of Γ̃, that is

each ρi ∈ Irr(Γ̃). In particular, we have vi ∈ V K̃(ρi), and the assumption that the vi are
linearly dependent contradicts the direct sum in (1.2). Thus, we have (1.1).

For the second part, suppose that (π, V ) is admissible. For any (ρ, Vρ) ∈ Irr(K), let
W ⊂ V be a K-invariant subspace of V with σ the representation π|K acting on W , and
suppose σ ∼= ρ as representations of K. Then ker(σ) = ker(ρ) is open in K by Proposition
1.1, and so open in G. Since (π, V ) is admissible, then V ker(σ) is finite dimensional, and
W ⊂ V ker(σ) = V ker(ρ), since W is the space associated with σ. This is true for any
K-invariant subspace W ⊂ V with associated K-representation isomorphic to ρ, and so
we have V (ρ) ⊂ V ker(ρ), and thus V (ρ) is finite dimensional. Conversely, if (π, V ) is not
admissible, then V H is infinite dimensional for some open subgroup H of G. Then H ∩K
is a compact open subgroup of G, and letting K0 be a compact open normal subgroup in
H ∩K, we have V K0 is infinite dimensional since it contains V H . Now, Γ0 = K/K0 is a
finite group, and V K0 is a K-invariant subspace, and so we have

V K0 =
⊕

ρ∈Irr(Γ0)

V K0(ρ).

Since Irr(Γ0) is finite, and V K0 is infinite dimensional, then some V K0(ρ) is infinite di-
mensional. But each ρ ∈ Irr(Γ0) is an irreducible representation of K with K0 contained
in its kernel, and so V K0(ρ) ⊂ V (ρ), so that we also have some V (ρ) which is infinite
dimensional.

For the final statement, we may assume that the representation (π, V ) is such that
V = V (ρ) for some ρ ∈ Irr(K), where we know V here is finite dimensional since (π, V )
is assumed admissible. For any K-invariant subspace W of V = V (ρ), such that σ ∼= ρ,
where σ is π|K acting on W , we have ker(σ) = ker(ρ). We are assuming that V is the
sum of all such subspaces, and so we have ker(π|K) = ker(ρ). From Proposition 1.1,
we have ker(ρ) = ker(π|K) is open, and so π|K is continuous. The result now follows
from Maschke’s Theorem for finite dimensional continuous representations of compact
groups. �

We may apply Theorem 1.1 to completely understand the smooth and admissible rep-
resentations of compact totally disconnected groups.

Corollary 1.1. Let K be a compact totally disconnected group. If V is a finite dimen-
sional C-vector space, and π : K → GL(V ) is a homomorphism, then (π, V ) is a smooth
representation of K if and only if it is a continuous representation of K. The only irre-
ducible admissible representations of K are finite dimensional continuous representations.

Proof. We have already seen that Proposition 1.1 implies that every finite dimensional
continuous representation of K is smooth. So, we assume (π, V ) is smooth, and since
V is assumed to have finite dimension, then (π, V ) is admissible. Since K is a compact
open subgroup of itself and V is finite dimensional, then (π, V ) is a finite direct sum of
irreducible continuous representations of K. A direct sum of continuous representations is
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continuous, then (π, V ) is continuous. For the second statement, if (π, V ) is an irreducible
admissible representation of K, then V has no nonzero K-invariant subspaces other than
V itself, and the direct sum decomposition from Theorem 1.1 can have only one summand.
Thus (π, V ) is an irreducible finite dimensional continuous representation of K. �

Although the space for an admissible representation may be infinite dimensional, the
finiteness condition that comes with admissibility is enough to give us the following.

Proposition 1.2 (Schur’s Lemma). Let G be a locally compact totally disconnected group,
and let (π, V ) be an irreducible admissible representations of G. If T : V → V is an
isomorphism from (π, V ) to itself, then there is a scalar λ ∈ C such that T (v) = λv for
all v ∈ V .

Proof. Let w ∈ V be a nonzero vector in V . Since (π, V ) is smooth, then H0 = stabG(w)
is open in G. Now, V H0 is finite dimensional since (π, V ) is admissible. We have w ∈ V H0 ,
and in particular V K0 is nonzero. For any x ∈ H0 and v0 ∈ V H0 , we have π(x)(T (v0)) =
T (π(x)v0) = T (v0), and so T (v0) ∈ V H0 , and T preserves the space V H0 . Let T0 : V H0 →
V H0 be the restriction of T to V H0 , and we have T0 has some eigenvalue λ ∈ C since V H0

is a finite dimensional C-vector space. Letting I : V → V be the identity transformation,
we have T − λI has a nonzero kernel, in particular it contains the eigenspace of λ for T0

in V H0 . Now, W = ker(T − λI) is G-invariant, since if w0 ∈ W , then T (w0) = λw0, and
for any g ∈ G, we have

(T − λI)(π(g)w0) = (T ◦ π(g))w0 − π(g)λw0 = (π(g) ◦ T )w0 − π(g)λw0 = 0.

But we have assumed that (π, V ) is irreducible, and so we must have V = ker(T − λI),
and so T (v) = λv for all v ∈ V . �

2. The Hecke algebra

In this section, G will be a unimodular locally compact totally disconnected group.
Fix a Haar measure on G denoted by µ or

∫
dh. A function f : G → C is smooth if it

is locally constant, that is, for each g ∈ G there is an open neighborhood U of g such
that f(x) = f(g) for every x ∈ U . Note that any smooth function on G is in particular
continuous. Let C∞c (G) denote the set of smooth functions on G with compact support.
If f ∈ C∞c (G), then let Y = supp(f), and for each y ∈ Y , choose an open neighborhood
Uy of y on which f is constant. Since Y is compact, there is a finite collection of these
Uy, say {Ui}mi=1, such that Y = ∪mi=1Ui. We may assume that the Ui are disjoint, and that
f takes a different value on each Ui. Then we see that we have f =

∑m
i=1 ci1Ui , where

1Ui is the indicator function for Ui, and ci = f(yi) for any yi ∈ Ui. Notice that each Ui is
necessarily compact, since supp(f) is compact, and is the disjoint union of the Ui.

Now let f1, f2 ∈ C∞c (G), and consider the convolution f1 ∗ f2, given by

(f1 ∗ f2)(g) =

∫
G

f1(gh−1)f2(h) dh.

Suppose that Y1 = supp(f1) = ∪mi=1Ui, and Y2 = supp(f2) = ∪kj=1Vj, where the distinct
nonzero values of f1 and f2 are taken on the Ui and Vj, respectively. It may be directly
checked that supp(f1 ∗ f2) ⊂ Y1Y2 = ∪i,jUiVj, and f1 ∗ f2 is locally constant, so that
f1 ∗ f2 ∈ C∞c (G).
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We define the Hecke algebra of G, denote H(G), to be the algebra over C with elements
from C∞c (G), addition given by pointwise addition, and multiplication given by convolu-
tion. For any compact open subgroup K0 in G, we let HK0(G) to be the subset of H(G)
consisting of functions which are bi-invariant under multiplication by K0, that is,

HK0(G) = {φ ∈ H(G) | φ(k1gk2) = φ(g) for all k1, k2 ∈ K0}.

For any compact open subset S in G, define εS = µ(S)−11S ∈ H(G). Then εK0 =
µ(K0)−11K0 , and we have εK0 ∈ HK0(G).

Proposition 2.1. Let G be a unimodular locally compact totally disconnected group, and
let K0 be a compact open subgroup of G.

(1) For every φ ∈ HK0(G), εK0 ∗ φ = φ ∗ εK0 = φ.
(2) HK0(G) = εK0H(G)εK0, where εK0H(G)εK0 = {εK0 ∗ f ∗ εK0 | f ∈ H(G)}.
(3) HK0(G) is a C-algebra with unit εK0, and is a subalgebra of H(G).

Proof. (1): If φ ∈ HK0(G), and g ∈ G, we have

(φ ∗ εK0)(g) =

∫
G

φ(gh−1)εK0(h) dh = µ(K0)−1

∫
K0

φ(gh−1) dh = µ(K0)−1

∫
K0

φ(g) dh,

the last equality coming from the fact that φ ∈ HK0(G). The last integral is just φ(g),
and so φ ∗ εK0 = φ. We also have

(εK0 ∗ φ)(g) =

∫
G

εK0(gh
−1)φ(h) dh.

Since
∫
dh is a bi-invariant Haar measure, we may make the changes of variables h 7→ h−1,

and then h 7→ g−1h, and we have

(εK0 ∗ φ)(g) =

∫
G

εK0(h)φ(h−1g) dh = µ(K0)−1

∫
K0

φ(h−1g) dh = φ(g),

as in the previous case.
(2): First, if φ ∈ HK0(G), then from part (1), we have φ = εK0 ∗ φ ∗ εK0 , and so
HK0(G) ⊂ εK0H(G)εK0 . Now let f ∈ H(G) and g ∈ G. Then

(εK0 ∗ f ∗ εK0)(g) =

∫
G

εK0(gh
−1
2 )(f ∗ εK0)(h2) dh2

=

∫
G

∫
G

εK0(gh
−1
2 )f(h2h

−1
1 )εK0(h1) dh1 dh2.(2.1)

So, for k1, k2 ∈ K0, we have

(εK0 ∗ f ∗ εK0)(k1gk2) =

∫
G

∫
G

εK0(k1gk2h
−1
2 )f(h2h

−1
1 )εK0(h1) dh1 dh2.

Making the changes of variables h2 7→ h2k2 and h1 7→ h1k2 gives

(εK0 ∗ f ∗ εK0)(k1gk2) =

∫
G

∫
G

εK0(k1gh
−1
2 )f(h2h

−1
1 )εK0(h1k2) dh1 dh2.

Since εK0 ∈ HK0(G), we have εK0(k1gh
−1
2 ) = εK0(gh

−1
2 ) and εK0(h1k2) = εK0(h1), and

the inegral simplifies to (2.1). Thus εK0 ∗ f ∗ εK0 ∈ HK0(G), and we have HK0(G) =
εK0H(G)εK0 .
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(3): To check that HK0(G) is a C-algebra, and thus a subalgebra of H(G), it is enough
to check that it is closed under multiplication. If φ1, φ2 ∈ HK0(G), then from (1), we have
φi = εK0 ∗ φi = φi ∗ εK0 for i = 1, 2. Then we have

φ1 ∗ φ2 = εK0 ∗ (φ1 ∗ φ2) ∗ εK0 ∈ εK0H(G)εK0 = HK0(G),

from (2). The fact that εK0 is a unit for HK0(G) is exactly part (1). �

So, for any compact open subgroup K0 of G, we have εK0 ∗εK0 = εK0 , and so each εK0 is
an idempotent in H(G). Also, if K0 and K1 are compact open subgroups of G such that
K1 ⊂ K0, then HK0(G) ⊂ HK1(G), and εK0 ∗ εK1 = εK0 . We see now that every element
of H(G) is in one of the algebras HK0(G).

Proposition 2.2. For any unimodular locally compact totally disconnected group G,

H(G) =
⋃

K0⊂G

HK0(G),

where the union runs over all compact open subgroups K0 of G.

Proof. Let f ∈ H(G), and say f =
∑m

i=1 ci1Ui , for pairwise disjoint compact open sets Ui,
and the ci are distinct, where ci = f(xi) for any xi ∈ Ui. For each Ui, and each x ∈ Ui,
let K

(i)
x be a compact open subgroup of G such that K

(i)
x ⊂ x−1Ui, so Ui is covered by

all of the xK
(i)
x . Since Ui is compact, take a finite subcover xjK

(i)
xj , for j = 1, . . . k. Now

let K(i) = ∩kj=1K
(i)
xj , and let K1 = ∩mi=1K

(i). We repeat this process, except for each Ui

and each y ∈ Ui, we let K
(i)′
y be a compact open subgroup of G such that K

(i)′
y ⊂ Uiy

−1.
Using the same subcover argument and notation, we let K2 = ∩mi=1K

(i)′ , and we finally
let K0 = K1 ∩K2. Notice that K0 has the property that any of its right or left cosets is
either completely contained in some Ui, or is disjoint from all of them. It follows that for
any k1, k2 ∈ K0, and x ∈ G, we have x ∈ Ui if and only if k1xk2 ∈ Ui. Since f is constant
on each Ui, we now have f ∈ HK0(G). �

Now suppose that (π, V ) is a smooth representation of G. For any f ∈ H(G) and
v ∈ V , define π(f)v by

π(f)v =

∫
G

f(g)π(g)v dg.

We note that we may write the above integral as a finite sum, as follows. For v ∈ V ,
we know that H0 = stabG(v) is open in G since (π, V ) is smooth. Given f ∈ H(G),
choose K0 such that f ∈ HK0(G) as given in Proposition 2.2, and let K̃ = K0∩H0. Now,
K̃ stabilizes v, and the support of f may be written as a union of left cosets of K̃, say
supp(f) = ∪mj=1gjK̃, so that f is constant on each gjK̃. Now we have

(2.2) π(f)v =

∫
G

f(g)π(g)v dg =
m∑
j=1

∫
gjK̃

f(g)π(g)v dg = µ(K̃)
m∑
j=1

f(gj)π(gj)v.

We may directly check that for any f1, f2 ∈ H(G) and v ∈ V , we have

π(f1 ∗ f2)v = π(f1)(π(f2)v),

so that π defines a ring homomorphism π : H(G)→ End(V ). That is, V may be viewed
as an H(G)-module by defining the action f · v = π(f)v.
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Proposition 2.3. Let G be a unimodular locally compact totally disconnected group with
(π, V ) a smooth representation, and K0 a compact open subgroup of G. Then V K0 =
εK0 · V , where εK0 · V = {π(εK0)v | v ∈ V }.

Proof. If v ∈ V , then

π(εK0)v =

∫
G

εK0(g)π(g)v dg =

∫
K0

µ(K0)−1π(g)v dg.

For any k ∈ K0, we have

π(k)(π(εK0)v) = π(k)

∫
K0

µ(K0)−1π(g)v dg =

∫
K0

µ(K0)−1π(kg)v dg,

and the change of variables g 7→ k−1g gives π(k)(π(εK0)v) = π(εK0)v. Thus εK0 ·V ⊂ V K0 .
For the opposite containment, let v ∈ V K0 so that π(k)v = v for every k ∈ K0. Then

π(εK0)v =

∫
K0

µ(K0)−1π(g)v dg =

∫
K0

µ(K0)−1v dg = v.

So, v = π(εK0)v ∈ εK0 · V , and we have V K0 = εK0 · V . �

Similar to representations of a finite group corresponding to modules over the group
algebra, and properties of these representations coming from the fact that the group
algebra is semisimple, we may gain knowledge about smooth representations by studying
H(G)-modules in a more general context.

Let Ω be an algebraically closed field. An idempotented algebra over Ω is a pair (A, E),
where A is an Ω-algebra (not necessarily with unit), and E ⊂ A is a collection of idem-
potent elements of A with the following properties:

(1) If e1, e2 ∈ E , then there exists an e0 ∈ E such that e0ei = ei for i = 1, 2.
(2) For every element φ ∈ A, there is an e ∈ E such that eφ = φe = φ.

For every e ∈ E , note that eAe is an Ω-algebra with unit e. If M is an A-module, then
eM is an eAe-module. We call an A-module M smooth if M = ∪e∈EeM , and admissible
if eM is finite dimensional as a vector space over Ω for every e ∈ E .

In the case that G is a unimodular locally compact totally disconnected group, consider
the C-algebra H(G), with the set of idempotents E = {εK0 | K0 ⊂ G}, where K0 runs
over all compact open subgroups of G. If K1 and K2 are compact open subgroups of
G, then if K0 = K1 ∩ K2, we have εK0 ∗ εKi = εKi for i = 1, 2. Also, if f ∈ H(G),
then from Proposition 2.2, f ∈ HK0(G) for some compact open subgroup K0, and so
f ∗ εK0 = εK0 ∗ f = f from Proposition 2.1(1). Thus, (H(G), E) is an idempotented
algebra over C.

Proposition 2.4. Let (π, V ) be a smooth representation of G. Then:

(1) V is a smooth H(G)-module, and is an admissible H(G)-module if (π, V ) is an
admissible representation.

(2) V is simple as an H(G)-module if and only if (π, V ) is an irreducible representation
of G.

Proof. (1): For any v ∈ V , we know stabG(v) is an open subgroup of G, and we let K0

be a compact open subgroup inside of it, so that v ∈ V K0 . So, we have V = ∪V K0 ,
where the union runs over all compact open subgroups of G, and from Proposition 2.3,
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V K0 = εK0 · V , and V is a smooth H(G)-module by definition. If (π, V ) is admissible,
then each V K0 = εK0 · V is finite dimensional, and V is an admissible H(G)-module.

(2): Suppose W ⊂ V is a nonzero proper G-invariant subspace of V . Then for any
f ∈ H(G) and w ∈ W , it follows from the finite sum version for π(f)w in (2.2) that
π(f)w ∈ W , and W is an H(G)-submodule of V .

Conversely, suppose that W is a nonzero proper H(G)-submodule of V , and let g ∈ G,
w ∈ W . Since (π, V ) is smooth, stabG(w) is open, and we let K0 be a compact open
subgroup contained in it. Now,

π(εgK0)w =

∫
gK0

µ(gK0)−1π(h)w dh = π(g)w.

Since εgK0 ∈ H(G), then we must have π(g)w ∈ W , and so W is a nonzero proper
G-invariant subspace of V . �

In the proof of Proposition 2.4(2), we saw that if (π, V ) is a smooth representation of
G, and if w ∈ V K0 for some compact open subgroup K0 of G, then π(εgK0)w = π(g)w.
Given any smooth H(G)-module V , one may take advantage of this observation to define
a smooth representation (π, V ) of G such that π(f)v = f · v for every f ∈ H(G), v ∈ V .
That is, all smooth representations come from smooth H(G)-modules.

Proposition 2.5. Let V be a smooth H(G)-module. Then there exists a smooth repre-
sentation (π, V ) of G such that π(f)v = f · v for all f ∈ H(G), v ∈ V .

Proof. See Problem set 4. �

Let (π, V ) be a smooth representation of G and K0 a compact open subgroup of G.
Since HK0(G) = εK0H(G)εK0 (by Proposition 2.1(2)) and V K0 = εK0 · V (by Proposition
2.3), then V K0 is an HK0(G)-module. Understanding V K0 as an HK0(G)-module for
every compact open subgroup K0 of G is essentially the same as understanding V as an
H(G)-module, as the next several results show.

Proposition 2.6. Let (π, V ) be a smooth representation of G. Then V is a simple H(G)-
module if and only if V K0 is either 0 or simple as an HK0(G)-module for every compact
open subgroup K0 of G.

Proof. Let K0 be a compact open subgroup of G, and suppose that W ⊂ V K0 is a proper
nonzero HK0(G)-submodule of V K0 , where V K0 is assumed to be nonzero. Consider
H(G)W , where

H(G)W =

{
k∑
i=1

π(fi)wi | k ∈ Z>0, fi ∈ H(G), wi ∈ W

}
.

Note that H(G)W is an H(G)-submodule of V . Suppose that v0 ∈ H(G) ∩ V K0 , where

v0 =
∑k

i=1 π(fi)wi. We have π(εK0)wi = wi for each wi, since W ⊂ V K0 = εK0 · V , and
π(εK0)v0 = v0 since we are assuming v0 ∈ V K0 . Thus, we have

v0 = π(εK0)v0 = π(εK0)
k∑
i=1

π(fi)π(εK0wi =
k∑
i=1

π(εK0 ∗ fi ∗ εK0)wi ∈ W,

since εK0 ∗fi∗εK0 ∈ HK0(G), and W is anHK0-module. Now we haveH(G)W ∩V K0 ⊂ W ,
but we also have the opposite containment, and so H(G)W ∩ V K0 = W . In particular,



10 MATH 519

H(G)W is nonzero, and is a properH(G)-submodule of V , otherwiseH(G)W∩V K0 would
be all of V K0 . Therefore, if V K0 is nonzero and not a simple HK0(G)-module, then V is
not a simple H(G)-module.

Conversely, suppose that W is a nonzero proper H(G)-submodule of V . For any com-
pact open subgroup K0 of G, we have WK0 ⊂ V K0 . We have V = ∪V K0 , and since
(πW ,W ) is a smooth representation, we also have W = ∪WK0 , where the unions range
over all compact open subgroups K0 of G. Choose a compact open subgroup K1 of G such
that WK1 6= 0. If WK1 is properly contained in V K1 , then it is a proper nonzero HK1(G)-
submodule of V K1 , and we are done. Otherwise, notice that we have V = ∪K0⊂K1V

K0 ,

since for any compact open subgroup K2, if K̃ = K2∩K1, then V K2 ⊂ V K̃ , and K̃ ⊂ K1,
and similarly, we have W = ∪K0⊂K1W

K0 . Now, there must be a compact open subgroup
K0 ⊂ K1 such that WK0 is properly contained in V K0 , otherwise we would have V = W ,
contradicting the fact that W is properly contained in V . Now we have V K0 is not a
simple HK0(G)-module. �

We need the following variant of Schur’s Lemma.

Lemma 2.1. Let (π1, V1) and (π2, V2) be irreducible admissible representations of G, and
K0 a compact open subgroup of G such that V K0

1
∼= V K0

2 as HK0(G)-modules, and are
both nonzero. Then an HK0(G)-module isomorphism σ0 : V K0

1 → V K0
2 is determined up

to scalar multiple.

Proof. Let σ : V K0
1 → V K0

1 be an HK0(G)-module isomorphism from V K0
1 to itself. Since

(π1, V1) is assumed to be admissible, then V K0
1 is a finite dimensional vector space, and

σ is a linear transformation since for c ∈ C, v ∈ V K0
1 , we have cσ(v) = cεK0 · σ(v) =

σ(cεK0 · v) = σ(cv). So, σ must have an eigenvalue λ ∈ C, and if I is the identity
transformation on V K0 , then W = ker(σ − λI) ⊂ V K0

1 is nonzero. Now let w ∈ W and
φ ∈ HK0(G), so that σ(φ · w) = φ · σ(w) and σ(w) = λ(w). We have

(σ − λI)(φ · w) = φ · σ(w)− φ · λw = 0.

So, if W = ker(σ − λI) is an HK0(G)-submodule of V K0
1 . Since (π1, V1) is assumed

irreducible and V K0
1 is nonzero, then by Propositions 2.4(2) and 2.6, V K0

1 is a simple
HK0(G)-module, and so W = V K0

1 , and σ(v) = λv for every v ∈ V K0
1 .

Now let σ0, σ1 : V K0
1 → V K0

2 be two HK0(G)-module isomorphisms. Then σ−1
0 ◦ σ1 :

V K0
1 → V K0

1 is an HK0(G)-module isomorphism, and so there is some λ ∈ C such that
(σ−1

0 ◦ σ1)(v) = λv for every v ∈ V K0
1 , and thus σ1 = λσ0. �

The next result gets to the main point, which is that isomorphisms at the level of
HK0(G)-modules for every compact open subgroup K0 gives an isomorphism of H(G)-
modules.

Proposition 2.7. Let (π1, V1) and (π2, V2) be irreducible admissible representations of
G. If V K0

1
∼= V K0

2 as HK0(G)-modules for every compact open subgroup K0 of G, then
π1
∼= π2.

Proof. Fix a compact open subgroup K0 of G such that V K0
1 and V K0

2 are both nonzero,
and fix an HK0(G)-module isomorphism σ0 : V K0

1 → V K0
2 , which is determined up to

scalar multiple by Lemma 2.1.



REPRESENTATIONS OF LOCALLY COMPACT TOTALLY DISCONNECTED GROUPS 11

Let K1 be another compact open subgroup of G such that K1 ⊂ K0, so that HK0(G) ⊂
HK1(G). For i = 1, 2, we have V K0

i = εK0 · V K1
i , since εK0 · V K1

i ⊂ εK0 · Vi = V K0
i , and

V K0
i ⊂ V K1

i , so that V K0
i = εK0 · V K0

i ⊂ εK0 · V K1
i .

We claim that σ0 can be extended uniquely to an HK1(G)-isomorphism σK1 : V K1
1 →

V K2
2 . We are assuming that there is some isomorphism σK1 from V K1

1 to V K2
2 under

hypothesis. We have

σK1(V
K0

1 ) = σK1(εK0 · V K1
1 ) = εK0 · σK1(V

K1
1 ) = εK0 · V K1

2 = V K0
2 ,

so that restricting σK1 to V K0
1 induces an HK0(G)-module isomorphism from V K0

1 to V K0
2 .

By Lemma 2.1, we must then have that σK1|V K0
1

is a scalar multiple of σ0. We thus

choose σK1 , which is also determined up to scalar multiple, so that its restriction to V K0
1

is exactly σ0, which determines σK1 uniquely, and the claim is proven.
Now let v ∈ V1, and choose a compact open subgroup K1 such that K1 ⊂ K0 and

v ∈ V K1 , and we define σ : V1 → V2 by σ(v) = σK1(v). We observe that this definition of
σ(v) does not depend on the choice of K1. If K2 is another compact open subgroup such
that K2 ⊂ K0 and v ∈ V K2 , then K1 ∩K2 ⊂ K0 and v ∈ V V1∩V2 also. By the previous
extension argument, we must have that σK1∩K2 extends σ0, σK1 , and σK2 uniquely, so that
σK1(v) = σK1∩K2(v) = σK2(v).

Finally, we show that σ is an intertwining map, so that it gives us the desired iso-
morphism to conclude that π1

∼= π2. Given v ∈ V1, find a compact open subgroup K1

of G such that v ∈ V K1
1 and σ(v) ∈ V K1

2 . As in the proof of Proposition 2.4(2), if
εgK1 = µ(K1)−11gK1 , then we have π1(εgK1)v = π1(g)v and π2(εgK1)σ(v) = π2(g)σ(v).
Now, we have

σ(π1(g)v) = σ(εgK1 · v) = εgK1 · σ(v) = π2(g)σ(v),

and so σ ◦ π1(g) = π2(g) ◦ σ for every g ∈ G, and π1
∼= π2. �

3. Characters

Let V be a finite dimensional vector space over C, and let T ∈ End(V ). Let W ⊂ V be
any subspace of V such that T (V ) ⊂ W . Then, T restricted to W is an endomorphism
of W . Let w1, w2, . . . , wn be a basis of V such that w1, . . . , wd is a basis of W . Then,
if the matrix for T |W with respect to the basis w1, . . . , wd is the d-by-d matrix A, then

the matrix for T with respect to w1, . . . , wn is an n-by-n matrix of the form

(
A B
0 0

)
,

where B is a d-by-(n− d) matrix. In particular, we have tr(T ) = tr(T |W ) = tr(A).
Now let V be a vector space which is possibly infinite dimensional over C. Let T ∈

End(V ) be such that dimC(T (V )) is finite, or T has finite rank. If W is a finite dimensional
subspace of V such that T (V ) ⊂ W , we define the trace of T by tr(T ) = tr(T |W ). This
definition is independent of the choice of W , since if W ′ is another finite dimensional
subspace of V such that T (V ) ⊂ W ′, then tr(T |W ) = tr(T |W ′) by the previous discussion.

Let G be a unimodular locally compact totally disconnected group, and let (π, V ) be
an admissible representation of G. For any f ∈ H(G), by Proposition 2.2 there is a
compact open subgroup K0 of G such that f ∈ HK0(G). Now, π(f) is an endomor-
phism of V , and since HK0(G) = εK0H(G)εK0 by Proposition 2.1(2), and f ∈ HK0(G),
then π(f)V = f · V ⊂ εK0 · V = V K0 . Since (π, V ) is assumed to be admissible, then
V K0 is finite dimensional, and so π(f) ∈ End(V ) has finite rank. We define the char-
acter of the admissible representation (π, V ) to be the function χπ : H(G) → C, where
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χπ(f) = tr(π(f)). In particular, the character of the admissible representation (π, V ) is
a distribution, which is a linear functional from C∞c (G) to C.

We have the following general algebraic fact which we will apply to our situation.

Proposition 3.1. Let A be an algebra over a field Ω, and let V1 and V2 be simple A-
modules which are finite dimensional as vector spaces over Ω. For any f ∈ A, multipli-
cation by f induces endomorphisms πi(f) on Vi, for i = 1, 2. If tr(π1(f)) = tr(π2(f)) for
all f ∈ A, then V1

∼= V2 as A-modules.

Proof. It follows from the Jacobson density theorem that if V1 6∼= V2, then there exist
elements p1, p2 ∈ A such that pi acts as the identity on Vi for i = 1, 2, and pi acts as
zero on Vj for i 6= j (see [L, Theorems XVII.3.2 and XVII.3.7]). So, if V1 6∼= V2, then at
least one is nonzero, say V1, and we have tr(π1(p1)) = dimΩ(V1) 6= 0, while tr(π2(p1)) = 0,
contradicting the assumption that these traces are equal. �

In the case of finite dimensional continuous representations of compact groups, we saw
that if the characters of two irreducible representations agree, then the representations
must be isomorphic. We are now able to obtain the analogous result for admissible
representations.

Theorem 3.1. Let G be a unimodular locally compact totally disconnected group, and let
(π1, V1) and (π2, V2) be irreducible admissible representations of G with characters χ1 and
χ2, respectively. If χ1(f) = χ2(f) for every f ∈ H(G), then π1

∼= π2.

Proof. Let K0 be any compact open subgroup of G, and consider V K0
1 and V K0

2 asHK0(G)-
modules, which are finite dimensional as vector spaces over C, since (π1, V1) and (π2, V2)
are admissible. For any φ ∈ HK0(G), we are assuming that tr(π1(φ)) = tr(π2(φ)), and it
follows from Proposition 3.1, with Ω = C, that V K0

1
∼= V K0

2 as HK0(G)-modules. Applying
Proposition 2.7, we have π1

∼= π2. �

4. The contragredient of a smooth representation

Let Γ be a compact group, and (π, V ) a continuous finite dimensional representation
of Γ. Recall that the contragredient representation of (π, V ), denoted (π̂, V ∗), is a repre-
sentation of Γ acting on the dual space V ∗ of V , where if g ∈ Γ, v ∈ V , and L ∈ V ∗, the
action is defined by (π̂(g)L)(v) = L(π(g−1)v). We may also consider the double contra-

gredient, (ˆ̂π, V ∗∗), which then acts on the double dual V ∗∗ by (ˆ̂π(g)Λ)(L) = Λ(π̂(g−1)L),
for Λ ∈ V ∗∗, L ∈ V ∗, and g ∈ Γ. We have a canonical isomorphism of vector spaces
T : V → V ∗∗, defined by (T (v))(L) = L(v), for v ∈ V and L ∈ V ∗. If g ∈ Γ, then we have(

(T ◦ π(g))(v)
)
(L) = T (π(g)v)(L) = L(π(g)v)

= (π̂(g−1)L)(v) = T (v)(π̂(g−1)L)

= (ˆ̂π(g)T (v))(L) =
(
(ˆ̂π(g) ◦ T )(v)

)
(L).

That is, T is an intertwining operator, so we have ˆ̂π ∼= π.
Now let G be a locally compact totally disconnected group, and let (π, V ) be a smooth

representation of G. A linear functional L ∈ V ∗ is called π-smooth if there is an open
subgroup H of G such that L(π(h)v) = L(v) for every h ∈ H and v ∈ V . We define the

π-smooth dual of V , denoted V̂ , to be the space of all π-smooth linear functionals in V ∗,
which is a subspace of V ∗.
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Lemma 4.1. Let G be a locally compact totally disconnected group, and (π, V ) a smooth

representation of G. If V is finite dimensional, then V ∗ = V̂ .

Proof. Let v1, . . . , vn be a basis for V . Since (π, V ) is smooth, then stabG(vi) is an open
subgroup of G for each i. Let H = ∩ni=1stabG(vi), which is an open subgroup of G. For
any L ∈ V ∗, h ∈ H, v ∈ V , we have L(π(h)v) = L(v), and so L is π-smooth. �

If (π, V ) is any smooth representation of G, for g ∈ G, L ∈ V̂ , and v ∈ V , define
π̂(g)L ∈ V ∗ by (π̂(g)L)(v) = L(π(g−1)v).

Proposition 4.1. Let (π, V ) be a smooth representation of G. If L ∈ V̂ and g ∈ G, then

π̂(g)L ∈ V̂ , and (π̂, V̂ ) is a smooth representation of G.

Proof. Since L ∈ V̂ , there is an open subgroup H of G such that L(π(h)v) = L(v) for all
h ∈ H and v ∈ V . In particular, if g ∈ G and v ∈ V , then L(π(h)π(g−1)v) = L(π(g−1)v).
If g ∈ G, let H1 = gHg−1, which is also an open subgroup of G. Let h1 ∈ H1, where
h1 = ghg−1 for some h ∈ H. Then we have, for any v ∈ V ,

(π̂(g)L)(π(h1)v) = L(π(hg−1)v) = L(π(g−1)v) = (π̂(g)L)(v).

Thus, π̂(g)L ∈ V̂ .

This gives a homomorphism π̂ : G→ Aut(V̂ ), which follows for the exact same reason

as in the case of a compact group. To check that (π̂, V̂ ) is smooth, let L ∈ V̂ , and we
have

stabG(L) = {g ∈ G | L(π(g−1)v) = L(v) for every v ∈ V }.
Since L is π-smooth, there is an open subgroup H of G such that H ⊂ stabG(L), and

thus the stabilizer of L is open and (π̂, V̂ ) is a smooth representation of G. �

The representation (π̂, V̂ ) is called the smooth contragredient of (π, V ) (or just the
contragredient if smoothness is clear from the context).

Let I be any set, let {Vα}α∈I be a collection of C-vector spaces which are indexed by
I, and consider the vector space V = ⊕α∈IVα. Elements of V consists of vectors of the
form (vα), where vα ∈ Vα, and vα = 0 for all but finitely many indices α ∈ I. An element
L ∈ V ∗ may be then be written as (Lα), where Lα ∈ V ∗α , but there is no restriction as
to the number of nonzero terms. For this L ∈ V ∗, v ∈ V , we have L(v) =

∑
α∈I Lα(vα),

where the sum is actually finite since all but finitely many of the vα are 0. In particular,
we have V ∗ =

∏
α∈I V

∗
α .

In the case that (π, V ) is a smooth representation of G, and K is a compact open
subgroup of G, we have from Theorem 1.1 that V = ⊕ρ∈Irr(K)V (ρ), where V (ρ) is the
ρ-isotypic part of the representation (π|K , V ) of K. Then V ∗ =

∏
ρ∈Irr(K) V (ρ)∗ from the

above discussion. In the case that (π, V ) is an admissible, each V (ρ) is finite dimensional,
and the π-smooth dual of V is given as follows.

Lemma 4.2. Let (π, V ) be an admissible representation of G, and K a compact open
subgroup of G. Then the π-smooth dual of V is given by

V̂ =
⊕

ρ∈Irr(K)

V (ρ)∗,

and for every ρ ∈ Irr(K), we have V (ρ)∗ = V̂ (ρ̂).



14 MATH 519

Proof. For the first statement, we have seen that V ∗ =
∏

ρ∈Irr(K) V (ρ)∗. Let L = (Lρ),

where L ∈ ⊕ρ∈Irr(K)V (ρ)∗, and say Lρi ∈ V (ρi)
∗ are nonzero for some i = 1, . . . , k, and

Lρ ∈ V (ρ) is zero for any ρ 6= ρi. Let K0 = ∩ki=1ker(ρi), which is an open subgroup of
G, and note that π|K acting on V (ρ) has kernel ker(ρ). For any v = (vρ) ∈ V , where
vρ ∈ V (ρ), and any k ∈ K0, we have

L(π(k)v) =
k∑
i=1

Lρi(π(k)vρi) =
k∑
i=1

Lρi(vρi) = L(v).

So, L ∈ V̂ , and ⊕ρ∈Irr(K)V (ρ)∗ ⊂ V̂ .
For the second statement, we have that V (ρ) is a finite dimensional representation,

with π|K acting on this space as a continuous representation of K, and V (ρ) = ⊕ki=1Wi

for some spaces Wi, where π|K acting on Wi is isomorphic to ρ as a representation of
K. Then V (ρ)∗ = ⊕ki=1W

∗
i , and the contragredient of π|K on W ∗

i is isomorphic to ρ̂.

Moreover, these are the only subspaces of V̂ on which the contragredient of π|K acting
is isomorphic to ρ̂, since we began with the only subspaces of V on which π|K acting is

isomorphic to ρ. Hence, V (ρ)∗ = V̂ (ρ̂). �

Theorem 4.1. Let G be a locally compact totally disconnected group, and (π, V ) an
admissible representation of G. Then:

(1) (π̂, V̂ ) is an admissible representation of G, and

(2) π ∼= ˆ̂π.

Proof. (1): Let K be a compact open subgroup of G. For any ρ ∈ Irr(K), Lemma 4.2

gives us V (ρ)∗ = V̂ (ρ̂), where V (ρ)∗ is finite dimensional, since V (ρ) is finite dimensional
by admissibility and Theorem 1.1. Any continuous finite dimensional representation of
K is irreducible if and only if its contragredient is irreducible, which is obtained by Schur
orthogonality since their characters are complex conjugates. So, for any ρ ∈ Irr(K), we

have V (ρ̂)∗ = V̂ (ρ) is finite dimensional, and (π̂, V̂ ) is admissible by Theorem 1.1.
(2): Let K be a compact open subgroup of G. From Lemma 4.2, we have, for any

ρ ∈ Irr(K), V (ρ)∗ = V̂ (ρ̂). Since (π̂, V̂ ) is admissible from (1), we have V̂ (ρ̂)∗ =
ˆ̂
V (ˆ̂ρ).

We have observed that ˆ̂ρ ∼= ρ, and so V (ρ)∗∗ =
ˆ̂
V (ρ). Now, we have

ˆ̂
V =

⊕
ρ∈Irr(K)

ˆ̂
V (ρ) =

⊕
ρ∈Irr(K)

V (ρ)∗∗,

and since V (ρ) is finite dimensional by admissibility, then V (ρ) is isomorphic to V (ρ)∗∗

as vector spaces, with the canonical isomorphism Tρ, defined by (Tρ(vρ))(Lρ) = Lρ(vρ),

where vρ ∈ V (ρ), Lρ ∈ V (ρ)∗. By defining T = ⊕ρTρ : V → ˆ̂
V , we get an isomorphism of

vector spaces given by (T (v))(L) =
∑

ρ Lρ(vρ), where v = (vρ) ∈ ⊕ρV (ρ) and L = (Lρ) ∈
⊕ρV (ρ)∗, which is just the canonical map of vector spaces given by (T (v))(L) = L(v). By
the exact same calculation as was done previously for compact groups, T is an intertwining
operator, and π ∼= ˆ̂π. �

We now consider the case of a unimodular locally compact totally disconnected group,
so that we may study the Hecke algebra and the character of an admissible representation
in relation to the smooth contragredient. For any f ∈ H(G), define f− by f−(g) = f(g−1),
so that f− ∈ H(G).
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Lemma 4.3. Let G be a unimodular locally compact totally disconnected group, let (π, V )

be an admissible representation of G, and let f ∈ H(G). Then for any v ∈ V and L ∈ V̂ ,
we have (π̂(f)L)(v) = L(π(f−)v).

Proof. By definition, we have

(π̂(f)L)(v) =

(∫
G

f(g)π̂(g)Ldg

)
(v).

Since this integral is just a finite sum, we may bring the v inside of the integral, and we
have

(π̂(f)L)(v) =

∫
G

f(g)(π̂(g)L)(v) dg =

∫
G

f(g)L(π(g−1)v) dg.

Again, since the integral is a finite sum, the L may be brought outside of the integral.
Also, since G is unimodular, the change of variables g 7→ g−1 does not change the integral.
So, we have

(π̂(f)L)(v) = L

(∫
G

f(g)π(g−1)v dg

)
= L

(∫
G

f(g−1)π(g)v dg

)
= L(π(f−)v). �

Let (π, V ) be an admissible representation, and let [·, ·] : V × V̂ → C be the bilinear

form given by the natural pairing [v, L] = L(v), for v ∈ V , L ∈ V̂ . It follows from Lemma
4.2 that this pairing is nondegenerate. If K is a compact open subgroup of G, let [·, ·]K
denote the pairing [·, ·] restricted to V K×V̂ K . We see now that this is also nondegenerate.

Lemma 4.4. Let G be a unimodular locally compact totally disconnected group, K a
compact open subgroup of G, and (π, V ) an admissible representation of G. Then the

pairing [·, ·]K : V K × V̂ K → C is a nondegenerate bilinear map.

Proof. Let v ∈ V K be nonzero. Since the pairing [·, ·] on V × V̂ is nondegenerate, we can

find an L1 ∈ V̂ such that [v, L1] 6= 0. Since v ∈ V K = εK · V , we have π(εK)v = v. We
have ε−K = εK , and so by Lemma 4.3 we have

[v, L1] = [π(εK)v, L1] = [v, π̂(εK)L1].

Now, L = εK ·L1 ∈ εK · V̂ = V̂ K , and we have found an L ∈ V̂ K such that [v, L]K 6= 0, and

[·, ·]K is nondegenerate in the right variable. If L ∈ V̂ K is nonzero, there is a v1 ∈ V such
that [v1, L] 6= 0, and we may apply the exact same argument to see that if v = π(εK)v1,
then v ∈ V K and [v, L]K 6= 0. Thus [·, ·]K is a nondegenerate bilinear map. �

Finally, we may relate the character an admissible representation to the character of
its contragredient. The following result should be thought of as analogous to the result
that the characters of a finite dimensional continuous representation of a compact group
and its contragredient are complex conjugates.

Proposition 4.2. Let G be a unimodular locally compact totally disonnected group, and
let (π, V ) be an admissible representation of G. For any f ∈ H(G), we have tr(π̂(f)) =
tr(π(f−)).

Proof. Given f ∈ H(G), choose a compact open subgroup K0 of G such that f ∈ HK0(G),

and notice that we also have f− ∈ HK0(G). Consider the pairing [·, ·]K0 : V K0× V̂ K0 → C,
which by Lemma 4.4, is a nondegenerate bilinear map. Since (π, V ) is admissible, V K0

is finite dimensional, and by Theorem 4.1(1), (π̂, V̂ ) is admissible, and so V̂ K0 is also
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finite dimensional. Since [·, ·]K0 provides a nondegenerate bilinear map on V K0 × V̂ K0 ,

then in fact we have V̂ K0 and (V K0)∗ are isomorphic as vector spaces (by [L, Theorem

III.6.4], for example). By Lemma 4.3, we have, for any v ∈ V K0 , L ∈ V̂ K0 , [v, π̂(f)L]K0 =

[π(f−)v, L]K0 . By choosing a basis for V K0 and a dual basis for V̂ K0 , the matrices for
π(f−) and π̂(f) with respect to these respective bases may be seen to be the transpose
of each other (since they are adjoint operators with respect to the bilinear map [·, ·]K0).
Thus, we have tr(π̂(f)) = tr(π(f−)). �
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