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1. Measure theory background

In this section, we give a brief review of the measure theory which will be used in later
sections. We use [R, Chapters 1 and 2] as our main resource.

A σ-algebra on a set X is a collectionM of subsets of X such that ∅ ∈M, if S ∈M,
then X \ S ∈ M, and if a countable collection S1, S2, . . . ∈ M, then ∪∞i=1Si ∈ M. That
is, M is closed under complements and countable unions, and contains the empty set. A
measure on a set X with σ-algebra M is a function µ : M → R≥0 ∪ {∞} such that, if
{Si}i≥1 is a countable collection of pairwise dijoint elements of M, then

µ (∪∞i=1Si) =
∞∑
i=1

µ(Si),

where we define a+∞ =∞ for any a ∈ R≥0 ∪ {∞}. In this case, the triple (X,M, µ) is
called a measure space, and the elements ofM are called measurable sets. We will assume
that measures are not trivial, that is, they take a nonzero value on some measurable set.

If X is a topological space, then the smallest σ-algebra containing all of the open sets
of X is called the Borel σ-algebra, which we denote by B. The elements of B are called
Borel sets, and a measure defined on B is called a Borel measure.

Consider R with the standard metric topology, R≥0 with the subspace topology, and
consider the collection of Borel sets of R≥0. If (X,M, µ) is a measure space, a function
f : X → R≥0 is called measurable if for every Borel set S in R≥0, f

−1(S) ∈ M. That is,
f is measurable if the inverse image of any Borel set is a measurable set. In the case that
X is a topological space and M is the Borel σ-algebra on X, note that any continuous
function f : X → R≥0 is also measurable. In general, if (Y,N , ν) is any other measure
space, then we call f : X → Y measurable if A ∈ N implies f−1(A) ∈M.

Let (X,M, µ) be a measure space, and S ∈ M. Define 1S to be the characteristic
function on S, so 1S(x) = 1 when x ∈ S and 1S(x) = 0 if x 6∈ S. A simple function on X
is a function h : X → R≥0 which can be written as

h(x) =
m∑
i=1

αi1Si(x), for distinct αi ∈ R>0, pairwise disjoint Si ∈M.

That is, a simple function is a non-negative measurable function which takes a finite
number of positive real values. For any A ∈ M and any simple function h =

∑m
i=1 αi1Si

on X, we define ∫
A

h dµ =
m∑
i=1

αiµ(A ∩ Si).

1
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Now, if f : X → R≥0 is any measurable function, and A ∈ M, we define the Lebesgue
integral on f over A as∫

A

f dµ = sup

{∫
A

h dµ | h simple, h(x) ≤ f(x) for all x ∈ X
}
.

We will also use the notation dµ(x) or simply dx in place of dµ.
For any R-valued function h on X, define h+(x) = max{h(x), 0} to be the positive part

of h, and h−(x) = −min{h(x), 0} to be the negative part of h, so that h = h+ − h−.
If f : X → C is any C-valued measurable function, where C has the σ-algebra with
respect to the standard topology, then write f = u+ iv, where u and v are both R-valued
functions, which are also measurable (Exercise). Assume further that

∫
X
|f | dµ < ∞,

that is, f ∈ L1(µ), where |f | is also a measurable function (Exercise). Now we define the
integral of the function f : X → C over a measurable set A by∫

A

f dµ =

∫
A

u+ dµ−
∫
A

u− dµ+ i

∫
A

v+ dµ− i
∫
A

v− dµ.

Note that each of the integrals above on the right is finite, since u+ ≤ |u| ≤ |f |, and
similarly for u−, v+, and v−.

Now let X be a locally compact Hausdorff space, B the Borel σ-algebra on X, and µ a
Borel measure on X. If A ∈ B, then µ is outer regular on A if

µ(A) = inf{µ(U) | A ⊂ U,U open},

and µ is inner regular on A if

µ(A) = sup{µ(K) | K ⊂ A,K compact}.

A regular Borel measure on the Borel σ-algebra of a locally compact Hausdorff space X
is a measure which is outer regular on all Borel sets and inner regular on all open sets.

Let Cc(X) denote the set of all continuous complex-valued functions with compact
support on a topological space X. Then Cc(X) is a complex vector space, and a linear
functional on Cc(X) is just a linear transformation Λ : Cc(X) → C. Let C+

c (X) denote
the set of continuous real-valued functions in Cc(X) which are non-negative, and not
the constant zero function. A positive linear functional on Cc(X) is a linear functional
Λ : Cc(X)→ C such that, when f ∈ C+

c (X), then Λ(f) ∈ R and Λ(f) ≥ 0.

Theorem 1.1 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
space, and let Λ be a positive linear functional on Cc(X). Then there exists a unique
regular Borel measure µ on X which is finite on all compact subsets of X, such that

Λ(f) =

∫
X

f dµ for every f ∈ Cc(X).

We will also need the following result, a proof of which can be found in [K].

Theorem 1.2 (Urysohn’s Lemma). Let X be a locally compact Hausdorff space, let K
be a nonempty compact subset of X, and U an open subset of X such that K ⊂ U . Then
there is a function f ∈ C+

c (X) such that f(x) = 1 when x ∈ K, supp(f) ⊂ U , and
0 ≤ f(x) ≤ 1 for all x ∈ X.
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2. Definition and examples of Haar measure

Let G be a locally compact group, and let µ be a Borel measure on G, with B the
Borel σ-algebra of G. The measure µ is left translation invariant if for every S ∈ B,
µ(gS) = µ(S) for all g ∈ G, and is right invariant if for every S ∈ B, µ(Sg) = µ(S) for
all g ∈ G.

A left (respectively, right) Haar measure on G is a regular Borel measure on G which
is finite on compact subsets and left (respectively, right) translation invariant. The most
familiar example of a Haar measure is the Lebesgue measure on Rn, viewed as an additive
group. In this case, since the group is abelian, the Haar measure is both right and left
translation invariant, or is bi-invariant.

Recall that for g ∈ G and a function f : G → C, we define Lgf by Lgf(x) = f(g−1x),
and Rgf by Rgf(x) = f(xg).

Proposition 2.1. Let G be a locally compact group, and let µ be a regular Borel measure
on G which is finite on all compact subsets of G.

(1) The measure µ is a left Haar measure on G if and only if the measure µ̃, defined
by µ̃(A) = µ(A−1) for A ∈ B, is a right Haar measure on G.

(2) If µ is a left Haar measure on G, and φ is a continuous automorphism of G with
continuous inverse, then µ ◦ φ is a left Haar measure on G.

(3) The measure µ is a left Haar measure on G if and only if for every function
f ∈ C+

c (G), ∫
G

Lgf dµ =

∫
G

f dµ for all g ∈ G.

(4) If µ is a left Haar measure on G, then µ is positive on all nonempty open subsets
of G, and ∫

G

f dµ > 0 for all f ∈ C+
c (G).

(5) If µ is a left Haar measure on G, then µ(G) is finite if and only if G is compact.

Proof. (1): We know that U ⊂ G is open if and only if U−1 is open in G. Consider
the collection of subsets S of G such that S−1 is Borel, which is a σ-algebra (Exercise).
Since this σ-algebra contains all open sets, it contains all Borel sets, from which it follows
that a subset A of G is a Borel set if and only if A−1 is. Since the inverse map is
continuous, K is compact if and only K−1 is compact. It follows directly from these
facts that µ̃ is a Borel measure which is finite on compact subsets, since µ is. For outer
regularity, let A be a Borel set. Then µ̃(A) = µ(A−1), where A−1 is a Borel set, and so
µ̃(A) = inf{µ(U) | A−1 ⊂ U,U open}. Since U is open if and only if U−1 is open, and
A−1 ⊂ U−1 if and only if A ⊂ U , we have µ̃(A) = inf{µ̃(U) | A ⊂ U,U open}, and so µ̃
is outer regular on Borel sets. Inner regularity of µ̃ follows similarly.

Now notice that for every Borel set A, µ̃(A) = µ̃(Ag) for every g ∈ G if and only
µ(A−1) = µ(g−1A−1) for every g ∈ G, if and only if µ(A−1) = µ(gA−1) for every g ∈ G.
It follows that µ is a left Haar measure if and only if µ̃ is a right Haar measure.

(2): Similar to (1), since φ and its inverse are continuous, U is open in G if and only
if φ(U) is open in G, A is a Borel set in G if and only if φ(A) is a Borel set. and K
is compact if and only if φ(K) is compact. So, following the proof of (1), it follows
that µ ◦ φ is a regular Borel measure which is finite on compact subsets. Now let A
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be any Borel set, and g ∈ G. Then we have, since φ is an automorphism and µ is a left
Haar measure, (µ◦φ)(gA) = µ(φ(g)φ(A)) = (µ◦φ)(A), and so µ◦φ is a left Haar measure.

(3): First suppose that µ is a left Haar measure on G. Then for any simple function
h, we have ∫

G

Lgh dµ =

∫
G

h dµ for any g ∈ G.

Now if f : G→ R≥0 is a measurable function, then by definition, for any g ∈ G,∫
G

Lgf dµ = sup

{∫
G

h dµ | h simple, h ≤ Lgf

}
.

Since the integral is left invariant on simple functions, and h ≤ Lgf if and only Lg−1h ≤ f ,
we have ∫

G

Lgf dµ = sup

{∫
G

Lg−1h dµ | h simple, Lg−1h ≤ f

}
.

Finally, h is simple if and only if Lgh is simple, and so replacing h by Lgh gives∫
G

Lgf dµ = sup

{∫
G

h dµ | h simple, h ≤ f

}
=

∫
G

f dµ,

as so we have proven the claim for any measurable f : G → R≥0, and so in particular it
holds for f ∈ C+

c (G).
Now suppose that for any function f ∈ C+

c (G) and any g ∈ G, we have
∫
G
Lgf dµ =∫

G
f dµ. Since µ is assumed to be a regular Borel measure, then for every open set U in

G, we have
µ(U) = sup {µ(K) | K ⊂ U,K compact} .

By Theorem 1.2, for every nonempty compact K ⊂ U , there is a function f ∈ C+
c (G)

such that supp(f) ⊂ U , f(x) = 1 when x ∈ K, and ||f ||∞ = 1. For such an f , we have
µ(K) ≤

∫
G
f dµ ≤ µ(U). It follows that we have

µ(U) = sup

{∫
G

f dµ | f ∈ C+
c (G), ||f ||∞ ≤ 1, supp(f) ⊂ U

}
.

Note that for any g ∈ G, f ∈ C+
c (G) and ||f ||∞ ≤ 1 if and only if Lg−1f ∈ C+

c (G) and
||Lg−1f ||∞ ≤ 1. So,

µ(U) = sup

{∫
G

Lg−1f dµ | f ∈ C+
c (G), ||f ||∞ ≤ 1, supp(Lg−1f) ⊂ U

}
.

The integral is left invariant on C+
c (G), and we have supp(Lg−1f) ⊂ U if and only if

supp(f) ⊂ gU , so

µ(U) = sup

{∫
G

f dµ | f ∈ C+
c (G), ||f ||∞ ≤ 1, supp(f) ⊂ gU

}
= µ(gU).

So, µ is left translation invariant on open sets. If A is any Borel set and g ∈ G, then by
outer regularity,

µ(gA) = inf{µ(U) | gA ⊂ U, U open}.
Since U is open if and only if gU is open, and µ(gU) = µ(U) when U is open, we obtain
µ(gA) = µ(A), and so µ is a left Haar measure.
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(4): See Problem set 3.

(5): If G is compact, then by definition µ(G) is finite when µ is a left Haar measure.
So suppose that G is not compact, and let K be a compact neighborhood of the identity
in G, and let U be a symmetric neighborhood of the identity such that UU ⊂ K. Since
G is not compact, no finite number of translates of K can cover G. So, let {xj} be a
sequence of points in G so that for every n ≥ 1, xn 6∈ ∪j<nxjK. Suppose that for some
pair i, j with j > i we have xiU ∩xjU 6= ∅, so that xiu = xjv for some u, v ∈ U . But then
xj = xiuv

−1, and since U is symmetric and UU ⊂ K, we have xj ∈ xiK, a contradiction.
So, the translates xiU , i ≥ 1, are all pairwise disjoint. Since µ is a left Haar measure, and
by (4) above, µ(xiU) = µ(U) > 0 for each xi, and so µ(G) cannot be finite by countable
additivity of the measure µ. �

Parts (2) through (5) of Proposition 2.1 may be stated for right Haar measures, with
the same proof as for left Haar measures. From part (3) of Proposition 2.1, we see that
to specify a left Haar measure µ on G, it is enough to specify a measure in terms of
integration,

∫
dµ, such that

∫
G
Lgf dµ =

∫
G
f dµ for every measurable f : G → R≥0, or

just every f ∈ C+
c (G), and every g ∈ G. Then the measure of a Borel set A is given by∫

A
dµ. The following is the main result, which will be proven in Sections 3 and 4 below.

Theorem 2.1 (Existence and Uniqueness of Haar measure). If G is a locally compact
group, then there exists a left (and right) Haar measure on G which is unique up to scalar
multiple.

If x ∈ G, then the map φx : g 7→ x−1gx is a continuous automorphism of G with
continuous inverse. If µ is a left Haar measure on G, then by part (2) of Proposition 2.1,
µ ◦ φx is also a left Haar measure on G. By Theorem 2.1, there is some positive scalar
δG(x) such that for every Borel set A of G, (µ ◦ φx)(A) = δG(x)µ(A). Note that δG(x) is
independent of the initial choice of µ, since µ is unique up to scalar multiple.

Proposition 2.2. The function δG : G→ R×>0 is a continuous homomorphism.

Proof. For any x1, x2 ∈ G, we have φx1x2 = φx2◦φx1 , from which it follows that δG(x1x2) =
δG(x2)δG(x1) = δG(x1)δG(x2) in R×>0, and so δG is a multiplicative homomorphism.

Let z ∈ R×>0, and let y < z be in the image of δG, where δG(a) = y, and let ε > 0. Let
K be a compact neighborhood of 1 in G, so µ(K) is finite, and µ(K) > 0 by part (4) of
Proposition 2.1, since K contains an open neighborhood of 1. Then a−1Ka is compact,
and is in particular a Borel set, since it is closed. Since µ is outer regular on Borel sets,
then there exists an open set U , a−1Ka ⊂ U , such that µ(U) ≤ µ(a−1Ka) + µ(K)ε/2.
Since the map g 7→ a−1ga is continuous, and a−1Ka ⊂ U , then there is a neighborhood
W of a such that W−1KW ⊂ U . So, for any b ∈ W , we have µ(b−1Kb) ≤ µ(U), so that

µ(b−1Kb) ≤ µ(a−1Ka) + µ(K)ε/2.

Since µ(x−1Kx) = δG(x)µ(K), we have, for every b ∈ W ,

0 < δG(b) ≤ δG(a) + ε/2 < δG(a) + ε.

In other words, the inverse image δ−1
G ((0, z)) of the open interval (0, z) is open in G. Since

δG is a homomorphism, then δG(x)−1 = δG(x−1) for any x ∈ G. Now, for any s ∈ R>0,
we may pull back the open interval (s,∞), and see that its inverse image δ−1

G ((s,∞)) is
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open in G as well. The inverse image of any open interval (s, z) ⊂ R>0 is now seen to be
open, and so δG is continuous. �

Now let µL denote the left Haar measure on G. Since δG is continuous, the map
f 7→

∫
G
f(g) δG(g)dµL(g) is a positive linear functional on Cc(G), and so by Theorem 1.1,

it corresponds to a regular Borel measure on G which is positive on compact sets.

Proposition 2.3. Let µL be a left Haar measure on G. Then for any measurable function
F : G→ R≥0, we have

∫
G
F ◦ φx dµL = δG(x)

∫
G
F dµL. Also, the measure corresponding

to the positive linear functional f 7→
∫
G
f(g) δG(g)dµL(g) is a right Haar measure on G.

Proof. From the definition of δG, for any x ∈ G and any simple function h, we have∫
G
h◦φx dµL = δG(x)

∫
G
h dµL. If F : G→ R≥0 is any measurable function, then we have∫

G

F ◦ φx dµL = sup

{∫
G

h dµL | h simple, h ≤ F ◦ φx
}
.

Now, h is simple if and only if h ◦ φx is simple, and h ◦ φx ≤ F ◦ φx if and only if h ≤ F ,
and so replacing h by h ◦ φx yields

(2.1)

∫
G

F ◦ φx dµL = sup

{∫
G

h ◦ φx dµL | h simple, h ≤ F

}
= δG(x)

∫
G

F dµL.

From the right Haar measure version of part (3) of Proposition 2.1, to prove the sec-
ond statement we need to show that for any x ∈ G and any f ∈ C+

c (G), we have∫
G
Rxf(g) δG(g)dµL(g) =

∫
G
f(g) δG(g)dµL(g). For any x ∈ G and function f ∈ C+

c (G),
the product (Rxf)δG is in C+

c (G). Since µL is a left Haar measure, then by part (3) of
Proposition 2.1, we have∫

G

Rxf(g) δG(g)dµL(g) =

∫
G

Lx(Rxf(g)δG(g)) dµL(g) =

∫
G

f(x−1gx)δG(x−1g) dµL(g).

From Proposition 2.2, δG is a homomorphism, and so δG(x−1g) = δG(x−1)δG(g), and
δ(g) = δ(x−1gx). From the above, we have∫

G

Rxf(g) δG(g)dµL(g) = δG(x−1)

∫
G

f(x−1gx)δG(x−1gx) dµL(g).

Applying (2.1), we have∫
G

Rxf(g) δG(g)dµL(g) = δG(x−1)δG(x)

∫
G

f(g) δG(g)dµL(g) =

∫
G

f(g) δG(g)dµL(g),

giving right translation invariance of the integral. �

The function δG is called the modular quasicharacter of the locally compact group G.
If µL is a left Haar measure for G, then for any x ∈ G and measurable set A, we have
µL(Ax) = µL(x−1Ax) = δG(x)µL(A). That is, µL is bi-invariant, and thus a right Haar
measure, if and only if δG(x) = 1 for every x ∈ G. A locally compact group for which
every left Haar measure is also a right Haar measure is called a unimodular group. It is
immediate that abelian groups are unimodular. We also have the following.

Proposition 2.4. Every compact group is unimodular.

Proof. From Proposition 2.2, the function δG : G→ R×>0 is a continuous homomorphism.
If G is a compact group, then δG(G) is a compact subgroup of R×>0, the only possibility
of which is {1}. Thus δG(x) = 1 for all x ∈ G, and G is unimodular. �
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For some examples of computing the Haar measure of a group, it is useful to remember
the change of variables formula for integrating functions on Rm (see [R, Theorem 7.26]),
which is as follows. Let U ⊂ Rm be open, θ : U → R≥0 a measurable function, T : U → Rm

an injective differentiable function, and let
∫
dx =

∫
dx1 dx2 · · · dxm denote the Lebesgue

measure on Rm. Then ∫
T (U)

θ dx =

∫
U

θ ◦ T |JT | dx,

where |JT | is the absolute value of the Jacobian determinant for the function T .

Example 1. ([B2, Chapter 1]) Consider the group G =

{(
x y
0 1

)
| x, y ∈ R, x > 0

}
,

which is homeomorphic to the open set R>0×R in R2. Let t =

(
a b
0 1

)
∈ G, and consider

left multiplication on G by t. This gives the map x 7→ ax and y 7→ ay+ b of R>0×R onto
itself, and let us call this linear map T . Then |JT | = a2. Now let F (x, y) = F : G→ R≥0

be any Lebesgue measurable function, so that θ(x, y) = F (x, y)x−2 is also Lebesgue mea-
surable. By the change of variables formula, we have∫

G

F (x, y)x−2 dx dy =

∫
G

θ ◦ T a2 dx dy =

∫
G

(F ◦ T )(x, y)x−2 dx dy.

In other words, if g =

(
x y
0 1

)
, then for any t ∈ G, we have∫

G

F (tg)x−2 dx dy =

∫
G

F (g)x−2 dx dy,

and thus
∫
x−2 dx dy is the left Haar measure on G.

We can also consider right multiplication on G by t, which gives the linear map S :
x 7→ ax, y 7→ bx+ y, where |JS| = a. In this case, the change of variables formula gives us∫

G

F (gt)x−1 dx dy =

∫
G

F (g)x−1 dx dy,

so that
∫
x−1 dx dy is the right Haar measure on G. In particular, G is not unimodular,

and by Proposition 2.3 the modular quasicharacter of G is given by δG(g) = x.

Example 2. Let F be a non-archimedean local field with ring of integers O, uni-
formizer π, and p = πO. Let q be the cardinality of the residue field O/p, and let us
normalize the absolute value so that |π|v = q−1. View F as an additive locally compact
group, which is unimodular since it is abelian, and let µ be the Haar measure normalized
so that µ(O) = 1. If S ⊂ O is a set of representatives of O/p with 0 ∈ S, then O is
the disjoint union of a+ πO, with a ∈ S. Since µ is the additive Haar measure, we have
µ(a+ πO) = µ(πO) for every a ∈ S, and so countable additivity,

1 = µ(O) =
∑
a∈S

µ(a+ πO) = q · µ(πO),

and so µ(πO) = q−1 = |π|v. We also have πO is the disjoint union of aπ + π2O, a ∈ S,
and we again use countable additivity to obtain µ(π2O) = q−2 = |π2|v, and we can prove
by induction that µ(πkO) = q−k = |πk|v for k ≥ 0. Similarly, π−1O is the disjoint
union of the sets aπ−1 + O, a ∈ S, and we have µ(π−1O) = q = |π−1|v, and in general
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µ(πmO) = q−m = |πm|v for any m ∈ Z. For any α ∈ F×, we have α = πmu for some
m ∈ Z, u ∈ O×. Then we have

µ(αO) = µ(πmO) = q−m = |α|v.

Now fix some c ∈ F×. Then the map fc : x 7→ cx is a continuous automorphism with
continuous inverse on the additive group F , and so by part (2) of Proposition 2.1, µ◦fc is
a Haar measure on F also. By the uniqueness of Haar measure, we then must have µ◦fc is
a scalar multiple of µ. We have already shown that (µ ◦ fc)(O) = µ(cO) = |c|vµ(O), and
so we must have µ(cA) = |c|vµ(A) for any Borel set A. This can be used to show that the
Haar measure on the multiplicative group F× is given by

∫
|x|−1

v dµ(x) (see Problem set 3).

Example 3. Consider the additive group Mn(R), which is isomorphic to Rn2
as an

additive topological group. So, the Haar measure for Mn(R) is just the Lebesgue measure

on Rn2
, which we denote by

∫
dX =

∫
dx11 dx12 · · · dxnn. Now let G = GL(n,R), which

is an open subset of Rn2
. Let t = (tij) ∈ G, and consider left multiplication by t on G. If

X = (xij) ∈ G, then left multiplication by t induces the function T : xij 7→
∑n

k=1 tikxkj.

When taking the Jacobian of a function from Rn2
to itself, we note that it does not matter

which order we take the variables, since permuting variables has the effect of permuting
rows, and permuting the corresponding columns in the same way. If we order the variables
as x11, x21, . . . , xn1, x12, . . . , xn2, . . . , xnn, then the Jacobian JT is exactly the determinant
of the n2-by-n2 matrix with n copies of the matrix t down the block diagonal, with 0’s
elsewhere. That is, |JT | = |det(t)|n. Now, if F is a measurable function on G, then
θ(X) = F (X)|det(X)|−n is also measurable, and from the change of variables formula,∫

G

F (X)|det(X)|−n dX =

∫
G

θ ◦ T |det(t)|n dX =

∫
G

(F ◦ T )(X) |det(X)|−n dX.

So, we have
∫
G
F (tX) |det(X)|−n dX =

∫
G
F (X) |det(X)|−n dX, and the left Haar mea-

sure on G is
∫
|det(X)|−n dX.

If we consider right multiplication by t on G, this gives the function S : xij 7→∑n
k=1 tkjxik. When computing the Jacobian JS, if we order the variables as x11, x12, . . .,

x1n, . . . , xnn, then JS is the determinant of the n2-by-n2 matrix with n copies of the trans-
pose of t down the block diagonal, with 0’s elsewhere. Since taking the transpose does
not change the determinant, we have |JS| = |det(t)|n. By applying the change of vari-
ables formula again, we obtain that

∫
|det(X)|−n dX is also a right Haar measure, and

GL(n,R) is unimodular.
Another way to see that this is the Haar measure on GL(n,R) is to check the invariance

under multiplication by each type of elementary matrix. Using this method, one can
show that if F is a non-archimedean local field as in Example 2, then the Haar measure
of G = GL(n, F ) is

∫
|det(X)|−nv dµ(X), where µ(X) is the additive Haar measure on

Mn(F ), or the product of n2 copies of the additive Haar measure µ on F (see Problem
set 3).

3. The Haar covering number

Let G be a locally compact group, and let f, ϕ ∈ C+
c (G). Since supp(f) is compact,

it is covered by a finite number of translates of any open set in G. In particular, if
U = {s ∈ G | ϕ(s) > ||ϕ||∞/2}, then there are some elements s1, . . . , sn ∈ G such that
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supp(f) ⊂ ∪nj=1sjU . That is, for any x ∈ supp(f), there is an sj such that s−1
j x ∈ U ,

from which it follows that

f ≤ 2||f ||∞
||ϕ||∞

n∑
j=1

Lsjϕ.

We may then define the Haar covering number of f with respect to ϕ, written (f : ϕ), as

(f : ϕ) = inf

{
n∑
j=1

cj | n ≥ 1, c1, . . . , cn > 0, f ≤
n∑
j=1

cjLsjϕ for some s1, . . . , sn ∈ G

}
.

Note that it follows immediately from this definition that for f1, f2 ∈ C+
c (G),

(3.1) (f1 + f2 : ϕ) ≤ (f1 : ϕ) + (f2 : ϕ), and if f1 ≤ f2, then (f1 : ϕ) ≤ (f2 : ϕ).

The following are other basic properties of the Haar covering number.

Lemma 3.1. Let G be a locally compact group, and let f, f1, f2, ϕ ∈ C+
c (G). Then:

(1) For any c > 0, (cf : ϕ) = c(f : ϕ).
(2) For any s ∈ G, (f : ϕ) = (Lsf : ϕ).
(3) (f : ϕ) ≥ ||f ||∞/||ϕ||∞.
(4) (f1 : ϕ) ≤ (f1 : f2)(f2 : ϕ).

Proof. (1): We have cf ≤
∑n

j=1 cjLsjϕ if and only if f ≤
∑n

j=1(cj/c)Lsjϕ, from which
the result follows.

(2): If s ∈ G, we have f ≤
∑n

j=1 cjLsjϕ if and only if Lsf ≤
∑n

j=1 cjLsjsϕ, from which

it follows that (f : ϕ) = (Lsf : ϕ).
(3): If f ≤

∑n
j=1 cjLsjϕ, then for any x ∈ G,

f(x) ≤
n∑
j=1

cjϕ(s−1
j x) ≤

(
n∑
j=1

cj

)
||ϕ||∞.

This implies
∑n

j=1 cj ≥ ||f ||∞/||ϕ||∞, and so (f : ϕ) ≥ ||f ||∞/||ϕ||∞.

(4): Suppose that f1 ≤
∑n

j=1 cjLsjf2 and f2 ≤
∑m

i=1 diLtiϕ. Then we have

f1 ≤
n∑
j=1

cjLsj

(
m∑
i=1

diLtiϕ

)
=

n∑
j=1

cj

m∑
i=1

diLtisjϕ =
∑
i,j

cjdiLtisjϕ.

That is, (f1 : ϕ) ≤
∑

i,j cjdi = (
∑n

j=1 cj)(
∑m

i=1 di), and so (f1 : ϕ) ≤ (f1 : f2)(f2 : ϕ). �

Notice that since f, ϕ ∈ C+
c (G), then ||f ||∞, ||ϕ||∞ 6= 0, and part (3) of Lemma 3.1

implies we always have (f : ϕ) > 0. Part (1) of Lemma 3.1 and (3.1) say that we have
“almost linearity”. We use the Haar covering number to build an “approximate linear
functional” as follows. Fix f0 ∈ C+

c (G), and for f, ϕ ∈ C+
c (G), define Iϕ(f) by

Iϕ(f) =
(f : ϕ)

(f0 : ϕ)
.

The following result will be applied to build a linear functional, which will give a Haar
measure, from Iϕ.
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Proposition 3.1. Fix f0 ∈ C+
c (G), and define Iϕ(f) for ϕ, f ∈ C+

c (G) as above. Then

(f0 : f)−1 ≤ Iϕ(f) ≤ (f : f0).

If f1, f2 ∈ C+
c (G), then for every ε > 0, there is a neighborhood V of 1 in G such that,

whenever V ⊂ supp(ϕ), we have

Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε.

Proof. From part (4) of Lemma 3.1, we have

(f : ϕ) ≤ (f : f0)(f0 : ϕ) and (f0 : ϕ) ≤ (f0 : f)(f : ϕ).

Dividing the first inequality by (f0 : ϕ) and the second inequality by (f : ϕ) gives the
desired result, (f0 : f)−1 ≤ Iϕ(f) ≤ (f : f0).

Let ε > 0, and let f1, f2 ∈ C+
c (G). By Theorem 1.2, there is a function ψ ∈ C+

c (G)
such that ψ(g) = 1 when g ∈ supp(f1 + f2) = supp(f1) ∪ supp(f2). Choose δ > 0 such
that

(3.2) δ ≤ min
{

(ε/4)(f1 + f2 : f0)
−1, (
√
ε/2)(ψ : f0)

−1/2
}

Define the function h : G → R≥0 by h = f1 + f2 + δψ, so that h ∈ C+
c (G). Now define,

for i = 1, 2, the functions hi : G→ R≥0 as

hi(x) =

{
fi(x)/h(x) if fi(x) 6= 0

0 if fi(x) = 0,

Then hi ∈ C+
c (G) and fi = hih for i = 1, 2, and h1 + h2 ≤ 1. Recall (from the Topological

Groups notes) that h1 and h2 are right uniformly continuous. So, there are neighborhoods
U1, U2, of the identity in G, such that x ∈ Ui implies |hi(tx) − hi(t)| < δ for all t ∈ G.
Letting V = U1 ∩ U2, we have t−1s ∈ V implies |hi(s)− hi(t)| < δ, for i = 1, 2.

Now let ϕ ∈ C+
c (G) such that supp(ϕ) ⊂ V . Suppose that we have h ≤

∑n
j=1 cjLsjϕ

for some cj ∈ R>0, sj ∈ G. Then we have fi = hih ≤
∑n

j=1 cj(Lsjϕ)hi, for i = 1, 2. For
any s ∈ G, sj, i = 1, 2, we have

ϕ(s−1
j s)hi(s) ≤ ϕ(s−1

j s)(hi(sj) + δ),

since if s−1
j s ∈ supp(ϕ) ⊂ V , this follows from uniform continuity, and otherwise both

sides of the inequality are 0. So, for any s ∈ G, i = 1, 2, we have

fi(s) ≤
n∑
j=1

cjϕ(s−1
j s)(hi(sj) + δ),

and so (fi : ϕ) ≤
∑n

j=1 cj(hi(sj) + δ). Since h1 + h2 ≤ 1, we have

(f1 : ϕ) + (f2 : ϕ) ≤ (1 + 2δ)
n∑
j=1

cj.

Since this is true for any cj > 0, sj ∈ G, such that h ≤
∑n

j=1 cjLsjϕ, then in fact we have

(f1 : ϕ) + (f2 : ϕ) ≤ (1 + 2δ)(h : ϕ). Now, by the definition of Iϕ, and applying (3.1) and
part (1) of Lemma 3.1, then from h = f1 + f2 + δψ we have

Iϕ(f1) + Iϕ(f2) ≤ (1 + 2δ)Iϕ(h) ≤ (1 + 2δ)(Iϕ(f1 + f2) + δIϕ(ψ)).
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The right hand side is Iϕ(f1 + f2) + 2δIϕ(f1 + f2) + 2δ2Iϕ(ψ), and by the first part of the
Proposition, we know that Iϕ(f1 + f2) ≤ (f1 + f2 : f0), and Iϕ(ψ) ≤ (ψ : f0). From our
choice of δ in (3.2), we have

2δIϕ(f1 + f2) + 2δ2Iϕ(ψ) ≤ 2δ(f1 + f2 : f0) + 2δ2(ψ : f0) ≤ ε,

and so Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε whenever supp(ϕ) ⊂ V , as claimed. �

4. Existence and uniqueness of the Haar measure

In this section, we give a proof of Theorem 2.1, following [RV, Section 1.3] (a similar
proof is in [MZ]). For a locally compact group G, we prove the existence and uniqueness
up to scalar multiple of a left Haar measure on G, and the result for a right Haar measure
follows from part (1) of Proposition 2.1. From Theorem 1.1 and part (3) of Proposition
2.1, to show the existence of a left Haar measure on G, it is enough to show the existence
of a positive linear functional I : Cc(G) → C such that I(Lsf) = I(f) for any s ∈ G,
f ∈ C+

c (G). We will construct such a functional using the results on the functional Iϕ
from the previous section.

4.1. Existence. Functions Θ : C+
c (G)→ R>0 are naturally in one-to-one correspondence

with the set

RC+
c (G)

>0 =
∏

f∈C+
c (G)

R>0,

by corresponding Θ to the point (Θ(f))f∈C+
c (G). Fix some f0 ∈ C+

c (G), and for any

ϕ ∈ C+
c (G), we consider each Iϕ as an element in the set above. Then by the first part of

Proposition 3.1, we have that each Iϕ satisfies

Iϕ ∈ Y =
∏

f∈C+
c (G)

[(f0 : f)−1, (f : f0)],

where Y is compact by Tychonoff’s theorem. For any compact neighborhood K of the
identity in G, consider the set MK = {Iϕ | supp(ϕ) ⊂ K} ⊂ Y . Since Y is compact and
thus closed, we also have MK ⊂ Y . For any finite number K1, K2, . . . , Kn of compact
neighborhoods of 1 in G, we have M∩nj=1Kj

is nonempty by Theorem 1.2. We also have

M∩nj=1Kj
⊂ ∩nj=1MKj ⊂ ∩nj=1MKj ,

and so any finite number of sets in the collection {MK} of closed sets has nonempty
intersection, or has the finite intersection property. Since each MK ⊂ Y and Y is compact,
then we have ∩KMK is nonempty. Let Ĩ ∈ ∩KMK ⊂ Y , Ĩ : C+

c (G)→ R>0 be an element
in this nonempty intersection.

Since Ĩ ∈ ∩KMK , then every neighborhood of Ĩ in Y intersects each MK . In particular,
given any compact neighborhood K of 1 in G, any three functions f1, f2, f3 ∈ C+

c (G) (or
any finite number, from the product topology, but we will need at most three), and any
ε > 0, there is a ϕ ∈ C+

c (G) such that supp(ϕ) ⊂ K and |Ĩ(fj)−Iϕ(fj)| < ε for j = 1, 2, 3.
Now let f ∈ C+

c (G), c ∈ R>0, and ε > 0. Let δ = min{ε/2, ε/2c}, and K some compact
neighborhood of 1 in G. Then there is a ϕ ∈ C+

c (G) with supp(ϕ) ⊂ K such that

|Ĩ(cf)− Iϕ(cf)| < δ ≤ ε/2 and |Ĩ(f)− Iϕ(f)| < δ ≤ ε/2c.
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So, |cĨ(f) − Iϕ(cf)| < ε/2, since cIϕ(f) = Iϕ(cf), by part (1) of Lemma 3.1. Now we

have, for any f ∈ C+
c (G), c > 0, and ε > 0, |Ĩ(cf)− cĨ(f)| < ε by the triangle inequality,

and so Ĩ(cf) = cĨ(f).
Similarly, if f ∈ C+

c (G), s ∈ G, ε > 0, and K some compact neighborhood of 1 in G,
there is a ϕ ∈ C+

c (G) with supp(ϕ) ⊂ K such that

|Ĩ(f)− Iϕ(f)| < ε/2 and |Ĩ(Lsf)− Iϕ(Lsf)| < ε/2.

By part (2) of Lemma 3.1, we have Iϕ(f) = Iϕ(Lsf), and so the triangle inequality gives

|Ĩ(f)− Ĩ(Lsf)| < ε for any f ∈ C+
c (G), s ∈ G, and ε > 0. Thus Ĩ(f) = Ĩ(Lsf).

Let f1, f2 ∈ C+
c (G), and let ε > 0. Applying Proposition 3.1, let V be a neighborhood

of 1 in G such that, if ϕ ∈ C+
c (G) with supp(ϕ) ⊂ V , then

Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε/4.

By (3.1), we also have Iϕ(f1+f2) ≤ Iϕ(f1)+Iϕ(f2). If we let K be a compact neighborhood
of 1 such that K ⊂ V , then for any ϕ ∈ C+

c (G) with supp(ϕ) ⊂ K, we have

|Iϕ(f1 + f2)− Iϕ(f1)− Iϕ(f2)| < ε/4.

Now let ϕ ∈ C+
c (G) with supp(ϕ) ⊂ K such that

|Iϕ(fi)− Ĩ(fi)| < ε/4 for i = 1, 2, and |Iϕ(f1 + f2)− Ĩ(f1 + f2)| < ε/4.

From the triangle inequality, we now have that for any f1, f2 ∈ C+
c (G) and ε > 0,

|Ĩ(f1 + f2)− (Ĩ(f1) + Ĩ(f2))| < ε,

and so Ĩ(f1 + f2) = Ĩ(f1) + Ĩ(f2).
We have now shown that there is a function Ĩ : C+

c (G)→ R>0 such that Ĩ(cf) = cĨ(f),
Ĩ(Lsf) = Ĩ(f), and Ĩ(f1 + f2) = Ĩ(f1) + Ĩ(f2), for any f, f1, f2 ∈ C+

c (G), c ∈ R>0, and
s ∈ G. We extend Ĩ to a left translation invariant linear functional I on all of Cc(G)
as follows. Define I to be 0 on the constant 0 function, and for any f ∈ Cc(G), write
f = u+iv where u and v are real-valued, and define I(f) = Ĩ(u+)−Ĩ(u−)+iĨ(v+)−iĨ(v−).
The fact that I is a left translation invariant linear functional on Cc(G) follows from the
proven properties of Ĩ (Exercise). The existence of such an I implies the existence of a
left Haar measure on G.

4.2. Uniqueness. Let µ and ν be two left Haar measures on G. If ψ ∈ C+
c (G), then let

I(ψ) =
∫
G
ψ dµ and J(ψ) =

∫
G
ψ dν. To show that ν is a scalar multiple of µ, we must

show that I(ψ)/J(ψ) is independent of ψ ∈ C+
c (G). Let ψ, θ ∈ C+

c (G), and ε > 0. We
show that |I(ψ)/J(ψ)− I(θ)/J(θ)| < ε by finding a ξ ∈ C+

c (G) such that I(ψ)/J(ψ) and
I(θ)/J(θ) are simultaneously made arbitrarily close to I(ξ)/J(ξ).

Let K be a compact neighborhood of 1 in G, and let U be an open symmetric neigh-
borhood of 1, U ⊂ K, and then the closure of U , U = K0, is compact, and K0 is also
symmetric since K is. Now let

Kψ = supp(ψ) ·K0 ∪K0 · supp(ψ) and Kθ = supp(θ) ·K0 ∪K0 · supp(θ).

Then Kψ and Kθ are both compact. For any t ∈ K0, define γtψ and γtθ by

γtψ = Rtψ − Lt−1ψ and γtθ = Rtθ − Lt−1θ.

Notice that if t ∈ K0 and x 6∈ Kψ, then in particular x 6∈ supp(ψ) t−1 and x 6∈ t−1 supp(ψ),
since K0 is symmetric. That is, if x 6∈ Kψ, then γtψ(x) = ψ(xt) − ψ(tx) = 0, and so
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supp(γtψ) ⊂ Kψ, and similarly supp(γtθ) ⊂ Kθ, for any t ∈ K0. In particular, for any
t ∈ G, γtψ and γtθ are both real-valued functions in Cc(G).

We claim that for any δ > 0, there is a compact symmetric neighborhood K1 of the
identity in G, with K1 ⊂ K0, such that |γtψ(s)| < δ and |γtθ(s)| < δ for all t ∈ K1, s ∈ G.
First, from right uniform continuity of ψ, find a neighborhood V1 of the identity such
that t ∈ V1 implies ||Rtψ − ψ||∞ < δ/2. From left uniform coninuity, find a symmetric
neighborhood V2 of the identity such that t ∈ V2 implies ||Lt−1ψ−ψ||∞ < δ/2. Now let V0

be an open neighborhood of the identity contained in V1∩V2∩K0, so that V0 ⊂ K0, and by
the triangle inequality we have t ∈ V implies ||γtψ||∞ < δ. Similarly, we can find an open
neighborhood W0 of the identity such that W0 ⊂ K0, and t ∈ W0 implies ||γtθ||∞ < δ.
Letting U0 = V0 ∩W0, we have U0 ⊂ K0, and t ∈ U0 guarantees that ||γtψ||∞ and ||γtθ||∞
are both less that δ. Now let K ′ be a compact neighborhood of the identity with K ′ ⊂ U0,
which exists by local compactness, and let U1 be a symmetric open neighborhood of the
identity contained in K ′. Since U1 ⊂ K0 and K0 is compact, then K1 = U1 is a compact
symmetric neighbhorhood of the identity, and K1 ⊂ K0. Moreover, since K1 ⊂ K ′ ⊂ U0,
then t ∈ K1 implies that |γtψ(s)| < δ and |γtθ(s)| < δ for all s ∈ G.

We let δ > 0 be such that

(4.1) δ < min

{
εJ(ψ)

2µ(Kψ)
,
εJ(θ)

2µ(Kθ)

}
,

and we choose a compact symmetric neighborhood K1 of the identity with K1 ⊂ K0 as
above for this δ. Note that µ(Kψ) and µ(Kθ) are finite since the measure of a compact
set is finite, and J(ψ) and J(θ) are finite since ψ and θ have compact support.

Now let K2 be a compact neighborhood of the identity such that K2 ⊂ int(K1), which

exists by local compactness. By Theorem 1.2, there is a function ξ̃ ∈ C+
c (G) such that

ξ̃(g) = 1 if g ∈ K2, ξ̃(g) = 0 if g 6∈ int(K1), and ||ξ̃||∞ = 1. Define ξ by

ξ(s) = ξ̃(s) + ξ̃(s−1),

so that supp(ξ) ⊂ K1, since if s 6∈ K1, then s−1 6∈ K1 because K1 is symmetric, and by

choice of ξ̃ we then have ξ(s) = 0. Thus ξ ∈ C+
c (G), and ξ is even in that ξ(s) = ξ(s−1)

for every s ∈ G.
We have

I(ψ)J(ξ) =

(∫
G

ψ(s) dµ(s)

)(∫
G

ξ(t) dν(t)

)
=

∫
G

∫
G

ψ(s)ξ(t) dµ(s)dν(t),

and since µ is a left Haar measure, we have

(4.2) I(ψ)J(ξ) =

∫
G

∫
G

ψ(ts)ξ(t) dµ(s)dν(t).

We also have, since µ is a left Haar measure,

I(ξ)J(ψ) =

∫
G

∫
G

ξ(s)ψ(t) dµ(s)dν(t) =

∫
G

∫
G

ξ(t−1s)ψ(t) dµ(s)dν(t).

Since ξ is even and ν is a left Haar measure, we obtain that

(4.3) I(ξ)J(ψ) =

∫
G

∫
G

ξ(s−1t)ψ(t) dµ(s)dν(t) =

∫
G

∫
G

ξ(t)ψ(st) dµ(s)dν(t).
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Calculating the absolute value of the difference between (4.2) and (4.3), we get

|I(ξ)J(ψ)− I(ψ)J(ξ)| =
∣∣∣∣∫
G

∫
G

ξ(t)γtψ(s) dµ(s)dν(t)

∣∣∣∣ .
We have supp(ξ) ⊂ K1, |γtψ(s)| < δ for every s ∈ G and t ∈ K1, and supp(γtψ) ⊂ Kψ.
So, we have

|I(ξ)J(ψ)− I(ψ)J(ξ)| =

∣∣∣∣∣
∫
K1

ξ(t)

(∫
Kψ

γtψ(s) dµ(s)

)
dν(t)

∣∣∣∣∣
≤
∫
K1

ξ(t)

∣∣∣∣∣
∫
Kψ

γtψ(s) dµ(s)

∣∣∣∣∣ dν(t)

≤ δµ(Kψ)

∫
K1

ξ(t) dν(t) = δµ(Kψ)J(ξ).

Dividing both sides of this inequality by J(ξ)J(ψ), and from our choice of δ (4.1), gives∣∣∣∣ I(ξ)

J(ξ)
− I(ψ)

J(ψ)

∣∣∣∣ ≤ δ
µ(Kψ)

J(ψ)
< ε/2.

Duplicating this exact calculation, but replacing ψ by θ, yields∣∣∣∣ I(ξ)

J(ξ)
− I(θ)

J(θ)

∣∣∣∣ ≤ δ
µ(Kθ)

J(θ)
< ε/2,

and so |I(ψ)/J(ψ) − I(θ)/J(θ)| < ε for any ε > 0. Thus, the linear functionals I and J
differ by only a scalar factor, and the left Haar measure is unique up to scalar.
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