THE HAAR MEASURE

MATH 519

1. MEASURE THEORY BACKGROUND

In this section, we give a brief review of the measure theory which will be used in later
sections. We use [R, Chapters 1 and 2] as our main resource.

A o-algebra on a set X is a collection M of subsets of X such that @ € M, if § € M,
then X \ S € M, and if a countable collection Sy, Sy, ... € M, then U®,S; € M. That
is, M is closed under complements and countable unions, and contains the empty set. A
measure on a set X with o-algebra M is a function p : M — Rso U {oo} such that, if
{Si}i>1 is a countable collection of pairwise dijoint elements of M, then

1 (U2, S;) = Zu(Si),

where we define a + co = oo for any a € R U {oo}. In this case, the triple (X, M, p) is
called a measure space, and the elements of M are called measurable sets. We will assume
that measures are not trivial, that is, they take a nonzero value on some measurable set.

If X is a topological space, then the smallest o-algebra containing all of the open sets
of X is called the Borel o-algebra, which we denote by B. The elements of B are called
Borel sets, and a measure defined on B is called a Borel measure.

Consider R with the standard metric topology, R>, with the subspace topology, and
consider the collection of Borel sets of R>q. If (X, M, u) is a measure space, a function
[+ X — Ry is called measurable if for every Borel set S in Rsg, f~(S) € M. That is,
f is measurable if the inverse image of any Borel set is a measurable set. In the case that
X is a topological space and M is the Borel o-algebra on X, note that any continuous
function f : X — Rsq is also measurable. In general, if (Y, N,v) is any other measure
space, then we call f: X — Y measurable if A € N implies f~1(A) € M.

Let (X, M, ) be a measure space, and S € M. Define 15 to be the characteristic
function on S, so 1g(x) = 1 when x € S and 1g(z) =0if x € S. A simple function on X
is a function h : X — R>( which can be written as

h(z) = Zailgi(x), for distinct a; € R, pairwise disjoint S; € M.
i=1

That is, a simple function is a non-negative measurable function which takes a finite
number of positive real values. For any A € M and any simple function h = " | a;1g,
on X, we define

/ hdp = Z%‘M(A N.S;).
A i=1
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Now, if f : X — R5( is any measurable function, and A € M, we define the Lebesgue
integral on f over A as

/fdu—sup{/hdu | h simple, h(z) < f(z) forallxeX}.
A A

We will also use the notation du(x) or simply dz in place of du.

For any R-valued function h on X, define h*(z) = max{h(z),0} to be the positive part
of h, and h™(z) = —min{h(z),0} to be the negative part of h, so that h = h™ — h™.
If f: X — Cis any C-valued measurable function, where C has the o-algebra with
respect to the standard topology, then write f = u+ iv, where v and v are both R-valued
functions, which are also measurable (Exercise). Assume further that [, |f| du < oo,
that is, f € L'(u), where | f| is also a measurable function (Exercise). Now we define the
integral of the function f : X — C over a measurable set A by

/fd,u:/zﬁd,u—/u_d,u+i/v+d,u—i/v_dy.
A A A A A

Note that each of the integrals above on the right is finite, since u™ < |u| < |f|, and
similarly for v=,v", and v™.

Now let X be a locally compact Hausdorff space, B the Borel o-algebra on X, and u a
Borel measure on X. If A € B, then p is outer regular on A if

n(A) = inf{u(U) | AC U, U open},
and p is inner reqular on A if
w(A) =sup{u(K) | K C A, K compact}.

A regular Borel measure on the Borel g-algebra of a locally compact Hausdorff space X
is a measure which is outer regular on all Borel sets and inner regular on all open sets.

Let C.(X) denote the set of all continuous complex-valued functions with compact
support on a topological space X. Then C.(X) is a complex vector space, and a linear
functional on C,(X) is just a linear transformation A : C.(X) — C. Let CF(X) denote
the set of continuous real-valued functions in C.(X) which are non-negative, and not
the constant zero function. A positive linear functional on C.(X) is a linear functional
A : C.(X) — C such that, when f € CF(X), then A(f) € R and A(f) > 0.

Theorem 1.1 (Riesz Representation Theorem). Let X be a locally compact Hausdorff
space, and let A be a positive linear functional on C.(X). Then there exists a unique
reqular Borel measure v on X which is finite on all compact subsets of X, such that

A(f) :/Xf dp  for every f € C.(X).

We will also need the following result, a proof of which can be found in [K].

Theorem 1.2 (Urysohn’s Lemma). Let X be a locally compact Hausdorff space, let K
be a nonempty compact subset of X, and U an open subset of X such that K C U. Then
there is a function f € CF(X) such that f(x) = 1 when x € K, supp(f) C U, and
0< f(z) <1 foralzxelX.
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2. DEFINITION AND EXAMPLES OF HAAR MEASURE

Let G be a locally compact group, and let p be a Borel measure on G, with B the
Borel g-algebra of GG. The measure p is left translation invariant if for every S € B,
w(gS) = p(S) for all g € G, and is right invariant if for every S € B, u(Sg) = u(S) for
all g € G.

A left (respectively, right) Haar measure on G is a regular Borel measure on G which
is finite on compact subsets and left (respectively, right) translation invariant. The most
familiar example of a Haar measure is the Lebesgue measure on R”, viewed as an additive
group. In this case, since the group is abelian, the Haar measure is both right and left
translation invariant, or is bi-invariant.

Recall that for g € G and a function f : G — C, we define L, f by L,f(z) = f(¢ '),
and R, f by R,f(x) = f(xg).

Proposition 2.1. Let G be a locally compact group, and let p be a reqular Borel measure
on G which is finite on all compact subsets of G.

(1) The measure u is a left Haar measure on G if and only if the measure [, defined
by il(A) = p(A™1) for A € B, is a right Haar measure on G.

(2) If p is a left Haar measure on G, and ¢ is a continuous automorphism of G with
continuous inverse, then po ¢ is a left Haar measure on G.

(3) The measure i is a left Haar measure on G if and only if for every function

felia),
/Lgfd,u:/fd,u forall g € G.
G G

(4) If p is a left Haar measure on G, then p is positive on all nonempty open subsets

of G, and
/fdu>0 for all f € CH(G).
G
(5) If p is a left Haar measure on G, then u(QG) is finite if and only if G is compact.

Proof. (1): We know that U C G is open if and only if U~! is open in G. Consider
the collection of subsets S of G such that S~! is Borel, which is a o-algebra (Exercise).
Since this o-algebra contains all open sets, it contains all Borel sets, from which it follows
that a subset A of G is a Borel set if and only if A=! is. Since the inverse map is
continuous, K is compact if and only K~! is compact. It follows directly from these
facts that i is a Borel measure which is finite on compact subsets, since y is. For outer
regularity, let A be a Borel set. Then ji(A) = u(A™'), where A™! is a Borel set, and so
fa(A) = inf{u(U) | A~' C U,U open}. Since U is open if and only if U~! is open, and
Al c U 'if and only if A C U, we have i(A) = inf{a(U) | A C U,U open}, and so i
is outer regular on Borel sets. Inner regularity of ji follows similarly.

Now notice that for every Borel set A, ji(A) = fi(Ag) for every g € G if and only
(A = p(g7' A7) for every g € G, if and only if u(A™!) = u(gA=1) for every g € G.
It follows that p is a left Haar measure if and only if & is a right Haar measure.

(2): Similar to (1), since ¢ and its inverse are continuous, U is open in G if and only
if (U) is open in G, A is a Borel set in G if and only if ¢(A) is a Borel set. and K
is compact if and only if ¢(K) is compact. So, following the proof of (1), it follows
that p o ¢ is a regular Borel measure which is finite on compact subsets. Now let A
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be any Borel set, and g € G. Then we have, since ¢ is an automorphism and g is a left
Haar measure, (no¢)(gA) = u(é(g)p(A)) = (nod)(A), and so po¢ is a left Haar measure.

(3): First suppose that p is a left Haar measure on G. Then for any simple function
h, we have

/Lghd,u:/hd,u for any g € G.
G G

Now if f: G — R is a measurable function, then by definition, for any g € G,

/Lgfdu:sup{/hdu | hsimple,thgf}.
G G

Since the integral is left invariant on simple functions, and h < L, f if and only L,-1h < f,
we have

/ L,f du = sup {/ Ly-1hdp | hsimple, Ly-1h < f} .
a a
Finally, h is simple if and only if Lyh is simple, and so replacing h by Lgh gives

/Lgfd,u:sup{/hdu | hsimple,hﬁf}:/fd,u,
G G G

as so we have proven the claim for any measurable f : G — R, and so in particular it
holds for f € CF(G).

Now suppose that for any function f € CF(G) and any g € G, we have [, L,f dp =
fG f du. Since p is assumed to be a regular Borel measure, then for every open set U in
G, we have

w(U) =sup{u(K) | K CU,K compact}.
By Theorem 1.2, for every nonempty compact K C U, there is a function f € C(G)
such that supp(f) C U, f(x) =1 when x € K, and ||f||cc = 1. For such an f, we have
(K) < [, fdp < p(U). It follows that we have

uw) =swp{ [ fu | 1€ CHG Il < Lsupn(h) € U,
G
Note that for any g € G, f € CF(G) and ||f]|oc < 1 if and only if L1 f € CF(G) and
| Lg-1f]loo < 1. So,

W(U) = sup { [ Lt i | 1€ CHGI e < Lsupp(Ly 1) © U}.

The integral is left invariant on CJ(G), and we have supp(L,-1f) C U if and only if
supp(f) C gU, so

W(U) = sup { /G Fdp | feCHG)]lw < Lsupp(f) C gU} — (o).

So, p is left translation invariant on open sets. If A is any Borel set and g € G, then by
outer regularity,

p(gA) = inf{u(U) | gA C U, U open}.
Since U is open if and only if gU is open, and p(gU) = u(U) when U is open, we obtain
1(gA) = u(A), and so p is a left Haar measure.
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(4): See Problem set 3.

(5): If G is compact, then by definition u(G) is finite when p is a left Haar measure.
So suppose that G is not compact, and let K be a compact neighborhood of the identity
in GG, and let U be a symmetric neighborhood of the identity such that UU C K. Since
G is not compact, no finite number of translates of K can cover G. So, let {z;} be a
sequence of points in G so that for every n > 1, z,, € U;-,x;K. Suppose that for some
pair ¢, j with j > ¢ we have z;U Nz ;U # @, so that z;u = z;v for some u,v € U. But then
z; = z;uv~t, and since U is symmetric and UU C K, we have z; € 2;K, a contradiction.
So, the translates x;U, ¢ > 1, are all pairwise disjoint. Since p is a left Haar measure, and
by (4) above, u(z;U) = p(U) > 0 for each z;, and so u(G) cannot be finite by countable
additivity of the measure p. OJ

Parts (2) through (5) of Proposition 2.1 may be stated for right Haar measures, with
the same proof as for left Haar measures. From part (3) of Proposition 2.1, we see that
to specify a left Haar measure p on G, it is enough to specify a measure in terms of
integration, [ dpu, such that [, Lyf du = [, f du for every measurable f : G — Rxg, or
just every f € CH(G), and every g € G. Then the measure of a Borel set A is given by
i) 4 du. The following is the main result, which will be proven in Sections 3 and 4 below.

Theorem 2.1 (Existence and Uniqueness of Haar measure). If G is a locally compact
group, then there exists a left (and right) Haar measure on G which is unique up to scalar
multiple.

If + € G, then the map ¢, : g — x 'gz is a continuous automorphism of G' with
continuous inverse. If y is a left Haar measure on G, then by part (2) of Proposition 2.1,
1o ¢, is also a left Haar measure on G. By Theorem 2.1, there is some positive scalar
dc(x) such that for every Borel set A of G, (p0 ¢,)(A) = da(z)u(A). Note that dg(x) is
independent of the initial choice of u, since u is unique up to scalar multiple.

Proposition 2.2. The function d¢ : G — RZ, is a continuous homomorphism.

Proof. For any 1, x5 € G, we have ¢, 4, = Gu, 00y, , from which it follows that dg(x125) =
dc(22)0¢(x1) = da(21)dg(z2) in R, and so d¢ is a multiplicative homomorphism.

Let z € RZ,, and let y < z be in the image of dg, where dg(a) =y, and let ¢ > 0. Let
K be a compact neighborhood of 1 in G, so p(K) is finite, and u(K) > 0 by part (4) of
Proposition 2.1, since K contains an open neighborhood of 1. Then a~!Ka is compact,
and is in particular a Borel set, since it is closed. Since p is outer regular on Borel sets,
then there exists an open set U, a ' Ka C U, such that u(U) < pu(a 'Ka) + u(K)e/2.
Since the map g — a~'ga is continuous, and a~!Ka C U, then there is a neighborhood
W of a such that WKW C U. So, for any b € W, we have u(b~'Kb) < u(U), so that

p(b ' Kb) < pla ' Ka) + u(K)e/2.
Since p(x 'Kz) = dg(x)u(K), we have, for every b € W,
0< (5@([)) < (56'(@) + 8/2 < 5(;(@) +e.

In other words, the inverse image J;'((0, 2)) of the open interval (0, 2) is open in G. Since
dc is a homomorphism, then dg(x)™! = dg(z7') for any z € G. Now, for any s € R,
we may pull back the open interval (s, 00), and see that its inverse image ;' ((s,00)) is
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open in G as well. The inverse image of any open interval (s, z) C R- is now seen to be
open, and so dg is continuous. U

Now let uL denote the left Haar measure on G. Since dg is continuous, the map
f=J. f( (9)dur(g) is a positive linear functional on C.(G), and so by Theorem 1.1,
it corresponds to a regular Borel measure on GG which is positive on compact sets.

Proposition 2.3. Let up, be a left Haar measure on G. Then for any measurable function
F: G — Ry, we have fG Fo¢,du, = (5G fG F duy. Also, the measure corresponding
to the positive linear functional f — [, f(g) da(g)dur(g) is a right Haar measure on G.

Proof. From the definition of dg, for any € G and any simple function h, we have
f hoo, duy, = d¢(x fG hdpg. It F': G — Ry is any measurable function, then we have

/FogbxduL:sup{/hduL | hsimple,thogbm}.
G G

Now, h is simple if and only if h o ¢, is simple, and ho ¢, < F o ¢, if and only if h < F|
and so replacing h by h o ¢, yields

(2.1) / F o ¢, duy = sup {/ ho ¢, duy | hsimple, h < F} = 5(;(30)/ Fdur,.
€ € G

From the right Haar measure version of part (3) of Proposition 2.1, to prove the sec-
ond statement we need to Show that for any x € G and any f € CF(G), we have
Jo Raf(9) da(g9)dur(g) = [, f( (9)dpr(g). For any x € G and function f € CH(G),
the product (R f)éG is in C’*(G) Slnce pr is a left Haar measure, then by part (3) of
Proposition 2.1, we have

/ R.f(9) dc(g)dur(g) = / Lo(R.f(9)0c(9)) dur(g) = / fa™ gx)da(a™"g) duc(yg).
G G G

From Proposition 2.2, dg is a homomorphism, and so dg(x~1g) = dg(z71)dc(g), and
5(g) = 6(z 'gx). From the above, we have

/gfu¢<g>5e<gynuxg>::6G<x—1>/kax—lgxx&xx-lgx>duL<g>

Applying (2.1), we have

| ReF@) Sctg)dnale) = data™)3ata) [ (9) betadaun(o) = [ $(9) dcto)dnalo)

giving right translation invariance of the integral. 0

The function d¢ is called the modular quasicharacter of the locally compact group G.
If py is a left Haar measure for GG, then for any z € G and measurable set A, we have
pr(Az) = pp(r7'Ax) = d6g(x)ur(A). That is, uy is bi-invariant, and thus a right Haar
measure, if and only if dg(z) = 1 for every z € G. A locally compact group for which
every left Haar measure is also a right Haar measure is called a unimodular group. It is
immediate that abelian groups are unimodular. We also have the following.

Proposition 2.4. Every compact group is unimodular.

Proof. From Proposition 2.2, the function ¢ : G — RZ is a continuous homomorphism.
If G is a compact group, then d¢(G) is a compact subgroup of RZ, the only possibility
of which is {1}. Thus 0g(z) =1 for all z € G, and G is unimodular. O
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For some examples of computing the Haar measure of a group, it is useful to remember
the change of variables formula for integrating functions on R™ (see [R, Theorem 7.26]),
which is as follows. Let U C R™ be open, 6 : U — R>( a measurable function, 7" : U — R™
an injective differentiable function, and let f dx = f dxy dxg - - - dx,, denote the Lebesgue

measure on R™. Then
/ 9dx=/90T|JT|dx,
T(U) U

where |Jr| is the absolute value of the Jacobian determinant for the function 7.

Example 1. ([B2, Chapter 1]) Consider the group G = {( g % ) | z,y e R,z > O},

a b
0 1
left multiplication on G by t. This gives the map x — ax and y +— ay +b of R.y x R onto
itself, and let us call this linear map 7. Then |Jr| = a®. Now let F(z,y) = F : G — Ry
be any Lebesgue measurable function, so that 6(z,y) = F(z,y)x 2 is also Lebesgue mea-
surable. By the change of variables formula, we have

/F(:B,y):v_2 d:vdy:/HOTazda:dy:/(FOT)(:B,y)x_Qda:dy.
G G G

which is homeomorphic to the open set RooxR in R%. Let t = € (G, and consider

In other words, if g = ( g ?{ ), then for any ¢t € G, we have

/ F(tg)x*dxdy = / F(g)z %dx dy,
G G

and thus [ 272 dx dy is the left Haar measure on G.
We can also consider right multiplication on G' by ¢, which gives the linear map S :
x +— ax,y — br+y, where |Jg| = a. In this case, the change of variables formula gives us

/F(gt)x_lda:dy:/F(g)x_ldxdy,
G G

so that | 2~!dx dy is the right Haar measure on G. In particular, G is not unimodular,
and by Proposition 2.3 the modular quasicharacter of G is given by dg(g) = =.

Example 2. Let F' be a non-archimedean local field with ring of integers O, uni-
formizer w, and p = 7O. Let ¢ be the cardinality of the residue field O/p, and let us
normalize the absolute value so that ||, = ¢7!. View F as an additive locally compact
group, which is unimodular since it is abelian, and let ; be the Haar measure normalized
so that u(O) = 1. If S C O is a set of representatives of O/p with 0 € S, then O is
the disjoint union of a + 7O, with a € S. Since p is the additive Haar measure, we have
pula+70) = p(rO) for every a € S, and so countable additivity,

1=p(0) =) pla+70)=q-u(x0),

and so u(rO) = ¢! = |r|,. We also have 7O is the disjoint union of ar + 720, a € S,

and we again use countable additivity to obtain u(720) = ¢=2 = |7?|,, and we can prove
by induction that p(7*0) = ¢ % = |7x*|, for k¥ > 0. Similarly, 77O is the disjoint
union of the sets ar™! + O, a € S, and we have (7 '0) = ¢ = |7 !|,, and in general
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uw(r™QO) = g™ = |x™|, for any m € Z. For any o € F*, we have a = n™u for some
m € Z, u € O*. Then we have

w(@0) = p(7™0) = ¢ ™ = |a,.

Now fix some ¢ € F*. Then the map f. : x — cx is a continuous automorphism with
continuous inverse on the additive group F', and so by part (2) of Proposition 2.1, po f. is
a Haar measure on F' also. By the uniqueness of Haar measure, we then must have po f. is
a scalar multiple of u. We have already shown that (o f.)(O) = p(cO) = |¢|,u(O), and
so we must have p(cA) = |¢|,u(A) for any Borel set A. This can be used to show that the
Haar measure on the multiplicative group F'* is given by [ |z|,'du(z) (see Problem set 3).

Example 3. Consider the additive group M, (R), which is isomorphic to R™ as an
additive topological group. So, the Haar measure for M, (R) is just the Lebesgue measure
on R™, which we denote by [ dX = [ dxy1dxig - - dzp,. Now let G = GL(n,R), which
is an open subset of R, Let t = (tij) € G, and consider left multiplication by ¢ on G. If
X = (x;;) € G, then left multiplication by ¢ induces the function T': z;; — > ,_, tixZy;.
When taking the Jacobian of a function from R™ to itself, we note that it does not matter
which order we take the variables, since permuting variables has the effect of permuting
rows, and permuting the corresponding columns in the same way. If we order the variables

a8 T11, L1, - -y Tnls L12, - - - Tn2, - - - , Lnp, then the Jacobian Jr is exactly the determinant
of the n%-by-n? matrix with n copies of the matrix ¢ down the block diagonal, with 0’s
elsewhere. That is, |Jr| = |det(¢)|”. Now, if F' is a measurable function on G, then

0(X) = F(X)|det(X)| ™ is also measurable, and from the change of variables formula,
/F(X)|det(X)|” X — / 00T |det(t)|" dX — /(FoT)(X) det(X)|" dX.
e e e

So, we have [, F(tX) |det(X)|™"dX = [, F(X) |det(X)| " dX, and the left Haar mea-
sure on G is [ |det(X)|™™dX.

If we consider right multiplication by ¢ on G, this gives the function S : z;; —
> rei tkii. When computing the Jacobian Jg, if we order the variables as z11, Z1, . . .,
Tins - - Tnn, then Jg is the determinant of the n?-by-n? matrix with n copies of the trans-
pose of ¢t down the block diagonal, with 0’s elsewhere. Since taking the transpose does
not change the determinant, we have |Jg| = |det(t)|". By applying the change of vari-
ables formula again, we obtain that [ |det(X)|™™dX is also a right Haar measure, and
GL(n,R) is unimodular.

Another way to see that this is the Haar measure on GL(n, R) is to check the invariance
under multiplication by each type of elementary matrix. Using this method, one can
show that if I’ is a non-archimedean local field as in Example 2, then the Haar measure
of G = GL(n, F) is [ |det(X)|, ™ du(X), where u(X) is the additive Haar measure on
M, (F), or the product of n* copies of the additive Haar measure px on F (see Problem
set 3).

3. THE HAAR COVERING NUMBER

Let G be a locally compact group, and let f, ¢ € CH(G). Since supp(f) is compact,
it is covered by a finite number of translates of any open set in G. In particular, if
U={seG | o(s) > ||l¢]lw/2}, then there are some elements s1,...,s, € G such that
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supp(f) C Uj_;s;U. That is, for any = € supp(f), there is an s; such that sj’la: eU,
from which it follows that

2/ fllso —
g ille s~y
el 2=

We may then define the Haar covering number of f with respect to ¢, written (f : ), as

(f:go):inf{ZCj In>1, c,...,¢, >0, fSchszapforsome sl,...,sneG}.

j=1 j=1
Note that it follows immediately from this definition that for fi, fo € CHG),
B  (fitferp)<(firp)+(faip), andif fi < fo, then (fi:¢) < (fa:¢).

The following are other basic properties of the Haar covering number.

Lemma 3.1. Let G be a locally compact group, and let f, f1, fa, 0 € CH(G). Then:
(1) For anyc>0, (cf : @) =c(f : ).
(2) For any s € G, (f: ) = (Lsf : ).
) (f = @) 2 |[flloc/[lol|o-
(4) (fizo) < (fi: fo)(far ).
Proof. (1): We have cf < 377 | ¢jLy,p if and only if f < Y77 (c;j/c)Ls, ¢, from which
the result follows.
(2): If s € G, we have f < >°" ¢jLg, ¢ if and only if Lyf <377 | ¢;L, s, from which
it follows that (f : ) = (Lsf : ¢).
(3): If f < >0 ciLs, ¢, then for any z € G,

Fla) < epelsy'e) < (Z ) Il

This implies Y7, ¢; > || flloo/l[#]loc, and so (f : @) > || f]]oo/ 1] ]oo-
(4): Suppose that f; < Z?Zl ¢;Lg, f2 and fo <377 diLy, . Then we have

fi< ZCjsz (Z diLtM) = ch Zdz‘LtistD = chdiLtistO-
j=1 i—1 1 =1 i

G=
That is, (fi:¢) <32 0di = (251 ¢) (2021 di), and so (fi: ) < (fi: fo)(fare). O

Notice that since f,p € CF(G), then ||f||cs ||¢l|le # 0, and part (3) of Lemma 3.1
implies we always have (f : ¢) > 0. Part (1) of Lemma 3.1 and (3.1) say that we have
“almost linearity”. We use the Haar covering number to build an “approximate linear

functional” as follows. Fix fy € CF(G), and for f,¢ € CF(G), define I,(f) by
(f: )
(fo: )

The following result will be applied to build a linear functional, which will give a Haar
measure, from I,,.

Lp(f) =
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Proposition 3.1. Fiz fo € CF(G), and define 1,(f) for ¢, f € CH(G) as above. Then

(fo: /)< L(f) < (f: fo)

If f1, fo € CHQG), then for every e > 0, there is a neighborhood V' of 1 in G such that,
whenever V C supp(y), we have

L(f1) + I(f2) < I (fi + f2) +&.
Proof. From part (4) of Lemma 3.1, we have

(fro) <(f:fo)(forw)and (fo: @) < (fo: )f:e)
Dividing the first inequality by (fo : ¢) and the second inequality by (f : ¢) gives the

desired result, (fo: f)™' < L,(f) < (f: fo).

Let ¢ > 0, and let fi, fo € CH(G). By Theorem 1.2, there is a function ¢ € CH(G)
such that ¢(g) = 1 when g € supp(fi + f2) = supp(fi1) U supp(fz). Choose § > 0 such
that

(3.2) 0 <min {(e/4)(fi+ fa: fo) ' (VE/2) (W : fo) 2}

Define the function h : G — Rsg by h = f1 + fo + 01, so that h € CF(G). Now define,
for ¢« = 1,2, the functions h; : G — R as

(@) = {fi<x>/h<x> if fi() # 0
0 if fl(x) = 07
Then h; € CF(G) and f; = h;h for i = 1,2, and hy + hy < 1. Recall (from the Topological
Groups notes) that h; and hy are right uniformly continuous. So, there are neighborhoods
Uy, Uy, of the identity in G, such that x € U; implies |h;(tx) — h;(t)| < ¢ for all t € G.
Letting V = Uy N Uy, we have t~1s € V implies |h;(s) — h(t)] < 6, for i = 1,2.
Now let p € C(G) such that supp(y) C V. Suppose that we have h < >77 ¢; Ly ¢
for some ¢; € Rxo, s; € G. Then we have f; = hih < 377 | ¢;(Ls;¢)hi, for i = 1,2. For
any s € G, s;, 1= 1,2, we have

p(s; s)hi(s) < p(s;'s)(hils;) +9),

since if s;ls € supp(p) C V, this follows from uniform continuity, and otherwise both
sides of the inequality are 0. So, for any s € G, i = 1,2, we have

fi(s) < ch@(sfls)(hi(sj) +9),

and so (fi 1 ) < >0, ¢j(hi(sj) +0). Since hy + hy < 1, we have

n

(i@ + (i) <1420 o

J=1

Since this is true for any ¢; > 0, s; € G, such that h < Z?Zl ¢jL,p, then in fact we have
(fizo)+ (fare) <(1+26)(h:¢). Now, by the definition of I, and applying (3.1) and
part (1) of Lemma 3.1, then from h = f; 4+ fo + 09 we have

Io(f1) + 1o(f2) < (14 20)1(h) < (14 20)(Ls(f1 + f2) + 01,(4)).
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The right hand side is I,(fi1 + f2) + 201,(f1 + f2) + 20%1,(1)), and by the first part of the
Proposition, we know that 1,(f1 + f2) < (fi + fo : fo), and I,(¢¥)) < (¢ : fy). From our
choice of ¢ in (3.2), we have

201,(f1 4 fo) +26°1,(¢) < 26(f1+ fa: fo) +26° (¢« fo) <e,
and so I,(f1) + 1,(f2) < I,(f1 + f2) + € whenever supp(yp) C V, as claimed. O

4. EXISTENCE AND UNIQUENESS OF THE HAAR MEASURE

In this section, we give a proof of Theorem 2.1, following [RV, Section 1.3] (a similar
proof is in [MZ]). For a locally compact group GG, we prove the existence and uniqueness
up to scalar multiple of a left Haar measure on GG, and the result for a right Haar measure
follows from part (1) of Proposition 2.1. From Theorem 1.1 and part (3) of Proposition
2.1, to show the existence of a left Haar measure on G, it is enough to show the existence
of a positive linear functional I : C.(G) — C such that I(Lsf) = I(f) for any s € G,
f € CHG). We will construct such a functional using the results on the functional I,
from the previous section.

4.1. Existence. Functions © : Cf(G) — R are naturally in one-to-one correspondence

with the set
H IR>07
fecH (@)
by corresponding © to the point (O(f)) et (). Fix some fo € CF(G), and for any

¢ € CH(G), we consider each I, as an element in the set above. Then by the first part of
Proposition 3.1, we have that each I, satisfies

LeY= [[ lh:H (S f

fect (@)

where Y is compact by Tychonoft’s theorem. For any compact neighborhood K of the
identity in G, consider the set Mg = {I, | supp(¢) C K} C Y. Since Y is compact and
thus closed, we also have Mg C Y. For any finite number K, Ks,..., K, of compact
neighborhoods of 1 in G, we have Mﬂ§;1 &, 1s nonempty by Theorem 1.2. We also have

Mﬁ;:IKj - ﬂ?leKj C ﬂ?leKﬁ

and so any finite number of sets in the collection {M g} of closed sets has nonempty
intersection, or has the finite intersection property. Since each My C Y andY is compact,
then we have Ny Mg is nonempty. Let I € NgMyxg C Y, I : CH(G) — Ryg be an element
in this nonempty 1 intersection.

Since I € Nk Mg, then every neighborhood of I in Y intersects each M. In particular,
given any compact neighborhood K of 1 in G, any three functions fi, f2, f3 € C:H(G) (or
any finite number, from the product topology, but we will need at most three), and any
£ > 0, there is a ¢ € C(G) such that supp(¢) € K and |I(f;) —I,(f;)| <& forj =1,2,3.

Now let f € CF(G), ¢ € Ryp, and € > 0. Let 6 = min{e/2,¢/2c}, and K some compact
neighborhood of 1 in G. Then there is a ¢ € CF(G) with supp(p) C K such that

E(ef) — L(cf)| < 5 <2/2 and |I(f) = I,(f)] < 3 < /2.
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So, |eI(f) — I(cf)| < &/2, since el (f) = I,(cf), by part (1) of Lemma 3.1. Now we
have, for any f € CH(G), ¢ > 0, and € > 0, |I(cf) — cI(f)| < € by the triangle inequality,
and so I(cf) = cI(f).

Similarly, if f € CF(G), s € G, ¢ > 0, and K some compact neighborhood of 1 in G,
there is a ¢ € CF(G) with supp(yp) C K such that

() = TNl <e/2 and [[(Lof) = I,(Lof)| < /2.
By part ~(2) of Lemma 3.1, we have I,(f) = I,(Lsf), and so the triangle inequality gives
[I(f) — I(Lsf)| < e for any f € CF(G), s € G, and € > 0. Thus I(f) = I(Lsf).
Let fi1, fo € CH(G), and let € > 0. Applying Proposition 3.1, let V' be a neighborhood
of 1 in G such that, if ¢ € CF(G) with supp(yp) C V, then

I(f1) + 1,(f2) < L,(f1 + f2) +e/4.

By (3.1), we also have I,(fi+f2) < I,(f1)+1,(f2). If welet K be a compact neighborhood
of 1 such that K C V, then for any ¢ € CF(G) with supp(¢) C K, we have

(Lo (1 + f2) = Lo (f1) = Lo(f2)] < /4.
Now let ¢ € CH(G) with supp(p) C K such that

1L,(fi) — I(f))| < e/4 fori=1,2, and |I(fi + fo) — I(f1 + f2)| < &/4.
From the triangle inequality, we now have that for any fi, fo € CJF(G) and € > 0,

[L(fi+ f2) = (L(f) + 1(f2)] <&,

and so I(f1 + fo) = 1(f1) + I(f2). i ) )

We have now shown that there is a function I : Cf (G) — R.q such that I(cf) = cI(f),
I(Lsf) = I(f), and {(fl + fQ) = I<f1> + I(fg), for any f, f1, fo € Cj(G), c € Ryp, and
s € G. We extend I to a left translation invariant linear functional I on all of C.(G)
as follows. Define I to be 0 on the constant 0 function, and for any f € C.(G), write
f = u+iv where u and v are real-valued, and define I(f) = I(ut)—1(u")+il(vH)—il(v™).
The fact that [ is a left translation invariant linear functional on C.(G) follows from the
proven properties of [ (Exercise). The existence of such an I implies the existence of a
left Haar measure on G.

4.2. Uniqueness. Let p and v be two left Haar measures on G. If ¢ € CF(G), then let
I(¢) = [, dpand J(¢) = [,9 dv. To show that v is a scalar multiple of 4, we must
show that I(¢)/J(¢) is independent of ¢ € CF(G). Let ¢,0 € CH(G), and € > 0. We
show that [I(¢))/J(¥) —1(0)/J(0)] < € by finding a £ € CF(G) such that I(1))/J (1)) and
1(0)/J(0) are simultaneously made arbitrarily close to I(£)/J(§).

Let K be a compact neighborhood of 1 in G, and let U be an open symmetric neigh-
borhood of 1, U C K, and then the closure of U, U = K, is compact, and K is also
symmetric since K is. Now let

Ky = supp(¢) - Ko U Ko -supp(¥)) and Ky = supp(0) - Ko U Ko - supp(0).
Then K, and Ky are both compact. For any ¢t € Ky, define ;7 and 7,0 by
’7th = Rﬂb — Ltfl’gb and %9 = Rt9 — Lt719.

Notice that if t € K and z € K, then in particular = ¢ supp(¢)) t ! and = & ¢t~ supp(v),
since Ky is symmetric. That is, if x ¢ Ky, then v (x) = ¢(zt) — ¢(tz) = 0, and so
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supp(vy) C Ky, and similarly supp(v.f) C Ky, for any ¢t € Ky. In particular, for any
t € G, vy and 7,0 are both real-valued functions in C.(G).

We claim that for any 0 > 0, there is a compact symmetric neighborhood K of the
identity in G, with K; C Ky, such that |y,4(s)| < 0 and |y0(s)| < d forallt € K, s € G.
First, from right uniform continuity of v, find a neighborhood V; of the identity such
that ¢ € V; implies ||R) — Y| < d/2. From left uniform coninuity, find a symmetric
neighborhood V; of the identity such that ¢t € V5 implies ||L;-19) — || < §/2. Now let Vj
be an open neighborhood of the identity contained in Vi NVoN Ky, so that Vy C Ky, and by
the triangle inequality we have ¢ € V implies ||74%||s < 0. Similarly, we can find an open
neighborhood Wy of the identity such that Wy C Ky, and t € Wy implies ||7:0||o < 9.
Letting Uy = Vo N Wy, we have Uy C Ky, and t € Uy guarantees that ||7:¢||s and |70
are both less that 0. Now let K’ be a compact neighborhood of the identity with K’ C U,
which exists by local compactness, and let U; be a symmetric open neighborhood of the
identity contained in K’. Since U; C K, and K| is compact, then K; = U, is a compact
symmetric neighbhorhood of the identity, and K; C Ky. Moreover, since Ky C K' C Uy,
then t € K implies that |v1(s)| < d and |y0(s)| < d for all s € G.

We let § > 0 be such that

[ eJ@) ()
(4.1) 6 < min { 2u(Ky)" 2u(Ky) } 7

and we choose a compact symmetric neighborhood K; of the identity with K; C Ky as
above for this §. Note that p(Ky) and p(Kp) are finite since the measure of a compact
set is finite, and J(¢) and J(f) are finite since 1) and 6 have compact support.

Now let K3 be a compact neighborhood of the identity such that Ky C int(K; ), which
exists by local compactness. By Theorem 1.2, there is a function £ e CH (@) such that
E(g) =1if g € Ky, £(g) = 0if g & int(Ky), and ||€]|s = 1. Define ¢ by

E(s) = &(s) +E(s71),

so that su~pp(§) C K, since if s € K, then s7! & K, because K, is symmetric, and by
choice of £ we then have £(s) = 0. Thus £ € CF(G), and £ is even in that £(s) = £(s71)

o= () ([0 ) s

We have
and since p is a left Haar measure, we have

(4.2) MW®=ALW%WW@Mﬂ

We also have, since p is a left Haar measure,

:Léwm@w@@@5ééw%wwW@ww

Since £ is even and v is a left Haar measure, we obtain that

(4.3) mwwzééawwm //5 $(st) dpu(s)du().
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Calculating the absolute value of the difference between (4.2) and (4.3), we get

1(E)T(0) — 1(4)J(€)] = /G /G E(E)r(s) du(S)dV(t)‘ |

We have supp(§) C Ky, |1(s)| < § for every s € G and t € K, and supp(vy¢)) C Ky.

So, we have
/K (1) ( /K b(s) du(8)> v )

g/}ﬁf(zﬁ)

< op(Ky) i §(t) dv(t) = op(Ky)J(£).

Dividing both sides of this inequality by J(&).J(¢), and from our choice of § (4.1), gives
19 1w _ pls)
JE)  JW)| T J[W)
Duplicating this exact calculation, but replacing ¢ by 6, yields

Q) 10)| _ sulro)
JE) JO)|—  JO)
and so |[I(v)/J(¢) — 1(0)/J(0)| < e for any € > 0. Thus, the linear functionals I and J
differ by only a scalar factor, and the left Haar measure is unique up to scalar.

[1(6)J () = I(¥)J(§)] =

dv(t)

/K ) )

<e/2.

<e/2,
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