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A UNIQUENESS RESULT ON BOUNDARY INTERPOLATION

VLADIMIR BOLOTNIKOV

(Communicated by Juha M. Heinonen)

Abstract. Let f be an analytic function mapping the unit disk D into itself.
We give necessary and sufficient conditions on the local behavior of f near a
finite set of boundary points that require f to be a finite Blaschke product.

1. Introduction

The following boundary uniqueness result was presented in [10] as an intermedi-
ate step to obtain a similar result in the multivariable setting of the unit ball.

Theorem 1.1. Let f ∈ S and let f(z) = z +O((z−1)4) as z → 1. Then f(z) ≡ z.

Here and in what follows, S denotes the Schur class of functions analytic and
bounded by one in modulus on the unit disk D. In [11], Theorem 1.1 was generalized
in the following way.

Theorem 1.2. Let f ∈ S and let b be a finite Blaschke product. Let τ be a
unimodular number and let Ab,τ = b−1(τ ) = {t1, . . . , td} (since b is a finite Blaschke
product, Ab,τ is a finite subset of the unit circle T). If

(1) f(z) = b(z) + O((z − t1)4) as z → t1 and
(2) f(z) = b(z) + O((z − ti)�i) for some �i ≥ 2 as z → ti for i = 2, . . . , d,

then f(z) ≡ b(z) on D.

Thus, conditions in Theorem 1.2 are sufficient to guarantee f(z) ≡ b(z). The
question raised in [11] was to find necessary (in a sense) and sufficient conditions.
The answer is given below. For a given real x, [x] denotes the largest integer that
does not exceed x.

Theorem 1.3. Let f ∈ S and let b be a finite Blaschke product of degree d. Let
t1, . . . , tn be points on T and let

(1.1) f(z) = b(z) + o((z − ti)mi) for i = 1, . . . , n

as z tends to ti nontangentially and where m1, . . . , mn are nonnegative integers. If

(1.2)
[
m1 + 1

2

]
+ . . . +

[
mn + 1

2

]
> d = deg b,

then f(z) ≡ b(z) on D. Otherwise, the uniqueness result fails. Namely: if condition
(1.2) fails for a finite Blaschke product b and nonnegative integers m1, . . . , mn, then
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for every choice of n points t1, . . . , tn ∈ T, there are infinitely many functions f ∈ S
subject to (1.1)

In other words, the points ti ∈ T can be chosen arbitrarily (regardless b) as well
as the rates of convergence. To derive Theorem 1.2 from Theorem 1.3, note that
if deg b = d, the set Ab,τ consists of exactly d points on T. The assumptions in
Theorem 1.2 mean that (1.1) holds for m1 = 3 and mi ≥ 1 for i = 2, . . . , d. Then
the sum on the left hand side in (1.2) is not less than 2 + (d− 1) = d + 1, which is
greater than d, and the result follows. The proof of Theorem 1.3 is given in Section
4. It relies on some recent results [5, 6] on boundary interpolation that are recalled
in Sections 2 and 3.

2. Boundary Schwarz-Pick matrices

Given a function w analytic on D, given n ∈ N and given two n-tuples z =
(z1, . . . , zn) of distinct points in Dn and k = (k1, . . . , kn) ∈ Nn, let |k| = k1+. . .+kn

and let us introduce the |k| × |k| matrix

(2.1) Pw
k (z) =

[
Pw

ki,kj
(zi, zj)

]n

i,j=1

with the ki × kj block entries

(2.2) Pw
ki,kj

(zi, zj) =

⎡⎢⎢⎣ 1
�!r!

∂�+r

∂z�∂ζ̄r

1 − w(z)w(ζ)
1 − zζ̄

∣∣∣∣∣ z = zi

ζ = zj

⎤⎥⎥⎦
r=0,...,kj−1

�=0,...,ki−1

.

The matrix Pw
k (z), which will be referred to as to a Schwarz-Pick matrix, is Her-

mitian. A well known property of the Schur class is that for w ∈ S, the matrix
Pw

k (z) is positive semidefinite for any choice of tuples k and z. In fact, it is positive
definite, unless w is a finite Blaschke product. In what follows, we will write BF for
the class of all finite Blaschke products and, more specifically, BFd for the set of
all Blaschke products of degree d. The symbol Dom(w) will stand for the domain
of holomorphy of w. Most likely, the next result is well known.

Lemma 2.1. Let w ∈ BFd and let k = (k1, . . . , kn) ∈ Nn. Then
(1) The function Pw

k (z) defined on (Dom(w)\T)n by formulas (2.1) and (2.2),
can be extended continuously to (Dom(w))n.

(2) For every z ∈ (Dom(w))n, the matrix Pw
k (z) is positive semidefinite and

rankPw
k (z) = min{|k|, d}.

Proof. Since w ∈ BFd, it admits a unitary realization

(2.3) w(z) = w(0) + zC(Id − zA)−1B (z ∈ Dom(w)),

with matrices A ∈ Cd×d, B ∈ Cd×1, C ∈ C1×d such that

(2.4)
d−1⋂
j=0

Ker CAj = {0} and det (I − zA) �= 0 (z ∈ Dom(w))

and such that the block matrix U =
[

A B
C w(0)

]
is unitary. A canonical way to get such

a realization is the following (see [9]). Let H2 be the Hardy space of the unit disk.
Since w ∈ BFd, it follows that H := H2 � wH2 is a d-dimensional subspace of H2
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invariant under the backward shift. In addition, the function z �→ (w(z)−w(0))/z
belongs to H. Define the operators A : H → H, B : C → H and C : H → C by

(2.5) Af =
f(z) − f(0)

z
, Bc =

w(z) − w(0)
z

c, Cf = f(0)

for f ∈ H and c ∈ C (thus, A is the restriction of the backward shift S∗ of H2 to
an S∗-invariant subspace H of H2 and C is the operator of evaluation at zero on
H). Then the representation formula

(2.6) w(z) = w(0) + zC(IH − zA)−1B

holds for every z ∈ Dom(w). Furthermore, the operators (2.5) meet conditions
(2.4) and the connecting operator U =

[
A B
C w(0)

]
turns out to be unitary on H⊕ C

so that (2.6) is a unitary realization for w, and (2.3) follows upon identifying H
with C

d. Another proof of (2.3) based on straightforward calculations can be found
in [8, Lemma 3.2].

A consequence of equality UU∗ = I is that

1 − w(z)w(ζ)
1 − zζ̄

= C(I − zA)−1(I − ζ̄A∗)−1C∗.

Differentiating both parts in the latter identity gives

1
�!r!

∂�+r

∂z�∂ζ̄r

1 − w(z)w(ζ)
1 − zζ̄

= CA�(I − zA)−�−1(I − ζ̄A∗)−r−1A∗rC∗

which allows us to represent the matrix in (2.1) as

(2.7) Pw
k (z) = Rk(z)Rk(z)∗,

where

(2.8) Rk(z) =

⎡⎢⎣ Rk1(z1)
...

Rkn
(zn)

⎤⎥⎦ and Rki
(zi) =

⎡⎢⎢⎢⎣
C(I − ziA)−1

CA(I − ziA)−2

...
CAki−1(I − ziA)−ki

⎤⎥⎥⎥⎦ .

By (2.8), Rk(z) is analytic on (more precisely, can be extended analytically to)
(Dom(w))n and then formula (2.7) gives the desired extension of Pw

k (z) to all of
(Dom(w))n. By (2.8), Rk(z) ∈ C|k|×d, and therefore we have from (2.7)

(2.9) Pw
k (z) ≥ 0 and rankPw

k (z) ≤ min{|k|, d}.
On the other hand, if |k| = d, the square matrix Rk(z) is not singular. Indeed,
assuming that it is singular, we take a nonzero vector x ∈ Cd such that

Rk(z)
n∏

j=1

(I − zjA)kjx = 0.

By (2.8), the latter matrix equation reduces to the system of d = |k| equalities

CA�(I − ziA)ki−�−1
∏
j �=i

(I − zjA)kjx = 0

for � = 0, . . . , ki − 1 and i = 1, . . . , n. Expanding polynomials leads to a homoge-
neous system of linear (with respect to Cx, CAx,. . . , CAd−1x) equations with the
nonzero Vandermonde-like determinant from which it follows that GA�x = 0 for � =
0, . . . , d−1. Then x = 0, by the first relation in (2.4), and thus, det Rk(z) �= 0. By
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(2.7), Pw
k (z) > 0 whenever z ∈ (Dom(w))n and |k| = d. Finally if k = (k1, . . . , kn)

is any tuple with |k| = d̃ < d, let k̃ = (k1, . . . , kn−1, kn + d − d̃) so that |k̃| = d.
Since Pw

k (z) is the top d̃ × d̃ principal submatrix in Pw
k̃

(z) and since the latter
matrix is positive definite by the preceding analysis, we have

(2.10) Pw
k (z) > 0 whenever z ∈ (Dom(w))n and |k| < d.

Combining (2.10) and (2.9) gives the second assertion of the lemma and completes
the proof. �

Given w ∈ BF and a “boundary” tuple t = (t1, . . . , tn) ∈ Tn, Lemma 2.1
enables us to define the boundary Schwarz-Pick matrix Pw

k (t) = Rk(t)Rk(t)∗ via
factorization formula (2.7) for every k ∈ Nn. However, we are more interested in
boundary Schwarz-Pick matrices for more general Schur functions. The following
definition looks appropriate:

Definition 2.2. Given w ∈ S, k = (k1, . . . , kn) ∈ Nn and t = (t1, . . . , tn) ∈ Tn,
the boundary Schwarz-Pick matrix is defined by

(2.11) Pw
k (t) = lim

z→t
Pw

k (z)

as zi ∈ D tends to ti nontangentially for i = 1, . . . , n, provided the limit in (2.11)
exists.

Here and in what follows, “the limit exists” means also that it is finite. By (2.1)
and (2.2), Pw

k (t) is of the form

(2.12) Pw
k (t) =

[
Pw

ki,kj
(ti, tj)

]n

i,j=1

where

(2.13) Pw
ki,kj

(ti, tj) = lim
z → ti
ζ → tj

[
1

�!r!
∂�+r

∂z�∂ζ̄r

1 − w(z)w(ζ)
1 − zζ̄

]r=0,...,kj−1

�=0,...,ki−1

.

A necessary and sufficient condition for the limits (2.13) to exist is that

(2.14) lim inf
z→ti

∂2ki−2

∂zki−1∂z̄ki−1

1 − |w(z)|2
1 − |z|2 < ∞ for i = 1, . . . , n,

where z ∈ D tends to ti arbitrarily (not necessarily nontangentially). Necessity is
self-evident since the bottom diagonal entries in the diagonal blocks Pw

ki,ki
(ti, ti)

are the nontangential (angular) limits

lim
z,ζ→ti

1
((ki − 1)!)2

∂2ki−2

∂zki−1∂ζ̄ki−1

1 − w(z)w(ζ)
1 − zζ̄

and their existence clearly implies (2.14). The sufficiency part was proved in [5,
Theorem 1.2]. Some other important consequences of conditions (2.14) (see [6,
Theorem 2.3] for the proof) are recalled in the following theorem.

Theorem 2.3. Let t1, . . . , tn ∈ T, k1, . . . , kn ∈ N, w ∈ S and let us assume that
conditions (2.14) are met. Then
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(1) The following nontangential boundary limits exist:

(2.15) wj(ti) := lim
z→ti

w(j)(z)
j!

for j = 0, . . . , 2ki − 1; i = 1, . . . , n.

(2) The nontangential boundary limit (2.11) exists (or equivalently all the limits
in (2.13) exist) and can be expressed in terms of the limits (2.15) as follows:

(2.16) Pw
ki,kj

(ti, tj) = Hw
ki,kj

(ti, tj)Ψkj
(tj)Tw

kj
(tj)∗

where Ψkj
(tj) is the kj × kj upper triangular matrix with the entries

(2.17) ψr� =

⎧⎨⎩
0, if r > �,

(−1)�

(
�
r

)
t�+r+1
0 , if r ≤ �

(r, � = 0, . . . , kj − 1),

where Tw
kj

(tj) is the lower triangular Toeplitz matrix:

Tw
kj

(tj) =

⎡⎢⎢⎢⎢⎣
w0(tj) 0 . . . 0

w1(tj) w0(tj)
. . .

...
...

. . . . . . 0
wkj−1(tj) . . . w1(tj) w0(tj)

⎤⎥⎥⎥⎥⎦ ,

and where Hw
ki,kj

(ti, tj) is defined for i = j as the Hankel matrix

(2.18) Hw
ki,ki

(ti, ti) =

⎡⎢⎢⎢⎣
w1(ti) w2(ti) . . . wki

(ti)
w2(ti) w3(ti) . . . wki+1(ti)

...
...

...
wki

(ti) wki+1(ti) . . . w2ki−1(ti)

⎤⎥⎥⎥⎦
and entrywise (if i �= j) by

[H(ti, tj)]r,� =
r∑

α=0

(−1)r−α

(
� + r − α

�

)
wα(ti)

(ti − tj)�+r−α+1

−
�∑

β=0

(−1)r

(
� + r − β

r

)
wβ(tj)

(ti − tj)�+r−β+1
(2.19)

for r = 0, . . . , ki − 1 and � = 0, . . . , kj − 1.
(2.20)

(3) It holds that |w0(ti)| = 1 (i = 1, . . . , n) and Pw
k (t) ≥ 0.

Remark 2.4. Once the two first statements in Theorem 2.3 are proved, the third
statement is immediate. Inequality Pw

k (t) ≥ 0 follows from (2.11) and the fact
that Pw

k (z) ≥ 0 for every z ∈ D. Furthermore, existence of the limits (2.13)

implies in particular that the nontangential boundary limits lim
z→ti

1 − |w(z)|2
1 − |z|2 exist

for i = 1, . . . , n (and are finite) which together with existence of the nontangential
limits w0(ti) in (2.15) implies that |w0(ti)| = 1.

Remark 2.5. In cases n = 1 and k1 = 1, Theorem 2.3 reduces to the classical
Carathéodory-Julia theorem [12] on angular derivatives.
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Remark 2.6. In [13], I. Kovalishina considered the single point case (n = 1 and
k1 > 1) under an additional assumption that w satisfies the symmetry relation
w(z)w(1/z̄) ≡ 1 in some neighborhood of t1. A remarkable “Hankel-Ψ-Toeplitz”
structure (2.16) of Pw

k1,k1
(t1, t1) has been observed there.

Carathéodory-Julia type conditions (2.14) are worth a formal definition.

Definition 2.7. Given n-tuples t = (t1, . . . , tn) ∈ T
n and k = (k1, . . . , kn) ∈ N

n, a
Schur function w is said to belong to the class Sk(t) if it meets conditions (2.14).

Statement (1) in Theorem 2.3 shows that the definition (2.11) of the boundary
Schwarz-Pick matrix Pw

k (t) makes sense if and only if w ∈ Sk(t). Statement (2) ex-
presses Pw

k (t) in terms of boundary limits of w and of its derivatives. An interesting
point in (2.20) is that the block matrix Pw

k (t) of the form (2.12) constructed via
structured formulas (2.16)–(2.19) (rather than by the limits (2.13)) does not look
like a Hermitian matrix and nevertheless, it turns out to be Hermitian (and even
positive semidefinite) due to conditions (2.14). The next theorem (that essentially
was proved in [5]) shows that relations (2.20) are characteristic for the class Sk(t).

Theorem 2.8. Let w be a Schur function, let t ∈ Tn, k ∈ Nn and let us assume
that the nontangential limits (2.15) exist and meet conditions (2.20) where Pw

k (t)
is the matrix constructed from the limits (2.15) via formulas (2.16)–(2.19). Then
w ∈ Sk(t).

Proof. By the assumptions of the theorem,

(2.21) |w0(ti)| = 1 (i = 1, . . . , n) and Pw
ki,ki

(ti, ti) ≥ 0

for i = 1, . . . , n, where Pw
ki,ki

(ti, ti) is the diagonal block of the matrix Pw
k (t) cor-

responding to the point ti and defined, according to formulas (2.16)–(2.18), as

Pw
ki,ki

(ti, ti) =

⎡⎢⎣ w1(ti) . . . wki
(ti)

...
...

wki
(ti) . . . w2ki−1(ti)

⎤⎥⎦Ψkj
(tj)

⎡⎢⎣ w0(ti) . . . wki−1(ti)
. . .

...
0 w0(ti)

⎤⎥⎦ .

By Theorem 1.2 in [5], conditions (2.21) guarantee that conditions (2.14) hold and,
therefore, that w ∈ Sk(t). �

Note that from the computational point of view, it is much easier to construct the
boundary Schwarz-Pick matrix Pw

k (t) via formulas (2.16)–(2.19), than by (2.13) (for
example, if w is a rational function, the boundary limits wi(tj) are just the Taylor
coefficients from the expansion of w at ti). However, as follows from Theorems 2.3
and 2.8, the matrix constructed in this way will be indeed the boundary Schwarz-
Pick matrix if and only if conditions (2.20) are satisfied.

3. Boundary interpolation for classes Sk(t)

The following interpolation problem has been studied in [6].

Problem 3.1. Given t = (t1, . . . , tn) ∈ T
n, k = (k1, . . . , kn) ∈ N

n and numbers
bij ∈ C (j = 0, . . . , ki − 1; i = 1, . . . , n), find a function f ∈ Sk(t) such that

(3.1) fj(ti) := lim
z→ti

f (j)(z)
j!

= bij (j = 0, . . . , 2ki − 1; i = 1, . . . , n),

where all the limits are nontangential.
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This interpolation problem makes perfect sense: if f belongs to Sk(t), then the
nontangential limits in (3.1) exist by Theorem 2.3; we just want them to be equal
to the preassigned numbers. On the other hand, if w ∈ Sk(t), then the existence of
the boundary Schwarz-Pick matrix Pw

k (t) allows one to extend the classical results
[14, 16] (and their various more recent generalizations) on interior interpolation
to the boundary setting through a suitable limiting process, and in particular, to
establish necessary and sufficient conditions for solvability in terms of positivity of
a certain matrix constructed in terms of interpolation data (the Pick matrix of the
problem).

Boundary interpolation problems closely related to Problem 3.1 were also con-
sidered in [1, 2, 3, 13, 15]. The class Sk(t) did not not arise there but some
additional restrictions on data were imposed to guarantee conditions (2.14) to hold
true. Conditions (2.14) appear in [4] in a different but equivalent form. The case
where k1 = . . . = kn = 1 was also considered in [7] in a more general context of
generalized Schur functions.

We define the |k| × |k| matrix P (the Pick matrix of Problem 3.1) by formulas
similar to (2.16)–(2.19), but with wj(ti) replaced by bij :

(3.2) P = [Pij ]
n
i,j=1 with Pij = Hij · Ψkj

(tj) · T ∗
j ,

where Ψkj
(tj) is the upper triangular matrix with the entries given in (2.17), where

Ti is the lower triangular Toeplitz matrix and Hii is the Hankel matrix defined by

(3.3) Ti =

⎡⎢⎣ bi,0 0
...

. . .
bi,kj−1 . . . bi,0

⎤⎥⎦ , Hii =

⎡⎢⎣ bi,1 · · · bi,ki

...
...

bi,ki
· · · bi,2ki−1

⎤⎥⎦
for i = 1, . . . , n and where the matrices Hij (for i �= j) are defined entrywise by

[Hij ]r,� =
r∑

α=0

(−1)r−α

(
� + r − α

�

)
bi,α

(ti − tj)�+r−α+1

−
�∑

β=0

(−1)r

(
� + r − β

r

)
bj,β

(ti − tj)�+r−β+1
.(3.4)

The purpose of this construction is clear: the matrix P defined via formulas (3.2)–
(3.4) depends on the interpolation data only; on the other hand, for every solution
f of Problem 3.1, the boundary Schwarz-Pick matrix P f

k (t) must be equal to P , by
Theorem 2.3.

Theorem 3.2. Let P be the matrix defined in (3.2). Then
(1) If Problem 3.1 has a solution, then

(3.5) |bi,0| = 1 (i = 1, . . . , n) and P ≥ 0.

(2) If (3.5) holds and P > 0, then Problem 3.1 has infinitely many solutions.
(3) If (3.5) holds and P is singular, then Problem 3.1 has at most one solution.
(4) If (3.5) holds and f is a Schur function satisfying conditions (3.1), then

necessarily f ∈ Sk(t).

The first statement follows from statement (3) in Theorem 2.3, since bi,0 = f0(ti)
and P f

k (t) = P for every solution f of Problem 3.1. The last statement follows from
Theorem 2.8. The second statement was proved in [6, Theorem 1.6] where moreover,
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a linear fractional parametrization of all solutions of Problem 3.1 (in case P > 0)
is given. The third statement also was proved in [5, Theorem 6.1].

The proof of Theorem 1.3 will rest on Theorem 3.2 and the following simple
observation.

Proposition 3.3. Let P̃ = [pij ] be an r×r Hermitian matrix and let us assume that
its principal submatrix P = [piα,iβ

]�α,β=1 is positive definite. Then P̃ can be turned
into a positive definite matrix upon an appropriate modification of the r−� diagonal
entries pii for i �∈ {i1, . . . , i�} (we will call these entries the diagonal entries of P̃
complementary to the principal submatrix P ).

Proof. Without loss of generality we can assume that P is the leading principal

submatrix of P̃ so that P̃ =
[

P R∗

R D

]
. Let us modify the diagonal entries in D

as follows:

P̃ ′ =
[

P R∗

R D′

]
where D′ = D + ρIr−� (ρ > 0).

Since P > 0, the factorization formula[
P R∗

R D′

]
=

[
I� 0

RP−1 Ir−�

] [
P 0
0 D′ − RP−1R∗

] [
I� P−1R∗

0 Ir−�

]
shows that P̃ ′ > 0 if and only if D′ − RP−1R∗ = ρIr−� + D − RP−1R∗ > 0 and
the latter inequality indeed can be achieved if ρ is large enough. �

4. Proof of Theorem 1.3

Let us assume for a moment that the Schur function f in (1.1) is not given and
let us consider the following interpolation problem.

Problem 4.1. Given t1, . . . , tn ∈ T, m1, . . . , mn ∈ Z+ and b ∈ BFd, find a Schur
function f satisfying the asymptotic equation (1.1).

Note that conditions (1.1) can be reformulated equivalently (see e.g., [4, Corol-
lary 7.9] for the proof) as follows: the nontangential boundary limits fj(ti) exist
and satisfy

(4.1) fj(ti) := lim
z→ti

f (j)(z)
j!

=
b(j)(ti)

j!
=: bij for j = 0, . . . , mi; i = 1, . . . , n.

Define the integers ki :=
[

mi+1
2

]
for i = 1, . . . , n so that mi = 2ki − 1 or mi = 2ki.

Reindexing if necessary, we can assume without loss of generality that the first �
integers m1, . . . , m� are odd while the remaining ones (if any) are even. Now we
split conditions (4.1) into two parts:

(4.2) fj(ti) =
b(j)(ti)

j!
=: bij for j = 0, . . . , 2ki − 1 (ki > 0); i = 1, . . . , n,

and

(4.3) f2ki
(ti) =

b(2ki)(ti)
(2ki)!

=: bi,2ki
for i = � + 1, . . . , n.

First we consider the interpolation problem with interpolation conditions (4.2)
(which is “truncated” with respect to Problem 4.1). This problem looks like
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Problem 3.1; however, it is more special, since that data {bij} comes from cer-
tain b ∈ BFd. In other words, the Pick matrix P of problem (4.2) coincides with
the boundary Schwarz-Pick matrix P b

k(t). Then we may conclude by Lemma 2.1
that P ≥ 0 and

(4.4) rankP = min{|k|, d}.

Thus, the second condition in (3.5) is met, while the first condition holds since
bi,0 = b(ti) and b ∈ BF . Assuming that inequality (1.2) is in force, i.e., that

d <

n∑
i=1

[
mi + 1

2

]
=

n∑
i=1

ki = |k|,

we conclude from (4.4) that P is singular and then by statement (3) in Theorem
3.2, there is at most one f ∈ S satisfying conditions (4.2). Therefore (since (4.2)
is just part of (4.1)), there is at most one f ∈ S satisfying conditions (4.1). A self-
evident observation that the Schur function b does satisfy (4.1) (this information is
contained in (4.1)) gives the desired uniqueness: there are no functions f in S dif-
ferent from b that satisfy interpolation conditions (4.1) or, equivalently, asymptotic
equalities (1.1). Thus, once (1.2) is in force and f is subject to (1.1), we necessarily
have f(z) ≡ b(z). This completes the proof of the first statement in Theorem 1.3.
It remains to show that the uniqueness result fails whenever |k| ≤ d. In this case
we conclude from (4.4) that the |k| × |k| matrix P is positive definite and then, by
statement (2) in Theorem 3.2, there are infinitely many Schur functions f satisfy-
ing conditions (4.2). In case all mi’s are odd, this completes the proof: conditions
(4.2) are identical with (4.1) and thus, there are infinitely many Schur functions
satisfying asymptotic (1.1). The general case (when the set of conditions (4.3) is
not empty) requires one more step.

Assuming that |k| ≤ d so that the Pick matrix P = P b
k(t) corresponding to

interpolation problem (4.2) is positive definite and assuming that � < n in (4.3),
let us attach interpolation conditions

(4.5) f2ki+1(ti) =
b(2ki+1)(ti)
(2ki + 1)!

=: bi,2ki+1 for i = � + 1, . . . , n

to (4.3) and let us consider the extended interpolation problem (for Schur class
functions) with interpolation conditions (4.2), (4.3) and (4.5). The collection of
bij ’s appearing in (4.2) and (4.3) will be called the original data, and the collection
{bi,2ki+1} from (4.5) will be called the supplementary data, whereas their union will
be referred to as to the extended data.

For the extended interpolation problem we have an even number of conditions for
each interpolating point ti which allows us to construct the corresponding extended
Pick matrix P̃ via formulas (3.2):

(4.6) P̃ =
[
P̃ij

]n

i,j=1
where P̃ij = H̃ij · Ψk̃j

(tj) · T̃ ∗
j

and where H̃ij and T̃j are defined by formulas (3.3), (3.4) with ki replaced by k̃i.
It is clear that P̃ coincides with the boundary Schwarz-Pick matrix P b

k̃
(t) based on

the same b ∈ BFd, the same t = (t1, . . . , tn) ∈ Tn and

k̃ = (k̃1, . . . , k̃n) = (k1, . . . , k�, k�+1 + 1, . . . , kn + 1) ∈ N
n.
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Of course, all the entries in P̃ are expressed in terms of the extended data. However,
it turns out that all its entries but � diagonal ones are uniquely determined from the
original data. Indeed, if i �= j, then H̃ij and T̃j (and therefore, P̃ij) are expressed
via formulas (3.3), (3.4) in terms the numbers bi,0, . . . , bi,k̃i−1 and bj,0, . . . , bj,k̃j−1

all of which are contained in the original data, since k̃i − 1 ≤ ki ≤ 2ki − 1.
Now we examine the diagonal blocks P̃ii for i > � (if i ≤ �, then P̃ii = Pii is

completely determined by the original data). By (4.6) and (3.3),

(4.7) P̃ii =

⎡⎢⎢⎢⎣
bi,1 · · · bi,ki

bi,ki+1

...
...

...
bi,ki

. . . bi,2ki−1 bi,2ki

bi,ki+1 . . . bi,2ki
bi,2ki+1

⎤⎥⎥⎥⎦Ψki+1(ti)

⎡⎢⎣ bi,0 . . . bi,ki

. . .
...

0 bi,0

⎤⎥⎦ .

It is readily seen from (4.7) that the only entry in P̃ii that depends on the supple-
mentary data is the the bottom diagonal entry

(4.8) γi :=
[
P̃ii

]
ki,ki

=
[

bi,ki+1 · · · bi,2ki+1

]
Ψki+1(ti)

[
bi,ki

· · · bi,0

]∗
which, due to of (2.17), can be written as

γi = (−1)kit2ki+1
i bi,2ki+1bi,0(4.9)

+
ki−1∑
r=0

bi,ki+r+1

ki∑
j=ki+r

(−1)jtki+r+j+1
i

(
j

ki + r

)
bi,ni−j .

Since P̃ coincides with the boundary Schwarz-Pick matrix P b
k̃
(t), it is positive

semidefinite (by Lemma 2.1) and Hermitian, in particular. Furthermore, the Pick
matrix P = P b

k(t) of problem (4.2) is a positive definite principal submatrix of
P̃ . The diagonal entries in P̃ complementary to P are exactly γi’s from (4.8), the
bottom diagonal entries in the blocks P̃ii of P̃ for i = � + 1, . . . , n. By Proposition
3.3, upon replacing γi in P̃ by appropriately chosen (sufficiently large) positive
numbers γ′

i (for i = � + 1, . . . , n) and keeping all the other entries the same, one
gets a positive definite matrix P̃ ′. Furthermore, for each chosen γ′

i, there exists
(the unique) b′i,2ki+1 such that

γ′
i = (−1)kit2ki+1

i b′i,2ki+1bi,0

+
ki−1∑
r=0

bi,ki+r+1

ki∑
j=ki+r

(−1)jtki+r+j+1
i

(
j

ki + r

)
bi,ni−j

(since bi,0 �= 0, the latter equality can be solved for b′i,2ki+1). Now we replace the
supplementary interpolation conditions (4.5) by

(4.10) f2ki+1(ti) = b′i,2ki+1 for i = � + 1, . . . , n

where the numbers on the right have nothing to do with the finite Blaschke product
b anymore. It is easily seen that the Pick matrix of the modified extended inter-
polation problem with interpolation conditions (4.2), (4.3) and (4.10) is P̃ ′. Since
it is positive definite, there are (by statement (2) in Theorem 3.2) infinitely many
Schur functions f satisfying these interpolation conditions. Thus, there are infin-
itely many Schur functions satisfying (4.2), (4.3) (that is, (4.1)) or equivalently, the
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asymptotic equalities (1.1). Thus, the uniqueness conclusion in Theorem 1.3 fails,
which completes the proof. �
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