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ON A BOUNDARY ANALOGUE OF THE
CARATHÉODORY-SCHUR INTERPOLATION PROBLEM

VLADIMIR BOLOTNIKOV

(Communicated by Joseph A. Ball)

Abstract. Characterization of Schur functions in terms of their Taylor co-
efficients is due to C. Carathéodory and I. Schur. We discuss the boundary
analogue of this problem.

1. Introduction

Characterization of Schur functions (analytic self-maps of the unit disk D) in
terms of their Taylor coefficients goes back to I. Schur [14] (and to C. Carathéodory
for a related class of functions). It looks natural to consider a similar question in
the “boundary” setting:

Problem 1.1. Given a point t0 on the unit circle T and given complex numbers
c0, . . . , cn, find necessary and sufficient conditions for existence of a Schur function
f that admits the asymptotic expansion

(1.1) f(z) = c0 + c1(z − t0) + . . . + cn(z − t0)n + o((z − t0)n)

as z tends to t0 nontangentially.

The class of all Schur functions will be denoted by S. Note that condition (1.1)
is equivalent to existence of nontangential (angular) boundary limits for f (j)(z) at
t0 and equalities

(1.2) lim
z→t0

f (j)(z)
j!

= cj for j = 1, . . . , n.

Since c0 is equal to the angular boundary limit of a Schur function, condition
|c0| ≤ 1 is necessary for (1.2) to hold for some f ∈ S. If n = 0, this condition is also
sufficient and there are infinitely many Schur functions f with the angular limit at
t0 equals c0. For n = 1, the answer is less trivial but still simple:

Given t0 ∈ T and c0, c1 ∈ C, there exists an f ∈ S such that

(1.3) lim
z→t0

f(z) = c0 and lim
z→t0

f ′(z) = c1

if and only if either |c0| < 1 or |c0| = 1 and t0c1c̄0 ≥ 0.
Moreover, if the necessary conditions are satisfied, then the problem (1.3) has

infinitely many solutions, unless |c0| = 1 and c1 = 0 in which case the problem
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has the unique solution f ≡ c0. Indeed, if |c0| < 1, then there are infinitely many
functions f ∈ S subject to (1.3), by Theorem 1.2 below. If |c0| = 1, then the
problem (1.3) has a solution if and only if the number d := t0c1c̄0 is nonnegative,
by the Carathéodory-Julia theorem [6]. If d = 0 (or equivalently, if c1 = 0),
the uniqueness follows by Julia’s lemma [7]. If d > 0, there is a linear fractional
parametrization with free Schur class parameter of all functions f ∈ S satisfying
(1.3) (see [12]).

If n ≥ 2, the answer for Problem 1.1 is not known. The next theorem might be
the first step toward it (for a simple proof in the context of matrix valued Schur
functions, see [10, Proposition 5.2]).

Theorem 1.2. Let t0 ∈ T, c0, . . . , cn ∈ C and let |c0| < 1. Then there exist
infinitely many Schur functions f satisfying interpolation conditions (1.2).

Somewhat greater effort is involved to prove a similar result for the multi-point
boundary interpolation problem for operator valued Schur functions. Such prob-
lems have arisen in the contexts of robust control system synthesis [11] and of
partial realization problem [10]. In what follows, S(X ,Y) denotes the Schur class
of L(X ,Y)-valued functions f analytic on D with ‖f‖∞ := supz∈D

‖f(z)‖op ≤ 1.
The symbol L(X ,Y) stands for the algebra of bounded linear operators mapping
a Hilbert space X into another Hilbert space Y and we shall shorten L(Y ,Y) to
L(Y). The symbol I will stand for the identity operator acting on an appropriate
Hilbert space.

Problem 1.3. Given k distinct points t1, . . . , tk∈T, nonnegative integers n1, . . . , nk

and N =
∑k

i=1(ni + 1) operators cij ∈ L(X ,Y), find necessary and sufficient con-
ditions for existence of a Schur function f ∈ S(X ,Y) such that

(1.4) lim
z→ti

f (j)(z)
j!

= cij for i = 1, . . . , k; j = 0, . . . , ni,

where the angular limits are understood in the weak sense.

Conditions ‖ci0‖ ≤ 1 (i = 1, . . . , k) are necessary for existence of an f ∈ S(X ,Y)
satisfying (1.4). Sufficient (not necessary) conditions are given in the next theorem
that generalizes Theorem 1.2 and is the main result of this note. Note that the
case when ni = 0 for i = 1, . . . , k (i.e., the boundary Nevanlinna-Pick problem) was
considered in [11] (see Theorem 1.5 there) and discussed in [2, Chapter 21].

Theorem 1.4. Given the data as above, let us assume that

(1.5) ‖ci0‖ < 1 for i = 1, . . . , k.

Then there exist infinitely many Schur functions f ∈ S(X ,Y) satisfying interpola-
tion conditions (1.4).

Moreover, we will show that there exist infinitely many rational functions f ∈
S(X ,Y) subject to (1.4) that are analytic and with ‖f‖∞ ≤ 1 on a larger disk Dρ

(ρ > 1); for such functions all the limits in (1.4) are uniform and can be replaced
by the values of f (j) at ti.

In conclusion we recall some other boundary interpolation problems related to
Problem 1.3 which were considered previously and which provide some other suf-
ficient conditions (different from (1.5)) for Problem 1.3 to have a solution. These
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conditions actually guarantee the existence of a rational inner (bi-inner, in the op-
erator valued setting) solution of the problem and therefore they are too far from
being necessary. For simplicity, we will discuss only the scalar valued setting and
we will assume that all the integers ni’s be odd: ni = 2mi + 1, for i = 1, . . . , k. If
there exists a finite Blaschke product f satisfying conditions (1.4), then it is readily
seen that |ci,0| = 1 for i = 1, . . . , k and that the matrix

P =

⎡⎢⎢⎢⎣
⎡⎢⎣ 1

�!r!
∂�+r

∂z�∂ζ̄r

(
1 − f(z)f(ζ)

1 − zζ̄

)∣∣∣∣∣ z = ti,
ζ = tj

⎤⎥⎦
� = 0, . . . , mi

r = 0, . . . , mj

⎤⎥⎥⎥⎦
k

i,j=1

is well defined and can be expressed explicitly in terms of the data {tj , cij} (we
refer to [5, Section 3] for the explicit formulas). Since f ∈ S, the latter matrix is
positive semidefinite. Interpolation problems studied in [1]–[5], [9], [12], [13] can be
formulated as follows:

Given the data {ti, mi, cij} such that

(1.6) P ≥ 0 and |ci,0| = 1 (i = 1, . . . , k),

(1) Find all Schur functions f satisfying conditions (1.4) or
(2) Find all Schur functions f satisfying conditions (1.4) for i = 1, . . . , k;

j = 0, . . . , 2mi (recall that 2mi = ni − 1) and

(1.7) (−1)mit2mi+1
i

(
ci,2mi+1 − lim

z→ti

f (2mi+1)(z)
(2mi + 1)!

)
ci,0 ≥ 0 for i = 1, . . . , k.

The second problem is a relaxed version of the first one when the equalities
assigning the values for the boundary limits of f (ni) at ti in (1.4) are replaced
by inequalities (1.7). The case when P is singular is not very interesting in the
scalar valued setting: the relaxed Problem 2 has a unique solution (necessarily a
finite Blaschke product) which may be or may be not a solution of Problem 1. If
P > 0, then both problems have infinitely many solutions that can be parametrized
in terms of a linear fractional transformation with the free Schur class parameter
(Problem 2; see [1]–[5], [12]) or with Schur class parameters satisfying certain con-
straints (Problem 1; see [13], [9], [5]). In particular, it follows that conditions (1.6)
(with P invertible) are sufficient for Problem 1.3 to have a solution.

2. Proof of Theorem 1.4

To prove Theorem 1.4, we shall use approximation arguments from [2, Chapter
21] a brief discussion there shows how to get Theorem 1.4 for the case ni = 0
(i = 1, . . . , k) from the classical Nevanlinna-Pick theorem. An auxiliary result (see
Lemma 2.2 below) will enable us to apply similar arguments for the general case.
The possibility to apply approximation arguments for a general multi-point inter-
polation problem was pointed out in [11, Remark 1.7]. First we recall a well known
result on the multi-point Carathéodory-Schur problem when all the interpolation
nodes fall inside the unit disk. The data set for this problem

(2.1) Σ = {z, n, Cn(z)}
consists of k-tuples z = {z1, . . . , zk} of distinct points in D and n = {n1, . . . , nk}
of nonnegative integers and of operators s0(zi), . . . , sni

(zi) ∈ L(X ,Y) assigned to
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each pair (zi, ni) that can be arranged in the matrix form as

(2.2) Cn(z) =

⎡⎢⎣ Cn1(z1)
...

Cnk
(zk)

⎤⎥⎦ , where Cni
(zi) =

⎡⎢⎣ s0(zi)
...

sni
(zi)

⎤⎥⎦ .

Associated with the data (2.1) is the Carathéodory-Pick operator PΣ defined as a
unique solution of the Stein equation

(2.3) PΣ − Jn(z)PΣJn(z)∗ = EnE∗
n − Cn(z)Cn(z)∗

where

(2.4) Jn(z) =

⎡⎢⎣ Jn1(z1) 0
. . .

0 Jnk
(zk)

⎤⎥⎦ and En =

⎡⎢⎣ En1

...
Enk

⎤⎥⎦ .

In (2.4) and in what follows, Jn(z) : Yn+1 → Yn+1 and En : Y → Yn+1 are the
operators defined by

(2.5) Jn(z) =

⎡⎢⎢⎢⎢⎣
zIY 0 . . . 0

IY zIY
. . .

...
. . . . . . 0

0 IY zIY

⎤⎥⎥⎥⎥⎦ and En =

⎡⎢⎢⎢⎣
IY
0
...
0

⎤⎥⎥⎥⎦
for z ∈ C and n ∈ Z+. Equation (2.3) indeed has a unique solution since specJn(z)
= {z1, . . . , zk} ⊂ D. Taking adjoints in (2.3) we see that P ∗

Σ also satisfies (2.3) and
then by uniqueness, PΣ = P ∗

Σ. The following interpolation result is well known (see
e.g., [2, Chapter 18], [8]).

Theorem 2.1. There exists a Schur function h ∈ S(X ,Y) such that

(2.6)
h(j)(zi)

j!
= sj(zi) for i = 1, . . . , k; j = 0, . . . , ni

if and only if the Carathéodory-Pick operator PΣ associated with the data (2.1) is
positive semidefinite. Furthermore, if PΣ is strictly positive definite (s.p.d.), there
exist infinitely many rational Schur functions satisfying conditions (2.6).

Now let us assume that the points z1, . . . , zk ∈ D are of the form zi = rti for
i = 1, . . . , k, where t1, . . . , tk are fixed points on T and r ∈ (0, 1) is a parameter.
Thus, z = rt = (rt1, . . . , rtk). Since we are interested in zi’s that are close enough
to ti’s, we may assume that r ∈ (ρ, 1) for some ρ > 0. Consequently, the operators
sj(zi) are replaced by functions sj(rti) := sij(r) : (ρ, 1) → L(X ,Y) for i = 1, . . . , k
and j = 0, . . . , ni that still can be arranged in the matrix form as in (2.2):

(2.7) Cn(r) =

⎡⎢⎣ Cn1(r)
...

Cnk
(r)

⎤⎥⎦ , where Cni
(r) =

⎡⎢⎣ si0(r)
...

si,ni
(r)

⎤⎥⎦ .

Given such data

(2.8) Σ(r) = {z = rt n, Cn(r)} (ρ < r < 1)
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depending on the parameter r, one can define the Carathéodory-Pick operator PΣ(r)

for every r ∈ (ρ, 1) as the unique solution of the Stein equation

(2.9) PΣ(r) − Jn(rt)PΣ(r)Jn(rt)∗ = EnE∗
n − Cn(r)Cn(r)∗.

Lemma 2.2. Given the data Σ(r) as in (2.8), let us assume that there exist positive
numbers δ < 1 and M such that

(2.10) ‖si,0(r)‖ ≤ δ and ‖si,j(r)‖ ≤ M

for all j = 1, . . . , ni, i = 1, . . . , k and r ∈ (ρ, 1). Then there exists r0 (ρ < r0 < 1)
such that the Carathéodory-Pick operator PΣ(r) is s.p.d. for every r ∈ (r0, 1).

The proof of this lemma will be given in the next section.

Proof of Theorem 1.4. Note that the functions sij(r) =
cij

rj
, where cij are the op-

erators from interpolation conditions (1.4), satisfy conditions (2.10) in Lemma 2.2.
Therefore, there exists r ∈ (0, 1) such that the corresponding Carathéodory-Pick
operator PΣ(r) is strictly positive definite. Then, by Theorem 2.1, there are infin-
itely many (rational) Schur functions h ∈ S(X ,Y) such that conditions (2.6) are
satisfied for zi = rti and sj(zi) =

cij

rj
:

(2.11)
h(j)(rti)

j!
=

cij

rj
for i = 1, . . . , k; j = 0, . . . , ni.

For each such function h, define f(z) := h(rz) which is also a (rational) Schur
function; in fact f is analytic and ‖f(z)‖ ≤ 1 on {z : |z| < 1/r} ⊃ D. Since
f (j)(z) = rjh(j)(rz), conditions (2.11) can be written in terms of f as

(2.12)
f (j)(ti)

j!
= cij for i = 1, . . . , k; j = 0, . . . , ni,

which means that f satisfies conditions (1.4) and since the above construction
guarantees that there are infinitely many such functions, the proof is completed. �

3. Proof of Lemma 2.2

This last section can be considered as the appendix containing the proof of the
auxiliary Lemma 2.2. First we note that the unique solution PΣ(r) of the Stein
equation (2.9) can be represented in the integral form as

(3.1) PΣ(r) =
∫

T

(λ − Jn(rt))−1(EnE∗
n − Cn(r)Cn(r)∗)(λ̄ − Jn(rt)∗)−1m(dλ)

where m(dλ) is the normalized Lebesgue measure on T (see [2, Theorem A.2.1]).
In (3.1) and in what follows we write (λ − J )−1 rather than (λI − J )−1. The
above integral makes sense whenever t ∈ Tk and r ∈ (0, 1) and it is not difficult to
verify that PΣ(r) defined by (3.1) indeed satisfies the Stein equation (2.9). Let us
represent PΣ(r) in the block form

(3.2) PΣ(r) =
[

A(r) B(r)∗

B(r) D(r)

]
where A(r) ∈ L(Y).

It is readily seen (for example, upon comparing the top diagonal block entries in
(2.9)) that

(3.3) A(r) =
IY − s10(r)s10(r)∗

1 − r2
.
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Let us assume that n1 ≥ 1 and that the conditions (2.10) are in force. Then in
particular, A(r) is (boundedly) invertible for every r ∈ (ρ, 1) and we can introduce

(3.4) S(r) = D(r) − B(r)A(r)−1B(r)∗,

the Schur complement of A(r) in PΣ(r). As we will show in Lemma 3.3 below, S(r)
is congruent to the Carathéodory-Pick operator PΣ̃(r) associated with the data

(3.5) Σ̃(r) = {z = rt, m, C̃m(r)}
based on the original collection of points t = (t1, . . . , tk), on the tuple

(3.6) m = {m1, . . . , mk} : m1 = n1 − 1 and mi = ni (i = 2, . . . , k),

and on an operator C̃m(r) with the block entries s̃i,j ∈ L(X ,Y) defined below (see
formula (3.16)) in terms of the original operators si,j from (2.7). To construct these
operators we will use the entries in the block decompositions

(3.7) Jn(rt) =
[

rt1IY 0
F J

]
, Cn(r) =

[
s(r)
C(r)

]
, En =

[
IY
E

]
conformal with (3.2), where we have set for short

(3.8) J := Jm(rt) and s1,0(r) := s(r).

The construction will be carried out in two steps and pointwise (i.e., for each fixed
r); at this point dependence on r can be dropped from the notation. Making use
of decompositions (3.7) and of notation (3.8) we first define the operator

(3.9) G = F (I − ss∗)
1
2 + (rt1 − J ) (E − Cs∗) (I − ss∗)−

1
2

and decompose it as

(3.10) G =

⎡⎢⎣ G1

...
Gk

⎤⎥⎦ , where Gi =

⎡⎢⎣ gi,0

...
gi,mi

⎤⎥⎦ : Y → Ymi+1.

Explicit formulas for the blocks gi,j can be obtained upon substituting explicit
formulas for F , C and E into (3.9). For the top components gi,0 in Gi, we have

g1,0 = (I − ss∗)
1
2 ,(3.11)

gi,0 = r(t1 − ti) [I − si,0s
∗] (I − ss∗)−

1
2 (i = 2, . . . , k).(3.12)

Next we introduce

(3.13) G =

⎡⎢⎣ G1 0
. . .

0 Gk

⎤⎥⎦ where Gi =

⎡⎢⎢⎢⎢⎣
gi,0 0 . . . 0

gi,1 gi,0
. . .

...
...

. . . . . . 0
gi,mi

. . . gi,1 gi,0

⎤⎥⎥⎥⎥⎦
is the lower triangular Toeplitz block operator so that Gi commutes with Jm1(zi)
and equality GiEmi

= Gi holds by construction, for i = 1, . . . , k. Therefore, we
also have

(3.14) GJ = JG and GEm = G

where G is given in (3.10) and Em is associated to m of the form (3.6) via the
second formula in (2.4). Recall that G constructed above is a function of r. The
next remark establishes some uniform estimates needed for the subsequent analysis.
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Remark 3.1. Conditions (2.10) guarantee that ‖G(r)‖ and ‖G(r)−1‖ are bounded
uniformly with respect to r ∈ (ρ, 1).

Proof. Due to the structure (3.13) of G and in view of (3.10), it suffices to show
that ‖G(r)‖ and ‖gi,0(r)−1‖ (for i = 1, . . . , k) are uniformly bounded on (ρ, 1). To
this end, we first note that by the first condition in (2.10),

(3.15) ‖(I − s(r)s(r)∗)−
1
2 ‖ ≤ 1√

1 − δ2
, ‖(I − si,0(r)s(r)∗)−1‖ ≤ 1

1 − δ2
.

Since ‖C(r)‖ ≤ M by the second condition in (2.10), and since ‖F‖ = ‖E‖ = 1
and ‖Jm(rt)‖ ≤ 2 by definitions, the uniform bound

‖G(r)‖ ≤ 1 +
3(1 + δM)√

1 − δ2

follows from (3.9) by the triangle inequality. Furthermore, comparing (3.11) and
the first relation in (3.15) we get ‖g1,0(r)−1‖ ≤ (1− δ2)−

1
2 , while (3.12) along with

the second relation in (3.15) gives

‖gi,0(r)−1‖ ≤ 1
ρ|t1 − ti|

· 1
1 − δ2

and completes the proof. �

Now we complete the construction of the data Σ̃(r) by defining the operator

(3.16) C̃m(r) = (I − rt̄1J )G(r)−1 [Es1,0(r) − C(r)] (I − s1,0(r)∗s1,0(r))−
1
2

and decomposing it conformally with (3.10) (again dropping the variable r for short)
as

(3.17) C̃m =

⎡⎢⎣ C̃m1

...
C̃mk

⎤⎥⎦ , where C̃mi
=

⎡⎢⎣ s̃i,0

...
s̃i,mi

⎤⎥⎦ .

In some more detail (again we write s for s1,0):

(3.18) C̃m1 = (I − rt̄1Jm1(rt1))G
−1
1

⎡⎢⎢⎢⎣
s1,1

s1,2

...
s1,n1

⎤⎥⎥⎥⎦ s∗(I − ss∗)−
1
2

and

(3.19) C̃mi
= (I − rt̄1Jni

(rti))G−1
i [Eni

s − Cni
] (I − s∗s)−

1
2

for i = 2, . . . , k. The top components s̃i,0 in the two latter formulas will be of
special interest. Due to the lower triangular structure of Gi and Jmi

(rti), we have
by (3.18) and (3.11),

s̃1,0 = (1 − r2)g−1
1,0s1,1s

∗(I − ss∗)−
1
2

= (1 − r2)(I − ss∗)−
1
2 s1,1s

∗(I − ss∗)−
1
2 ,(3.20)

and similarly, (3.19) and (3.12) bring us to

(3.21) s̃i,0 = (1 − r2t̄1ti)g−1
i,0 (s − si,0)(I − s∗s)−

1
2 =

1 − r2t̄1ti
r(t1 − ti)

Li
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where

(3.22) Li := (I − ss∗)
1
2 (I − si,0s

∗)−1(s − si,0)(I − s∗s)−
1
2 (i = 2, . . . , k).

Remark 3.2. Let us assume that conditions (2.10) are in force for the data Σ(r)
defined in (2.8). Then the data Σ̃(r) constructed in (3.5), (3.6), (3.16), satisfies
similar conditions: there exist positive numbers δ̃ < 1, ρ̃ < 1 and M̃ such that

(3.23) ‖s̃i,0(r)‖ ≤ δ̃ and ‖s̃i,j(r)‖ ≤ M̃

for all j = 1, . . . , mi, i = 1, . . . , k and r ∈ (ρ̃, 1).

Proof. Upon making use of Remark 3.1 and of the uniform bounds from its proof
we conclude from (3.16) that

‖C̃m(r)‖ ≤ 3 · ‖G(r)−1‖ · δ + M√
1 − δ2

=: M̃ < ∞

and thus we have at least the same uniform bound for the block entries s̃i,j in
C̃m(r) which proves the second series of bounds in (3.23). To check the first series
of bounds in (3.23), we start with identity

I − LiL
∗
i = (I − ss∗)

1
2 (I − si,0s

∗)−1(I − si,0s
∗
i,0)(I − ss∗i,0)

−1(I − ss∗)
1
2

(where Li is defined in (3.22)) verification of which is straightforward. Due to the
first bound in (2.10),

I − si,0s
∗
i,0 ≥ (1 − δ2) · I (i = 1, . . . , k)

and by the triangle inequality, 1 − δ2 ≤ ‖I − ss∗i,0‖ < 2, so that

(I − si,0s
∗
1,0)

−1(I − s1,0s
∗
i,0)

−1 ≥ 1
4
· I.

Therefore,

I − LiL
∗
i ≥ (1 − δ2)(I − ss∗)

1
2 (I − si,0s

∗)−1(I − ss∗i,0)
−1(I − ss∗)

1
2

≥ 1 − δ2

4
· (I − ss∗) ≥ (1 − δ2)2

4
· I,

and thus,

(3.24) ‖Li(r)‖ ≤
(

1 − (1 − δ2)2

4

) 1
2

=: δ1.

On the other hand, the identity

Ψ(r) :=
∣∣∣∣ r(t1 − ti)
1 − r2t̄1ti

∣∣∣∣2 = 1 − (1 − r2)2

|1 − r2t̄1ti|2

shows that the continuous function Ψ(r) is less than one on (ρ, 1) and tends to one
as r → 1. Pick δ2 ∈ (δ1, 1) and choose ρ1 such that Ψ(r) > δ2 whenever r ∈ (ρ1, 1).
Now we get from (3.21) and (3.24) that for every r ∈ (ρ1, 1),

‖s̃i,0(r)‖ =
‖Li‖
Ψ(r)

<
δ1

δ2
=: δ̃ < 1 for i = 2, . . . , k.

Finally, it follows from (3.20) by (3.15) and uniform bounds ‖s(r)‖ ≤ δ and
‖s1,1(r)‖ ≤ M , that

‖s̃1,0(r)‖ ≤ (1 − r2) · δM

1 − δ2
.
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Choosing ρ2 such that (1 − r2) δM
1−δ2 < δ̃ for every r ∈ (ρ2, 1) and setting ρ̃ =

max {ρ1, ρ2}, we get the first series of uniform bounds in (3.21). �

Lemma 3.3. Let us assume that conditions (2.10) are in force for the data Σ(r)
defined in (2.8) and let S(r) be the Schur complement of the block A(r) in the
decomposition (3.2) of the associated Carathéodory-Pick operator PΣ(r). Then for
every fixed r ∈ (ρ, 1), the operator

(3.25) S̃(r) := G(r)−1(I − rt̄1Jm(rt))S(r)(I − rt1Jm(rt)∗)(G(r)−1)∗

is equal to the Carathéodory-Pick operator PΣ̃(r) associated with the data (3.5) where

m, C̃m and G are defined in (3.6), (3.16) and (3.13), respectively.

Proof. It suffices to show that S̃(r) admits the integral representation

(3.26) S̃(r) =
∫

T

(λ − Jm(rt))−1(EmE∗
m − C̃m(r)C̃m(r)∗)(λ̄ − Jm(rt)∗)−1m(dλ)

since the right hand side integral represents PΣ̃(r), by a virtue of (3.1). Since r is
fixed, dependence of some items on r will be dropped for short. First we multiply
both parts in the integral representation (3.1) by the operator

(3.27) T =
[
−BA−1 I

]
on the left and by T ∗ on the right. Since TPΣT ∗ = S, we have

(3.28) S =
∫

T

T (λ − Jn(rt))−1(EnE∗
n − Cn(r)Cn(r)∗)(λ̄ − Jn(rt)∗)−1T ∗m(dλ).

To simplify the integrand, we will use block decompositions (3.7) conformal with
(3.2) and notation (3.8). Note that by (3.7) and (3.3),

(3.29) EnE∗
n − Cn(r)Cn(r)∗ =

[
(1 − r2)A X∗

X EE∗ − CC∗

]
where

(3.30) X := E − Cs∗.

Substituting decompositions (3.2) and (3.7) into (2.3) and comparing the off diag-
onal blocks we get

B − rt̄1FA − rt̄1JB = E − Cs∗ = X

which implies

(3.31) B = (I − rt̄1J )−1 [z̄1FA + X] .

Therefore,

F − (λ − J )BA−1 = (I − rt̄1J )−1
(
(I − rt̄1J )F − (λ − J )

[
rt̄1F + XA−1

])
= (I − rt̄1J )−1

(
(1 − rλt̄1)F − (λ − J )XA−1

)
.(3.32)

The first decomposition in (3.7) gives

(λ − Jn(rt))−1 =
1

λ − rt1

[
IY 0

(λ − J )−1F (λ − J )−1

]
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which together with (3.5), (3.27) and (3.31) leads us to

T (λ − Jn(rt))−1 =
1

λ − rt1

[
−BA−1 I

] [
IY 0

(λ − J )−1F (λ − J )−1

]
=

1
λ − rt1

(λ − J )−1
[

F − (λ − J )BA−1 I
]

= (I − rt̄1J )−1(λ − J )−1

×
[

1−rλt̄1
λ−rt1

F − 1
λ−rt1

(λ − J )XA−1 I − rt̄1J
]
.

Now we substitute the latter equality and (3.29) into (3.28) and multiply the ob-
tained equality by the operator G−1(I − rt̄1J ) on the left and by its adjoint on the
right. On account of (3.14) and (3.25), we have

(3.33) S̃ =
∫

T

(λ − J )−1 G−1K(λ) (G∗)−1(λ̄ − J ∗)−1 m(dλ)

where

K(λ) =
[

1−rλt̄1
λ−rt1

F − 1
λ−rt1

(λ − J )XA−1 I − rt̄1J
]

×
[

(1 − r2)A X∗

X EE∗ − CC∗

][
1−rλ̄t1
λ̄−rt̄1

F ∗ − 1
λ̄−rt̄1

A−1X∗(λ̄ − J ∗)
I − rt1J ∗

]
.

Expanding the right hand side expression and subsequent simplifying (with taking
advantage of the fact that |λ| = 1) brings us to

K(λ) = GG∗ − (I − rt̄1J ) (Es − C) (s∗E∗ − C∗) (I − rt1J ∗)

and shows that K(λ) does not depend on λ. It remains to multiply the latter
equality by G−1 on the left, by (G∗)−1 on the right and to use formulas (3.16) and
(3.14) to get

G−1K (G∗)−1 = EmE∗
m − C̃m(r)C̃m(r)∗.

Substituting the latter equality into (3.33) we get (3.26) and complete the proof. �
Proof of Lemma 2.2. The proof will be obtained by induction in N = |n| = n1 +
. . . + nk. If N = 0, then PΣ(r) reduces to the Pick matrix whose diagonal block
entries satisfy

Pii(r) =
I − si0(r)si0(r)

1 − r2
≥ δ

1 − r2
· I

whereas the off diagonal blocks are subject to

‖Pij(r)‖ =
∥∥∥∥I − si0(r)sj0(r)

1 − r2tit̄j

∥∥∥∥ ≤ 2
| sin (arg(ti − tj))|

.

Now it is clear that PΣ(r) is strictly positive if r is sufficiently close to one. Let us
assume that the statement of the lemma holds for every choice of the data Σ(r) of
the form (2.8) with |n| ≤ N and satisfying conditions (2.10) for some positive M
and δ. Pick data Σ(r) of the form (2.8) satisfying (2.10) and with |n| = N + 1. To
complete the proof by induction argument, we have to show that PΣ(r) is s.p.d. for
every r < 1 sufficiently close to one. To this end, note that one of the components
n1, . . . , nk in n must be positive; without loss of generality we assume that n1 ≥ 1.
Using decomposition (3.2) of PΣ(r) in which the block A is s.p.d. by (2.10), we
construct the date Σ̃(r) = {z = rt, m, C̃m(r)}} with m and C̃m(r) defined as
in (3.6) and (3.16), (3.17). By Remark 3.2, the block entries s̃ij(r) of C̃m(rt)
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meet conditions (3.23) and since |m| = N , we can use the induction hypothesis to
conclude that the associated Carathéodory-Pick operator PΣ̃(r) is s.p.d. for every
r ∈ (ρ̃, 1). Now we again use (3.2) to write the factorization formula

PΣ(r) =
[

I 0
B(r)A(r)−1 I

] [
A(r) 0

0 S(r)

] [
I A(r)−1B(r)∗

0 I

]
,

where S(r) is defined in (3.4), which implies (since A is s.p.d.) that PΣ(r) is s.p.d.
if and only if S(r) is s.p.d. By Lemma 3.3,

G(r)−1(I − rt̄1Jm(rt))S(I − rt1Jm(rt)∗)(G(r)−1)∗ = PΣ̃(r)

and since the operator G(r)−1(I − rt̄1Jm(rt)) is boundedly invertible for every
fixed r ∈ (ρ̃, 1), S(r) (and therefore, PΣ(r) as well) is s.p.d. whenever PΣ̃(r) is; that
is, in particular, for every r ∈ (ρ̃, 1). �
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