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Boundary Nevanlinna–Pick interpolation prob-
lems for generalized Schur functions

Vladimir Bolotnikov and Alexander Kheifets

Abstract. Three boundary Nevanlinna-Pick interpolation problems at finitely
many points are formulated for generalized Schur functions. For each prob-
lem, the set of all solutions is parametrized in terms of a linear fractional
transformation with a Schur class parameter.

1. Introduction

The Schur class S of complex-valued analytic functions mapping the unit disk D

into the closed unit disk D can be characterized in terms of positive kernels as

follows: a function w belongs to S if and only if the kernel

Kw(z, ζ) :=
1 − w(ζ)w(z)

1 − ζ̄z
(1.1)

is positive definite on D (in formulas: Kw � 0), i.e., if and only if the Hermitian

matrix

[Kw(zj , zi)]
n

i,j=1 =

[
1 − w(zi)w(zj)

1 − z̄izj

]n

i,j=1

(1.2)

is positive semidefinite for every choice of an integer n and of n points z1, . . . , zn ∈

D. The significance of this characterization for interpolation theory is that it gives

the necessity part in the Nevanlinna-Pick interpolation theorem: given points

z1, . . . , zn ∈ D and w1, . . . , wn ∈ C, there exists w ∈ S with w(zj) = wj for

j = 1, . . . , n if and only if the associated Pick matrix P =
[

1−wiwj

1−zizj

]
is positive

semidefinite.

There are at least two obstacles to get an immediate boundary analogue of

the latter result just upon sending the points z1, . . . , zn in (1.2) to the unit circle

T. Firstly, the boundary nontangential (equivalently, radial) limits

w(t) := lim
z→t

w(z) (1.3)
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exist at almost every (but not every) point t on T. Secondly, although the nontan-

gential limits

dw(t) := lim
z→t

1 − |w(z)|2

1 − |z|2
≥ 0 (t ∈ T) (1.4)

exist at every t ∈ T, they can be infinite. However, if dw(t) < ∞, then it is readily

seen that the limit (1.3) exists and is unimodular. Then we can pass to limits in

(1.2) to get the necessity part of the following interpolation result:

Given points t1, . . . , tn ∈ T and numbers w1, . . . , wn and γ1, . . . , γn such that

|wi| = 1 and γi ≥ 0 for i = 1, . . . , n, (1.5)

there exists w ∈ S with

w(ti) = wi and dw(ti) ≤ γi for i = 1, . . . , n (1.6)

if and only if the associated Pick matrix

P = [Pij ]
n
i,j=1 with the entries Pij =





1 − wiwj

1 − titj
for i 6= j

γi for i = j
(1.7)

is positive semidefinite.

This result in turn, suggests the following well known boundary Nevanlinna–

Pick interpolation problem.

Problem 1.1. Given points t1, . . . , tn ∈ T and numbers w1, . . . , wn, γ1, . . . , γn as

in (1.5) and such that the Pick matrix P defined in (1.7) is positive semidefinite,

find all functions w ∈ S satisfying interpolation conditions (1.6).

Note that assumptions (1.5) and P ≥ 0 are not restrictive since they are

necessary for the problem to have a solution.

The boundary Nevanlinna–Pick interpolation problem was worked out using

quite different approaches: the method of fundamental matrix inequalities [12],

the recursive Schur algorithm [7], the Grassmannian approach [3], via realization

theory [2], and via unitary extensions of partially defined isometries [1, 11]. If

P is singular, then Problem 1.1 has a unique solution which is a finite Blaschke

product of degree r = rankP . If P is positive definite, Problem 1.1 has infinitely

many solutions that can be described in terms of a linear fractional transformation

with a free Schur class parameter.

Note that a similar problem with equality sign in the second series of condi-

tions in (1.6) was considered in [19, 9, 6]:
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Problem 1.2. Given the data as in Problem 1.1, find all functions w ∈ S such that

w(ti) = wi and dw(ti) = γi for i = 1, . . . , n (1.8)

The solvability criteria for this modified problem is also given in terms of the

Pick matrix (1.7) but it is more subtle: condition P ≥ 0 is necessary (not sufficient,

in general) for the Problem 1.2 to have a solution while the condition P > 0 is

sufficient.

The objective of this paper is to study the above problems in the setting of

generalized Schur functions. A function w is called a generalized Schur function if

it is of the form

w(z) =
S(z)

B(z)
, (1.9)

for some Schur function S ∈ S and a finite Blaschke product B. Without loss of

generality we can (and will) assume that S and B in representation (1.9) have no

common zeroes. For a fixed integer κ ≥ 0, we denote by Sκ the class of generalized

Schur functions with κ poles inside D, i.e., the class of functions of the form (1.9)

with a Blaschke product B of degree κ. Thus, Sκ is a class of functions w such

that

1. w is meromorphic in D and has κ poles inside D counted with multiplicities.

2. w is bounded on an annulus {z : ρ < |z| < 1} for some ρ ∈ (0, 1).

3. Boundary nontangential limits w(t) := lim
z→t

w(z) exist and satisfy |w(t)| ≤

1 for almost all t ∈ T.

It is clear that the class S0 coincides with the classical Schur class.

The class Sκ can be characterized alternatively (and sometimes this charac-

terization is taken as the definition of the class) as the set of functions w mero-

morphic on D and such that the kernel Kw(z, ζ) defined in (1.1) has κ negative

squares on D∩ ρ(w) (ρ(w) stands for the domain of analyticity of w); in formulas:

sq−(Kw) = κ. The last equality means that for every choice of an integer n and of

n points z1, . . . , zn ∈ D∩ ρ(w), the Hermitian matrix (1.9) has at most κ negative

eigenvalues:

sq−

[
1 − w(zi)w(zj)

1 − z̄izj

]n

i,j=1

≤ κ, (1.10)
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and for at least one such choice it has exactly κ negative eigenvalues counted with

multiplicities. In what follows, we will say “w has κ negative squares” rather than

“the kernel Kw has κ negative squares”.

Due to representation (1.9) and in view of the quite simple structure of fi-

nite Blaschke products, most of the results concerning the boundary behavior of

generalized Schur functions can be derived from the corresponding classical results

for the Schur class functions. For example, the nontangential boundary limit dw(t)

(defined in (1.4)) exists for every t ∈ T and satisfies dw(t) > −∞ (not necessarily

nonnegative, in contrast to the definite case). Indeed, if w is of the form (1.9), then

1 − |w(z)|2

1 − |z|2
=

1

|B(z)|2

(
1 − |S(z)|2

1 − |z|2
−

1 − |B(z)|2

1 − |z|2

)
. (1.11)

Passing to the limits as z tends to t ∈ T in the latter equality and taking into

account that |B(t)| = 1, we get

dw(t) = dS(t) − dB(t) > −∞,

since dw(t0) ≥ 0 and dB(t) < ∞. Furthermore, as in the definite case, if dw(t) < ∞,

then the nontangential limit (1.3) exists and is unimodular.

Now we formulate indefinite analogues of Problems 1.1 and 1.2. The data set

for these problems will consist of n points t1, . . . , tn on T, n unimodular numbers

w1, . . . , wn and n real numbers γ1, . . . , γn:

ti ∈ T, |wi| = 1, γi ∈ R (i = 1, . . . , n). (1.12)

As in the definite case, we associate to the interpolation data (1.12) the Pick matrix

P via the formula (1.7) which is still Hermitian (since γj ∈ R), but not positive

semidefinite, in general. Let κ be the number of its negative eigenvalues:

κ := sq−P, (1.13)

where

P = [Pij ]
n
i,j=1 and Pij =





1 − wiwj

1 − titj
for i 6= j,

γj for i = j.
(1.14)

The next problem is an indefinite analogue of Problem 1.2 and it coincides with

Problem 1.2 if κ = 0.
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Problem 1.3. Given the data set (1.12), find all functions w ∈ Sκ (with κ defined

in (1.13)) such that

dw(ti) := lim
z→ti

1 − |w(z)|2

1 − |z|2
= γi (i = 1, . . . , n) (1.15)

and

w(ti) := lim
z→ti

w(z) = wi (i = 1, . . . , n). (1.16)

The analogue of Problem 1.1 is:

Problem 1.4. Given the data set (1.12), find all functions w ∈ Sκ (with κ defined

in (1.13)) such that

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , n). (1.17)

Interpolation conditions for the two above problems are clear: existence of the

nontangential limits dw(ti)’s implies existence of the nontangential limits w(ti)’s;

upon prescribing the values of these limits (or upon prescribing upper bounds for

dw(ti)’s) we come up with interpolation conditions (1.15)–(1.17). The choice (1.13)

for the index of Sκ should be explained in some more detail.

Remark 1.5. If a generalized Schur function w satisfies interpolation conditions

(1.17), then it has at least κ = sq−P negative squares.

Indeed, if w is a generalized Schur function of the class Seκ and t1, . . . , tn are

distinct points on T such that

dw(ti) < ∞ for i = 1, . . . , n,

then the nontangential boundary limits w(ti)’s exist (and are unimodular) and

one can pass to the limit in (1.10) (as ti → zi for i = 1, . . . , n) to conclude that

the Hermitian matrix

Pw(t1, . . . , tn) =
[
Pw

ij

]n
i,j=1

with Pw
ij =





1 − w(ti)w(tj)

1 − titj
for i 6= j

dw(ti) for i = j
(1.18)

satisfies

sq−Pw(t1, . . . , tn) ≤ κ̃. (1.19)
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If w meets conditions (1.16), then the nondiagonal entries in the matrices P w(t1, . . . , tn)

and P coincide which clearly follows from the definitions (1.14) and (1.18). It fol-

lows from the same definitions that

P − Pw(t1, . . . , tn) =




γ1 − dw(t1) 0
. . .

0 γn − dw(tn)




and thus, conditions (1.15) and the first series of conditions in (1.17) can be written

equivalently in the matrix form as

Pw(t1, . . . , tn) = P and Pw(t1, . . . , tn) ≤ P, (1.20)

respectively. Each one of the two last relations implies, in view of (1.19) that

sq−P ≤ κ̃.

Thus, the latter condition is necessary for existence of a function w of the class Seκ

satisfying interpolation conditions (1.17) (or (1.15) and (1.16)). The choice (1.13)

means that we are concerned about generalized Schur functions with the minimally

possible negative index.

Problems 1.3 and 1.4 are indefinite analogues of Problems 1.2 and 1.1, re-

spectively. Now we introduce another boundary interpolation problem that does

not appear in the context of classical Schur functions.

Problem 1.6. Given the data set (1.12), find all functions w ∈ Sκ′ for some κ′ ≤

κ = sq−P such that conditions (1.17) are satisfied at all but κ−κ′ points t1, . . . , tn.

In other words, a solution w to the last problem is allowed to have less then κ

negative squares and to omit some of interpolation conditions (but not too many

of them). The significance of Problem 1.6 will be explained in the next section.

2. Main results

The purpose of the paper is to obtain parametrizations of solution sets S13, S14

and S16 for Problems 1.3, 1.4 and 1.6, respectively. First we note that

S13 ⊆ S14 ⊆ S16 and S14 = S16 ∩ Sκ. (2.1)

Inclusions in (2.1) are self-evident. If w is a solution of Problems 1.6 with κ′ = κ,

then κ − κ′ = 0 which means that conditions (1.17) are satisfied at all points
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t1, . . . , tn and thus, w ∈ S14. Thus, S14 ⊆ S16∩Sκ. The reverse inclusion is evident,

since S14 ⊆ Sκ. Note also that if κ = 0, then Problems 1.4 and 1.6 are equivalent:

S14 = S16.

It turns out that in the indefinite setting (i.e., when κ > 0), Problem 1.6

plays the same role as Problem 1.4 does in the classical setting: it always has

a solution and, in the indetereminate case, the solution set S16 admits a linear

fractional parametrization with the free Schur class parameter. The case when P

is singular, is relatively simple:

Theorem 2.1. Let P be singular. Then Problem 1.6 has a unique solution w which

is the ratio of two finite Blaschke products

w(z) =
B1(z)

B2(z)

with no common zeroes and such that

deg B1 + deg B2 = rankP.

Furthermore, if deg B2 = κ, then w is also a solution of Problem 1.4.

The proof will be given in Section 7. Now we turn to a more interesting case

when P is not singular. In this case, we pick an arbitrary point µ ∈ T\{t1, . . . , tn}

and introduce the 2 × 2 matrix valued function

Θ(z) =

[
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

]
(2.2)

= I2 + (z − µ)

[
C
E

]
(zIn − T )−1P−1(In − µT ∗)−1

[
C∗ −E∗

]

where

T =




t1
. . .

tn


 , E =

[
1 . . . 1

]
, C =

[
w1 . . . wn

]
. (2.3)

Note that the Pick matrix P defined in (1.14) satisfies the following identity

P − T ∗PT = E∗E − C∗C. (2.4)

Indeed, equality of nondiagonal entries in (2.4) follows from the definition (1.18)

of P , whereas diagonal entries in both sides of (2.4) are zeroes. Identity (2.4) and

all its ingredients will play an important role in the subsequent analysis.
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The function Θ defined in (2.2) is rational and has simple poles at t1, . . . , tn.

Note some extra properties of Θ. Let J be a signature matrix defined as

J =

[
1 0
0 −1

]
. (2.5)

It turns out that Θ is J-unitary on the unit circle, i.e., that

Θ(t)JΘ(t)∗ = J for every t ∈ T ∩ ρ(Θ) (2.6)

and the kernel

KΘ,J(z, ζ) :=
J − Θ(z)JΘ(ζ)∗

1 − zζ̄
(2.7)

has κ = sq−P negative squares on D:

sq−KΘ,J = κ. (2.8)

We shall use the symbol Wκ for the class of 2×2 meromorphic functions satisfying

conditions (2.6) and (2.8). It is well known that for every function Θ ∈ Wκ, the

linear fractional transformation

TΘ : E −→
Θ11E + Θ12

Θ21E + Θ22
(2.9)

is well defined for every Schur class function E and maps S0 into
⋃

κ′≤κ Sκ′ . This

map is not onto and the question about its range is of certain interest. If Θ is of

the form (2.2), the range of the transformation (2.9) is S16:

Theorem 2.2. Let P , T , E and C be defined as in (1.14) and (2.3) and let w be

a function meromorphic on D. If P is invertible, then w is a solution of Problem

1.6 if and only if it is of the form

w(z) = TΘ[E ](z) :=
Θ11(z)E(z) + Θ12(z)

Θ21(z)E(z) + Θ22(z)
, (2.10)

for some Schur function E ∈ S0.

It is not difficult to show that every rational function Θ from the class Wκ

with simple poles at t1, . . . , tn ∈ T and normalized to I2 at µ ∈ T, is necessarily

of the form (2.2) for some row vector C ∈ C1×n with unimodular entries, with E

as in (2.3) and with a Hermitian invertible matrix P having κ negative squares

and being subject to the Stein identity (2.4). Thus, Theorem 2.2 clarifies the

interpolation meaning of the range of a linear fractional transformation based on

a rational function Θ of the class Wκ with simple poles on the boundary of the

unit disk.
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The necessity part in Theorem 2.2 will be obtained in Section 3 using an

appropriate adaptation of the V. P. Potapov’s method of the Fundamental Matrix

Inequality (FMI) to the context of generalized Schur functions. The proof of the

sufficiency part rests on Theorems 2.3 and 2.5 which are of certain independent

interest. To formulate these theorems, let us introduce the numbers c̃1, . . . , c̃n and

ẽ1, . . . , ẽn by

c̃∗i := − lim
z→ti

(z − ti)Θ21(z) and ẽ∗i := lim
z→ti

(z − ti)Θ22(z) (i = 1, . . . , n) (2.11)

(for notational convenience we will write sometimes a∗ rather than a for a ∈ C).

It turns out |c̃i| = |ẽi| 6= 0 (see Lemma 3.1 below for the proof) and therefore the

following numbers

ηi :=
c̃i

ẽi

=
ẽ∗i
c̃∗i

= − lim
z→ti

Θ22(z)

Θ21(z)
(i = 1, . . . , n) (2.12)

are unimodular:

|ηi| = 1 (i = 1, . . . , n). (2.13)

Furthermore let p̃ii stand for the i-th diagonal entry of the matrix P−1, the inverse

of the Pick matrix. It is self-evident that for a fixed i, any function E ∈ S0 satisfies

exactly one of the following six conditions:

C1 : The function E fails to have a nontangential boundary limit ηi at ti.

C2 : E(ti) := lim
z→ti

E(z) = ηi and dE(ti) :=
1 − |E(z)|2

1 − |z|2
= ∞. (2.14)

C3 : E(ti) = ηi and −
p̃ii

|ẽi|2
< dE(ti) < ∞. (2.15)

C4 : E(ti) = ηi and 0 ≤ dE (ti) < −
p̃ii

|ẽi|2
. (2.16)

C5 : E(ti) = ηi and dE(ti) = −
p̃ii

|ẽi|2
> 0. (2.17)

C6 : E(ti) = ηi and dE(ti) = p̃ii = 0. (2.18)

Note that condition C1 means that either the nontangential boundary limit E(ti) :=

lim
z→ti

E(z) fails to exist or it exists and is not equal to ηi. Let us denote by C4−6

the disjunction of conditions C4, C5 and C6:

C4−6 : E(ti) = ηi and dE(ti) ≤ −
p̃ii

|ẽi|2
. (2.19)

The next theorem gives a classification of interpolation conditions that are or are

not satisfied by a function w of the form (2.10) in terms of the corresponding

parameter E .
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Theorem 2.3. Let the Pick matrix P be invertible, let E be a Schur class function,

let Θ be given by (2.2), let w = TΘ[E ] and let ti be an interpolation node.

1. The nontangential boundary limits dw(ti) and w(ti) exist and are subject

to

dw(ti) = γi and w(ti) = wi

if and only if the parameter E meets either condition C1 or C2.

2. The nontangential boundary limits dw(ti) and w(ti) exist and are subject

to

dw(ti) < γi and w(ti) = wi

if and only if the parameter E meets condition C3.

3. The nontangential boundary limits dw(ti) and w(ti) exist and are subject

to

γi < dw(ti) < ∞ and w(ti) = wi.

if and only if the parameter E meets condition C4.

4. If E meets C5, then w is subject to one of the following:

(a) The limit w(ti) fails to exist.

(b) The limit w(ti) exists and w(ti) 6= wi.

(c) w(ti) = wi and dw(ti) = ∞.

5. If E meets C6, then w is the ratio of two finite Blaschke products,

dw(ti) < ∞ and w(ti) 6= wi.

We note an immediate consequence of the last theorem.

Corollary 2.4. A function w = TΘ[E ] meets the i-th interpolation conditions for

Problem 1.4:

dw(ti) ≤ γi and w(ti) = wi

if and only if the corresponding parameter E ∈ S0 meets the condition C1−3 :=

C1 ∨C2 ∨ C3 at ti.

Note that Problem 1.3 was considered in [2] for rational generalized Schur

functions. It was shown ([2, Theorem 21.1.2]) that all rational solutions of Problem

1.3 are parametrized by the formula (2.10) when E varies over the set of all rational

Schur functions such that (in the current terminology)

E(ti) 6= ηi for i = 1, . . . , n.
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Note that if E is a rational Schur function admitting a unimodular value E(t0)

at a boundary point t0 ∈ T, then the limit dw(t0) always exists and equals

t0E
′(t0)E(t0)

∗. The latter follows from the converse Carathéodory-Julia theorem

(see e.g., [18, 20]):

dw(t0) := lim
z→t0

1 − |E(z)|2

1 − |z|2
= lim

z→t0

1 − E(z)E(t0)
∗

1 − zt̄0

= lim
z→t0

E(t0) − E(z)

t0 − z
·
E(t0)

∗

t̄0
= t0E

′(t0)E(t0)
∗ < ∞.

Thus, a Schur function E cannot satisfy condition C2 at a boundary point ti

therefore, Statement (1) in Theorem 2.3 recovers Theorem 21.1.2 in [2]. The same

conclusion can be done when E is not rational but still analytic at ti. In the case

when E is not rational and admits the nontangential boundary limit E(ti) = ηi,

the situation is more subtle: Statement (1) shows that even in this case (if the

convergence of E(z) to E(ti) is not too fast), the function w = T[E ] may satisfy

interpolation conditions (1.15), (1.16).

The next theorem concerns the number of negative squares of the function

w = TΘ[E ].

Theorem 2.5. If the Pick matrix P is invertible and has κ negative eigenvalues,

then a Schur function E ∈ S0 may satisfy conditions C4−6 at at most κ interpola-

tion nodes. Furthermore, if E meets conditions C4−6 at exactly ℓ (≤ κ) interpola-

tion nodes, then the function w = TΘ[E ] belongs to the class Sκ−ℓ.

Corollary 2.4 and Theorem 2.5 imply the sufficiency part in Theorem 2.2.

Indeed, any Schur function E satisfies either conditions C4−6 or C1−3 at every

interpolation node ti (i = 1, . . . , n). Let E meet conditions C4−6 at ti1 , . . . , tiℓ
and

C1−3 at other n− ℓ interpolation nodes tj1 , . . . , tjn−ℓ
. Then, by Corollary 2.4, the

function w = TΘ[E ] satisfies interpolation conditions (1.17) for i ∈ {j1, . . . , jn−ℓ}

and fails to satisfy at least one of these conditions at the remaining ℓ interpolation

nodes. On the other hand, w has exactly κ − ℓ negative squares, by Theorem 2.5.

Thus, for every E ∈ S0, the function w = TΘ[E ] solves Problem 1.6.

Note also that Theorems 2.2 and 2.5 lead to parametrizations of solution sets

for Problems 1.3 and 1.4. Indeed, by inclusions (2.1), every solution w to Problem

1.3 (or to Problem 1.4) is also of the form (2.10) for some E ∈ S0. Thus, there

is a chance to describe the solution sets S13 and S14 by appropriate selections of
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the parameter E in (2.10). Theorem 2.5 indicates how these selections have to be

made.

Theorem 2.6. A function w of the form (2.10) is a solution to Problem 1.3 if and

only if the corresponding parameter E ∈ S0 satisfies either condition C1 or C2 for

every i ∈ {1, . . . , n}.

Theorem 2.7. A function w of the form (2.10) is a solution to Problem 1.4 if and

only if the corresponding parameter E ∈ S0 either fails to have a nontangential

boundary limit ηi at ti or

E(ti) = ηi and dE(ti) > −
p̃ii

|ẽi|2

for every i = 1, . . . , n (in other words, E meets one of conditions C1, C2, C3 at

each interpolation node ti).

As a consequence of Theorems 2.2 and 2.7 we get curious necessary and

sufficient conditions (in terms of the interpolation data (1.12)) for Problems 1.4

and 1.6 to be equivalent (that is, to have the same solution sets).

Corollary 2.8. Problems 1.4 and 1.6 are equivalent if and only if all the diagonal

entries of the inverse P−1 of the Pick matrix are positive.

Indeed, in this case, all the conditions in Theorem 2.7 are fulfilled for every

E ∈ S0 and every i ∈ {1, . . . , n} and formula (2.6) gives a free Schur class parameter

description of all solutions w of Problem 1.4.

In the course of the proof of Theorem 2.5 we will discuss the following related

question: given indices i1, . . . , iℓ ∈ {1, . . . , n}, does there exist a parameter E ∈

S0 satisfying conditions C4−6 at ti1 , . . . , tiℓ
? Due to Theorems 2.2 and 2.3, this

question can be posed equivalently: does there exist a solution w to Problem 1.6

that misses interpolation conditions at ti1 , . . . , tiℓ
(Theorem 2.5 claims that if such

a function exists, it belongs to the class Sκ−ℓ). The question admits a simple

answer in terms of a certain submatrix of P−1 = [p̃ij ]
n

i,j=1, the inverse of the Pick

matrix.

Theorem 2.9. There exists a parameter E satisfying conditions C4−6 at ti1 , . . . , tiℓ

if and only if the ℓ × ℓ matrix

P :=
[
p̃iα,iβ

]ℓ
α,β=1
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is negative semidefinite. Moreover, if P is negative definite, then there are infinitely

many such parameters. If P is negative semidefinite (singular), then there is only

one such parameter, which is a Blaschke product of degree r = rankP.

Note that all the results announced above have their counterparts in the

context of the regular Nevanlinna-Pick problem with all the interpolation nodes

inside the unit disk [5]

The paper is organized as follows: Section 3 contains some needed auxiliary

results which can be found (probably in a different form) in many sources and are

included for the sake of completeness. In Section 4 we prove the necessity part in

Theorem 2.2 (see Remark 4.4). In Section 5 we prove Theorem 2.3. In Section 6

we present the proofs of Theorems 2.9 and 2.5 and complete the proof of Theorem

2.2 (see Remark 6.2). The proof of Theorem 2.1 is contained in Section 7; some

illustrative numerical examples are presented in Section 8.

3. Some preliminaries

In this section we present some auxiliary results needed in the sequel. We have

already mentioned the Stein identity

P − T ∗PT = E∗E − C∗C (3.1)

satisfied by the Pick matrix P constructed in (1.14) from the interpolation data.

Most of the facts recalled in this section rely on this identity rather than on the

special form (2.3) of matrices T , E and C.

Lemma 3.1. Let T , E and C be defined as in (2.3), let P defined in (1.14) be

invertible and let µ be a point on T \ {t1, . . . , tn}. Then

1. The row vectors

Ẽ =
[
ẽ1 . . . ẽn

]
and C̃ =

[
c̃1 . . . c̃n

]
(3.2)

defined by
[

C̃

Ẽ

]
=

[
C
E

]
(µI − T )−1P−1(I − µT ∗) (3.3)

satisfy the Stein identity

P−1 − TP−1T ∗ = Ẽ∗Ẽ − C̃∗C̃. (3.4)
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2. The numbers c̃i and ẽi are subject to

|ẽi| = |c̃i| 6= 0 for i = 1, . . . , n. (3.5)

3. The nondiagonal entries p̃ij of P−1 are given by

p̃ij =
ẽ∗i ẽj − c̃∗i c̃j

1 − ti t̄j
(i 6= j). (3.6)

Proof: Under the assumption that P is invertible, identity (3.4) turns out to

be equivalent to (3.1). Indeed, by (3.3) and (3.1),

Ẽ∗Ẽ − C̃∗C̃

= (I − µ̄T )P−1(µ̄I − T ∗)−1 [E∗E − C∗C] (µI − T )−1P−1(I − µT ∗)

= (I − µ̄T )P−1(µ̄I − T ∗)−1 [P − T ∗PT ] (µI − T )−1P−1(I − µT ∗)

= (I − µ̄T )P−1
[
(I − µT ∗)−1P + PT (µI − T )−1

]
P−1(I − µT ∗)

= (I − µ̄T )P−1 + µ̄TP−1(I − µT ∗)

= P−1 − TP−1T ∗.

Let P−1 = [p̃ij ]
n

i,j=1. Due to (3.2) and (2.3), equality of the ij-th entries in (3.4)

can be displayed as

p̃ij − ti t̄j p̃ij = ẽ∗i ẽj − c̃∗i c̃j (3.7)

and implies (3.6) if i 6= j. Letting i = j in (3.7) and taking into account that

|ti| = 1, we get |ẽi| = |c̃i| for i = 1, . . . , n. It remains to show that ẽi and c̃i do not

vanish. To this end let us assume that

ẽi = c̃i = 0. (3.8)

Let ei be the i-th column of the identity matrix In. Multiplying (3.4) by ei on the

right we get

P−1
ei − TP−1T ∗

ei = Ẽ∗ẽi − C̃∗c̃i = 0

or equivalently, since T ∗
ei = t̄iei,

(I − t̄iT )P−1
ei = 0.

Since the points t1, . . . , tn are distinct, all the diagonal entries but the i-th in the

diagonal matrix I − t̄iT are not zeroes; therefore, it follows from the last equality

that all the entries in the vector P−1
ei but the i-th entry are zeroes. Thus,

P−1
ei = αei (3.9)
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for some α ∈ C and, since P is not singular, it follows that α 6= 0. Now we compare

the i-th columns in the equality (3.3) (i.e., we multiply both parts in (3.3) by ei

on the right). For the left hand side we have, due to assumption (3.8),
[

C̃

Ẽ

]
ei =

[
c̃i

ẽi

]
=

[
0
0

]
.

For the right hand side, we have, due to (3.9) and (2.3),
[

C
E

]
(µI − T )−1P−1(I − µT ∗)ei = α

1 − µti
µ − ti

[
C
E

]
ei = −αti

[
wi

1

]
.

By (3.3), the right hand side expressions in the two last equalities must be the

same, which is not the case. The obtained contradiction completes the proof of

(3.5).

Remark 3.2. The numbers ẽi and c̃i introduced in (3.2), (3.3) coincide with those

in (2.11).

For the proof we first note that the formula (2.2) for Θ can be written, on

account of (3.3), as

Θ(z) = I2 + (z − µ)

[
C
E

]
(zIn − T )−1(µIn − T )−1

[
C̃∗ −Ẽ∗

]
(3.10)

and then, since

lim
z→ti

(z − ti)(zI − T )−1 = eie
∗
i and e

∗
i (µI − T )−1 = (µ − ti)

−1
e
∗
i

(recall that ei is the i-th column of the identity matrix In), we have

lim
z→ti

(z − ti)Θ(z) = lim
z→ti

(z − µ)

[
C
E

]
eie

∗
i (µI − T )−1

[
C̃∗ −Ẽ∗

]

= −

[
C
E

]
eie

∗
i

[
C̃∗ −Ẽ∗

]

= −

[
wi

1

] [
c̃∗i −ẽ∗i

]
. (3.11)

Comparing the bottom entries in the latter equality we get (2.11).

In the rest of the section we recall some needed results concerning the function

Θ introduced in (2.2). These results are well known in a more general situation

when T , C and E are matrices such that the pair (

[
C
E

]
, T ) is observable:

⋂

j≥0

Ker

[
C
E

]
T j = {0}, (3.12)
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and P is an invertible Hermitian matrix satisfying the Stein identity (3.1) (see

e.g., [2]). Note that the matrices defined in (2.3) satisfy a stronger condition:
⋂

j≥0

KerCT j =
⋂

j≥0

KerET j = {0}. (3.13)

Remark 3.3. Under the above assumptions, the function Θ defined via formula

(2.2) belongs to the class Wκ with κ = sq−P .

Proof: The desired membership follows from the formula

KΘ,J(z, ζ) =

[
C
E

]
(zI − T )−1P−1(ζ̄I − T ∗)−1

[
C∗ E∗

]
(3.14)

for the kernel KΘ,J defined in (2.7). The calculation is straightforward and relies

on the Stein identity (3.1) only (see e.g., [2]). It follows from (3.14) that Θ is J

-unitary on T (that is, satisfies condition (2.6)) and that

sq−KΘ,J ≤ sq−P = κ.

Condition (3.12) guarantees that in fact sq−KΘ,J = κ (see [2]).

Remark 3.4. Since Θ is J-unitary on T it holds, by the symmetry principle, that

Θ(z)−1 = JΘ(1/z̄)∗J , which together with formula (2.2) leads us to

Θ(z)−1 = I2 − (z − µ)

[
C
E

]
(µI − T )−1P−1(I − zT ∗)−1

[
C∗ −E∗

]
. (3.15)

Besides (3.14) we will need realization formulas for two related kernels. Ver-

ification of these fomulas (3.16) and (3.17) is also straightforward and is based on

the Stein identities (3.1) and (3.4), respectively.

Remark 3.5. Let Θ be defined as in (2.2). The following identities hold for every

choice of z, ζ 6∈ {t1, . . . , tn}:

Θ(ζ)−∗JΘ(z)−1 − J

1 − zζ̄
=

[
C

−E

]
(I − ζ̄T )−1P−1(I − zT ∗)−1

[
C∗ −E∗

]
,

(3.16)

J − Θ(ζ)∗JΘ(z)

1 − zζ̄
=

[
C̃

−Ẽ

]
(ζ̄I − T ∗)−1P (zI − T )−1

[
C̃∗ −Ẽ∗

]
.

(3.17)
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Let us consider conformal partitionings

P =

[
P11 P12

P21 P22

]
, P−1 =

[
P̃11 P̃12

P̃21 P̃22

]
, T =

[
T1 0
0 T2

]
, (3.18)

E =
[
E1 E2

]
, C =

[
C1 C2

]
, Ẽ =

[
Ẽ1 Ẽ2

]
, C̃ =

[
C̃1 C̃2

]
(3.19)

where P22, P̃22, T2 ∈ Cℓ×ℓ and E2, C2, Ẽ2, C̃2 ∈ C1×ℓ. Note that these decompo-

sitions contain one restrictive assumption: it is assumed that the matrix T is block

diagonal.

Lemma 3.6. Let us assume that P11 is invertible and let sq−P11 = κ1 ≤ κ. Then

P̃22 is invertible, sq−P̃22 = κ − κ1 and the functions

Θ(1)(z) = I2 + (z − µ)

[
C1

E1

]
(zI − T1)

−1P−1
11 (I − µT ∗

1 )−1
[

C∗
1 −E∗

1

]
(3.20)

and

Θ̃(2)(z) = I2 + (z − µ)

[
C̃2

Ẽ2

]
(I − µT ∗

2 )−1P̃−1
22 (zI − T2)

−1
[

C̃∗
2 −Ẽ∗

2

]
(3.21)

belong to Wκ1 and Wκ−κ1 , respectively. Furthermore, the function Θ defined in

(2.2) admits a factorization

Θ(z) = Θ(1)(z)Θ̃(2)(z). (3.22)

Proof: The first statement follows by standard Schur complement arguments:

since P and P11 are invertible, the matrix P22−P21P
−1
11 P12 (the Schur complement

of P11 in P ) is invertible and has κ − κ1 negative eigenvalues. Since the block

P̃22 in P−1 equals (P22 − P21P
−1
11 P12)

−1, it also has κ − κ1 negative eigenvalues.

Realization formulas

KΘ(1),J(z, ζ) = R(z)P−1
11 R(ζ)∗ and KeΘ(2),J

(z, ζ) = R̃(z)P̃22R̃(ζ)∗, (3.23)

where we have set for short

R(z) =

[
C1

E1

]
(zI − T1)

−1, R̃(z) =

[
C̃2

Ẽ2

]
(I − µT ∗

2 )−1P̃−1
22 (zI − T2)

−1,

are established exactly as in Remark 3.3 and rely on the Stein identities

P11 − T ∗
1 P11T1 = E∗

1E1 − C∗
1C1 and P̃−1

22 − T2P̃22T
∗
2 = Ẽ∗

2 Ẽ2 − C̃∗
2 C̃2 (3.24)
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which hold true, being parts of identities (3.1) and (3.4). Formulas (3.23) guarantee

that the rational functions Θ(1) and Θ̃(2) are J-unitary on T and moreover, that

sq−KΘ(1),J ≤ sq−P11 = κ1 and sq−KeΘ(2),J
≤ sq−P̃22 = κ − κ1. (3.25)

Assuming that the factorization formula (3.22) is already proved, we have

KΘ,J(z, ζ) = KΘ(1),J(z, ζ) + Θ(1)(z)KeΘ(2),J
(z, ζ)Θ(1)(ζ)∗

and thus,

κ = sq−KΘ,J ≤ sq−KΘ(1),J + sq−KeΘ(2),J

which together with inequalities (3.25) imply

sq−KΘ(1),J = κ1 and sq−KeΘ(2),J
= κ − κ1.

It remains to prove (3.22). Making use of the well known equality

P−1 =

[
P−1

11 0
0 0

]
+

[
−P−1

11 P12

1

]
P̃22

[
−P21P

−1
11 1

]
(3.26)

we conclude from (3.3) that

[
C̃2

Ẽ2

]
=

[
C
E

]
(µIn − T )−1P−1(In − µT ∗)

[
0
Iℓ

]

=

[
C
E

]
(µIn − T )−1

[
−P−1

11 P12

1

]
P̃22(Iℓ − µT ∗

2 ). (3.27)

This last relation allows us to rewrite (3.21) as

Θ̃(2)(z) = I2 +(z−µ)

[
C
E

]
(µI −T )−1

[
−P−1

11 P12

1

]
(zI−T2)

−1
[

C̃∗
2 −Ẽ∗

2

]
.

(3.28)

Now we substitute (3.26) into the formula (2.2) defining Θ and take into account

(3.20) and (3.27) to get

Θ(z) = Θ(1)(z) + (z − µ)

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
P̃22

×
[
−P21P

−1
11 1

]
(In − µT ∗)−1

[
C∗ −E∗

]

= Θ(1)(z) + (z − µ)

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]

×(µI − T2)
−1
[

C̃∗
2 −Ẽ∗

2

]
.
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Thus, (3.22) is equivalent to

Θ̃(2)(z) = I2 + (z − µ)Θ(1)(z)−1

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]

×(µI − T2)
−1
[

C̃∗
2 −Ẽ∗

2

]
.

Comparing the last relation with (3.28) we conclude that to complete the proof it

suffices to show that

Θ(1)(z)−1

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
(µI − T2)

−1

=

[
C
E

]
(µI − T )−1

[
−P−1

11 P12

1

]
(zI − T2)

−1. (3.29)

The explicit formula for Θ(1)(z)−1 can be obtained similarly to (3.15):

Θ(1)(z)−1 = I2 − (z −µ)

[
C1

E1

]
(µI −T1)

−1P−1
11 (I − zT ∗

1 )−1
[
C∗

1 −E∗
1

]
. (3.30)

Next, comparing the top block entries in the Stein identity (3.1) we get, due to

decompositions (3.18) and (3.19),

[
P11 P12

]
− T ∗

1

[
P11 P12

]
T = E∗

1E − C∗
1C

which, being multiplied by (I − zT ∗
1 )−1 on the left and by (zI −T )−1 on the right,

leads us to

(I − zT ∗
1 )−1 (E∗

1E − C∗
1C) (zI − T )−1

= (I − zT ∗
1 )−1T ∗

1

[
P11 P12

]
+
[
P11 P12

]
(zI − T )−1. (3.31)
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Upon making use of (3.29) and (3.31) we have

Θ(1)(z)−1

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]

=

[
C
E

]
(zI − T )−1

[
−P−1

11 P12

1

]

+(z − µ)

[
C1

E1

]
(µI − T1)

−1
[
I P−1

11 P12

]
(zI − T )−1

[
−P−1

11 P12

1

]

= −

[
C1

E1

]
(zI − T1)

−1P−1
11 P12 +

[
C2

E2

]
(zI − T2)

−1

+(z − µ)

[
C1

E1

]
(µI − T1)

−1
(
P−1

11 P12(zI − T2)
−1 − (zI − T1)

−1P−1
11 P12

)

= −

[
C1

E1

]
(µI − T1)

−1P−1
11 P12(µI − T2) +

[
C2

E2

]
(zI − T2)

−1

=

[
C
E

]
(µI − T )−1

[
−P−1

11 P12

1

]
(zI − T2)

−1

which proves (3.29) and therefore, completes the proof of the lemma.

Remark 3.7. The case when ℓ = 1 in Lemma 3.6 will be of special interest. In this

case,

P22 = γn, P̃22 = p̃nn, T2 = tn, C2 = wn, E2 = 1, C̃2 = c̃n, Ẽ2 = ẽn.

Then the formula (3.21) for Θ̃(2) simplifies to

Θ̃(2)(z) = I2 +
z − µ

(1 − µt̄n)(z − tn)

[
c̃n

ẽn

]
p̃−1

nn

[
c̃∗n −ẽ∗n

]
. (3.32)

4. Fundamental Matrix Inequality

In this section we characterize the solution set S16 of Problem 1.6 in terms of

certain Hermitian kernel. We start with some simple observations.

Proposition 4.1. Let K(z, ζ) be a Hermitian kernel defined on Ω ⊆ C and with

sq−K = κ. Then

1. For every choice of an integer p, of a Hermitian p × p matrix A and of a

p × 1 vector valued function B,

sq−

[
A B(z)

B(ζ)∗ K(z, ζ)

]
≤ κ + p.
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2. If λ1, . . . , λp are points in Ω and if

A = [K(λj , λi)]
p

i,j=1 and B(z) =




K(z, λ1)
...

K(z, λp)


 , (4.1)

then

sq−

[
A B(z)

B(ζ)∗ K(z, ζ)

]
= κ. (4.2)

Proof: For the proof of the first statement we have to show that for every

integer m and every choice of points z1, . . . , zm ∈ Ω, the block matrix

M =

[[
A B(zj)

B(zi)
∗ K(zj, zi)

]]m

i,j=1

(4.3)

has at most κ + p negative eigenvalues. It is easily seen that M contains m block

identical rows of the form
[
A B(z1) A B(z2) . . . A B(zn)

]
.

Deleting all these rows but one and deleting also the corresponding columns, we

come up with the (m + p) × (m + p) matrix

M̃ =




A B(z1) . . . B(zm)
B(z1)

∗ K(z1, z1) . . . K(z1, zm)
...

...
...

B(zm)∗ K(zm, z1) . . . K(zm, zm)




having the same number of positive and negative eigenvalues as M . The bottom

m×m principal submatrix of M̃ has at most κ negative eigenvalues since sq−K =

κ. Since M̃ is Hermitian, we have by the Cauchy’s interlacing theorem (see e.g.,

[4, p. 59]), that sq−M̃ ≤ κ + p. Thus, sq−M ≤ κ + p which completes the proof of

Statement 1.

If A and B are of the form (4.1), then the matrix M in (4.3) is of the form

[K(ζj , ζi)]
m+pm

i,j=1 where all the points ζi live in Ω. Since sq−K = κ, it follows

that sq−M ≤ κ for every choice of z1, . . . , zm in Ω which means that the kernel[
A B(z)

B(ζ)∗ K(z, ζ)

]
has at most κ negative squares on Ω. But it has at least κ

negative squares since it contains the kernel K(z, ζ) as a principal block. Thus,

(4.2) follows.

Theorem 4.2. Let P , T , E and C be defined as in (1.14) and (2.3), let w be a

function meromorphic on D and let the kernel Kw be defined as in (1.1). Then w
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is a solution of Problem 1.6 if and only if the kernel

Kw(z, ζ) :=

[
P (I − zT ∗)−1(E∗ − C∗w(z))

(E − w(ζ)∗C)(I − ζ̄T )−1 Kw(z, ζ)

]
(4.4)

has κ negative squares on D ∩ ρ(w):

sq−Kw(z, ζ) = κ. (4.5)

Proof of the necessity part: Let w be a solution of Problem 1.6, i.e., let w

belong to the class Sκ′ for some κ′ ≤ κ and satisfy conditions (1.17) at all but

κ − κ′ interpolation nodes.

First we consider the case when w ∈ Sκ. Then w satisfies all the conditions

(1.17) (i.e., w is also a solution to Problem 1.4). Furthermore, sq−Kw = κ and by

the second statement in Proposition 4.1, the kernel

K
(1)(z, ζ) :=




Kw(z1, z1) . . . Kw(zn, z1) Kw(z, z1)
...

...
...

Kw(z1, zn) . . . Kw(zn, zn) Kw(z, zn)
Kw(z1, ζ) . . . Kw(zn, ζ) Kw(z, ζ)


 (4.6)

has κ negative squares on D∩ρ(w) for every choice of points z1, . . . , zn ∈ D∩ρ(w).

Since the limits dw(ti) and w(ti) = wi exist for i = 1, . . . , n, it follows that

[Kw(zj , zi)]
n

i,j=1 =

[
1 − w(zi)

∗w(zj)

1 − z̄izj

]n

i,j=1

−→ Pw(t1, . . . , tn) (4.7)

(by definition (1.18) of the matrix Pw(t1, . . . , tn)) and also

Kw(zi, ζ) =
1 − w(ζ)∗w(zi)

1 − ζ̄zi

−→
1 − w(ζ)∗wi

1 − ζ̄ti
(i = 1, . . . , n).

Note that by the structure (2.3) of the matrices T , E and C,

(E − w(ζ)∗C)(I − ζ̄T )−1 =

[
1 − w(ζ)∗w1

1 − ζ̄t1
. . .

1 − w(ζ)∗wn

1 − ζ̄tn

]

which, being combined with the previous relation, gives

[
Kw(z1, ζ) . . . Kw(zn, ζ)

]
−→ (E − w(ζ)∗C)(I − ζ̄T )−1. (4.8)

Now we take the limit in (4.6) as zi → ti for i = 1, . . . , n; on account of (4.7) and

(4.8), the limit kernel has the form

K
(2)(z, ζ) :=

[
Pw(t1, . . . , tn) (I − zT ∗)−1(E∗ − C∗w(z))

(E − w(ζ)∗C)(I − ζ̄T )−1 Kw(z, ζ)

]
.
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Since K
(2) is the limit of a family of kernels each of which has κ negative squares,

sq−K
(2) ≤ κ. It remains to note that the kernel Kw defined in (4.4) is expressed

in terms of K
(2) as

Kw(z, ζ) = K
(2)(z, ζ) +

[
P − Pw(t1, . . . , tn) 0

0 0

]

and since the second term on the right hand side is positive semidefinite (due to

the first series of conditions in (1.17); see also (1.20)),

sq−Kw ≤ sq−K
(2) ≤ κ.

On the other hand, since Kw contains the kernel Kw as a principal submatrix,

sq−Kw ≥ sq−Kw = κ which eventually leads us to (4.5). Note that in this part of

the proof we have not used the fact that sq−P = κ.

Now we turn to the general case: let w ∈ Sκ′ for some κ′ ≤ κ and let

conditions (1.17) be fulfilled at all but ℓ := κ − κ′ interpolation nodes ti’s. We

may assume without loss of generality that conditions (1.17) are satisfied at ti for

i = 1, . . . , n − ℓ:

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , n − ℓ). (4.9)

Let us consider conformal partitionings (3.18), (3.19) for matrices P , T , C and E

and let us set for short

Fi(z) = (I − zT ∗
i )−1 (E∗

i − C∗
i w(z)) (i = 1, 2) (4.10)

so that [
F1(z)
F2(z)

]
= (I − zT ∗)−1 (E∗ − C∗w(z)) . (4.11)

The matrix P11 is the Pick matrix of the truncated interpolation problem with the

data ti, wi, γi (i = 1, . . . , n − ℓ) and with interpolation conditions (4.9). By the

first part of the proof, the kernel

K̃w(z, ζ) :=

[
P11 F1(z)

F1(ζ)∗ Kw(z, ζ)

]
(4.12)

has κ′ negative squares on D ∩ ρ(w). Now we apply the first statement in Propo-

sition 4.1 to

K(z, ζ) = K̃w(z, ζ), B(z) =
[
P21 F2(z)

]
and A = P22 (4.13)

to conclude that

sq−

[
P22 B(z)

B(ζ)∗ K̃w(z, ζ)

]
≤ sq−K̃w + ℓ = κ′ + (κ − κ′) = κ. (4.14)



24 Vladimir Bolotnikov and Alexander Kheifets

By (4.13) and (4.12), the latter kernel equals

[
P22 B(z)

B(ζ)∗ K̃w(z, ζ)

]
=




P22 P21 F2(z)
P12 P11 F1(z)

F2(ζ)∗ F1(ζ)∗ Kw(z, ζ)


 .

Now it follows from (4.4) and (4.12) that

Kw(z, ζ) = U

[
P22 B(z)

B(ζ)∗ K̃w(z, ζ)

]
U∗, where U =




0 In−ℓ 0
Iℓ 0 0
0 0 1




which, on account of (4.14), implies that sq−Kw ≤ κ. Finally, since Kw contains

P as a principal submatrix, sq−Kw ≥ sq−P = κ which now implies (4.5) and com-

pletes the proof of the necessity part of the theorem. The proof of the sufficiency

part will be given in Sections 6 and 7 (see Remarks 6.3 and 7.3 there).

In the case when P is invertible, all the functions satisfying (4.5) can be

described in terms of a linear fractional transformation.

Theorem 4.3. Let the Pick matrix P be invertible and let Θ = [Θij ] be the 2 × 2

matrix valued function defined in (2.2). A function w meromorphic on D is subject

to FMI (4.5) if and only if it is of the form

w(z) = TΘ[E ] :=
Θ11(z)E(z) + Θ12(z)

Θ21(z)E(z) + Θ22(z)
(4.15)

for some Schur function E ∈ S0.

Proof: The proof is about the same as in the definite case. Let S be the Schur

complement of P in the kernel Kw defined in (4.4):

S(z, ζ) := Kw(z, ζ) − (E − w(ζ)∗C)(I − ζ̄T )−1P−1(I − zT ∗)−1(E∗ − C∗w(z)).

Obvious equalities

Kw(z, ζ) :=
1 − w(ζ)∗w(z)

1 − ζ̄z
= −

[
w(ζ)∗ 1

]
J

[
w(z)

1

]

where J is the matrix introduced in (2.5), and

E − w(ζ)∗C = −
[
w(ζ)∗ 1

]
J

[
C

−E

]

allows us to represent S in the form

S(z, ζ) = −
[
w(ζ)∗ 1

]{ J

1 − zζ̄
+

[
C

−E

]
(I − ζ̄T )−1P−1

× (I − zT ∗)−1
[

C∗ −E∗
]} [w(z)

1

]
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or, on account of identity (3.16), as

S(z, ζ) = −
[
w(ζ)∗ 1

] Θ(ζ)−∗JΘ(z)−1

1 − zζ̄

[
w(z)

1

]
.

By the standard Schur complement argument,

sq−Kw = sq−P + sq−S

which implies, since sq−P = κ, that (4.5) holds if and only if the kernel S is

positive definite on ρ(w) ∩ D:

−
[
w(ζ)∗ 1

] Θ(ζ)−∗JΘ(z)−1

1 − zζ̄

[
w(z)

1

]
� 0. (4.16)

It remains to show that (4.16) holds if and only if w is of the form (4.15). To show

the “only if” part, let us consider meromorphic functions u and v defined by
[
u(z)
v(z)

]
:= Θ(z)−1

[
w(z)

1

]
. (4.17)

Then inequality (4.16) can be written in terms of these functions as

−
[
u(ζ)∗ v(ζ)∗

] J

1 − ζ̄z

[
u(z)
v(z)

]
=

v(ζ)∗v(z) − u(ζ)∗u(z)

1 − ζ̄z
� 0. (4.18)

As it follows from definition (4.17), u and v are analytic on ρ(w) ∩ D. Moreover,

v(z) 6= 0 for every z ∈ ρ(w) ∩ D. (4.19)

Indeed, assuming that v(ξ) = 0 at some point ξ ∈ D, we conclude from (4.18) that

u(ξ) = 0 and then (4.17) implies that det Θ(ξ)−1 = 0 which is a contradiction.

Due to (4.19), we can introduce the meromorphic function

E(z) =
u(z)

v(z)
(4.20)

which is analytic on ρ(w) ∩ D. Writing (4.18) in terms of E as

v(ζ)∗ ·
1 − E(ζ)∗E(z)

1 − ζ̄z
· v(z) � 0 (z, ζ ∈ ρ(w) ∩ D),

we then take advantage of (4.19) to conclude that

1 − E(ζ)∗E(z)

1 − ζ̄z
� 0 (z, ζ ∈ ρ(w) ∩ D).

The latter means that E is (after an analytic continuation to the all of D) a Schur

function. Finally, it follows from (4.17) that
[
w
1

]
= Θ

[
u
v

]
=

[
Θ11u + Θ12v
Θ21u + Θ22v

]
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which in turn implies

w =
Θ11u + Θ12v

Θ21u + Θ22v
=

Θ11E + Θ12

Θ21E + Θ22
= TΘ[E ].

Now let E be a Schur function. Then the function

V (z) = Θ21(z)E(z) + Θ22(z)

does not vanish identically. Indeed, since Θ is rational and Θ(µ) = I2, it follows

that Θ22(z) ≈ 1 and Θ21(z) ≈ 0 if z is close enough to µ. Since |E(z)| ≤ 1

everywhere in D, the function V does not vanish on Uδ = {z ∈ D : |z − µ| < δ} if

δ is small enough. Thus, formula (4.15) makes sense and can be written equivalently

as [
w(z)

1

]
= Θ(z)

[
E(z)

1

]
·

1

V (z)

Then it is readily seen that

1 − E(ζ)∗E(z)

1 − ζ̄z
= −

[
E(ζ)∗ 1

] J

1 − ζ̄z

[
E(z)

1

]

= −
1

V (ζ)∗V (z)
·
[
w(ζ)∗ 1

] Θ(ζ)−∗JΘ(z)−1

1 − zζ̄

[
w(z)

1

]

for z, ζ ∈ ρ(w) ∩ D. Since E is a Schur function, the latter kernel is positive on

ρ(w) ∩ D and since V 6≡ 0, (4.16) follows.

Remark 4.4. Combining Theorems 4.2 and 4.3 we get the necessity part in Theorem

2.2.

Indeed, by the necessity part in Theorem 4.2, any solution w of Problem 1.6

satisfies (4.5); then by Theorem 4.3, w = TΘ[E ] for some E ∈ S0.

In the case when κ = 0, Theorem 4.2 was established in [12].

Theorem 4.5. Let the Pick matrix P be positive semidefinite. Then a function w

defined on D is a solution to Problem 1.1 (i.e., belongs to the Schur class S0 and

meets conditions (1.6)) if and only if

Kw(z, ζ) � 0 (z, w ∈ D) (4.21)

where Kw(z, ζ) is the kernel defined in (4.4).

Under the a priori assumption that w is a Schur function, condition (4.21)

can be replaced by a seemingly weaker matrix inequality

Kw(z, z) ≥ 0 for every z ∈ D
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which is known in interpolation theory as a Fundamental Matrix Inequality (FMI)

of V. P. Potapov. We will follow this terminology and will consider relation (4.5)

as an indefinite analogue of V. P. Potapov’s FMI. It is appropriate to note that a

variation of the Potapov’s method was first applied to the Nevanlinna-Pick problem

(with finitely many interpolation nodes inside the unit disk) for generalized Schur

functions in [10]. We conclude this section with another theorem concerning the

classical case which will be useful for the subsequent analysis.

Theorem 4.6. (1) If the Pick matrix P is positive definite then all the solutions w

to Problem 1.1 are parametrized by the formula (2.10) with the coefficient matrix

Θ defined as in (2.2) with E being a free Schur class parameter.

(2) If P is positive semidefinite and singular, then Problem 1.1 has a unique

solution w which is a Blaschke product of degree r = rankP . Furthermore, this

unique solution can be represented as

w(z) =
x∗(I − zT ∗

2 )−1E∗

x∗(I − zT ∗
2 )−1C∗

(4.22)

where T , C and E are defined as in (2.3) and where x is any nonzero vector such

that Px = 0.

These results are well known and has been established using different methods

in [1, 12, 3, 2, 11]. In regard to methods used in the present paper, note that the

first statement follows immediately from Theorems 4.5 and 4.3. This demonstrates

how the Potapov’s method works in the definite case (and this is exactly how the

result was established in [12]). The second statement also can be derived from

Theorem 4.5: if w solves Problem 1.1, then the kernel Kw(z, ζ) defined in (4.4) is

positive definite. Multiplying it by the vector

[
x
1

]
on the right and by its adjoint

on the left we come to the positive definite kernel
[

x∗Px x∗(I − zT ∗)−1(E∗ − C∗w(z))
(E − w(ζ)∗C)(I − ζ̄T )−1x Kw(z, ζ)

]
� 0.

Thus, for every x 6= 0 such that Px = 0, we also have

x∗(I − zT ∗)−1(E∗ − C∗w(z)) ≡ 0.

Solving the latter identity for w we arrive at formula (4.22). The numerator and

the denominator in (4.22) do not vanish identically due to conditions (3.13). Since

x can be chosen so that n − rankP − 1 its coordinates are zeros, the rational
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function w is of McMillan degree r = rankP . Due to the Stein identity (3.1), w is

inner and therefore, it is a finite Blachke product of degree r.

5. Parameters and interpolation conditions

In this section we prove Theorem 2.3. It will be done in several steps formulated

as separate theorems. In what follows, UE and VE will stand for the functions

UE(z) = Θ11(z)E(z) + Θ12(z), VE(z) = Θ21(z)E(z) + Θ22(z) (5.1)

for a fixed Schur function E , so that
[
UE(z)
VE (z)

]
= Θ(z)

[
E(z)

1

]
(5.2)

and (2.10) takes the form

w(z) := TΘ[E ] =
UE(z)

VE(z)
. (5.3)

Substituting (3.10) into (5.2) and setting

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗E(z)

)
(5.4)

for short, we get

UE(z) = E(z) − (z − µ)C(µI − T )−1Ψ(z), (5.5)

VE (z) = 1 − (z − µ)E(µI − T )−1Ψ(z). (5.6)

Furthermore, for w of the form (5.3), we have

1 − w(ζ)∗w(z)

1 − ζ̄z
=

1

VE (ζ)∗VE(z)
·
VE(ζ)∗VE (z) − UE(ζ)∗UE(z)

1 − ζz
. (5.7)

Note that

VE (ζ)∗VE(z) − UE(ζ)∗UE(z) = −
[

UE(ζ)∗ VE (ζ)∗
]
J

[
UE(z)
VE (z)

]

=
[
E(ζ)∗ 1

]
Θ(ζ)∗JΘ(z)

[
E(z)

1

]

= 1 − E(ζ)∗E(z) + (1 − ζ̄z)Ψ(ζ)∗PΨ(z),

where the second equality follows from (5.2), and the third equality is a conse-

quence of (3.17) and definition (5.4) of Ψ. Now (5.7) takes the form

1 − w(ζ)∗w(z)

1 − ζ̄z
=

1

VE (ζ)∗VE(z)

(
1 − E(ζ)∗E(z)

1 − ζ̄z
+ Ψ(ζ)∗PΨ(z)

)
. (5.8)
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Remark 5.1. Equality (5.8) implies that for every E ∈ S0 and Θ ∈ Wκ, the function

w = TΘ[E ] belongs to the generalized Schur class Sκ′ for some κ′ ≤ κ.

Indeed, it follows from (5.8) that sq−Kw ≤ sq−KE + sq−P = 0 + κ.

Upon evaluating (5.8) at ζ = z we get

1 − |w(z)|2

1 − |z|2
=

1

|VE(z)|2

(
1 − |E(z)|2

1 − |z|2
+ Ψ(z)∗PΨ(z)

)
(5.9)

and realize that boundary values of w(ti) and dw(ti) can be calculated from as-

ymptotic formulas for Ψ, UE , VE and E as z tends to one of the interpolation nodes

ti. These asymptotic relations are presented in the next lemma.

Lemma 5.2. Let E be a Schur function, let Ψ, UE and VE be defined as in (5.4),

(5.5) and (5.6), respectively , and let ti be an interpolation node. Then the following

asymptotic relations hold as z tends to ti nontangentially:

(z − ti)Ψ(z) = ei (ẽ∗i − c̃∗i E(z)) + O(|z − ti|), (5.10)

(z − ti)UE(z) = wi (ẽ∗i − c̃∗i E(z)) + O(|z − ti|), (5.11)

(z − ti)VE(z) = (ẽ∗i − c̃∗i E(z)) + O(|z − ti|). (5.12)

Proof: Recall that ei be the i-th column in the identity matrix In. Since

(z − ti)(zI − T )−1 = eie
∗
i + O(|z − ti|) as z → ti,

and since E(z) is uniformly bounded on D, we have by (5.4),

(z − ti)Ψ(z) = (z − ti)(zI − T )−1
(
Ẽ∗ − C̃∗E(z)

)

= eie
∗
i

(
Ẽ∗ − C̃∗E(z)

)
+ O(|z − ti|)

which proves (5.10), since e
∗
i C̃

∗ = c̃∗i and e
∗
i Ẽ

∗ = ẽ∗i by (3.2).

Now we plug in the asymptotic relation (5.10) into the formulas (5.5) and

(5.10) for UE and VE and make use of evident equalities

C(µI − T )−1
ei =

wi

µ − ti
and E(µI − T )−1

ei =
1

µ − ti
(5.13)
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to get (5.11) and (5.12):

(z − ti)UE(z) = (z − ti)E(z) − (z − ti)(z − µ)C(µI − T )−1Ψ(z)

= (µ − z)C(µI − T )−1
ei (ẽ∗i − c̃∗i E(z)) + O(|z − ti|)

=
µ − z

µ − ti
wi (ẽ∗i − c̃∗i E(z)) + O(|z − ti|)

= wi (ẽ∗i − c̃∗i E(z)) + O(|z − ti|),

(z − ti)VE(z) = (z − ti) − (z − ti)(z − µ)E(µI − T )−1Ψ(z)

= (µ − z)E(µI − T )−1
ei (ẽ∗i − c̃∗i E(z)) + O(|z − ti|)

= (ẽ∗i − c̃∗i E(z)) + O(|z − ti|).

Lemma 5.3. Let w ∈ Sκ, let t0 ∈ T, and let us assume that the limit

d := lim
j→∞

1 − |w(rj t0)|
2

1 − r2
j

< ∞ (5.14)

exists and is finite for some sequence of numbers rj ∈ (0, 1) such that limj→∞ rj =

1. Then the nontangential limits dw(t0) and w(t0) (defined as in (1.3) and (1.4))

exist and moreover

dw(t0) = d and |w(t0)| = 1. (5.15)

Proof: Since w is a generalized Schur function, it admits the Krein-Langer

representation (1.9) and identity (1.11) holds at every point z ∈ D. In particular,

1 − |w(rjt0)|
2

1 − r2
j

=
1

|B(rjt0)|2

(
1 − |S(rjt0)|

2

1 − r2
j

−
1 − |B(rjt0)|

2

1 − r2
j

)
. (5.16)

Since B is a finite Blaschke product, it is analytic at t0 and the limit dB(t0) :=

lim
z→t0

1 − |B(z)|2

1 − |z|2
exists and is finite. Assumption (5.14) implies therefore that the

limit

lim
j→∞

1 − |S(rjt0)|
2

1 − r2
j

= d + dB(t0)

exists and is finite. Since S ∈ S0, we then conclude by the Carathéodory-Julia

theorem (see e.g., [17, 18, 20]) that the nontangential limits dS(t0) and S(t0) exist

and moreover,

dS(t0) = d + dB(t0) and |S(t0)| = 1. (5.17)

Now we pass to limits in (1.9) and (1.11) as z tends to t0 nontangentially to get

w(t0) := lim
z→t0

w(z) =
S(t0)

B(t0)
and dw(t0) := lim

z→t0

1 − |w(z)|2

1 − |z|2
= dS(t0) − dB(t0)
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and relations (5.17) imply now (5.15) and complete the proof.

Theorem 5.4. If E ∈ S0 meets condition C1 at ti (i.e., the nontangential boundary

limit lim
z→ti

E(z) is not equal to ηi =
ẽ∗i
c̃∗i

or fails to exist), then the function w =

TΘ[E ] is subject to

lim
z→ti

w(z) = wi and lim
z→ti

1 − |w(z)|2

1 − |z|2
= γi. (5.18)

Proof: By the assumption of the theorem, there exists ε > 0 and a sequence

of points {rαti}
∞
α=1 tending to ti radially (0 < rα < 1 and rα → 1) such that

|ẽ∗i − c̃∗i E(rαti)| ≥ ε for every α. (5.19)

Since e
∗
i Pei = γi by the definition (1.14) of P , it follows from (5.10) that

|z − ti|
2Ψ(z)∗PΨ(z) = |ẽ∗i − c̃∗i E(z)|2γi + O(|z − ti|).

Furthermore, relation

|z − ti|
2 · |VE(z)|2 = |ẽ∗i − c̃∗i E(z)|2 + O(|z − ti|)

is a consequence of (5.12) and, since E is uniformly bounded on D, it is clear that

lim
z→ti

|z − ti|
2 ·

1 − |E(z)|2

1 − |z|2
= 0.

Now we substitute the three last relations into (5.9) and let z = rαti → ti; due to

(5.19) we have

lim
z=rαti→ti

1 − |w(z)|2

1 − |z|2
= lim

z=rαti→ti

|z − ti|
2 ·

1 − |E(z)|2

1 − |z|2
+ |z − ti|

2Ψ(z)∗PΨ(z)

|z − ti|2 · |VE (z)|2

=
0 + γi

1
= γi.

Since w is a generalized Schur function (by Remark 5.1), we can apply Lemma 5.3

to conclude that the nontangential limit dw(ti) exists and equals γi. This proves

the second relation in (5.18). Furthermore, by (5.11) and (5.12) and in view of

(5.19),

lim
z=rαti→ti

w(z) = lim
z→ti

(z − ti)UE(z)

(z − ti)VE (z)
= wi. (5.20)

Again by Lemma 5.3, the nontangential limit w(ti) exists; therefore, it is equal to

the subsequential limit (5.20), that is, to wi. This proves the first relation in (5.18)

and completes the proof of the theorem.
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The next step will will be to handle condition C2 (see (2.14)). We need an

auxiliary result.

Lemma 5.5. Let t0 ∈ T and let E be a Schur function such that

lim
z→t0

E(z) = E0 (|E0| = 1) and lim
z→t0

1 − |E(z)|2

1 − |z|2
= ∞. (5.21)

Then

lim
z→t0

1 − |E(z)|2

1 − |z|2
·

∣∣∣∣
z − t0

E(z) − E0

∣∣∣∣
2

= 0 and lim
z→t0

z − t0
E(z) − E0

= 0. (5.22)

Proof: Since |E0| = 1, we have

2Re (1 − E(z)E0) = (1 − E(z)E0) + (1 − E0E(z))

= |1 − E(z)E0|
2 + 1 − |E0|

2 · |E(z)|2

≥ 1 − |E(z)|2

and thus,

|E(z) − E0| = |1 − E(z)E0| ≥ Re (1 − E(z)E0) ≥
1

2

(
1 − |E(z)|2

)
. (5.23)

Furthermore, for every z in the Stoltz domain

Γa(t0) = {z ∈ D : |z − t0| < a(1 − |z|)}, a > 1,

it holds that
1 − |z|2

|z − t0|
≥

1 − |z|

|z − t0|
>

1

a
,

which together with (5.23) leads us to
∣∣∣∣
E(z) − E0

z − t0

∣∣∣∣ ≥
1

2
·
1 − |E(z)|2

|z − t0|
=

1

2
·
1 − |E(z)|2

1 − |z|2
·
1 − |z|2

|z − t0|
>

1

2a
·
1 − |E(z)|2

1 − |z|2

which is equivalent to

1 − |E(z)|2

1 − |z|2
·

∣∣∣∣
z − t0

E(z) − E0

∣∣∣∣ ≤ 2a. (5.24)

Note that the denominator E(z) − E0 in the latter inequality does not vanish:

assuming that E(z0) = E0 at some point z0 ∈ D, we would have by the maximum

modulus principle (since |E0| = 1) that E(z) ≡ E0 which would contradict the

second assumption in (5.21). Finally, by this latter assumption, dE(t0) = ∞ and

relations (5.22) follow immediately from (5.24).
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Theorem 5.6. Let E ∈ S0 meet condition C2 at ti:

lim
z→ti

E(z) = ηi =
ẽ∗i
c̃∗i

and lim
z→ti

1 − |E(z)|2

1 − |z|2
= ∞. (5.25)

Then the function w = TΘ[E ] is subject to relations (5.18).

Proof: Let for short

∆i(z) :=
ẽ∗i − c̃∗i E(z)

ti − z
and note that

∆i(z) 6= 0 (z ∈ D). (5.26)

To see this we argue as in the proof of the previous lemma: assuming that E(z0) =

ηi at some point z0 ∈ D, we would have by the maximum modulus principle (since

|ηi| = 1) that E(z) ≡ ηi which would contradict the second assumption in (5.25).

Furthermore, since |ηi| = 1 and due to assumptions (5.25), we can apply Lemma

5.5 (with E0 = ηi and t0 = ti) to conclude that

lim
z→t0

1 − |E(z)|2

1 − |z|2
·

1

|∆i(z)|2
= 0 (5.27)

and

lim
z→t0

∆i(z)−1 = 0. (5.28)

Now we divide both parts in asymptotic relations (5.10)–(5.12) by (ẽ∗i − c̃∗i E(z))

and write the obtained equalities in terms of ∆i as

∆i(z)−1Ψ(z) = ei + ∆i(z)−1 · O(1),

∆i(z)−1UE(z) = wi + ∆i(z)−1 · O(1),

∆i(z)−1VE(z) = 1 + ∆i(z)−1 · O(1).

By (5.28), the following nontangential limits exist

lim
z→ti

∆i(z)−1Ψ(z) = ei, lim
z→ti

∆i(z)−1UE(z) = wi, lim
z→ti

∆i(z)−1VE (z) = 1

and we use these limits along with (5.27) to pass to limits in (5.9):

lim
z→ti

1 − |w(z)|2

1 − |z|2
= lim

z→ti

|∆i(z)|−2 1 − |E(z)|2

1 − |z|2
+ |∆i(z)|−2Ψ(z)∗PΨ(z)

|∆i(z)|−2|VE (z)|2

=
0 + e

∗
i Pei

1
= γi.

Finally,

lim
z→ti

w(z) = lim
z→ti

∆i(z)−1UE(z)

∆i(z)−1VE (z)
=

wi

1
= wi,

which completes the proof.
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Theorem 5.7. Let p̃ii be the i-th diagonal entry of P−1 = [p̃ij ]
n

i,j=1, let E ∈ S0 be

subject to

lim
z→ti

E(z) = ηi and lim
z→ti

1 − |E(z)|2

1 − |z|2
= dE(ti) < ∞. (5.29)

Let us assume that

dE(ti) 6=
p̃ii

|ẽi|2
. (5.30)

Then the function w := TΘ[E ] satisfies

lim
z→ti

w(z) = wi (5.31)

and the nontangential limit dw(ti) := lim
z→ti

1 − |w(z)|2

1 − |z|2
is finite. Moreover,

dw(ti) < γi if dE(ti) > −
p̃ii

|ẽi|2
(5.32)

and

dw(ti) > γi if dE(ti) < −
p̃ii

|ẽi|2
. (5.33)

In other words, dw(ti) < γi if E meets condition C3 and dw(ti) > γi if E meets

condition C4 at ti.

Proof: By the Carathéodory-Julia theorem (for Schur functions), conditions

(5.29) imply that the following nontangential limits exist

lim
z→ti

E ′(z) = lim
z→ti

E(z) − ηi

z − ti
= t̄iηidE(ti)

and the following asymptotic equality holds

E(z) = ηi + (z − ti)tiηidE(ti) + o(|z − ti|) as z → ti. (5.34)

We shall show that the functions Ψ, UE and VE defined in (5.4), (5.5), (5.6) admit

the nontangential boundary limits at every interpolation node ti:

Ψ(ti) =
t̄i
ẽi

(
P−1

ei − ei(p̃ii + |ẽi|
2dE(ti))

)
, (5.35)

UE(ti) = −
t̄iwi

ẽi

(p̃ii + |ẽi|
2dE(ti)) and VE(ti) = −

t̄i
ẽi

(p̃ii + |ẽi|
2dE(ti)). (5.36)

To prove (5.35) we first multiply both parts in the Stein identity (3.4), by ei on

the right and obtain

P−1
ei − TP−1T ∗

ei = Ẽ∗ẽi − C̃∗c̃i

which can be written equivalently, since T ∗
ei = t̄iei and c̃i = ẽiηi, as

Ẽ∗ − C̃∗ηi =
t̄i
ẽi

(tiI − T )P−1
ei. (5.37)
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Substituting (5.34) into (5.4) and making use of (5.37) we get

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗ηi

)
− (z − ti)(zI − T )−1C̃∗ηidE(ti)t̄i + o(1)

=
t̄i
ẽi

(zI − T )−1(tiI − T )P−1
ei

−(z − ti)(zI − T )−1C̃∗ηidE(ti)t̄i + o(1). (5.38)

Since the following limits exist

lim
z→ti

(zI − T )−1(tiI − T ) = I − eie
∗
i , lim

z→ti

(z − ti)(zI − T )−1 = eie
∗
i ,

we can pass to the limit in (5.38) as z → ti nontangentially to get

Ψ(ti) =
t̄i
ẽi

(I − eie
∗
i )P

−1
ei − eie

∗
i C̃

∗ηidE(ti)t̄i. (5.39)

Since e
∗
i P

−1
ei = p̃ii and e

∗
i C̃

∗ηi = c̃∗i ηi = ẽ∗i , the right hand side expression in

(5.39) coincides with that in (5.35).

Making use of (5.34) and (5.35) we pass to the limits in (5.5) and (5.6) as

z → ti nontangentially:

UE(ti) = E(ti) − (ti − µ)C(µI − T )−1Ψ(ti)

= ηi −
1 − µt̄i

ẽi

C(µI − T )−1
(
P−1

ei − ei(p̃ii + |ẽi|
2dE(ti))

)
, (5.40)

VE (ti) = 1 − (ti − µ)E(µI − T )−1Ψ(ti)

= 1 −
1 − µt̄i

ẽi

E(µI − T )−1
(
P−1

ei − ei(p̃ii + |ẽi|
2dE(ti))

)
. (5.41)

Note that by (3.2),

1 − µt̄i
ẽi

C(µI − T )−1P−1
ei =

1 − µt̄i
ẽi

C̃(I − µT ∗)−1
ei =

c̃i

ẽi

= ηi, (5.42)

1 − µt̄i
ẽi

E(µI − T )−1P−1
ei =

1 − µt̄i
ẽi

Ẽ(I − µT ∗)−1
ei =

ẽi

ẽi

= 1. (5.43)

Making use of these two equalities we simplify (5.40) and (5.41) to

UE(ti) =
1 − µt̄i

ẽi

C(µI − T )−1
ei(p̃ii + |ẽi|

2dE(ti))

and

VE(ti) =
1 − µt̄i

ẽi

E(µI − T )−1
ei(p̃ii + |ẽi|

2dE(ti)),

respectively, and it is readily seen from (5.13) that the two latter equalities coincide

with those in (5.36).
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Now we conclude from (5.3) and (5.36) that the nontangential boundary

limits w(ti) exist for i = 1, . . . , n and

w(ti) = lim
z→ti

w(z) = lim
z→ti

UE(z)

VE(z)
=

UE(ti)

VE(ti)
= wi

which proves (5.31). Furthermore, since the nontangential boundary limits dE (ti)

and

|VE(ti)|
2 =

(p̃ii + |ẽi|
2dE(ti))

2

|ẽi|2
(5.44)

exist (by the second assumption in (5.29) and the second relation in (5.36)), we

can pass to the limit in (5.9) as z tends to ti nontangentially:

dw(ti) =
dE(ti) + Ψ(ti)

∗PΨ(ti)

|VE (ti)|2
.

By (5.44) and (5.35) we have

dw(ti) =
|ẽi|

2dE (ti) +
(
e
∗
i P

−1 − (p̃ii + |ẽi|
2dE(ti))e

∗
i

)
P
(
P−1

ei − ei(p̃ii + |ẽi|
2dE(ti))

)

(p̃ii + |ẽi|2dE(ti))2

and elementary algebraic transformations based on equalities e
∗
i P

−1
ei = p̃ii,

e
∗
i Pei = γi and e

∗
i ei = 1 lead us to

dw(ti) = γi −
1

p̃ii + |ẽi|2dE(ti)
. (5.45)

Statements (5.32) and (5.33) follow immediately from (5.45).

As we have already mentioned in Introduction, Theorem 2.1 is known for the

case κ = 0 (see [19]) At this point we already can recover this result.

Theorem 5.8. Let the Pick matrix P be positive definite and let T , E, C, Θ(z)

and ηi be defined as in (2.3), (2.2) and (2.12). Then all solutions w of Problem

1.2 are parametrized by the formula (2.10) when the parameter E belongs to the

Schur class S0 and satisfies condition C1 ∨ C2 at each interpolation node: either

E fails to admit the nontangential boundary limit ηi at ti or

E(ti) = ηi and dE(ti) = ∞.

Proof: Any solution w of Problem 1.2 is a solution of Problem 1.1 and then

by Statement 1 in Theorem 4.6, it is of the form w = TΘ[E ] for some Schur class

function E . Since P > 0, the diagonal entries p̃ii of P−1 are positive. Therefore, the
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cases specified in (2.16)–(2.18) (conditions C4−C6 cannot occur in this situation,

whereas condition C3 simplifies to

C3 : E(ti) = ηi and dE (ti) < ∞.

In other words, any function E ∈ S0 satisfies exactly one of the conditions C1, C2

or C3 at each one of interpolation nodes. Therefore, once E does not meet condition

C1 or condition C2 at at least one interpolation node ti, it meets condition C3 at

ti. Therefore, it holds for the function w = TΘ[E ] that dw(ti) < γi (by Theorem

5.7) and therefore w is not a solution of Problem 1.2. On the other hand, if E

meets condition C1 ∨ C2 at every interpolation node, then w = TΘ[E ] satisfies

interpolation conditions (5.18) (by Theorems 5.4 and 5.6) that means that w is a

solution of Problem 1.2.

Remark 5.9. It is useful to note that for the one-point interpolation problem (i.e.,

when n = 1), definition (3.3) takes the form
[

c̃1

ẽ1

]
=

[
w1

1

]
(µ − t1)

−1γ−1
1 (I − µt̄1) = −t̄1

[
w1

1

]
γ−1
1

and therefore the number η1 := ec1

ee1
in this case is equal to w1.

Now we turn back to the indefinite case. Theorems 5.10 and 5.11 below treat

the case when condition (5.30) is dropped. For notational convenience we let i = n

and

T1 =




t1
. . .

tn−1


 , E1 =

[
1 . . . 1

]
, C1 =

[
w1 . . . wn−1

]

so that decompositions

T =

[
T1 0
0 tn

]
, E =

[
E1 1

]
, C =

[
C1 wn

]
(5.46)

are conformal with partitionings

P =

[
P11 P12

P21 γn

]
and P−1 =

[
P̃11 P̃12

P̃21 p̃nn

]
. (5.47)

Theorem 5.10. Let p̃nn < 0 and let E be a Schur function such that

lim
z→tn

E(z) = ηn and dE(tn) = −
p̃nn

|ẽn|2
. (5.48)

Then the function

w := TΘ[E ] (5.49)
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is subject to one of the following:

1. The nontangential boundary limit w(tn) does not exist.

2. The latter limit exists and w(tn) 6= wn.

3. The latter limit exists, is equal to wn and dw(tn) = ∞.

Proof: Since E is a Schur function, conditions (5.48) form a well posed one-

point interpolation problem (similar to Problem 1.2). By Theorem 5.8, E admits

a representation

E = TbΘ[Ê ] (5.50)

with the coefficient matrix Θ̂ defined via formula (2.2), but with P , T , E and C

replaced by − epnn

|een|2 , tn, 1 and ηn, respectively:

Θ̂(z) = I2 −
z − µ

(z − tn)(1 − µtn)

[
ηn

1

]
|ẽn|

2

p̃nn

[
η∗

n −1
]

(5.51)

and a parameter Ê ∈ S0 satisfying one of the following three conditions:

(a) The limit Ê(tn) does not exist.

(b) The limit Ê(tn) exists and is not equal to ηn.

(c) It holds that

Ê(tn) = ηn and dbE(tn) = ∞. (5.52)

We shall show that conditions (a), (b) and (c) for the parameter Ê are equivalent

to statements (1), (2) and (3), respectively, in the formulation of the theorem. This

will complete the proof.

Note that ηn appearing in (a) and (b) is the same as in (5.48), due to Remark

5.9. Since ηn =
c̃n

ẽn

, we can write (5.51) as

Θ̂(z) = I2 −
z − µ

(z − tn)(1 − µtn)

[
c̃n

ẽn

]
1

p̃nn

[
c̃∗n −ẽ∗n

]

The inverse of Θ̂ equals

Θ̂(z)−1 = I2 +
z − µ

(z − tn)(1 − µtn)

[
c̃n

ẽn

]
1

p̃nn

[
c̃∗n −ẽ∗n

]
(5.53)

and coincides with the function Θ̂(2) in (3.32). Therefore, by Lemma 3.6 and by

Remark 3.7,

Θ(z) = Θ(1)(z)Θ̂(z)−1 (5.54)
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where Θ(1) is given in (3.20). Substituting (5.51) into (5.49) (that is, representing

w as a result of composition of two linear fractional transformations) and taking

into account (5.54) we get

w := TΘ[E ] = TΘ[TbΘ[Ê ]] = TΘbΘ[Ê ] = TΘ(1) [Ê ].

Thus, upon setting

UbE(z) = Θ
(1)
11 (z)Ê(z) + Θ

(1)
12 (z), VbE (z) = Θ

(1)
21 (z)Ê(z) + Θ

(1)
22 (z), (5.55)

we have

w = TΘ(1) [Ê ] =
Θ

(1)
11 Ê + Θ

(1)
12

Θ
(1)
21 Ê + Θ

(1)
22

=
UbE

VbE

. (5.56)

Note that Θ(1) is a rational function analytic and invertible at tn. It follows im-

mediately from (5.56) that if the boundary limit Ê(tn) does not exist, then the

boundary w(tn) does not exist either. Thus, (a) ⇒ (1). The rest is broken into two

steps.

Step 1: Let the nontangential boundary limit Ê(tn) exists. Then so do the

limits UbE(tn), VbE(tn) and w(tn), and moreover,

VbE(tn) := lim
z→tn

VbE(z) 6= 0 (5.57)

and

w(tn) = wn if and only if Ê(tn) = ηn. (5.58)

Proof of Step 1: Existence of the limits UbE(tn) and VbE(tn) is clear since Θ(1) is

analytic at tn. Assume that VbE(tn) = 0. Then UbE(tn) = 0, since otherwise, the

function w of the form (5.56) would not be bounded in a neighborhood of tn ∈ T

which cannot occur since w is a generalized Schur function. If VbE (tn) = UbE(tn) = 0,

then it follows from (5.55) that

Θ(1)(tn)

[
Ê(tn)

1

]
=

[
UbE(tn)
VbE(tn)

]
= 0

and thus, the matrix Θ(1)(tn) is singular which is a contradiction. Now it follows

from (5.56) and (5.57) that the limit w(tn) exists. This completes the proof of

(a) ⇔ (1). The proof of (5.58) rests on the equality

[
w∗

n −1
]
Θ(1)(tn) =

t̄n
p̃nn

[
c̃∗n −ẽ∗n

]
. (5.59)
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Indeed, it follows from (5.56) and (5.59) that

w(tn) − wn =
UbE(tn) − wnVbE(tn)

VbE (tn)

=
wn

VbE(tn)
·
[
w∗

n −1
]
Θ(1)(tn)

[
Ê(tn)

1

]

=
t̄nwn

p̃nnVbE(tn)

[
c̃∗n −ẽ∗n

] [Ê(tn)
1

]

=
t̄nwn

p̃nnc̃∗nVbE(tn)

(
Ê(tn) − ηn

)

which clearly implies (5.58). It remains to prove (5.59). To this end, note that by

(3.11),

Resz=tn
Θ(z) = −

[
wn

1

] [
c̃∗n −ẽ∗n

]

and it is readily seen from (5.53) that

Resz=tn
Θ̂(z)−1 = tn

[
c̃n

ẽn

]
1

p̃nn

[
c̃∗n −ẽ∗n

]
.

Taking into account that Θ(1) is analytic at tn and that Θ and Θ̂−1 have simple

poles at tn, we compare the residues of both parts in (5.54) at tn to arrive at

−

[
wn

1

] [
c̃∗n −ẽ∗n

]
=

tn
p̃nn

Θ(1)(tn)

[
c̃n

ẽn

] [
c̃∗n −ẽ∗n

]
,

which implies (since ẽn 6= 0)
[

wn

1

]
= Θ(1)(tn)

[
c̃n

ẽn

]
tn
p̃nn

.

Equality of adjoints in the latter equality gives

[
w∗

n −1
]

=
[
w∗

n 1
]
J =

t̄n
p̃nn

[
c̃∗n −ẽ∗n

]
JΘ(1)(tn)∗J

which is equivalent to (5.59), since Θ(1)(tn) is J-unitary and thus, JΘ(1)(tn)∗J =

Θ(1)(tn)−1. This completes the proof of (5.58) which implies in particular, that

(b) ⇔ (2).

Step 2: (c) ⇔ (3).

Proof of Step 2: Equality w(tn) = wn is equivalent to the first condition in

(5.52) by (5.58). To complete the proof, it suffices to show that if Ê(tn) = ηn, then

dw(tn) = ∞ if and only if dbE(tn) = ∞. (5.60)



Boundary Nevanlinna–Pick problem 41

To this end, we write a virtue of relation (5.9) in terms of the parameter Ê :

1 − |w(z)|2

1 − |z|2
=

1

|VbE(z)|2

(
1 − |Ê(z)|2

1 − |z|2
+ Ψ̂(z)∗P Ψ̂(z)

)
(5.61)

where

Ψ̂(z) = (zI − T1)
−1(µI − T1)P

−1
11 (I − µT ∗

1 )−1
(
E∗

1 − C∗
1 Ê(z)

)
. (5.62)

Note that to get (5.62) we represent the right hand side expression in (5.4) in

terms of C and E (rather than C̃ and Ẽ; this can be achieved with help of (3.3))

and then replace P , T , E, C and E in the obtained formula by P11, T1, E1, C1

and Ê , respectively. Since the nontangential boundary limit

Ψ̂(tn) = (tnI − T1)
−1(µI − T1)P

−1
11 (I − µT ∗

1 )−1 (E∗
1 − C∗

1ηn)

exists and is finite, equivalence (5.60) follows from (5.61).

Theorem 5.11. Let p̃nn = 0 and let E be a Schur function such that

E(tn) = ηn and dE(tn) = 0. (5.63)

Then the function w := TΘ[E ] admits finite nontangential boundary limits dw(tn)

and w(tn) 6= wn.

Proof: Conditions (5.63) state a one-point boundary interpolation problem

for Schur functions E with the Pick matrix equals dE(tn) = 0. Then by Statement

2 in Theorem 4.6, the only function E satisfying conditions (5.63) is the constant

function E(z) ≡ ηn (the Blaschke product of degree zero). Since |ηn| = 1, the

function w = TΘ[E ] is rational and unimodular on T. Therefore, it is equal to

the ratio of two finite Blaschke products and therefore, the limits w(t) and dw(t)

exist at every point t ∈ T. We shall use decompositions (5.46) and (5.47) with

understanding that p̃nn = 0, so that

P̃21P12 = 1 and P−1
en =

[
P̃12

0

]
. (5.64)

We shall also make use the formula

P21(I − t̄nT1)
−1 = (E1 − w∗

nC1) (5.65)

that follows from the Stein identity (3.1) upon substituting partitionings (5.46),

(5.47) and comparison the (1, 2) block entries.
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In the current context, the formula (5.4) for Ψ simplifies, on account of (5.37),

to

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗ηn

)

=
t̄n
ẽn

(zI − T )−1(tnI − T )P−1
en

Now we substitute the latter equality into (5.5) and (5.6) and use formulas (5.42)

and (5.43) (for i = n) to get

UE(z) =
1 − zt̄n

ẽn

C(zI − T )−1P−1
en, VE(z) =

1 − zt̄n
ẽn

E(zI − T )−1P−1
en.

Taking into account the second equality in (5.64), rewrite the latter two formulas

in terms of partitionings (5.46) and (5.47) as

UE(z) =
1 − zt̄n

ẽn

C1(zI − T1)
−1P̃12, VE(z) =

1 − zt̄n
ẽn

E1(zI − T1)
−1P̃12. (5.66)

Thus,

w(z) :=
UE(z)

VE (z)
=

C1(zI − T1)
−1P̃12

E1(zI − T1)−1P̃12

.

We shall show that the denominator on the right hand side in the latter formula

does not vanish at z = tn, so that

w(tn) := lim
z→tn

C1(zI − T1)
−1P̃12

E1(zI − T1)−1P̃12

=
C1(tnI − T1)

−1P̃12

E1(tnI − T1)−1P̃12

. (5.67)

Then we will have, on account of (5.65) and the first equality in (5.64),

wn − w(tn) = wn −
C1(tnI − T1)

−1P̃12

E1(tnI − T1)−1P̃12

=
(wnE1 − C1)(tnI − T1)

−1P̃12

E1(tnI − T1)−1P̃12

=
wntn(E1 − w∗

nC1)(I − t̄nT1)
−1P̃12

E1(tnI − T1)−1P̃12

=
wntnP̃21P12

E1(tnI − T1)−1P̃12

=
wntn

E1(tnI − T1)−1P̃12

6= 0 (5.68)

and thus w(tn) 6= wn. Thus, it remains to show that the denominator in (5.67)

is not zero. Assume that E1(tnI − T1)
−1P̃12 = 0. Since the limit in (5.67) exists

(recall that w is the ratio of two finite Blaschke products), the latter assumption

forces C1(tnI − T1)
−1P̃12 = 0 and therefore, equality

(wnE1 − C1)(tnI − T1)
−1P̃12 = 0.
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But it was already shown in calculation (5.68) that

(wnE1 − C1)(tnI − T1)
−1P̃12 = wntn 6= 0

and the obtained contradiction completes the proof.

Recall that the interpolation node tn in Theorems 5.10 and 5.11 was chosen

just for notational convenience and can be replaced by any interpolation node ti.

It means that Theorems 5.10 and 5.11 prove Statements (4) and (5) in Theorem

2.3. Furthermore, Theorem 5.7 proves the “if” parts in Statements (4) and (5) in

Theorem 2.3, whereas Theorems 5.4 and 5.6 prove the “if” part in Statement (1)

in Theorem 2.3. Finally since conditions C1-C6 are disjoint, the “only if” parts in

Statements (1), (2) and (3) are obvious. This completes the proof of Theorem 2.3.

6. Negative squares of the function w = TΘ[E ].

In this section we prove Theorems 2.9 and 2.5. We assume without loss of generality

that (maybe after an appropriate rearrangement of the interpolation nodes) a fixed

parameter E ∈ S0 satisfies condition C1−3 at interpolation nodes t1, . . . , tn−ℓ and

conditions C4−6 at the remaining ℓ points. Thus, we assume that

lim
z→ti

E(z) = ηi and lim
z→ti

1 − |E(z)|2

1 − |z|2
≤ −

p̃ii

|ẽi|2
(i = n − ℓ + 1, . . . , n). (6.1)

Let

P−1 =

[
P̃11 P̃12

P̃21 P̃22

]
with P̃22 ∈ C

ℓ×ℓ. (6.2)

Note that under the above assumption, the matrix P in the formulation of Theorem

2.9 coincides with P̃22 in the decomposition (6.2). Thus, to prove Theorem 2.9, it

suffices to show that there exists a Schur function E satisfying conditions (6.1) if

and only if the matrix P̃22 is negative semidefinite.

Proof of Theorem 2.9: Since |ηi| = 1, conditions (6.1) form a well posed

boundary Nevanlinna-Pick problem (similar to Problem 1.1) in the Schur class S0.

This problem has a solution E if and only if the corresponding Pick matrix

P = [Pij ]
n
i,j=n−ℓ+1 with the entries Pij =





1 − η∗
i ηj

1 − t̄itj
for i 6= j,

−
p̃ii

|ẽi|2
for i = j,

(6.3)

is positive semidefinite. Furthermore, there exist infinitely many functions E sat-

isfying (6.1) if P is positive definite and there is a unique such function (which is
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a Blaschke product of degree equals rankP) if P is singular. Thus, to complete the

proof, it suffices to show that

P > 0 ⇐⇒ P̃22 < 0, P ≥ 0 ⇐⇒ P̃22 ≤ 0 and rankP = rank P̃22. (6.4)

To this end, note that

t̄iẽ
∗
i · Pij · tj ẽj = −p̃ij (i, j = n − ℓ + 1, . . . , n) (6.5)

where p̃ij is the ij-th entry in P−1. Indeed, if i 6= j, then (6.5) follows from (6.3),

(3.6) and definition (2.12) of ηi. If i = j, then (6.5) follows directly from (6.3). By

(6.2), [p̃ij ]
n

i,j=ℓ+1 = P̃22, which allows us to rewrite equalities (6.5) in the matrix

form as

C
∗

P C = −P̃22 where C = diag (tℓ+1ẽℓ+1, tℓ+2ẽℓ+2, . . . , tnẽn) . (6.6)

Since the matrix C is invertible, all the statements in (6.4) follow from (6.6). This

completes the proof of Theorem 2.9.

To prove Theorem 2.5 we shall use the following result (see [5, Lemma 2.4]

for the proof).

Lemma 6.1. Let P ∈ Cn×n be an invertible Hermitian matrix and let

P =

[
P11 P12

P21 P22

]
and P−1 =

[
P̃11 P̃12

P̃21 P̃22

]
(6.7)

be two conformal decompositions of P and of P−1 with P22, P̃22 ∈ Cℓ×ℓ. Further-

more, let P̃22 be negative semidefinite. Then

sq−P11 = sq−P − ℓ.

Proof of Theorem 2.5: We start with several remarks. We again assume (with-

out loss of generality) that a picked parameter E ∈ S0 satisfies condition C1−3 at

t1, . . . , tn−ℓ and conditions (6.1) at the remaining ℓ interpolation nodes. Under

these non-restrictive assumptions we will show that the function w = TΘ[E ] be-

longs to the class Sκ−ℓ. Throughout the proof, we shall be using partitionings

(3.18), (3.19). Note that by Theorem 2.9, the block P̃22 is necessarily negative

semidefinite. Then by Lemma 6.1, sq−P11 = κ − ℓ. Furthermore, since E meets

condition C1−3 at t1, . . . , tn−ℓ, the function w = TΘ[E ] satisfies interpolation

conditions (1.17) at each of these points. Then by Remark 1.5, w has at least

sq−P11 = κ − ℓ negative squares.
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It remains to show that it has at most κ − ℓ negative squares. This will be

done separately for the cases when P̃22 is negative definite and when P̃22 is negative

semidefinite and singular.

Conditions (6.1) mean that E is a solution of a boundary Nevanlinna–Pick

interpolation problem with the data set consisting of ℓ interpolation nodes ti,

unimodular numbers ηi and nonnegative numbers Pii = −
p̃ii

|ẽi|2
for i = n − ℓ +

1, . . . , n. The Pick matrix P of the problem is defined in (6.3).

Case 1: P̃22 < 0: In this case P > 0 (by (6.6)) and by the first statement in

Theorem 4.6, E admits a representation

E = TbΘ[Ê ] (6.8)

for some Ê ∈ S0 where, according to (2.2), the coefficient matrix Θ̂ in (6.8) is of

the form

Θ̂(z) = I2 + (z − µ)

[
M
E2

]
(zI − T2)

−1
P
−1(I − µT ∗

2 )−1
[

M∗ −E∗
2

]
(6.9)

where the matrices

T2 = diag (tn−ℓ+1, . . . , tn), E2 =
[
1 . . . 1

]
(6.10)

are exactly the same as in (3.18), (3.19)) and

M =
[
ηn−ℓ+1 ηn−ℓ+2 . . . ηn

]
(6.11)

Self-evident equalities
[
ηi

1

]
·

1

z − ti
· tiẽi = −

[
c̃i

ẽi

]
·

1

1 − zt̄i
(i = n − ℓ + 1, . . . , n)

can be written in the matrix form as
[
M
E2

]
(zI − T2)

−1
C = −

[
C̃2

Ẽ2

]
(I − zT ∗

2 )−1 (6.12)

where C is defined in (6.6), whereas

Ẽ2 =
[
ẽn−ℓ+1 . . . ẽn

]
and C̃2 =

[
c̃n−ℓ+1 . . . c̃n

]

are the matrices from the two last partitionings in (3.19). On account of (6.12)

and (6.6), we rewrite the formula (6.9) as

Θ̂(z) = I2 − (z − µ)

[
C̃2

Ẽ2

]
(I − zT ∗

2 )−1P̃−1
22 (µI − T2)

−1
[

C̃∗
2 −Ẽ∗

2

]
.
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Then its inverse can be represented as

Θ̂(z)−1 = I2 + (z − µ)

[
C̃2

Ẽ2

]
(I − µT ∗

2 )−1P̃−1
22 (zI − T2)

−1
[

C̃∗
2 −Ẽ∗

2

]

and coincides with the function Θ̃(2) from (3.21). Therefore, by Lemma 3.6,

Θ(z) = Θ(1)(z)Θ̂(z)−1 (6.13)

where Θ(1) is given in (3.20). Note that

Θ(1) ∈ Wκ1 where κ1 = sq−P11 = κ − ℓ. (6.14)

Substituting (6.8) into (2.10) (that is, representing w as a result of composition of

two linear fractional transformations) and taking into account (6.13) we get

w := TΘ[E ] = TΘ[TbΘ[Ê ]] = TΘbΘ[Ê ] = TΘ(1) [Ê ].

Since E ∈ S0 and due to (6.13), the last equality guarantees (by Remark 5.1) that

w has at most κ1 = κ − ℓ negative squares which completes the proof of Case 1.

Case 2: P̃22 ≤ 0 is singular: In this case P is positive semidefinite and sin-

gular (again, by (6.6)) and by the second statement in Theorem 4.6, E admits a

representation

E(z) =
x∗(I − zT ∗

2 )−1E∗
2

x∗(I − zT ∗
2 )−1M∗

(6.15)

where x is any nonzero vector such that Px = 0. Letting y := C
−1x we have (due

to (6.6))

P̃22y = 0 (6.16)

and, on account of (6.12), we can rewrite (6.15) as

E(z) =
y∗

C
∗(I − zT ∗

2 )−1E∗
2

y∗C∗(I − zT ∗
2 )−1M∗

=
y∗(zI − T2)

−1Ẽ∗
2

y∗(zI − T2)−1C̃∗
2

. (6.17)

Since E is a finite Blaschke product (again by the second statement in Theorem

4.6) it satisfies the symmetry relation E(z) = (E(1/z̄))−1 which together with

(6.17) gives another representation for E :

E(z) =
C̃2(I − zT ∗

2 )−1y

Ẽ2(I − zT ∗
2 )−1y

. (6.18)

We will use the latter formula and (5.8) to get an explicit expression for the kernel

Kw(z, w). Setting

u(z) = C̃2(I − zT ∗
2 )−1y and v(z) = Ẽ2(I − zT ∗

2 )−1y
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for short and making use of the second Stein identity in (3.4) we have

v(ζ)∗v(z) − u(ζ)∗u(z) = y∗(I − ζ̄T2)
−1
[
Ẽ∗

2 Ẽ2 − C̃∗
2 C̃2

]
(I − zT ∗

2 )−1y

= y∗(I − ζ̄T2)
−1
[
P̃22 − T2P̃22T

∗
2

]
(I − zT ∗

2 )−1y

which reduces, due to (6.16), to

v(ζ)∗v(z) − u(ζ)∗u(z) = −(1 − zζ̄)y∗(I − ζ̄T2)
−1T2P̃22T

∗
2 (I − zT ∗

2 )−1y.

Upon dividing both parts in the latter equality by (1 − zζ̄)v(z)v(ζ)∗ we arrive at

1 − E(ζ)∗E(z)

1 − ζ̄z
= −

y∗

v(ζ)∗
(I − ζ̄T2)

−1T2P̃22T
∗
2 (I − zT ∗

2 )−1 y

v(z)
. (6.19)

Next, we substitute the explicit formula (6.18) for E into (5.4) to get

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗E(z)

)

= (zI − T )−1(Ẽ∗Ẽ2 − C̃∗C̃2)(I − zT ∗
2 )−1 ·

y

v(z)
. (6.20)

Substituting partitionings (3.18), (3.19) into the Stein identity (3.4) and comparing

the right block entries we get
[
P̃12

P̃22

]
− T

[
P̃12

P̃22

]
T ∗

2 = ẼẼ∗
2 − C̃C̃∗

2

which implies

(zI − T )
−1
{
ẼẼ∗

2 − C̃C̃∗
2

}
(I − zT ∗

2 )
−1

= (zI − T )
−1

[
P̃12

P̃22

]
+

[
P̃12

P̃22

]
T ∗

2 (I − zT ∗
2 )−1.

Now we substitute the last equality into (5.4) and take into account (6.16) to get

Ψ(z) = (zI − T )
−1

[
P̃12

0

]
·

y

v(z)
+

[
P̃12

P̃22

]
T ∗

2 (I − zT ∗
2 )−1 ·

y

v(z)

On account of partitionings (3.18), the latter equality leads us to

Ψ(ζ)∗PΨ(z) =
y∗

v(ζ)∗

(
P̃ ∗

12(ζ̄I − T ∗
1 )−1P11(zI − T1)

−1P̃12

+(I − ζ̄T2)
−1T2P̃22T

∗
2 (I − zT ∗

2 )−1
) y

v(z)
(6.21)

Upon substituting (6.19) and (6.21) into (5.8) we get

1 − w(ζ)∗w(z)

1 − ζ̄z
=

y∗

VE(ζ)∗v(ζ)∗
· P̃ ∗

12(ζ̄I − T ∗
1 )−1P11(zI − T1)

−1P̃12 ·
y

VE(z)v(z)
.
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Thus, the kernel Kw(z, ζ) admits a representation

Kw(z, ζ) = R(ζ)∗P11R(z) where R(z) =
yP̃21T

∗
1 (I − zT ∗

1 )−1

v(z)VE (z)

and thus,

sq−Kw ≤ sq−P11 = κ − ℓ

which completes the proof of the theorem.

Remark 6.2. At this point Theorem 2.2 is completely proved: the necessity part

follows from Theorem 4.3 and from the necessity part in Theorem 4.2; the suf-

ficiency part follows (as was explained in introduction) from Corollary 2.4 and

Theorem 2.5 which have been already proved.

Remark 6.3. We also proved the sufficiency part in Theorem 4.2 when the Pick

matrix P is invertible.

Indeed, in this case, every solution w to the FMI (4.5) is of the form (4.15),

by Theorem 4.3. But every function of this form solves Problem 1.6, by Theorem

2.2.

7. The degenerate case

In this section we study Problem 1.6 in the case when the Pick matrix P of the

problem (defined in (1.14)) is singular. In the course of the study we will prove

Theorem 2.1 and will complete the proof of Theorem 4.2.

Theorem 7.1. Let the Pick matrix P defined in (1.14) be singular with rankP =

ℓ < n. Then there is a unique generalized Schur function w such that

sq−Kw(z, ζ) = κ (7.1)

where Kw(z, ζ) is the kernel defined in (4.4). Furthermore,

1. This unique function w is the ratio of two finite Blaschke products

w(z) =
B1(z)

B2(z)
(7.2)

with no common zeroes and such that

deg B1 + deg B2 = rankP. (7.3)



Boundary Nevanlinna–Pick problem 49

2. This unique function w belongs to the generalized Schur class Sκ′ where

κ′ = deg B2 ≤ κ and satisfies conditions

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , n) (7.4)

at all but κ − κ′ interpolation nodes (that is, w is a solution to Problem

1.6).

3. The function w satisfies conditions

dw(ti) = γi and w(ti) = wi

at at least n − rankP interpolation nodes.

Proof: Without loss of generality we can assume that the top ℓ × ℓ principal

submatrix P11 of P is invertible and has κ negative eigenvalues. We consider

conformal partitionings

T =

[
T1 0
0 T2

]
, E =

[
E1 E2

]
, C =

[
C1 C2

]
(7.5)

and

P =

[
P11 P12

P21 P22

]
, det P11 6= 0, sq−P11 = κ = sqP. (7.6)

Since rankP11 = rankP , it follows that P22 − P21P
−1
11 P12 the Schur complement

of P11 in P , is the zero matrix, i.e.,

P22 = P21P
−1
11 P12. (7.7)

Furthermore, it is readily seen that the i-th row of the block P21 in (7.6) can be

written in the form

e
∗
i P21 =

[
1 − w∗

ℓ+iw1

1 − t̄ℓ+it1
. . .

1 − w∗
ℓ+iwℓ

1 − t̄ℓ+itℓ

]
=
(
E1 − w∗

ℓ+iC1

)
(I − t̄ℓ+iT1)

−1

and similarly, the j-th column in P12 is equal to

P12ej = (I − tℓ+jT
∗
1 )−1 (E∗

1 − C∗
1wℓ+j) (7.8)

(recall that ej stands for the j-th column of the identity matrix of an appropriate

size). Taking into account that the ij-th entry in P22 is equal to
1 − w∗

ℓ+iwℓ+j

1 − t̄ℓ+itℓ+j

(if i 6= j) or to γℓ+i (if i = j) we write the equality (7.7) entrywise and get the

equalities

1 − w∗
i wj

1 − t̄itj
= (E1 − w∗

i C1) (I − t̄iT1)
−1

P−1
11 (I − tjT

∗
1 )

−1
(E∗

1 − wjC
∗
1 ) (7.9)
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for i 6= j ∈ {ℓ + 1, . . . , n} and the equalities

γi = (E1 − w∗
i C1) (I − t̄iT1)

−1 P−1
11 (I − tiT

∗
1 )−1 (E∗

1 − wiC
∗
1 ) (7.10)

for i = ℓ + 1, . . . , n. The rest of the proof is broken into a number of steps.

Step 1: If w is a meromorphic function such that (7.1) holds, then it is

necessarily of the form

w = TΘ(1) [E ] :=
Θ

(1)
11 E + Θ

(1)
12

Θ
(1)
21 E + Θ

(1)
22

(7.11)

for some Schur function E ∈ S0, where Θ(1) is given in (3.20).

Proof of Step 1: Write the kernel Kw(z, ζ) in the block form as

Kw(z, ζ) =




P11 P12 F1(z)
P21 P22 F2(z)

F1(ζ)∗ F2(ζ)∗ Kw(z, ζ)


 (7.12)

where F1 and F2 are given in (4.10). The kernel

K
1
w(z, ζ) :=

[
P11 F1(z)

F1(ζ)∗ Kw(z, ζ)

]

=

[
P11 (I − zT ∗

1 )−1(E∗
1 − C∗

1w(z))
(E1 − w(ζ)∗C1)(I − ζ̄T1)

−1 Kw(z, ζ)

]

is contained in Kw(z, ζ) as a principal submatrix and therefore, sq−K
1
w ≤ κ. On

the other hand, K
1
w contains P11 as a principal submatrix and therefore sq−K

1
w ≥

sq−P11 = κ. Thus,

sq−K
1
w = κ. (7.13)

Recall that P11 is an invertible Hermitian matrix with κ negative eigenvalues and

satisfies the first Stein identity in (3.4). Then we can apply Theorem 4.3 (which is

already proved for the case when the Pick matrix is invertible) to the FMI (7.13).

Upon this application we conclude that w is of the form (7.11) with some E ∈ S0

and Θ(1) of the form (3.20)

Step 2: Every function of the form (7.11) solves the following truncated Prob-

lem 1.6: it belongs to the generalized Schur class Sκ′ for some κ′ ≤ κ and satisfies

conditions

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , ℓ)

at all but κ − κ′ interpolation nodes.

Proof of Step 2: The Pick matrix for the indicated truncated interpolation

problem is P11 which is invertible and has κ negative eigenvalues. Thus, we can
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apply Theorem 2.2 (which is already proved for the nondegenerate case) to get the

desired statement.

The rational function Θ(1) is analytic and J-unitary at ti for every i = ℓ +

1, . . . , n. Then we can consider the numbers ai and bi defined by
[
ai

bi

]
= Θ(1)(ti)

−1

[
wi

1

]
for i = ℓ + 1, . . . , n. (7.14)

It is clear from (7.14) that |ai| + |bi| > 0. Furthermore,

Step 3: It holds that

|ai| = |bi| 6= 0 and
ai

bi

=
aj

bj

for i, j = ℓ + 1, . . . , n. (7.15)

Proof of Step 3: Let i ∈ {ℓ + 1, . . . , n}. Since the matrix Θ(1)(ti)
−1 is J-unitary

and since |wi| = 1, we conclude from (7.14) that

|ai|
2 − |bi|

2 =
[
a∗

i b∗i
]
J

[
ai

bi

]
=

[
w∗

i 1
]
Θ(1)(ti)

−∗JΘ(1)(ti)
−1

[
wi

1

]

=
[
w∗

i 1
]
J

[
wi

1

]
= |wi|

2 − 1 = 0. (7.16)

Thus, |ai| = |bi| and, since |ai| + |bi| > 0, the first statement in (7.15) follows.

Similarly to (7.16), we have

a∗
i aj − b∗i bj =

[
w∗

i 1
]
Θ(1)(ti)

−∗JΘ(1)(tj)
−1

[
wj

1

]
(7.17)

for every choice of i, j ∈ {ℓ + 1, . . . , n}. By a virtue of formula (3.16),

Θ(1)(ζ)−∗JΘ(1)(z)−1 − J

1 − zζ̄
=

[
C1

−E1

]
(I − ζ̄T1)

−1P−1
11 (I − zT ∗

1 )−1
[
C∗

1 −E∗
1

]
.

(7.18)

Substituting the latter formula (evaluated at ζ = ti and z = tj) into the right hand

side expression in (7.17) and taking into account that
[
w∗

i 1
]
J

[
wj

1

]
= w∗

i wj −1,

we get

a∗
i aj − b∗i bj = w∗

i wj − 1 + (1 − t̄itj) (E1 − w∗
i C1) (I − t̄iT1)

−1
P−1

11

× (I − tjT
∗
1 )

−1
(E∗

1 − wjC
∗
1 ) .

The latter expression is equal to zero, by (7.9). Therefore, a∗
i aj = b∗i bj and conse-

quently,
aj

bj

=
b∗i
a∗

i

=
ai

bi

where the second equality holds since |ai| = |bi|.
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Step 4: Let ai and bi be defined as in (7.14). Then the row vectors

A =
[
aℓ+1 . . . an

]
, B =

[
bℓ+1 . . . bn

]
(7.19)

can be represented as follows:
[
A
B

]
=

[
C
E

]
(µI − T )

−1

[
−P−1

11 P12

I

]
(µI − T2) . (7.20)

Proof of Step 4: First we substitute the formula (3.30) for the inverse of Θ(1) into

(7.14) to get
[
ai

bi

]
=

[
wi

1

]
+ (ti − µ)

[
C1

E1

]
(µI − T1)

−1P−1
11 (I − tiT

∗
1 )−1 (E∗

1 − C∗
1wi)

for i = ℓ + 1, . . . , n and then we make use of (7.8) and of the vector ei to write

the latter equalities in the form
[
A
B

]
ei =

[
wℓ+i

1

]
−

[
C1

E1

]
(µI − T1)

−1P−1
11 P12ei(µ − tℓ+i)

for i = 1, . . . , n− ℓ. Now we transform the right hand side expression in the latter

equality as follows
[
A
B

]
ei =

[
C2

E2

]
ei −

[
C1

E1

]
(µI − T1)

−1P−1
11 P12 (µI − T2) ei

=

([
C2

E2

]
(µI − T2)

−1
−

[
C1

E1

]
(µI − T1)

−1P−1
11 P12

)
(µI − T2) ei

=

[
C
E

]
(µI − T )−1

[
−P−1

11 P12

I

]
(µI − T2) ei

and since the latter equality holds for every i ∈ {1, . . . , n − ℓ}, (7.20) follows.

Remark 7.2. Comparing (7.20) and (3.29) we conclude that
[
A
B

]
= Θ(1)(z)−1

[
C
E

]
(zI − T )−1

[
−P−1

11 P12

1

]
(zI − T2).

By the symmetry principle, Θ(1)(z)−1 = JΘ(1)(1/z̄)∗J and thus, the latter identity

can be written equivalently as
[

A
−B

]
(zI − T2)

−1 = Θ(1)(/z̄)∗
[

C
−E

]
(zI − T )−1

[
−P−1

11 P12

1

]

Taking adjoints and replacing z by 1/z̄ in the resulting identity we obtain eventu-

ally

(I − zT ∗
2 )−1

[
A∗ −B∗

]
=
[
−P21P

−1
11 1

]
(I − zT ∗)−1

[
C∗ −E∗

]
Θ(1)(z).

(7.21)
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Step 5: A function w of the form (7.11) satisfies the FMI (7.1) only if the

corresponding parameter E is the unimodular constant

E(z) ≡ E0 :=
aℓ+1

bℓ+1
= . . . =

an

bn

. (7.22)

Proof of Step 5: Let us consider the Schur complement S of the block P11 in (7.12):

S(z, ζ) =

[
P22 F2(z)

F2(ζ)∗ Kw(z, ζ)

]
−

[
P21

F1(ζ)∗

]
P−1

11

[
P12 F1(z)

]

Since

sq−Kw = sq−P11 + sq−S = κ + sq−S,

it follows that the FMI (7.1) is equivalent to positivity of S on ρ(w) ∩ D:

S(z, ζ) � 0. (7.23)

Since the “11′′ block in S(z, ζ) equals P22 − P21P
−1
11 P12 which is the zero matrix

(by (7.7)), the positivity condition (7.23) guarantees the the nondiagonal entries

in S vanish everywhere in D:

F2(z) − P21P
−1
11 F1(z) ≡ 0. (7.24)

By (4.11), the latter identity can be written as

[
−P21P

−1
11 I

]
(I − zT ∗)−1(E∗ − C∗w(z)) ≡ 0. (7.25)

We already know from Step 1, that w is of the form (7.11) for some E ∈ S0. Now we

will show that (7.25) holds for w of the form (7.11) if and only if the corresponding

parameter E is subject to

A∗E(z) ≡ B∗ (7.26)

where A and B are given in (7.19). Indeed, it is easily seen that for w of the form

(7.11), it holds that

E∗ − C∗w =
(
Θ

(1)
21 E + Θ

(1)
22

)−1 [
−C∗ E∗

]
[
Θ

(1)
11 Θ

(1)
12

Θ
(1)
21 Θ

(1)
22

] [
E
1

]

and therefore, identity (7.25) can be written equivalently in terms of the parameter

E as
[
−P21P

−1
11 I

]
(I − zT ∗)−1

[
C∗ −E∗

]
Θ(1)(z)

[
E(z)

1

]
≡ 0

which is, due to (7.21), the same as

(I − zT ∗
2 )−1

[
A∗ B∗

]
J

[
E(z)

I

]
≡ 0.
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The latter identity is clearly equivalent to (7.26). Writing (7.26) entrywise we get

the system of equalities

a∗
i E(z) ≡ b∗i (i = ℓ + 1, . . . , n).

This system is consistent, by (7.15), and it clearly admits a unique solution E0

defined as in (7.22). Combining Step 1 and Step 5, we can already conclude that

the FMI (7.1) has at most one solution: the only candidate is the function

w = TΘ(1) [E0] (7.27)

where E0 is the unimodular constant defined in (7.22). The next step will show

that this function indeed is a solution to the FMI (7.1).

Step 6: The function (7.27) satisfies the FMI (7.1) and interpolation condi-

tions

dw(ti) = γi and w(ti) = wi for i = ℓ + 1, . . . , n. (7.28)

Proof of Step 6: First we note that since Θ(1) is a rational J-inner function of

McMillan degree ℓ and since E0 is a unimodular constant, the function w of the

form (7.27) is a rational function of degree ℓ which is unimodular on T. Therefore,

w is the ratio of two finite Blachke products satisfying (7.3). Since w belongs to

Sκ′ (by Step 2), it has κ′ poles inside D and thus, the denominator B2 in (7.2) is

a finite Blachke product of order κ′.

It was shown in the proof of Step 5 that equation (7.26) is equivalent to

(7.24)) and thus, for the function w of the form (7.27), it holds that

F2(z) ≡ P21P
−1
11 F1(z) (7.29)

which is the same, due to definitions (4.10), as

(I − zT ∗
2 )−1(E∗

2 − C∗
2w(z)) ≡ P21P

−1
11 (I − zT ∗

1 )−1(E∗
1 − C∗

1w(z)). (7.30)

Next we show that for w of the form (7.27) it holds that

Kw(z, ζ) ≡ F1(ζ)∗P−1
11 F1(z) (7.31)

or, which is the same,

1 − w(ζ)∗w(z)

1 − ζ̄z
≡ (E1−w(ζ)∗C1)(I−ζ̄T1)

−1P−1
11 (I−zT ∗

1 )−1(E∗
1−C∗

1w(z)). (7.32)
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Indeed, on account of (7.18),

(E1 − w(ζ)∗C1)(I − ζ̄T1)
−1P−1

11 (I − zT ∗
1 )−1(E∗

1 − C∗
1w(z))

=
[
w(ζ)∗ 1

] Θ(1)(ζ)−∗JΘ(1)(z)−1 − J

1 − zζ̄

[
w(z)

1

]

=
1 − w(z)w(ζ)∗

1 − zζ̄
+
[
w(ζ)∗ 1

] Θ(1)(ζ)−∗JΘ(1)(z)−1

1 − zζ̄

[
w(z)

1

]
. (7.33)

Representation (7.27) is equivalent to
[
w(z)

1

]
= Θ(1)(z)

[
E0

1

]
1

v(z)
, where v(z) = Θ

(1)
21 (z)E0 + Θ

(1)
22 (z),

and therefore,

[
w(ζ)∗ 1

]
Θ(1)(ζ)−∗JΘ(1)(z)−1

[
w(z)

1

]
=

|E0|
2 − 1

v(z)v(ζ)∗
≡ 0,

since |E0| = 1. On account of this latter equality, (7.33) implies (7.31). By (7.7),

(7.29) and (7.31), the kernel Kw(z, ζ) defined in (4.4) and partitioned as in (7.12),

can be represented also in the form

Kw(z, ζ) =




P11

P21

F1(ζ)∗


P−1

11

[
P11 P12 F1(z)

]

and the latter representation implies that sq−Kw = sq−P11 = κ, i.e., that w

of the form (7.27) satisfies the FMI (7.1). It remains to check that w satisfies

interpolation conditions (7.28). Since w is a ratio of two finite Blaschke products,

it is analytic on T. Let ti (ℓ < i ≤ n) be an interpolation node. Comparing the

residues at z = ti of both parts in the identity (7.30) we get

−tieie
∗
i (E∗

2 − C∗
2w(ti)) = 0

which is equivalent to

1 − w∗
i w(ti) = 0

or, since |wi| = 1, to the second condition in (7.28). On the other hand, letting

z, ζ → ti in (7.32) and taking into account that w(ti) = wi, we get

dw(ti) = (E1 − w(ti)
∗C1)(I − t̄iT1)

−1P−1
11 (I − tiT

∗
1 )−1(E∗

1 − C∗
1w(ti))

= (E1 − w∗
i C1)(I − t̄iT1)

−1P−1
11 (I − tiT

∗
1 )−1(E∗

1 − C∗
1wi)

which together with (7.10) implies the first condition in (7.28).

The first statement of the Theorem is proved. Statement 2 follows by Step 2

and (7.28): the function w meets interpolation conditions (7.4) at all but κ − κ′
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interpolation nodes (and all the exceptional nodes are in {t1, . . . , tℓ}). Statement

3 follows from (7.28).

Remark 7.3. Statement 2 in Theorem 7.1 completes the proof of sufficiency part

in Theorem 4.2: if P is singular, then a (unique) solution of the FMI (4.5) solves

Problem 1.6.

8. An example

In this section we present a numerical example illustrating the preceding analysis.

The data set of the problem is as follows:

t1 = 1, t2 = −1, w1 = 1, w2 = −1, γ1 = 1, γ2 = 0. (8.1)

Then the matrices (2.3) take the form

T =

[
1 0
0 −1

]
and

[
C
E

]
=

[
1 −1
1 1

]

and since
1 − w∗

1w2

1 − t̄1t2
= 1 we have also

P =

[
1 1
1 0

]
and P−1 =

[
0 1
1 −1

]
.

It is readily seen that P is invertible and has one negative eigenvalue. Thus, Prob-

lems 1.3, 1.4 and 1.6 take the following form.

Problem 1.4: Find all functions w ∈ S1 such that

w(1) = 1, dw(1) ≤ 1, w(−1) = −1, dw(−1) ≤ 0. (8.2)

Problem 1.3: Find all functions w ∈ S1 that satisfy conditions (8.2) with equalities

in the second and in the fourth conditions.

Problem 1.6: Find all functions w such that either

1. w ∈ S1 and satisfies all the conditions in (8.2) or

2. w ∈ S0 and satisfies the two first conditions in (8.2) or

3. w ∈ S0 and satisfies the two last conditions in (8.2).

Letting µ = i, we get by the formula (2.2) for Θ:

Θ(z) = I2 + (z − i)

[
1 −1
1 1

] [ 1
z−1 0

0 1
z+1

] [
0 1
1 −1

] [ 1
1−i

0

0 1
1+i

] [
1 −1

−1 −1

]

=
1

2(z2 − 1)

[
(i − 1)z2 + 2(1 + 2i)z − 1 − i (3i − 1)z2 + 2z + i − 1

(i + 1)z2 − 2z + 1 + 3i (1 − i)z2 + 2(2i − 1)z + 1 + i

]
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and thus, by Theorem 2.2, all the solutions w to Problem 1.6 are parametrized by

the linear fractional formula

w(z) =

[
(i − 1)z2 + 2(1 + 2i)z − 1 − i

]
E(z) + (3i − 1)z2 + 2z + i − 1

[(i + 1)z2 − 2z + 1 + 3i]E(z) + (1 − i)z2 + 2(2i − 1)z + 1 + i
(8.3)

when the parameter E runs through the Schur class S0. Furthermore, formula (3.3)

in the present setting gives
[

c̃1 c̃2

ẽ1 ẽ2

]
=

[
1 −1
1 1

] [ 1
i−1 0

0 1
i+1

] [
0 1
1 −1

] [
1 − i 0

0 1 + i

]
=

[
1 1 − i

−1 −1 − i

]

and since the diagonal entries of P−1 are p̃11 = 0 and p̃11 = −1, we also have

η1 :=
c̃1

ẽ1
= −1, η2 :=

c̃2

ẽ2
= i,

p̃11

|ẽ1|2
= 0,

p̃22

|ẽ2|2
= −

1

2
.

By Theorem 2.7, every function w of the form (8.3) also solves Problem 1.4, unless

the parameter E is subject to

E(1) = −1 and dE(1) = 0 (8.4)

or to

E(−1) = i and dE(−1) ≤
1

2
. (8.5)

On the other hand, Theorem 2.6 tells us that every function w of the form (8.3)

solves Problem 1.3, unless the parameter E is subject to

E(1) = −1 and dE(1) < ∞

or to

E(−1) = i and dE(−1) < ∞.

Thus, every parameter E ∈ S0 satisfying conditions (8.4) or (8.5) leads to a solution

w of Problem 1.6 which is not a solution to Problem 1.4. For these special solutions,

it looks curious to track which conditions in (8.2) are satisfied and which are not.

This will also illustrate propositions 4 and 5 in Theorem 2.3.

First we note that there is only one Schur function E ≡ −1 satisfying con-

ditions (8.4) (this is the case indicated in the fifth part in Theorem 2.3). The

corresponding function w obtained via (8.3), equals

w(z) =
2iz2 − 4iz + 2i

−2iz2 + 4iz − 2i
≡ −1.

It satisfies all the conditions in (8.2) but the first one.

All other “special” solutions of Problem 1.6 are exactly all Schur functions

satisfying the two first conditions in (8.2). Every such function does not satisfy at



58 Vladimir Bolotnikov and Alexander Kheifets

least one of the two last conditions in (8.2). We present several examples omitting

straightforward computations:

Example 1: The function

E(z) =
2iz + 2

(1 − i)z − 1 − 3i

belongs to S0 and satisfies E(−1) = i and dE(−1) = 1
2 (i.e., it meets condition

(2.17) at t2). Substituting this parameter into (8.3) we get the function

w(z) =
z − i

iz + 1 − 2i

which belongs to S0 and satisfies (compare with (8.2))

w(1) = 1, dw(1) = 1, w(−1) =
1 + i

3i − 1
, dw(−1) = ∞.

Example 2: The function

E(z) =
(3 − i)z − (1 + i)

−(1 + i)z + 3i − 1

belongs to S0 and satisfies (as in Example 1) E(−1) = i and dE(−1) = 1
2 . Substi-

tuting this parameter into (8.3) we get the function w(z) ≡ 1 which belongs to S0

and satisfies (compare with (8.2))

w(1) = 1, dw(1) = 0, w(−1) = 1, dw(−1) = 0.

Example 3: The function

E(z) =
[(3 + i)z + 1 − i] e

z−1
z+1 − 2iz − 2

−2(1 + iz)e
z−1
z+1 + (i − 1)z + 3i + 1

belongs to S0 and satisfies E(−1) = i and dE(−1) = 1
2 . Substituting this parameter

into (8.3) we get the function

w(z) =
[(2 − i)z − 1] e

z−1
z+1 − z + i

(z − i)e
z−1
z+1 − iz + 2i − 1

which belongs to S0 and fails to have a boundary nontangential limit at t2 = −1.

References

1. J. A. Ball, Interpolation problems of Pick-Nevanlinna and Loewner types for mero-

morphic matrix functions, Integral Equations Operator Theory 6 (1983), no. 6, 804–
840.

2. J. A. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions,
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