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Abstract. Let f be a function meromorphic on the open unit disk D, with
angular boundary limits bounded by one in modulus almost everywhere on
the unit circle. We give sufficient conditions in terms of boundary asymptotics
at finitely many points on the unit circle T for f to be a ratio of two finite
Blaschke products. A necessary condition is that f has finitely many poles in
D, i.e., that f is a generalized Schur function. Similar rigidity statements are
presented for generalized Carathéodory and generalized Nevanlinna functions.

1. Introduction

Let H∞ be the space of bounded analytic functions on the open unit disk D and
let S be its unit ball (called sometimes the Schur class):

S := BH∞ = {f ∈ H∞ : ‖f‖H∞ := sup
z∈D

|f(z)| ≤ 1}. (1.1)

The following boundary rigidity result is presented in [15].

Theorem 1.1. Let f ∈ S and let f(z) = z+O(|z− 1|4) as z → 1. Then f(z) ≡ z.

As mentioned in [15], the term O(|z − 1|4) can be replaced by o(|z − 1|3) if
z ∈ D tends to 1 nontangentially. Furthermore, it was shown in [19] that the

conclusion f(z) ≡ z follows from a weaker assumption lim inf
r→1−

ℜf(r) − r

(1 − r)3
= 0. The

same conclusion follows from the assumption that lim
n→∞

f(zn) − zn

(1 − zn)3
= 0 for some

sequence {zn} ⊂ D converging to 1 nontangentially (not necessarily radially); see
[8]. Recently, Theorem 1.1 has been extended in several directions. We refer to
[20] for a continuous version of the theorem, to [14, 21] for conditions in terms of
boundary behavior of commuting f, g ∈ S (that is, f ◦g = g ◦f) near their common
Denjoy-Wolff point which are sufficient for f ≡ g, and to [22] for rigidity under
conditions on boundary Schwarzian derivatives. All mentioned results establish the
rigidity properties subject to functions’ behavior near one boundary point. The
multi-point case was considered in [2, 10, 16]. The next theorem appears in [10].

Theorem 1.2. Let f ∈ S and let g be a finite Blaschke product of degree d. Let
t1, . . . , tn be points on T and let

f(z) = g(z) + o(|z − ti|
mi) for i = 1, . . . , n (1.2)
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as z tends to ti nontangentially and where m1, . . . ,mn are nonnegative integers. If
[
m1 + 1

2

]
+ . . .+

[
mn + 1

2

]
> d = deg g, (1.3)

then f(z) ≡ g(z). Otherwise, the uniqueness fails.

In (1.3), [x] denotes the largest integer that does not exceed a real number x. The
last statement in Theorem 1.2 means: if condition (1.3) fails for a finite Blaschke
product g and nonnegative integers m1, . . . ,mn, then for every choice of n points
t1, . . . , tn ∈ T, there are infinitely many functions f ∈ S subject to (1.2). Thus,
conditions (1.2) are minimal. Theorem 1.2 can be supplemented by the following
result which is a fairly straightforward consequence of [11, Theorem 2.1].

Proposition 1.3. Let us assume that a rational function g ∈ S is not a finite
Blaschke product. Then for every choice of integers n, m1, . . . ,mn, there are infin-
itely many functions f ∈ S satisfying conditions (1.2).

Observe that upon identifying H∞-functions with their boundary functions ob-
tained via nontangential boundary limits we may rewrite definition (1.1) as

S := H∞ ∩ BL∞ (1.4)

where BL∞ denotes the closed unit ball of L∞(T). The second component in (1.4)
imposing the metric constraint ‖·‖L∞ ≤ 1 is crucial for deducing rigidity conclusions
in Theorems 1.1 and 1.2. This constraint makes sense for any meromorphic function
having non-tangential boundary limits almost everywhere on T. The objective of
this note is to verify for which classes Ω of such functions, the L∞-norm constraint
provides the rigidity of the following sort:

(R): If g is a rational function in Ω ∩ BL∞ (that is, g ∈ Ω and |g| ≤ 1 on T)
and if f ∈ Ω ∩ BL∞ satisfies conditions (1.2) for some choice of integers n and
m1, . . . ,mn (perhaps depending on g), then f ≡ g.

Notation: For the rest of the paper we fix the following notation.

(1) Bκ – the set of all Blaschke products of degree κ.
(2) Bp/Bq – the set of all coprime quotients g = b/θ with b ∈ Bp and θ ∈ Bq,

i.e., the set of all rational functions g unimodular on T and with p zeros
and q poles in D (counted with multiplicities).

(3) Sκ – the generalized Schur class (introduced in [18]) consisting of all coprime
quotients of the form f = s/b where s ∈ S and b ∈ Bκ.

(4) S≤κ :=
⋃

r≤κ Sr, the set of quotients as in (3), but not necessarily coprime.

(5) Z(f) – the zero set of a function f .

The paper is organized as follows. In Section 2 we show that rigidity of type (R)
cannot occur for meromorphic function beyond generalized Schur classes and we
establish such rigidity property for the class S≤κ (Theorem 2.1). As we will see, this
meromorphic result follows directly from its particular case covered by Theorem 1.2.
Being specialized to the single-point case, Theorem 2.1 gives a rigidity condition
in terms of a single asymptotic expansion (Corollary 2.4). We then compare it
with another single-point rigidity result recently established in [2]. In Section 4
we prove minimality of conditions in Theorem 2.1 using some results on boundary
interpolation which are collected in Section 3. In Section 5 we formulate the analogs
of Theorem 2.1 for generalized Carathéodory and generalized Nevanlinna functions
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where again the proofs will follow directly from Theorem 1.2. We will conclude this
note with several open questions which are listed in Section 6.

2. Rigidity for generalized Schur functions

The assumption that g ∈ BL∞ is rational together with conditions (1.2) guar-
antee that the boundary limits of f (j)(z) exist for j = 0, . . . ,mi as z tends to ti
nontangentially and moreover,

lim
z→ti

f (j)(z) = g(j)(ti) for i = 1, . . . , n and j = 0, . . . ,mi. (2.1)

As for the choice of Ω, it looks quite natural to start with N(D), the class of mero-
morphic functions of bounded type. These functions have nontangential boundary
limits almost everywhere on T and N(D)∩BL∞ consists of quotients f = s/b where
s ∈ S and b is a Blaschke product. Let us show that statement (R) cannot hold in
this setting. Indeed, if g ∈ BL∞ is rational, then it is of the form g = sg/bg where
sg is a rational function from S and bg is a finite Blaschke product. If θ is a finite
Blachke product of degree exceeding the total number of interpolation conditions
in (2.1), then there exist infinitely many functions s ∈ S such that

lim
z→ti

s(j)(z) = (sg · θ)(j)(ti) for i = 1, . . . , n and j = 0, . . . ,mi, (2.2)

and for every such s, the function f :=
s

bgθ
satisfies conditions (2.1) and clearly

belongs to N(D) ∩ BL∞. The existence of infinitely many functions s satisfying
(2.2) follows from Theorem 1.2 in case sg is a finite Blaschke product and from
Proposition 1.3 otherwise; in the latter case, θ is not needed.

The latter argument shows that rigidity of type (R) cannot be achieved even if
we restrict Ω to the class of meromorphic functions with finitely many poles. Let
us further reduce Ω to the set of meromorphic functions of bounded type with a
fixed bound (say, κ) on the total pole multiplicity. Thus we arrive at the class
H∞

κ introduced in [1] and consisting of all quotients f = s/b where s ∈ H∞

and b ∈ Bκ. It follows from this definition and from definition of Sκ that Sκ =
(H∞

κ \H∞
κ−1) ∩ BL∞ so that

H∞
κ ∩ BL∞ = {f =

s

b
: s ∈ S, b ∈ Bκ} =

⋃

r≤κ

Sr =: S≤κ. (2.3)

If g is a rational function from H∞
κ ∩BL∞, then it is of the form g = sg/bg where sg

is a rational function from S and bg ∈ Bκ. If sg is not a finite Blaschke product, we
repeat the preceding argument (with θ ≡ 1) and invoke Proposition 1.3 to conclude
that for every choice of n, m1, . . . ,mn, there are infinitely many functions f of the
form f = s/bg with s ∈ S satisfying (1.2). Thus, a rigidity property of type (R)
for f, g ∈ H∞

κ ∩ BL∞ and g being a quotient of two finite Blaschke products is all
we may have, and the next theorem shows that we indeed have it.

Theorem 2.1. Let κ, p, q be nonnegative integers and let t1, . . . , tn be n distinct
points on T, let g ∈ Bp/Bq and let us assume that a function f ∈ H∞

κ ∩ BL∞

satisfies conditions

f(z) = g(z) + o(|z − ti|
mi) for i = 1, . . . , n (2.4)
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as z tends to ti nontangentially, for some nonnegative integers m1, . . . ,mn. If
[
m1 + 1

2

]
+ . . .+

[
mn + 1

2

]
> κ+ p, (2.5)

then f ≡ g on D.

Proof: Substituting coprime quotient representations for f and g

f(z) =
sf (z)

bf (z)
(sf ∈ S, bf ∈ Bκ) and g(z) =

b(z)

θ(z)
(b ∈ Bp, θ ∈ Bq) (2.6)

into (2.4) and then multiplying both sides in (2.4) by bf · θ ∈ Bκ+q we get

sf (z)θ(z) = b(z)bf (z) + o(|z − ti|
mi) for i = 1, . . . , n. (2.7)

Since sf ·θ ∈ S, b ·bf ∈ Bκ+p and since by (2.5),

n∑

i=1

[
mi + 1

2

]
> κ+p = deg (b ·bf),

we conclude from (2.7) by Theorem 1.2 that sf · θ ≡ b · bf which is equivalent, by
(2.6), to f ≡ g. �

Remark 2.2. Observe that the membership f ∈ H∞
κ ∩ BL∞ means that total

pole multiplicity of f does not exceed κ. Although in Theorem 2.1, we allow f
and g to have different pole multiplicities, this possibility cannot be realized under
conditions (2.5).

Remark 2.3. If we impose the additional restriction that f and g have the same
pole multiplicity q, then the integer κ in (2.5) can be replaced by q. If we denote
by d the MacMillan degree of g (which clearly is equal to deg b + deg θ = p + q),
then condition (2.5) looks pretty much the same as (1.3).

Being specialized to the case n = 1, Theorem 2.1 gives the following.

Corollary 2.4. Let κ, p, q be nonnegative integers, let g ∈ Bp/Bq and let f ∈
H∞

κ ∩ BL∞ be such that

f(z) = g(z) + o(|z − t0|
2κ+2p+1) (2.8)

as z tends to t0 ∈ T nontangentially. Then f ≡ g on D.

For the proof, it is enough to notice that the least integer m satisfying inequality[
m+1

2

]
> κ+ p is m = 2κ+ 2p+ 1.

We now recall a recent result from [2] where rigidity for functions in H∞
κ ∩BL∞

was established under a slightly stronger condition than (2.8).

Theorem 2.5. Let t0 be a point on T and let us assume that the numbers τ0 ∈
T and τk, τk+1, . . . , τ2k−1 ∈ C are such that the matrix P = τ0TB is Hermit-
ian, where T is the lower triangular Toeplitz matrix with the bottom row equal
[τ2k−1 τ2k−2 . . . τk+1, τk] and B = [bij ]

k
i,j=1 is the k × k right lower triangular

matrix with the entries

bij =

{
0, if 2 ≤ i+ j ≤ k,

(−1)j−1
(

j − 1
j + i − k − 1

)
tj+k−1
0 , if k + 1 ≤ i+ j ≤ 2k.

Let g(z) be the function defined by

g(z) =
a(z)x+ b(z)

c(z)x+ d(z)
(2.9)
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where x ∈ T\{τ0},
[
a(z) b(z)
c(z) d(z)

]
= I2 −

(1 − zz0)p(z)

(1 − zt0)k

[
1 −τ0
τ0 −1

]
,

where z0 6= t0 is an arbitrary point on T and p(z) is the polynomial (note that the
matrix P is invertible by construction) given by p(z) = (1 − zt0)

k)R(z)P−1R(z0)
∗

where R(z) =
[

1
1−zt0

z

(1−zt0)2
. . . zk−1

(1−zt0)k

]
. Then

(1) The function g is the quotient of two finite Blaschke products with r poles
in D (where r is the number of negative eigenvalues of the matrix P) and
with the following Taylor expansion at t0:

g(z) = τ0 +
2k−1∑

i=k

τi(z − t0)
i +O(|z − t0|

2k). (2.10)

(2) If f is a function from H∞
κ ∩ BL∞ with r poles in D and such that

f(z) = g(z) +O(|z − t0|
2k+2), (2.11)

then f ≡ g.

To embed Theorem 2.5 into our framework we first recall that for every quotient
of two finite Blaschke products with the Taylor expansion (2.10), the matrix P

constructed in the theorem is necessarily Hermitian and τ0 = g(t0) is unimodular
(see [13, Section 2]. On the other hand, it follows from general results from [7,
Section 21] that formula (2.9) parametrizes all functions g ∈ Bk−r/Br of the form
(2.10). Therefore, the rigidity part in Theorem 2.5 can be reformulated equivalently
in the following more compact form.

Theorem 2.6. Let g ∈ Bk−r/Br admit the Taylor expansion (2.10) at t0 ∈ T. If
f ∈ H∞

r ∩BL∞ satisfies the nontangential asymptotic condition (2.11), then f ≡ g.

The main limitation in Theorem 2.6 is that g has quite special Taylor coefficients
at t0 (τ1 = τ2 = . . . = τk−1 = 0) (observe that the original Burns-Krantz theorem
is of a different type, since there we have τ1 = 1 and τ2 = τ3 = 0; however
it was shown in [2, Section 4] that Theorem 1.1 can be deduced from Theorem
2.5). Corollary 2.4 shows that rigidity holds for any quotient of finite Blaschke
products. Besides, Corollary 2.4 shows that the term O(|z − t0|

2k+2) in (2.11) can
be relaxed to o(|z − t0|2k+1), that the order of approximation can be of any parity
(not necessarily even) and that rigidity may hold also in case where only a bound
for the pole multiplicity of f is known.

Remark 2.7. Observe that Theorem 2.1 does not discuss the optimality of condi-
tions (2.5) and in this regard, it is not a full extent analog of Theorem 1.2. As we
will see below, conditions (2.5) are indeed optimal in the sense that if the integers
κ, p, q and mi’s are not as in Theorem 2.1, then the rigidity cannot be guaranteed
by conditions (2.5).

Let us observe that if g belongs to Bp/Bq and κ 6= q, then rigidity occurs for no
function f in Sκ (for the simple reason that f and g have different pole multiplicities)
no matter what conditions are imposed. Thus, it suffices to consider the case where
g ∈ Bp/Bq and f ∈ Sq. This remaining case is covered by the following theorem.
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Theorem 2.8. Let p, q, m1, . . . ,mn be nonnegative integers and let g ∈ Bp/Bq. If
[
m1 + 1

2

]
+ . . .+

[
mn + 1

2

]
≤ p+ q, (2.12)

then for every choice of t1, . . . , tn ∈ T, there are infinitely many functions f ∈ Sq

subject to equalities

f(z) = g(z) +O(|z − ti|
mi+1) for i = 1, . . . , n, (2.13)

where z tends to ti unrestrictedly in D.

The theorem states that if the total order of contact of f and g on T is not large
enough (this is the meaning of condition (2.12)), then we cannot guarantee that
f ≡ g even if conditions (2.5) are replaced by slightly stronger conditions (2.13)
with the arbitrary (rather than the nontangential) convergence of z to ti. The proof
of Theorem 2.8 will be given in Section 4.

3. Boundary Schwarz-Pick matrices and related interpolation

In this section we collect some preliminary facts needed for the proof of Theorem
2.8. Let g be a meromorphic function with the domain of holomorphy Dom(g). For
every positive integer n, and every n-tuple z = (z1, . . . , zn) of points in D∩Dom(g)
taken with multiplicities ki from another n-tuple k = (k1, . . . , kn) ∈ Nn, we let
|k| := k1 + . . .+ kn and introduce the |k| × |k| matrix

P
g
k
(z) =

[
P

g
ki,kj

(zi, zj)
]n

i,j=1
(3.1)

with the ki × kj block entries

P
g
ki,kj

(zi, zj) =




1

ℓ!r!

∂ℓ+r

∂zℓ∂ζ̄r

1 − g(z)g(ζ)

1 − zζ̄

∣∣∣∣∣ z = zi

ζ = zj




r=0,...,kj−1

ℓ=0,...,ki−1

. (3.2)

The matrix Pw
k

(z) which will be referred to as to a Schwarz-Pick matrix, is Her-
mitian. Its definition can be extended to the boundary setting as follows: given
t = (t1, . . . , tn) ∈ Tn, the boundary Schwarz-Pick matrix is defined by

P
g
k
(t) =

[
P

g
ki,kj

(ti, tj)
]n

i,j=1
:= lim

z→t

P
g
k
(z) (3.3)

as zi ∈ D tends to ti nontangentially for i = 1, . . . , n, provided the limit in (3.3)
exists (“the limit exists” also means that it is finite).

Remark 3.1. Since P
g
k
(z) is Hermitian, the boundary Schwarz-Pick matrix is Her-

mitian whenever it exists.

It is readily seen from the formula for the bottom diagonal entry in P
g
ki,ki

(zi, zi)
that higher order Carathéodory-Julia conditions

lim inf
z→ti

∂2ki−2

∂zki−1∂z̄ki−1

1 − |g(z)|2

1 − |z|2
<∞ for i = 1, . . . , n, (3.4)

where z ∈ D tends to ti arbitrarily (not necessarily nontangentially) are necessary
for the limit (3.3) to exist. These conditions are also sufficient for functions in S≤κ

as the following theorem shows.

Theorem 3.2. Let us assume that g ∈ S≤κ meets conditions (3.4). Then
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(1) The following nontangential boundary limits exist

gj(ti) := lim
z→ti

g(j)(z)

j!
for j = 0, . . . , 2ki − 1; i = 1, . . . , n. (3.5)

(2) The nontangential boundary limit (3.3) exists and can be expressed in terms
of the limits (3.5) as follows:

P
g
ki,kj

(ti, tj) = H
g
ki,kj

(ti, tj)Ψkj
(tj)U

g
kj

(tj)
∗ (3.6)

where Ψkj
(tj) is the kj × kj upper triangular matrix with the entries

ψℓr =

{
0, if ℓ > r

(−1)r
(

r
ℓ

)
tℓ+r+1
0 , if ℓ ≤ r

(ℓ, r = 0, . . . , kj − 1), (3.7)

where U
g
kj

(tj) is the lower triangular Toeplitz matrix:

U
g
kj

(tj) =




g0(tj) 0 . . . 0

g1(tj) g0(tj)
. . .

...
...

. . .
. . . 0

gkj−1(tj) . . . g1(tj) g0(tj)



,

and where H
g
ki,kj

(ti, tj) is defined for i = j as the Hankel matrix

H
g
ki,ki

(ti, ti) = [gℓ+r−1(ti)]
ki

ℓ,r=1 (3.8)

and entrywise (if i 6= j) by

[
Hki,kj

(ti, tj)
]
ℓ,r

=

ℓ∑

α=0

(−1)ℓ−α

(
ℓ+ r − α

r

)
gα(ti)

(ti − tj)ℓ+r−α+1

−
r∑

β=0

(−1)ℓ

(
ℓ+ r − β

ℓ

)
gβ(tj)

(ti − tj)ℓ+r−β+1
(3.9)

for ℓ = 0, . . . , ki − 1 and r = 0, . . . , kj − 1.

The case n = 1 was considered in [13] (see Theorem 4.2 there; we also refer to
[12] where conditions (3.4) were first introduced and studied). Applying the single-
point version to each point ti individually we get the first statement in Theorem
3.2 and the existence of the angular limits lim

zi→ti

P
g
ki,ki

(zi, zi) for the diagonal blocks

in P
g
k
(z). The direct differentiation in (3.2) gives

[
P

g
ki,kj

(zi, zj)
]

ℓ,r
=

min{ℓ,r}∑

s=0

(ℓ+ r − s)!

(ℓ− s)!s!(r − s)!

zr−s
i z̄ℓ−s

j

(1 − ziz̄j)ℓ+r−s+1

−
ℓ∑

α=0

r∑

β=0

min{α,β}∑

s=0

(α+ β − s)!

(α− s)!s!(β − s)!

zβ−s
i z̄α−s

j gℓ−α(zi)gr−β(zj)
∗

(1 − ziz̄j)α+β−s+1
.
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For i 6= j, we pass to the limit in the latter equality as zi → ti and zj → tj and
take into account (3.5):

[
P

g
ki,kj

(ti, tj)
]

ℓ,r
=

min{ℓ,r}∑

s=0

(ℓ+ r − s)!

(ℓ− s)!s!(r − s)!

tr−s
i t̄ℓ−s

j

(1 − ti t̄j)ℓ+r−s+1
(3.10)

−
ℓ∑

α=0

r∑

β=0

min{α,β}∑

s=0

(α+ β − s)!

(α − s)!s!(β − s)!

tβ−s
i t̄α−s

j gℓ−α(ti)gr−β(tj)
∗

(1 − ti t̄j)α+β−s+1
.

Verification of the fact that the product on the right hand side of (3.6) gives the
matrix with the same entries as in (3.10), is straightforward and will be omitted. �

Remark 3.3. Combining (3.3) and (3.5) gives the following factorization for the
matrix P

g
k
(t) (when the latter exists):

P
g
k
(t) = H

g
k
(t)Ψk(t)Ug

k
(t)∗, (3.11)

where we have set

U
g
k
(t) =




U
g
k1

(t1) 0
. . .

0 U
g
kn

(tn)


 , Ψk(t) =




Ψk1
(t1) 0

. . .

0 Ψkn
(tn)




(3.12)
to be block diagonal matrices and where

H
g
k
(t) =

[
Hki,kj

(ti, tj)
]n

i,j=1
. (3.13)

Remark 3.4. If g is analytic at t1, . . . , tn, one can define the generalized Löwner
matrix

L
g
k
(t) =





 1

ℓ!r!

∂ℓ+r

∂zℓ∂ζr

g(z)− g(ζ)

z − ζ

∣∣∣∣ z = ti

ζ = tj




r=0,...,kj−1

ℓ=0,...,ki−1




n

i,j=1

(3.14)

commonly known for the central role it plays in minimal rational interpolation (see
[3]–[5]), [9]. Upon expressing the entries in (3.14) in terms of the Taylor coefficients
gj(ti) of g at ti’s and comparing them with formulas (3.8) and (3.9) one can easily
conclude that H

g
k
(t) = L

g
k
(t).

In what follows, we will write π(P ) and ν(P ) for the numbers of positive and
negative eigenvalues, counted with multiplicities, of a Hermitian matrix P .

Lemma 3.5. Let g ∈ Bp/Bq and let two n-tuples t ∈ Tn and k ∈ Nn be given.

(1) If |k| = p + q, then the boundary Schwarz-Pick matrix P
g
k
(t) is invertible

and moreover,

π(Pg
k
(t)) = p and ν(Pg

k
(t)) = q. (3.15)

(2) If |k| ≥ p+ q, then rank(Pg
k
(t)) = p+ q.

Proof: By the assumptions of the lemma, g is of the form

g(z) =
b(z)

θ(z)
where b ∈ Bp, θ ∈ Bq and Z(b) ∩ Z(θ) = ∅, (3.16)
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and therefore, it satisfies condition (3.4) for every ti ∈ T and every ki ≥ 1. Then
the boundary Schwarz-Pick matrix P

g
k
(t) exists by Theorem 3.2 and is of the form

(3.11), by Remark 3.3. Observe that the upper triangular matrices U
g
k
(t) and Ψk(t)

are invertible since all their diagonal entries are respectively of the form ±tji and
g(ti) and therefore, they are unimodular. Thus,

rank(Pg
k
(t)) = rank(Hg

k
(t)).

Since g is analytic on T, the generalized Löwner matrix L
g
k
(t) exists and equals

H
g
k
(t), by Remark 3.4. It follows from (3.16), that the MacMillan degree of g

equals deg g = p+ q. On the other hand, if |k| ≥ deg g, then rank(Lg
k
(t))) = deg g,

according to Lemma 2.5 in [3]. Summarizing we conclude that whenever |k| ≥
deg g = p+ q, we have

rank(Pg
k
(t)) = rank (Hg

k
(t)) = rank (Lg

k
(t)) = deg g = p+ q, (3.17)

which proves the second statement of the lemma. Recall that P
g
k
(t) is a |k| × |k|

matrix. Thus, if |k| = r + ℓ, then it follows from (3.17) that the matrix P
g
k
(t) is

invertible. To prove (3.15) we first check the equality

P
b
k
(t) − P

θ
k
(t) = U

θ
k
(t)Pg

k
(t)Uθ

k
(t)∗ (3.18)

where b ∈ Bp and θ ∈ Bq are the finite Blaschke products from representation (3.16)
of g and the matrices Pb

k
(t), Pθ

k
(t) and Ub

k
(t) are defined via formulas (3.11)–(3.13).

To prove (3.18), we apply 1
ℓ!r!

∂ℓ+r

∂zℓ∂ζ̄r to both parts of the self-evident identity

1 − b(z)b(ζ)

1 − zζ̄
−

1 − θ(z)θ(ζ)

1 − zζ̄
= θ(z)

1 − g(z)g(ζ)

1 − zζ̄
θ(ζ)

and evaluating the resulting identity at z = zi and ζ = tj for all needed values
of i, j, ℓ and r, we get equalities between the corresponding entries in the matrix
equality (3.18). Since the matrix Uθ

k
(t) is invertible, it follows from (3.18) that

π(Pg
k
(t)) = π

(
P

b
k
(t) − P

θ
k
(t)

)
and ν(Pg

k
(t)) = ν

(
P

b
k
(t) − P

θ
k
(t)

)
. (3.19)

Since b is a finite Blaschke product, it follows that the boundary Schwarz-Pick
matrix Pb

k
(t) is positive semidefinite and satisfies

π(Pb
k
(t)) = rank(Pb

k
(t)) = min{|k|, deg b} = p, (3.20)

where the second equality holds by [10, Lemma 2.1] and the others are evident.
Similarly,

π(Pθ
k
(t)) = rank(Pθ

k
(t)) = min{|k|, deg θ} = q. (3.21)

Combining (3.19)–(3.21) gives

π(Pg
k
(t)) ≤ π(Pb

k
(t))+ν(Pθ

k
(t)) = p, ν(Pg

k
(t)) ≤ ν(Pb

k
(t))+π(Pθ

k
(t)) = q, (3.22)

and since P
g
k
(t) is invertible, i.e., since

π(Pg
k
(t)) + ν(Pg

k
(t)) = |k| = p+ q,

inequalities (3.22) imply (3.15). �

We now put boundary Schwarz-Pick matrices in the interpolation context. Given

t = {t1, . . . , tn} ∈ T
n, k = {k1, . . . , kn} ∈ N

n, {bij}
i=1,...,n
j=0,...,2ki−1 (bij ∈ C),

(3.23)
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define the |k| × |k| matrix P by formulas similar to (3.11)–(3.13), but with gj(ti)
replaced by bij :

P = [Pij ]
n

i,j=1 with Pij = Hij · Ψkj
(tj) · U

∗
j , (3.24)

where Ψkj
(tj) is the upper triangular matrix with the entries given in (3.7), where

Uj is the lower triangular Toeplitz matrix and Hii is the Hankel matrix defined by

Uj =




bj,0 0
...

. . .

bj,kj−1 . . . bj,0


 , Hii =




bi,1 · · · bi,ki

...
...

bi,ki
· · · bi,2ki−1


 (3.25)

for i = 1, . . . , n and where the matrices Hij (for i 6= j) are defined entrywise by

[Hij ]ℓ,r =

ℓ∑

α=0

(−1)ℓ−α

(
ℓ+ r − α

r

)
bi,α

(ti − tj)ℓ+r−α+1

−
r∑

β=0

(−1)ℓ

(
ℓ+ r − β

ℓ

)
bj,β

(ti − tj)ℓ+r−β+1
. (3.26)

Theorem 3.6. Let P be constructed from data (3.23) by formulas (3.24)–(3.26).
For the existence of infinitely many functions g ∈ Bπ(P )/Bν(P ) subject to interpo-
lation conditions

gj(ti) :=
g(j)(ti)

j!
= bij (j = 0, . . . , 2ki − 1; i = 1, . . . , n), (3.27)

it is necessary and sufficient that

P = P ∗, detP 6= 0 and |bi,0| = 1 for i = 1, . . . , n. (3.28)

The matrix P constructed in (3.24)–(3.26) is called the Pick matrix of the inter-
polation problem with data (3.23) and interpolation conditions (3.27).

Proof of Theorem 3.6: For the proof of necessity, let us assume that g ∈
Bπ(P )/Bν(P ) satisfies (3.27). Then the boundary Schwarz-Pick matrix P

g
k
(t) exists

and equals P . By Remark 3.1, P is Hermitian. Let us assume that P is singular
so that

|k| > π(P ) + ν(P ) = deg g. (3.29)

To get a contradiction we assume that f is another function in Bπ(P )/Bν(P ) satisfy-
ing conditions (3.27) (by the assumption of the theorem, there are infinitely many
such functions). Then we have

f(z) − g(z) = o(|z − ti|
2ki−1) for i = 1, . . . , n.

Since f has the same pole multiplicity as g and since by (3.28),

n∑

i=1

[
(2ki − 1) + 1

2

]
=

n∑

i=1

ki = |k| > deg g = p+ q,

it follows from Theorem 2.1 that f ≡ g which is the desired contradiction. Thus,
P is invertible. The necessity of equalities |bi0| = 1 is obvious since |g| = 1 on T.
The proof of sufficiency can be found in [7, Chapter 21]. �
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In fact much more was done in [7]: assuming that the necessary conditions (3.28)
are satisfied, the set of all rational functions f ∈ Sν(P ) satisfying conditions

fj(ti) = gj(ti) = bij for j = 0, . . . , 2ki − 1 and i = 1, . . . , n,

was parametrized by the linear fractional formula f =
aE + b

cE + d
where the coefficient

matrix Θ =
[

a b
c d

]
is a rational function of MacMillan degree deg Θ = |k| and E is

an arbitrary rational Schur class function such that

c(ti)E(ti) + d(ti) 6= 0 for i = 1, . . . , n.

It is worth mentioning that this description along with the explicit formula for
Θ in terms of data (3.23) were established in [7] in a more general bitangential
matrix-valued setting. For the proof of Theorem 2.8 we need one more auxiliary
statement.

Proposition 3.7. Let P̃ = [pij ] be an r × r Hermitian matrix and let us assume
that its principal submatrix P = [piα,iβ

]ℓα,β=1 is invertible. Then the r − ℓ diago-

nal entries pii for i 6∈ {i1, . . . , iℓ} (we will call these entries the diagonal entries

of P̃ complementary to the principal submatrix P ) can be modified to produce an

invertible matrix P̃ ′ such that ν(P̃ ′) = ν(P ).

Proof: Without loss of generality we can assume that P is the leading principal

submatrix of P̃ so that P̃ =
[

P R∗

R D

]
. Let us modify the diagonal entries in D as

follows

P̃ ′ =

[
P R∗

R D′

]
where D′ = D + ρIr−ℓ

and let us choose ρ > 0 large enough so that the matrix D′ − RP−1R∗ is positive
definite. By the standard Schur complement argument, we then have

ν(P̃ ′) = ν(P ) + ν(D′ −RP−1R∗) = ν(P )

and det(P̃ ′) = det(P ) · det(D′ −RP−1R∗) 6= 0, which completes the proof. �

4. The proof of Theorem 2.8

Given g ∈ Bp/Bq, t1, . . . , tn ∈ T and nonnegative integers m1, . . . ,mn subject to
[
m1 + 1

2

]
+ . . .+

[
mn + 1

2

]
= p+ q, (4.1)

we will show that there are infinitely many rational functions f ∈ Sq satisfying
asymptotic equalities (2.13) or equivalently, interpolation conditions

fj(ti) = bij := gj(ti) for 0 ≤ j ≤ mi; 1 ≤ i ≤ n. (4.2)

Observe that for rational f , conditions (2.4), (2.13) and (4.2) are equivalent. Define
the integers ki :=

[
mi+1

2

]
for i = 1, . . . , n and the tuple k = (k1, . . . , kn) so that

assumption (3.1) takes the form

k1 + . . .+ kn = |k| = κ+ p (4.3)

and so that mi = 2ki − 1 or mi = 2ki. Reindexing if necessary, we can assume
without loss of generality that the first ℓ integers m1, . . . ,mℓ are odd while the
remaining ones (if any) are even. Now we split conditions (4.2) into two parts:

fj(ti) = bij := gj(ti) for 0 ≤ j ≤ 2ki − 1; i = 1, . . . , n (4.4)
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and

f2ki
(ti) = bi,2ki

:= g2ki
(ti) for i = ℓ+ 1, . . . , n. (4.5)

Let us consider the interpolation problem with interpolation conditions (4.4). Its
Pick matrix P coincides with the boundary Schwarz-Pick matrix P

g
k
(t). Equality

(4.3) allows us to apply Lemma 3.5 and to conclude that P is invertible and satisfies

π(P ) = p, ν(P ) = q. (4.6)

If ℓ = n, so that (4.4) contains all the interpolation conditions we wish to satisfy
by f , then we conclude from Theorem 3.6 that there are infinitely many functions
f ∈ Bp/Bq satisfying conditions (4.2).

If ℓ < n (i.e., if the set of conditions (4.5) is not empty) one more step is needed.
In this case we attach interpolation conditions

f2ki+1(ti) = bi,2ki+1 := gi,2ki+1(ti) for i = ℓ+ 1, . . . , n (4.7)

to (4.4) and (4.5) and consider the extended interpolation problem with interpo-
lation conditions (4.4), (4.5) and (4.7). The collection of bij ’s appearing in (4.4)
and (4.5) will be called the original data, the collection {bi,2ki+1} from (3.10) will
be called the supplementary data whereas their union will be referred to as to the
extended data.

For the extended interpolation problem we have an even number of conditions

at each interpolating point ti and its Pick matrix P̃ equals P
g

ek
(t) where g and t are

the same as above and where

k̃ = (k̃1, . . . , k̃n) = (k1, . . . , kℓ, kℓ+1 + 1, . . . , kn + 1) ∈ N
n.

The matrix P̃ can be written in terms of bij ’s via formulas (3.24):

P̃ =
[
P̃ij

]n

i,j=1
where P̃ij = H̃ij ·Ψekj

(tj) · Ũ
∗
j (4.8)

and where Ũj and H̃ij are defined by formulas (3.25), (3.26) with ki replaced by k̃i.

It is clear that all the entries in P̃ are completely determined by the extended data.
However, it turns out that all its entries but ℓ diagonal ones are uniquely determined

from the original data. Indeed, if i 6= j, then H̃ij and Ũj (and therefore, P̃ij) are
expressed via formulas (3.25), (3.26) in terms of the numbers bi,0, . . . , bi,eki−1 and

bj,0, . . . , bj,ekj−1 all of which are contained in the original data, since k̃i − 1 ≤ ki ≤

2ki − 1.

Now we examine the diagonal blocks P̃ii for i > ℓ (if i ≤ ℓ, then P̃ii = Pii is
completely determined by the original data). By (4.8) and (3.25),

P̃ii =




bi,1 bi,2 · · · bi,ki

bi,2 bi,3 · · · bi,ki+1

...
...

...
bi,ki

bi,ki+1 . . . bi,2ki−1


Ψki

(ti)



bi,0 . . . bi,ki−1

. . .
...

0 bi,0


 . (4.9)

It is readily seen from (4.9) that the only entry in P̃ii that depends on the supple-
mentary data is the the bottom diagonal entry

γi :=
[
P̃ii

]

ki,ki

=
[
bi,ki

· · · bi,2ki−1

]
Ψki

(ti)
[
bi,ki−1 · · · bi,0

]∗
(4.10)
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which, on account of (3.7), can be written as

γi = (−1)ki−1t2ki−1
i bi,2ki−1bi,0 + Φ(ti, bi,0, . . . , bi,2ki−2) (4.11)

where the second term on the right does not depend on bi,2ki−1. Since P̃ = P
g
ek
(t),

it follows that P̃ is Hermitian. Furthermore, P = P
g
k
(t) is an (invertible) principal

submatrix of P̃ and the diagonal entries in P̃ complementary to P are exactly γi’s

from (4.11), the bottom diagonal entries in the blocks P̃ii of P̃ for i = ℓ+ 1, . . . , n.

By Proposition 3.7, upon replacing γi in P̃ by appropriately chosen (sufficiently
large) positive numbers γ′i (for i = ℓ + 1, . . . , n) and keeping all the other entries

the same, one gets an invertible matrix P̃ ′ with ν(P̃ ′) = ν(P ) = q. Furthermore,
for each chosen γ′i, there exists (the unique) b′i,2ki−1 such that

γ′i = (−1)ki−1t2ki−1
i b′i,2ki−1bi,0 + Φ(ti, bi,0, . . . , bi,2ki−2)

where the second term on the right is the same as in (4.11) (since bi,0 6= 0, the latter
equality can be solved for b′i,2ki−1). Now we replace the supplementary interpolation

conditions (4.7) by

f2ki+1(ti) = b′i,2ki+1 for i = ℓ+ 1, . . . , n (4.12)

where the numbers on the right have nothing to do with the function g anymore.
The Pick matrix of the modified extended interpolation problem with interpo-

lation conditions (4.4), (4.5) and (4.12) is P̃ ′. Since it is invertible, and since

ν(P̃ ′) = ν(P ) = q and π(P̃ ′) = p + ℓ, it follows from Theorem 3.6 that there
are infinitely many functions f ∈ Bp+ℓ/Bq satisfying conditions (4.4), (4.5) and
(4.12). Thus, we have shown that under assumption (4.1), there exist infinitely
many rational functions f ∈ Sq satisfying conditions (4.2) or equivalently, asymp-
totic equalities (2.13). It is clear that one comes up with the same conclusion if the
equality assumption (4.1) is replaced by inequality (2.4). This completes the proof
of Theorem 2.8.

5. Rigidity for generalized Carathéodory and generalized

Nevanlinna functions

The generalized Schur class Sκ can be alternatively characterized as the class of

all functions f meromorphic on D and such that the kernel Sf (z, ζ) =
1 − f(z)f(ζ)

1 − zζ
has κ negative squares on D∩Dom(f). A related to Sκ is the class Cκ of generalized
Carathéodory functions h which by definition, are meromorphic on D and such that

the associated kernel Ch(z, ζ) =
h(z) + h(ζ)

1 − zζ
has κ negative squares on D∩Dom(h).

It is convenient to include the function h ≡ ∞ into C0. Then the Caley transform

f 7→ h =
1 + f

1 − f
(5.1)

establishes a one-to-one correspondence between Sκ and Cκ and therefore, between

S≤κ and C≤κ :=
⋃

r≤κ

Cr. The representation f = s/b for an f ∈ Sκ combined with

(5.1) implies that h belongs to C≤κ if and only if it is of the form

h =
b+ s

b− s
where b ∈ Bκ, s ∈ S and Z(s) ∩ Z(b) = ∅ (5.2)
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Theorem 2.1 in the present setting looks as follows.

Theorem 5.1. Let κ, p, q be nonnegative integers and let g be of the form

g =
b2 + b1
b2 − b1

where b1 ∈ Bp, b2 ∈ Bq and Z(b1) ∩ Z(b2) = ∅. (5.3)

Let us assume that a function h ∈ C≤κ satisfies asymptotic equations

h(z) = g(z) + o(|z − ti|
mi) for i = 1, . . . , n (5.4)

at some points t1, . . . , tn ∈ T and some nonnegative integers m1, . . . ,mn which in
turn, are subject to (2.5). Then h ≡ g.

Proof: Substituting (5.2) and (5.3) into (5.4) and then multiplying both sides
in (5.4) by (b2 − b1)(b− s) we eventually get

s(z)b2(z) = b(z)b1(z) + o(|z − ti|
mi) for i = 1, . . . , n. (5.5)

Since s ·b2 ∈ S and b ·b1 ∈ Bκ+p, we invoke Theorem 1.2 (as in the proof of Theorem
2.1) to conclude from (5.5) that s · b2 ≡ b · b1 which implies that h ≡ g, thanks to
(5.2) and (5.3). �

Remark 5.2. Note that analyticity of g at ti is not required in Theorem 5.1.

Another popular class related to Sκ is the class Nκ of generalized Nevanlinna
functions, that is, the functions h meromorphic on the open upper half-plane C+

and such that the associated kernel Nh(z, ζ) =
h(z) − h(ζ)

z − ζ
has κ negative squares

on C+ ∩Dom(h). The function h ≡ ∞ is assumed to be in N0. The classes Nκ and
Sκ are related by

h(ζ) = i ·
1 + f(γ(ζ))

1 − f(γ(ζ))
, γ(ζ) =

ζ − i

ζ + i
(5.6)

which allows us to characterize Nκ-functions by the fractional representation

h = i ·
b+ s

b− s
(5.7)

where s (analytic and bounded by one in modulus in C+) and b ∈ Bκ do not have
common zeroes. For the rest of the paper we denote by Bk(C+) the set of finite
Blaschke products of the form

b(ζ) =
k∏

i=1

ζ − ai

ζ − āi

(ζ, ai ∈ C
+).

Here is Theorem 2.1 for generalized Nevanlinna functions.

Theorem 5.3. Let κ, p, q be two nonnegative integers, let g be of the form

g = i ·
b2 + b1
b2 − b1

where b1 ∈ Bp(C
+), b2 ∈ Bq(C

+), Z(b1) ∩ Z(b2) = ∅. (5.8)

Let λ1, . . . , λn be real points, let m1, . . . ,mn be nonnegative integers and let us
assume that a function h ∈ N≤κ satisfies the asymptotic equations

h(ζ) = g(ζ) + o(|ζ − λi|
mi) for i = 2, . . . , n (5.9)

as ζ ∈ C
+ tends to λi nontangentially and the asymptotic equation

h(ζ) = g(ζ) + o(|ζ|−m1) (5.10)
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as z tends to infinity staying inside the angle {z : ǫ < argz < π−ǫ}. If the numbers
m1, . . . ,mn are subject to (2.5), then h ≡ g.

Proof: Let z := γ(ζ) where γ is given in (5.6). Then t1 := γ(∞) = 1 ∈ T and
since λi ∈ T, we have ti := γ(λi) ∈ T for i = 2, . . . , n. Observe that

|z − tj | = |γ(ζ) − γ(λj)| =
2|ζ − λj |

|(ζ + i)(λj + i)|
= O(|ζ − λj |)

for j = 2, . . . , n and |z − t1| = |z − 1| = |γ(ζ) − 1| = 2
|ζ+i| = O(|ζ|−1). Therefore,

and since γ maps C+ onto D conformally, we can write (5.9) and (5.10) as

h(γ−1(z)) = g(γ−1(z)) + o(|z − ti|
mi) for i = 1, . . . , n (5.11)

It remains to note that the functions −ih ◦ γ−1 and −ih ◦ γ−1 are generalized
Carathéodory functions satisfying the assumptions of Theorem 5.1. Therefore,
they are equal identically and thus, h ≡ g. �

6. Concluding remarks and open questions

The results presented above indicate some additional potential contained in The-
orem 1.2 which has not been pointed out in [10]. However, we see at least three
settings the extensions of Theorem 2.1 to which would be of considerable interest.

1. Rigidity forced by countably many boundary interpolation conditions.

Let g ∈ N(D) ∩ BL∞ and let the nontangenial boundary limits limz→ti
g(j)(z)

exist for 0 ≤ j ≤ mj ≤ ∞ and 1 ≤ i ≤ n ≤ ∞ where now n and m1, . . . ,mn can be
infinite.

Question 1. For what g as above and what n and mi the following statement
holds true: whenever f ∈ N(D)∩BL∞ satisfies asymptotic equalities (2.4), f ≡ g?

The class of functions g for which the above rigidity holds might be much larger
than Bℓ/Br as well as infinitely many interpolation conditions may guarantee rigid-
ity for functions beyond S≤∞ :=

⋃
r≥0 Sr.

2. Rigidity for matrix valued functions. A p× q matrix valued function F is
said to belong to the class Np×q(D) if all its entries are the functions from N(D)
and it belongs to BL∞

p×q if ‖F (t)‖op ≤ 1 almost everywhere on T. As in the scalar
case we define Np×q(D) ∩ BL∞

p×q and we modify conditions (2.4) as follows:

‖F (z)ci −G(z)ci‖ = o(|z − ti|
mi) for i = 1, . . . , n, (6.1)

where now ci are vectors from Cq. In other words we assume that sufficient con-
ditions for rigidity may be split not only between different points on T but also
between different directions in Cq. The question is the same as in the scalar case:

Question 2. For what G ∈ Np×q(D)∩BL∞
p×q having nontangenial boundary limits

lim
z→ti

G(j)(z) (or just lim
z→ti

G(j)(z)ci) for 0 ≤ j ≤ mj ≤ ∞ and 1 ≤ i ≤ n ≤ ∞ and

what ci ∈ C
q, the following statement holds true: whenever F ∈ N(D) ∩ BL∞

satisfies asymptotic equalities (6.1), F ≡ G?

3. Rigidity without boundary interpolation conditions. In all previous
cases we assumed that g itself admits nontangential boundary expansions of the
requisite orders which allowed us to rewrite conditions (2.4) in interpolation form
(2.1). Then the question concerning rigidity reduces to the question whether or
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not certain boundary interpolation problem has a unique solution. We expect that
rigidity may occur in a quite different situation. We formulate the question in the
holomorphic setting of Theorem 1.2 and expect that the meromorphic counterpart
is not much harder.

Question 3. Does there exist g ∈ S which does not have nontangential boundary
limits at t1, . . . , tn ∈ T and such that for every f ∈ S satisfying conditions (2.4) for
some integers m1, . . . ,mn, it holds that f ≡ g?
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