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It is shown that the following conditions are equivalent for the general-
ized Schur class functions w at a boundary point t0 ∈ T: Carathéodory–
Julia type condition of order n ([2], [3]); agreeing of asymptotics from
inside and outside of the disk D up to order 2n+1 ([11]); t0-isometry of
the coefficients of the boundary asymptotics; a certain structured matrix
P constructed from these coefficients being Hermitian ([1]). Some inter-
connections between these properties are established for more general
classes of functions.

1. Introduction

In this paper we discuss some questions arising in the context of the Carathéodory–
Julia theorem. For a point t0 on the unit circle T, let

Ut0,ε := {z ∈ D : 0 < |z − t0| < ε},

Γint
t0,α,ε := {z ∈ Ut0,ε : |arg(z − t0)| < α} for α ∈ (0,

π

2
),

Γext
t0,α,ε := {z ∈ C :

1

z̄
∈ Γint

t0,α,ε}

and

Γt0,α,ε := Γint
t0,α,ε ∪ Γext

t0,α,ε

We consider Ut0,ε as a punctured neighborhood and Γt0,α,ε as a punctured nontan-
gential neighborhood of t0 that can be split into interior and exterior parts. The
parameter ε will be dropped from notation. We write z→̂t0 if a point z approaches
a boundary point t0 ∈ T staying inside Γt0,α for some α ∈ (0, π

2 ) and we will write
z → t0 if z approaches t0 unrestrictedly in D (i.e., staying inside Ut0). Also, “the
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limit exists” will always mean that the limit is finite. For notational convenience,
we use the symbol a∗ for the complex conjugate of a ∈ C. The symbol S will stand
for the Schur class of analytic functions w mapping the unit disk into its closure.
We start with the classical Carathéodory–Julia theorem [7, 9].

Theorem 1.1. Let w ∈ S, t0 ∈ T and let

dw(z) :=
1 − |w(z)|2

1 − |z|2
. (1.1)

The following are equivalent:

1. d̃ := lim inf
z→t0

dw(z) < ∞. 2. d := lim
zc→t0

dw(z) < ∞.

3. The nontangential limits

w0 := lim
zc→t0

w(z) and w1 := lim
zc→t0

w′(z) (1.2)

exist and satisfy |w0| = 1 and w1t0w
∗
0 ∈ R.

Moreover, if the latter hold, then d̃ = d = w1t0w
∗
0 ≥ 0.

Higher order analogues of the above results have been presented in [3]. To recall
them we first introduce some needed notations and definitions.
Given a function w analytic at z ∈ D (not necessarily in the Schur class) and given
n ∈ Z+, let us introduce the Hermitian matrix

P
w
n (z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j

1 − |w(z)|2

1 − |z|2

]n

i,j=0

(1.3)

which will be referred to as to a Schwarz-Pick matrix (a distinguished property of
the Schur class is that for w ∈ S, the matrix P

w
n (z) is always positive semidefinite.

We extend this notion to boundary points as follows: given t0 ∈ T and given a
function w analytic on a neighborhood Ut0 of t0, the boundary Schwarz-Pick matrix
is defined by

P
w
n (t0) := lim

zc→t0
P

w
n (z), (1.4)

provided the limit in (1.4) exists. It is clear that once the boundary Schwarz-Pick
matrix P

w
n (t0) exists, it is Hermitian (and it is positive semidefinite, if w ∈ S). We

denote the lower diagonal entry in the Schwarz-Pick matrix P
w
n (z) by

dw,n(z) :=
1

(n!)2
∂2n

∂zn∂z̄n

1 − |w(z)|2

1 − |z|2
(1.5)

and remark that if n = 0, then both P
w
n (z) and dw,n(z) reduce to dw(z) introduced

in (1.1).

Throughout the paper, we will use notation wj(z) := w(j)(z)
j! and we reserve the

symbol wj(t0) for the nontangential boundary limit

wj(t0) := lim
zc→t0

wj(z) = lim
zc→t0

w(j)(z)

j!
(1.6)
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provided the latter limit exists. If w is either analytic at t0 ∈ T or if it possesses
the nontangential boundary limits (1.6) for j = 0, . . . , 2n + 1, we let

U
w
n (t0) :=




w0(t0)
∗ w1(t0)

∗ . . . wn(t0)
∗

0 w0(t0)
∗

. . .
...

...
. . .

. . . w1(t0)
∗

0 . . . 0 w0(t0)
∗




, (1.7)

H
w
n (t0) :=




w1(t0) w2(t0) . . . wn+1(t0)
w2(t0) w3(t0) . . . wn+2(t0)

...
...

...
wn+1(t0) wn+2(t0) . . . w2n+1(t0)


 (1.8)

where the first matrix is of the upper triangular Toeplitz and the second of the
Hankel structure. We also introduce the structured matrix

P
w
n (t0) = H

w
n (t0)Ψn(t0)U

w
n (t0) (1.9)

where Ψn(t0) = [Ψjℓ]
n
j,ℓ=0 is the upper triangular matrix

Ψn(t0) =




t0 −t20 t30 · · · (−1)n
(

n
0

)
tn+1
0

0 −t30 2t40 · · · (−1)n
(

n
1

)
tn+2
0

... t50 · · · (−1)n
(

n
2

)
tn+3
0

...
. . .

...

0 · · · · · · 0 (−1)n
(

n
n

)
t2n+1
0




, (1.10)

with the entries

Ψjℓ =

{
0, if j > ℓ

(−1)ℓ
(

ℓ
j

)
tℓ+j+1
0 , if j ≤ ℓ.

(1.11)

Also we will make use of similar structured matrices associated with t0 ∈ T and a
sequence {wj} of complex numbers:

U(w0, . . . , wn) =




w∗
0 . . . w∗

n
...

. . .
...

0 . . . w∗
0


 , H(w1, . . . , w2n+1) = [wi+j+1]

n
i,j=0 (1.12)

and

P(t0, w0, . . . , w2n+1) := H(w1, . . . , w2n+1)Ψn(t0)U(w0, . . . , wn). (1.13)

Definition 1.2. Given a point t0 ∈ T, we will say that a sequence {w0, . . . , wn} of
complex numbers is t0-isometric if

U(w0, . . . , wn)Ψn(t0)U(w0, . . . , wn) = Ψn(t0) (1.14)
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where U is the complex conjugate of U. We will say that an infinite sequence
{wi}

∞
i=0 is t0-isometric if the equality (1.14) holds for every n ∈ Z+.

Remark 1.3. It follows from Definition 1.2 by the upper triangular structure
of matrices in (1.14) that if {w0, . . . , wn} is t0-isometric, then the subsequence
{w0, . . . , wk} is t0-isometric for every k < n. In particular, for k = 0 we conclude
from (1.14) that |w0| = 1.

The following theorem has been established in [3].

Theorem 1.4. Let w ∈ S, t0 ∈ T, n ∈ Z+ and let dw,n be defined as in (1.5). The
following are equivalent.

1. The following limit inferior is finite

d̃n := lim inf
z→t0

dw,n(z) < ∞. (1.15)

2. The following nontangential boundary limit exists and is finite:

dw,n(t0) := lim
zc→t0

dw,n(z) < ∞. (1.16)

3. The boundary Schwarz-Pick matrix P
w
n (t0) defined via the nontangential bound-

ary limit (1.4) exists.
4. The nontangential boundary limits wj(t0) exist for j = 0, . . . , 2n + 1 and

satisfy
|w0(t0)| = 1 and P

w
n (t0) ≥ 0,

where Pw
n (t0) is the matrix defined in (1.9).

Moreover, if this is the case, then d̃n = dw,n(t0) and P
w
n (t0) = P

w
n (t0).

In case n = 0, Theorem 1.4 reduces to Theorem 1.1. Note that the structured
matrix Pw

n (t0) (which first appeared in [11]) is a higher order analogue of the
product w1t0w

∗
0 . It turns out (and will be shown in this paper) that property (3)

in Theorem 1.4 follows from a weaker assumption

|w0(t0)| = 1 and P
w
n (t0) = P

w
n (t0)

∗, (1.17)

even if w does not belong to the Schur class and is analytic on a neighborhood
Ut0,ε only. The following theorem establishes this fact and presents a number of
equivalent reformulations of conditions (1.17).

Theorem 1.5. Let w be analytic in a neighborhood Ut0 of t0 ∈ T and let us assume
that the nontangential boundary limits wj(t0) exist for j = 0, . . . , 2n + 1. The
following are equivalent:

1. Conditions (1.17) are satisfied.
2. The sequence {w0(t0), . . . , w2n+1(t0)} is t0-isometric, i.e.,

U(w0, . . . , w2n+1)Ψn(t0)U(w0, . . . , w2n+1) = Ψ2n+1(t0).

3. There exists a rational unimodular on T function f (a ratio of two finite
Blaschke products) so that

w(z) = f(z) + o((z − t0)
2n+1) as z→̂t0. (1.18)
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4. The asymptotic relation

w(z) =

2n+1∑

j=0

wj(t0)(z − t0)
j + o((z − t0)

2n+1) (1.19)

holds as z tends to t0 nontangentially from inside and outside of the unit disk
D, where for |z| > 1

w(z) :=
1

w(1/z̄)
. (1.20)

Moreover, if this is the case, then the boundary Schwarz-Pick matrix P
w
n (t0) exists

and is equal to Pw
n (t0).

Remark 1.6. Extension (1.20) is called the symmetry continuation and has nothing
to do with analytic continuation unless the function w is unimodular on an arc of
T. In general, existence of a nontangential asymptotics (1.19) for w(z) from inside
of D with w(t0) 6= 0 implies existence of an asymptotics of the same order from
outside for the symmetry continuation of w. However, in general, the coefficients
of the asymptotics from outside may differ from the coefficients of the asymptotics
from inside. Thus, agreeing of the two asymptotics is a special property of the
function w. Theorem 1.4 tells that this property implies (1.15) and Theorem 1.5
shows that Schur class functions it follows form (1.15). In general (1.15) does not
imply this property (see example in Section 4). However, if w is in generalized Schur
class then it does. We show in Section 4 that Theorem 1.4 can be literally extended
to the class of genearlized Schur functions. The agreeing of the two asymptotics
was actually taken by I.V. Kovalishina as a basis for her constructions in [11], [11]
as opposed to [3] and [6], where all the constructions started from (1.15).

The next theorem is a version of Theorem 1.5 under slightly relaxed assumptions:
existence of the nontangential boundary limit w2n+1(t0) is relaxed to the uniform
nontangential boundedness of w(2n+1):

sup
z∈Γt0,α

|w(2n+1)(z)| < ∞ for some α ∈ (0,
π

2
). (1.21)

It can be shown (see Lemma 3.1 below) that the latter condition guarantees the

existence of the nontangential boundary limits wj(t0) := lim
zc→t0

w(j)(z)

j!
for j =

0, . . . , 2n.

Theorem 1.7. Let w be analytic in a neighborhood Ut0 of t0 ∈ T. The following are
equivalent

1. The bound (1.21) is in force and the sequence {w0(t0), . . . , w2n(t0)} is t0-
isometric.

2. There exist a rational unimodular function f (a ratio of two finite Blaschke
products) so that

w(z) = f(z) + O((z − t0)
2n+1) as z→̂t0. (1.22)
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3. The asymptotic relation

w(z) =
2n∑

j=0

wj(t0)(z − t0)
j + O((z − t0)

2n+1),

holds as z→̂t0 from inside and outside of D.

Moreover, if this is the case, then

sup
z∈Γt0,α

dw,n(z) < ∞. (1.23)

As a corollary we obtain the following extended version of Theorem 1.4.

Theorem 1.8. Let w ∈ S, t0 ∈ T, n ∈ Z+. The statements 1-4 in Theorem 1.4,
the statements 1-4 in Theorem 1.5 and the statements 1-3 in Theorem 1.7 are all
equivalent.

For the proof it is enough to note that every statement in Theorem 1.5 implies
(1.16) while condition (1.23) is obviously stronger than (1.15).

2. t0-isometric sequences

A t0-isometric sequence {w0, . . . , wn} has been characterized in Definition 1.2 by
the matrix equality (1.14); in more detail,




w0 . . . wn

. . .
...

0 w0


Ψn(t0)




w∗
0 . . . w∗

n

. . .
...

0 w∗
0


 = Ψn(t0). (2.1)

Remark 2.1. Note that the latter matrix equality is equivalent to the following n+1
(in general, independent) relations

k∑

j=0

k−j∑

ℓ=0

(−1)ℓ
(

k − ℓ
j

)
tj−ℓ
0 wjw

∗
ℓ = 1 for k = 0, . . . , n. (2.2)

Indeed, multiplying both parts in (2.2) by (−1)ktk+1
0 and making use of numbers

(1.11) we get
k∑

j=0

k−j∑

ℓ=0

wjΨj,k−ℓw
∗
ℓ = Ψ0,k for k = 0, . . . , n,

that can be written in the matrix form as

[
w0 . . . wn

]
Ψn(t0)




w∗
0 . . . w∗

n

. . .
...

0 w∗
0


 =

[
Ψ00 . . . Ψ0n

]
(2.3)
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and express equality of the top rows in (2.1). It was shown in [2] that (2.3) is
equivalent to the “whole” equality (2.1).

Lemma 2.2. Let t0 ∈ T, w0, . . . , wn ∈ C and let T ∈ C(n+1)×(n+1) and M, E ∈
C(n+1)×1 be given by

Tn =




t0 0 . . . 0

1 t0
. . .

...
. . .

. . . 0
0 1 t0




, En =




1
0
...
0


 , Mn =




w0

w1

...
wn


 . (2.4)

The Stein equation

X − TnXT ∗
n = EnE∗

n − MnM∗
n (2.5)

has a solution X if and only if the sequence {w0, . . . , wn} is t0-isometric. Moreover,
in this case every solution X to (2.5) is of the form (1.13) for some choice of
wn+1, . . . , w2n+1 ∈ C.

The proof can be found in [2, Section 10] along with some other equivalent refor-
mulations of the equality (2.1).

Theorem 2.3. Let w be analytic on a neighborhood

Dr, ε(t0) = {z : r < |z| <
1

r
, arg t0 − ε < arg z < arg t0 + ε}

of t0 ∈ T and unimodular on Dr, ε(t0) ∩ T and let

w(z) =

∞∑

j=0

wj(t0)(z − t0)
j (2.6)

be its Taylor expansion at t0. Then

1. The boundary Schwartz-Pick matrix P
w
n (t0) exists and admits the represen-

tation

P
w
n (t0) = P

w
n (t0) (2.7)

for every n ∈ Z+, where Pw
n (t0) is defined via formula (1.9). Therefore, Pw

n (t0)
is Hermitian.

2. The sequence {wj(t0)}
∞
j=0 is t0-isometric.

Proof. Since w is unimodular on Dr, ε(t0) ∩ T, its symmetry continuation and
analytic continuation across the arc agree and

w(z)w(1/z̄) = 1 for every z ∈ Dr, ε(t0). (2.8)

Therefore,

Kw(z, ζ) :=
1 − w(z)w(ζ)

1 − zζ̄
=

w(z) − w(1/ζ̄)

z − 1
ζ̄

·
w(ζ)

ζ̄
. (2.9)
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The latter formula makes sense for every z, ζ ∈ Dr, ε(t0) such that zζ̄ 6= 1. We
extend it by continuity to all of Dr, ε(t0) × Dr, ε(t0) upon setting

Kw(z, 1/z̄) = zw′(z)w(1/z̄). (2.10)

The kernel Kw defined by the formulas (2.9) and (2.10) is analytic in z and conju-
gate analytic in ζ on Dr, ε(t0) × Dr, ε(t0). Therefore, the boundary Schwarz-Pick
matrix P

w
n (t0) can be defined by the formula

P
w
n (t0) =

[
1

i!j!

∂i+j

∂zi∂z̄j
Kw(z, z)

∣∣∣∣
z=t0

]n

i,j=0

, (2.11)

rather than as the limit of the interior Schwarz-Pick matrices. To express the ij-th
entry Pij in (2.11), we use (2.9) along with the Leibnitz’s rule:

Pij =
1

i!j!

∂i+j

∂zi∂ζ̄j

(
w(z) − w(1/ζ̄)

z − 1
ζ̄

·
w(ζ)

ζ̄

)∣∣∣∣∣
z=ζ=t0

(2.12)

=
1

i!j!

j∑

ℓ=0

(
j
ℓ

)
∂i+ℓ

∂zi∂ζ̄ℓ

(
w(z) − w(1/ζ̄)

z − 1
ζ̄

)
·

(
w(ζ)

ζ

)(j−ℓ)
∣∣∣∣∣∣
z=ζ=t0

.

We want to show that Pij is equal to the ij-th entry in the matrix Pw
n (t0), i.e. (see

the formula (1.9)), that

Pij =
[

wi+1(t0) wi+2(t0) . . . wi+j+1(t0)
]
Ψn(t0)




wj(t0)
∗

...
w0(t0)

∗

0




=

j∑

ℓ=0

wi+ℓ+1(t0)

j−ℓ∑

k=0

Ψℓ,j−kwj−ℓ−k(t0)
∗. (2.13)

It is easily seen (we refer to [4, Section 6] for details) that

1

i!k!

∂i+k

∂zi∂
(

1
ζ̄

)k

(
w(z) − w(1/ζ̄)

z − 1
ζ̄

)∣∣∣∣∣∣∣
z= 1

ζ̄

=
w(i+k+1)(z)

(i + k + 1)!
= wi+k+1(z)

for i, k ∈ Z+. On the other hand, we have by the chain rule,

1

ℓ!

∂ℓ

∂ζ̄ℓ
= (−1)ℓ

ℓ−1∑

k=0

(
ℓ − 1

k

)

ζ̄ℓ+k+1(k + 1)!
·

∂k+1

∂
(

1
ζ̄

)k+1
(ℓ = 1, 2, . . .)
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and combining the two latter formulas gives

1

i!ℓ!

∂i+ℓ

∂zi∂ζ̄ℓ

(
w(z) − w(1/ζ̄)

z − 1
ζ̄

)∣∣∣∣∣
z=ζ=t0

= (−1)ℓ
ℓ−1∑

k=0

(
ℓ − 1

k

)

ζ̄ℓ+k+1i!(k + 1)!
·

∂i+k+1

∂zi∂
(

1
ζ̄

)k+1

(
w(z) − w(1/ζ̄)

z − 1
ζ̄

)∣∣∣∣∣∣∣
z=ζ=t0

= (−1)ℓ
ℓ−1∑

k=0

tℓ+k+1
0

(
ℓ − 1

k

)
wi+k+2(t0)

for ℓ = 1, 2, . . ., while for ℓ = 0, we have

1

i!
.
∂i

∂zi

(
w(z) − w(1/ζ̄)

z − 1
ζ̄

)∣∣∣∣∣
z=ζ=t0

= wi+1(t0).

Finally, by the Leibnitz’s rule,

1

(j − ℓ)!

(
w(ζ)

ζ

)(j−ℓ)
∣∣∣∣∣
ζ=t0

=

j−ℓ∑

m=0

(−1)mt̄m+1
0 wj−ℓ−m(t0)

and we substitute the three latter formulas into (2.12) to get

Pij = wi+1(t0)

j∑

m=0

(−1)mt̄m+1
0 wj−m(t0)

∗

+

j∑

ℓ=1

ℓ−1∑

k=0

j−ℓ∑

m=0

(−1)ℓ+mtℓ+k+m+2
0

(
ℓ − 1

k

)
wi+k+2(t0)wj−ℓ−m(t0)

∗

= wi+1(t0)

j∑

m=0

(−1)mt̄m+1
0 wj−m(t0)

∗

+

j∑

ℓ=1

wi+ℓ+1(t0)

j−ℓ∑

k=0

(−1)j−ktj+ℓ+1−k
0

(
j − k

ℓ

)
wj−ℓ−k(t0)

∗

=

j∑

ℓ=0

wi+ℓ+1(t0)

j−ℓ∑

k=0

(−1)j−ktj+ℓ+1−k
0

(
j − k

ℓ

)
wj−ℓ−k(t0)

∗.

Making use of the numbers (1.11) allows us to rewrite the last equality in the form

Pij =

j∑

ℓ=0

wi+ℓ+1(t0)

j−ℓ∑

k=0

Ψℓ,j−kwj−ℓ−k(t0)
∗

which coincides with (2.13) and therefore, proves equality (2.7). This equality im-
plies in particular, that the structured matrix Pw

n (t0) of the form (1.9) is Hermitian
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(since P
w
n (t0) is). Then it follows by [6, Theorem 7.1], that P

w
n (t0) satisfies the Stein

identity

P
w
n (t0) − TnP

w
n (t0)T

∗
n = EnE∗

n − Mw(t0)nMw
n (t0)

∗

where Tn and En are the same as in (2.4) and where

Mw
n (t0) =

[
w0(t0) . . . wn(t0)

]⊤
.

Then, the sequence {w0, . . . , wn} is t0-isometric by Lemma 2.2. Since n ∈ Z+ is
arbitrary, the second assertion of the theorem follows. Note that t0-symmetry of
the sequance {w0, . . . , wn} can be derived directly upon differentiating identity
(2.8). �

Lemma 2.4. Let t0 and w0, . . . , w2n+1 ∈ C be such that |w0| = 1 and the matrix
P(t0; w0, . . . , w2n+1) defined in (1.13) is Hermitian. Then there exist f0, . . . , f2n+1 ∈
C with |f0| = 1 such that the matrices P(t0; f0, . . . , f2n+1) and P(t0; s0, . . . , s2n+1)
are positive definite where sj’s are the numbers given by

sj =

j∑

ℓ=0

fj−ℓ wℓ for j = 0, . . . , 2n + 1. (2.14)

Proof. We will use the following notation for the matrices introduced in (1.12) and
(1.13):

U
w
k := U(w0, . . . , wk) and H

w
k := H(w0, . . . , w2k+1),

and

P
w
k := P(t0; w0, . . . , w2k+1) = H

w
k Ψk(t0)U

w
k (2.15)

and for the similar matrices associated with the sequences {fj} and {sj}. Note
that if sj ’s are defined by the convolution formulas (2.14), then

U
s
k = U

w
k U

f
k and H

s
k = (Uf

k)∗H
w
k + H

f
n(t0)Us

k. (2.16)

The desired sequence {f0, . . . , f2n+1} will be constructed inductively. Note that for
every k < n, the matrx Pw

k is Hermitian as a principal submatrix of Pw
n which is

Hermitian by the assumption of the lemma. For k = 0, we have Pw
0 := t0w1w

∗
0 ∈ R.

Let f0 and f1 be such that

|f0| = 1 and P
f
0 = t0f1f

∗
0 > max {0, −t0w1w

∗
0}

(such a choice is obviously possible). Then for s0 = f0w0 and s1 = f0w1 + f1w0,
we have |s0| = 1 and

P
s
0 = t0s1s

∗
0 = t0(f0w1 + f1w0)f

∗
0 w∗

0 = t0w1w
∗
0 + t0f1f

∗
0 > 0.

Let us assume that for k < n we already have {f0, . . . , f2k−1} such that the

matrices P
f
k−1 and Ps

k−1 are positive definite where sj ’s are defined by the formula
(2.14) for j = 0, . . . , 2k−1. We will show that for an appropriate choice of f2k and

f2k+1, the extended matrices P
f
k and Ps

k are positive definite which will complete
the proof by induction.
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Since |f0| = 1 and P
f
k−1 > 0, it follows by an interpolation result (see e.g., [11, 1,

3]), there exists a finite Blaschke product b(z) such that

b(j)(t0)

j!
= fj for j = 0, . . . , 2k − 1. (2.17)

Letting

f2k =
b(2k)(t0)

(2k)!
and f2k+1 =

b(2k+1)(t0)

(2k + 1)!
,

define s2k and s2k+1 according to (2.14). The matrix

P
f
k := H

f
kΨk(t0)U

f
k . (2.18)

is positive semidefinite, since it is equal (by construction) to the matrix Pb
k(t0)

associated to the finite Blaschke product b via formula (1.9) and therefore, it is
equal (by Theorem 2.3) to the boundary Schwarz-Pick matrix P

b
n(t0) which is

positive semidefinite since b ∈ S.

Since the structured matrix P
w
k is Hermitan, it satisfies (see Theorem 7.1 in [6] for

the proof) the Stein identity

P
w
k − TkP

w
k T ∗

k = EkE∗
k − MkM∗

k

where Tk, Ek and Mk are defined via formulas (2.4). Then it follows by Lemma
2.2 that the sequence {w0, . . . , wk} is t0-isometric:

Uw
k Ψk(t0)U

w
k = Ψn(t0). (2.19)

Consider the matrix

P
s
k := H

s
kΨk(t0)U

s
k.

Upon substituting relations (2.16) into the right hand side expression and making
use of (2.19) we get

P
s
k =

(
(Uf

k)∗Hw
k + H

f
kUw

k

)
Ψk(t0)U

w
k U

f
k

= (Uf
k)∗H

w
k Ψn(t0)U

w
k U

f
k + H

f
kUwΨn(t0)U

w
k U

f
k

= (Uf
k)∗H

w
k Ψn(t0)U

w
k U

f
k + H

f
kΨn(t0)U

f
k

which on account of (2.15) and (2.18) can be written as

P
s
k = (Uf

k)∗Pw
k U

f
k + P

f
k . (2.20)

Since the matrices Pw
k and P

f
k are Hermitian, the matrix Ps

k is also Hermitian. It
is readily seen from the structure of the matrices on the right hand side of (2.18)
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that the only entry in P
f
k that depends on f2k+1 is the lower diagonal entry

[
P

f
k

]

k+1,k+1
=

k∑

ℓ=0

k−ℓ∑

j=0

fk+ℓ+1Ψℓ,k−jf
∗
k−ℓ−j

= (−1)kt2k+1
0 f2k+1f

∗
0 +

k−1∑

ℓ=0

fk+ℓ+1

k−ℓ∑

j=0

Ψℓ,k−jf
∗
k−ℓ−j

which is nonnegative since P
f
k ≥ 0. Since |f0| = 1, we conclude that the replacement

f2k+1 → f2k+1 + (−1)k t̄2k+1
0 f0x where x > 0, (2.21)

increases the lower diagonal entry in P
f
k by x and does not affect all the other

entries. This replacement modifies s2k+1 accordingly to (2.14)

s2k+1 → s2k+1 + (−1)k t̄2k+1
0 f0w0x = s2k+1 + (−1)k t̄2k+1

0 s0x

and does not change sj for j ≤ 2k. Since the matrix U
f
k depends only on f0, . . . , fk,

it follows from (2.20) that the entries in Ps
k do not change but the lower diagonal

entry [Ps
k]k+1,k+1 which gets the same raise x as

[
P

f
k

]

k+1,k+1
. Thus, modifying

f2k+1 as in (2.21), one can increase the lower diagonal entries in Ps
k and P

f
k by

any preassigned x > 0. Since the k × k principal submatrices Ps
k−1 and P

f
k−1

in (k + 1) × (k + 1) matrices Ps
k and P

f
k are positive definite by the induction

hypothesis, that latter modification makes Ps
k and P

f
k positive definite if x is large

enough. This completes the proof of the lemma. �

Theorem 2.3 shows how one can generate infinite t0-isometric sequences using
unimodular functions analytic at t0. Note that t0-isometric sequences {wj}

∞
j=0

that arise in this way are characterized by the additional condition

lim sup
j→∞

|wj |
1
j < ∞

that guarantees a nonzero radius of convergence for the series in (2.6). The fi-
nite case is much simpler: the next theorem shows that every finite t0-isometric
sequence arises as a sequence of Taylor coefficients at t0 of a ratio of two finite
Blaschke products.

Theorem 2.5. Let t0 ∈ T and w0, . . . , w2n+1 ∈ C. The following are equivalent:

1. |w0| = 1 and the matrix P(t0; w0, . . . , w2n+1) defined in (1.13) is Hermitian.
2. The sequence {w0, . . . , w2n+1} is t0-isometric.
3. There exist finite Blaschke products s and f so that the function w = s

f

satisfies interpolation conditions

wj(t0) :=
w(j)(t0)

j!
= wj for j = 0, . . . , 2n + 1. (2.22)
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Proof. The implication (3) ⇒ (2) follows by Statement 2 in Theorem 2.3.

(2) ⇒ (1): Let us assume that {w0, . . . , w2n+1} is t0-isometric and let the matrices
T2n+1, E2n+1 and M2n+1 be defined via formulas (2.4). By Lemma 2.2, the Stein
equation

X − T2n+1XT ∗
2n+1 = E2n+1E

∗
2n+1 − M2n+1M

∗
2n+1 (2.23)

has a solution X = [Xij ]
2n+1
i,j=0. Comparing the corresponding entries in the equality

(2.23) we come to the system

t0X0i = t̄0Xi0 = wi+1w
∗
0 (i = 0, . . . , 2n),

t0Xi+1,j + t̄0Xi,j+1 + Xij = wi+1w
∗
j+1 (i = 1, . . . , 2n; j = 0, . . . , 2n),

which, upon being solved recursively, leads to

Xkℓ =

ℓ∑

j=0

j∑

i=0

(−1)j

(
j
i

)
ti+j+1
0 wk+i+1w

∗
ℓ−j (2.24)

for

0 ≤ k + ℓ ≤ 2n − 1. (2.25)

Thus, for every solution X of the Stein equation (2.23), the entries with the indeces
from the domain (2.25) are uniquely defined by the right hand side of the equation.
Moreover, these entries satisfy the symmetry

Xkℓ = X∗
ℓk (0 ≤ k + ℓ ≤ 2n − 1) (2.26)

which follows from the abovementioned uniqueness and the fact that X∗ satisfies
the Stein equation (2.23) if and only if X does. Making use of numbers Ψij given
in (1.11), one can rewrite (2.24) as

Xkℓ =

ℓ∑

j=0

j∑

i=0

wk+i+1Ψijw
∗
ℓ−j for 0 ≤ k + ℓ ≤ 2n− 1. (2.27)

The latter means that for k, ℓ ∈ {0, . . . , n}, Xkℓ is equal to the correspond-
ing entry in the matrix P(t0; w0, . . . , w2n+1) defined by (1.13). In other words,
P(t0; w0, . . . , w2n+1) is the (n + 1) × (n + 1) leading principal submatrix of X . It
now follows from (2.26) that P(t0; w0, . . . , w2n+1) is Hermitian. Equality |w0| = 1
is a part of the definition of t0-symmetry.

(1) ⇒ (3): Let us assume that |w0| = 1 and the matrix P(t0; w0, . . . , w2n+1) defined
in (1.13) is Hermitian. By Lemma 2.4, there exist f0, . . . , f2n+1 ∈ C with |f0| = 1
such that the matrices P(t0; f0, . . . , f2n+1) and P(t0; s0, . . . , s2n+1) are positive
definite where sj’s are the numbers given by (2.14). Since s0 = w0f0, we have
|s0| = 1. By the interpolation result mentioned in the proof of Lemma 2.4, there
exist finite Blaschke products s(z) and f(z) satisfying the conditions

s(j)(t0)

j!
= sj and

f (j)(t0)

j!
= fj for j = 0, . . . , 2n + 1.
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Now it follows from (2.14) that the ratio w(z) = s(z)
f(z) satisfies the conditions

(2.22). �

We conclude the section with several remarks. The first one (for the proof, we refer
to [2, Corollary 7.9]) relates the third statements in Theorems 1.5 and 2.5:

Remark 2.6. Let t0 ∈ T, k ∈ Z+, w0, . . . , wk ∈ C and let w be a function analytic
in Ut0 . Then the nontangential boundary limits wj(t0) exist and satisfy

wj(t0) := lim
zc→t0

w(j)(z)

j!
= wj for j = 0, . . . , k

if and only if w admits the asymptotic expansion

w(z) = w0 + w1(z − t0) + . . . + wk(z − t0)
k + o((z − t0)

k as z→̂t0.

Remark 2.7. Note that any t0-isometric sequence {w0, . . . , wn} admits a t0-isometric
extension.

Indeed, if {w0, . . . , wn} is t0-isometric, then |w0| = 1 (by Remark 1.3) and the
Stein equation (2.5) has a solution X (by Lemma 2.2). It is easily seen that then
X∗ also satisfies (2.5) and therefore, Y := 1

2 (X + X∗) is a Hermitian solution of
(2.5). By the second assertion in Lemma 2.2, there exist wn+1, . . . , w2n+1 such
that

Y = P(t0, w0, . . . , w2n+1)

and since the latter matrix is Hermitian, it follows by Theorem 2.5 that the se-
quence {w0, . . . , w2n+1} is t0-isometric.

3. Proofs of Theorems 1.5 and 1.7

To present the proofs of Theorems 1.5 and 1.7 we still need some preliminary
results.

Lemma 3.1. Let w be analytic on Ut0 and let w(2n+1) be bounded on an open
nontangential neighborhood Γt0,α of t0 ∈ T:

|w2n+1(z)| ≤ γ (z ∈ Γt0,α). (3.1)

Then the following nontangential limits

wj(t0) = lim
z→t0

wj(z), wj(z) :=
w(j)(z

j!

exist for j = 0, . . . , 2n and

wj(z) =

2n−j∑

i=0

(
j + i

i

)
wj+i(t0)(z − t0)

i + O((z − t0)
2n−j+1) (z→̂t0). (3.2)
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Proof. We start with the Taylor representation

wj(z) =

2n−j∑

i=0

w
(i)
j (ω)

i!
(z − ω)i +

∫ z

ω

w
(2n−j+1)
j (ζ)

(2n − j)!
(z − ζ)2n−jdζ (3.3)

of the function wj(z) at a point ω ∈ Γt0,α. Since

w
(i)
j (z)

i!
=

w(j+i)(z)

i! j!
=

(j + i)!

i! j!
wj+i(z) =

(
j + i

i

)
wj+i(z),

representation (3.3) can be written as

wj(z) =

2n−j∑

i=0

(
j + i

j

)
wj+i(ω)(z − ω)i

+(2n + 1)

(
2n
j

)∫ z

ω

w2n+1(ζ) (z − ζ)2n−jdζ. (3.4)

The latter integral does not depend on the path of integration between ω and z.
We set for short (we integrate along a rectifiable Jordan curve connecting z and ω
inside the unit disk D)

Gω,z =

∫ z

ω

w2n+1(ζ) (z − ζ)2n−jdζ. (3.5)

Since w(z) is bounded on Γt0,α, and z− ζ is also bounded on Γt0,α×Γt0,α, we may
conclude that the following two integrals are well defined and the following limit
relations hold true

Gω,t0 =

∫ t0

ω

w2n+1(ζ) (t0 − ζ)2n−jdζ = lim
zc→t0

Fω,z,

and

Gt0,z =

∫ z

t0

w2n+1(ζ) (z − ζ)2n−jdζ = lim
ωc→t0

Fω,z.

Sending z ∈ U to t0 in (3.4) (for ω fixed) we conclude that there exists the limit

wj(t0) = lim
zc→t0

wj(z) =

2n−j∑

i=0

(
j + i

j

)
wj+i(ω)(t0 − ω)i + (2n + 1)

(
2n
j

)
Gω,t0

for j = 0, . . . , 2n. This proves the first assertion of the lemma and allows us to
pass to limits in (3.4) as ω ∈ Γt0,α tends to t0 for a fixed z to get

wj(z) =

2n−j∑

i=0

(
j + i

j

)
wj+i(t0)(z − t0)

i + (2n + 1)

(
2n
j

)
Gt0,z.

Upon choosing the path of integration for Gt0,z to be the line segment connecting
the points z and t0 and making use of (3.1), we get the estimate

|Gt0,z| ≤ γ|z − t0|
2n−j+1, (3.6)

which implies (3.2). �
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In the next lemma,

P
w
i,j(z) =

1

i!j!

∂i+j

∂zi∂z̄j

1 − |w(z)|2

1 − |z|2
(3.7)

stands for the ij-th entry of the Schwarz-Pick matrix P
w
n (z).

Lemma 3.2. Let w(z) and f(z) be two functions analytic on D such that w(2n+1)(z)
and f (2n+1)(z) are bounded in some open nontangential neighborhood Γt0,α of t0 ∈
T and let

lim
z→t0

wj(z) = lim
z→t0

fj(z) =: wj(t0) for j = 0, . . . , 2n (3.8)

(note that the existence of limits in (3.8) is guaranteed by Lemma 3.1). Then

P
w
i,j(z) − P

f
i,j(z) = O((z − t0)

2n−i−j) (3.9)

for i, j = 0, . . . , n as z→̂t0. In particular, dw,n(z) − df,n(z) = O(1).

Proof. Straightforward differentiation gives

1

i!j!

∂i+j

∂zi∂z̄j

|w(z)|2

1 − |z|2
=

i∑

k=0

j∑

ℓ=0

wi−k(z)
uk,ℓ(z)

(1 − |z|2)k+ℓ+1
wj−ℓ(z)∗, (3.10)

where, as before, wj(z) stands for 1
j!w

(j)(z) and where

uk,ℓ(z) =

min(k,ℓ)∑

m=0

(k + ℓ − m)!

(k − m)! (ℓ − m)! m!
z̄k−mzℓ−m(1 − |z|2)m, . (3.11)

Substituting (3.7), (3.10) and similar formulas for f into (3.9) we get

P
w
i,j(z) − P

f
i,j(z) =

1

i!j!

∂i+j

∂zi∂z̄j

|f(z)|2 − |w(z)|2

1 − |z|2
(3.12)

=

i∑

k=0

j∑

ℓ=0

fi−k(z)
uk,ℓ(z)

(1 − |z|2)k+ℓ+1
fj−ℓ(z)∗

−

i∑

k=0

j∑

ℓ=0

wi−k(z)
uk,ℓ(z)

(1 − |z|2)k+ℓ+1
wj−ℓ(z)∗

=

i∑

k=0

j∑

ℓ=0

(fi−k(z) − wi−k(z))
uk,ℓ(z)fj−ℓ(z)∗

(1 − |z|2)k+ℓ+1

+

i∑

k=0

j∑

ℓ=0

wi−k(z)uk,ℓ(z)

(1 − |z|2)k+ℓ+1
(fj−ℓ(z)∗ − wj−ℓ(z)∗) .

Applying (3.2) to the functions wk and fk and making use of equalities (3.8), we
conclude that

wk(z) − fk(z) = O
(
(z − t0)

2n−k+1
)

as z→̂t0
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for k = 0, . . . , 2n. Since z − t0 = O(1 − |z|2) when z→̂t0 nontangentially, we have

fi−k(z) − wi−k(z)

(1 − |z|2)k+ℓ+1
= O

(
(z − t0)

2n−i−ℓ
)
), ≤ k ≤ i ≤ n, (3.13)

fj−ℓ(z) − wj−ℓ(z)

(1 − |z|2)k+ℓ+1
= O

(
(z − t0)

2n−j−k
)
, 0 ≤ ℓ ≤ j ≤ n. (3.14)

Now asymptotic relation (3.9) follows from (3.12), (3.13) and (3.14). The last
assertion follows from (3.9) upon letting i = j = n. �

Lemma 3.3. Let w and f be two functions analytic on a neighborhood Ut0 of t0 ∈ T

and let us assume that the nontangential boundary limits of their 2n + 2 first
derivatives at t0 exist and are equal:

wj(t0) = fj(t0) for j = 0, . . . , 2n + 1. (3.15)

Then

P
w
n (z) − P

f
n(z) = o(1) as z→̂t0 (3.16)

where P
w
n (z) and P

f
n(z) are the Schwarz-Pick matrices associated with w and f

via formula (1.3).

Proof. By Remark 2.6, equalities (3.15) are equivalent to the asymptotic relation

w(z) − f(z) = o((z − t0)
2n+1 as z→̂t0. (3.17)

Therefore we have

wk(z) − fk(z) = o
(
(z − t0)

2n−k+1
)

for k = 1, . . . , 2n + 1 as z → t0.

Substituting the latter asymptotics into (3.9) we get

P
w
i,j(z) − P

f
i,j(z) = o((z − t0)

2n−i−j) (i, j = 0, . . . , n)

which clearly imply (3.16). �

Proof of Theorem 1.5: The third statement in Theorem 1.5 can be reformulated
equivalently: there exists a rational unimodular function f satisfying conditions
(3.15). Now we apply Theorem 2.5 to the sequence {w0, . . . , w2n+1} where wj :=
wj(t0) to conclude that the Statements 1-3 in Theorem 1.5 are equivalent.

Assume that the asymptotic equality (1.18) holds (or equivalently, the equalities
(3.15) hold) for a rational unimodular function f . Then Pw

n (t0) = Pf
n(t0), by the

definition (1.9), and the relation (3.16) holds by Lemma 3.3. Furthermore, since
f is rational and unimodular on T, the boundary Schwarz-Pick matrix P

f
n(t0)

exists and is equal to Pf
n(t0), by Statement 1 in Theorem 2.3. Now we pass to

nontangential limits in (3.16) to get

P
w
n (t0) = lim

zc→t0
P

w
n (z) = lim

zc→t0
P

f
n(z) = P

f
n(t0) = P

f
n(t0) = P

w
n (t0).

To complete the proof of Theorem 1.5, it suffices to show that (3) ⇒ (4) ⇒ (2).
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Proof of (3) ⇒ (4): Assume that the asymptotic equality

w(z) = f(z) + o((z − t0)
2n+1) (3.18)

holds (or equivalently, the equalities (3.15) hold) for a rational unimodular function
f as z→̂t0 from inside of the disk D. Then we also have for |z| > 1,

w(z) := w(1/z̄)
−1

= f(1/z̄)
−1

+ o((
1

z̄
− t0)2n+1) = f(z) + o((z − t0)

2n+1) (3.19)

as z→̂t0 from outside of D, where f(z) stands for both symmetry and analytic
continuation, that agree since f is rational and unimodular on T. Since f is analytic
in a neighborhood of t0, its asymptotics form inside and outside of the unit disk
agree. The asymptotic equality (1.19) follows from the fact that the limits wj(t0)
exist for j = 0, . . . , n as z→̂t0 from inside and outside of D (by Remark 2.6) and
are equal.

Proof of (4) ⇒ (2): Let us assume that the asymptotic relations (1.19) hold from
inside and outside of D. By definition of symmetry continuation we have

w(1/z̄) ≡ w(z)−1, |z| < 1.

Since

1

z
− t̄0 =

−t̄0(z − t0)

z
= O((z − t0)) as z → t0,

it follows, by substituting 1/z̄, |z| < 1 in (1.19), that

w(1/z̄) =

k∑

j=0

wj(t0)
∗

(
1

z
− t̄0

)j

+ o((z − t0)
k)

for k = 0, . . . , 2n + 1 and therefore, that

zkw(z)−1 ≡ zkw(1/z̄) =

k∑

j=0

wj(t0)
∗zk−j(1 − zt̄0)

j + o((z − t0)
k)

=
k∑

j=0

(−t̄0)
jwj(t0)

∗zk−j(z − t0)
j + o((z − t0)

k).

for |z| < 1. Simple rearrangements based on the relation zℓ =

ℓ∑

i=0

(
ℓ
i

)
tℓ−i
0 (z − t0)

i,

lead us to

zkw(z)−1 =
k∑

j=0

(
k−j∑

ℓ=0

(−1)ℓtj−ℓ
0

(
k − ℓ

j

)
wℓ(t0)

∗

)
(z − t0)

k−j + o((z − t0)
k).
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Upon multiplying the corresponding parts both in the latter equality and (1.19)
(for |z| < 1) we get




2n+1∑

j=0

wj(t0)(z − t0)
j






k∑

j=0

(
k−j∑

ℓ=0

(−1)ℓtj−ℓ
0

(
k − ℓ

j

)
wℓ(t0)

∗

)
(z − t0)

k−j




= zk + o((z − t0)
k) =

k∑

j=0

(
k
j

)
tk−j
0 (z − t0)

j + o((z − t0)
k)

Comparing the coefficients of (z − t0)
k in the latter equality we eventually arrive

at
k∑

j=0

k−j∑

ℓ=0

(−1)ℓ
(

k − ℓ
j

)
tj−ℓ
0 wj(t0)wℓ(t0)

∗ = 1 for k = 0, . . . , 2n + 1.

By Remark 2.1, the latter equalities mean that the sequence {w0(t0), . . . , w2n+1(t0)}
is t0-isometric. �

Proof of Theorem 1.7: Let us assume that w(2n+1) is bounded on Γt0,α and that
the sequence {w0, . . . , w2n} of the nontangential boundary limits wj := wj(t0) is
t0-isometric (the existence of the latter limits is guaranteed by Lemma 3.1). Let
w2n+1 be any number such that the extended sequence {w0, . . . , w2n, w2n+1} is
t0-isometric (such a number exists by Remark 2.7). By Theorem 2.5, there exists
a rational unimodular function f such that fj(t0) = wj for j = 0, . . . , 2n + 1. The
functions f and w meets all the conditions in Lemma 3.2. Therefore,

dw,n(z) − df,n(z) = O(1) (3.20)

as z tends to t0 nontangentially. Since f is rational unimodular function the limit
df,n(t0) exists and in particular, df,n(z) is bounded on Γt0,α. Then (3.20) implies
(1.21). Equivalences (1) ⇔ (2)) ⇔ (3) in Theorem 1.7 are established in much the
same way as those in Theorem 1.5. �

4. Generalized Schur functions

Condition (1.15) does not make much sense for general analytic functions. For ex-

ample, the function w(z) = e
i

1−z meets condition (1.15) (for n = 0) at t0 = 1, since
|w(z)| = 1 on the radius [0, 1); however, it has no radial limit as z approaches 1.
Thus the extension of Theorem 1.4 (at least in its present formulation) to general
analytic functions is unlike. However, this theorem can be extended to some classes
of functions that are close in some sense to S. In this section we will show how it
can be done for the so-called generalized Schur functions. Recall that a function w
belongs to the generalized Schur class Sκ if it admits a representation of the form

w(z) =
s(z)

b(z)
, (4.1)
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where s is a Schur class function and b is a finite Blaschke product b of degree
κ, having disjoint zeroes in D. A well known property of Sκ functions is that the
kernel

Kw(z, ζ) :=
1 − w(z)w(ζ)

1 − zζ̄

has κ negative squares on ρ(w), the domain of analyticity of w intersected with
D. Therefore, the Schwarz-Pick matrix P

w
n (z) defined in (1.3) makes sense and

has not more than κ negative eigenvalues (counted with multiplicities) for every
z ∈ ρ(w) and every n ∈ Z+; in formulas: sq−P

w
n (z) ≤ κ.

Remark 4.1. It is that once the boundary Schwarz-Pick matrix P
w
n (t0) exists,

sq−P
w
n (t0) ≤ κ.

The next theorem extends Theorem 1.4.

Theorem 4.2. Let w ∈ Sκ, t0 ∈ T, n ∈ Z+ and let dw,n be defined as in (1.5). The
following are equivalent.

1. d̃ := lim inf
z→t0

dw,n(z) < ∞.

2. dw,n(t0) := lim
zc→t0

dw,n(z) < ∞.

3. The boundary Schwarz-Pick matrix P
w
n (t0) exists.

4. The nontangential boundary limits wj(t0) exist for j = 0, . . . , 2n + 1 and
satisfy

|w0(t0)| = 1, P
w
n (t0) = P

w
n (t0)

∗ and sq−P
w
n (t0) ≤ κ,

where Pw
n (t0) is the matrix defined in (1.9).

Moreover, when these conditions hold, then

d̃ = dw,n(t0) and P
w
n (t0) = P

w
n (t0). (4.2)

For w of the form (4.1) we have

1 − |w(z)|2

1 − |z|2
=

1 − |s(z)|2

|b(z)|2(1 − |z|2)
−

1 − |b(z)|2

|b(z)|2(1 − |z|2)
.

Upon applying 1
i!j!2

∂i+j

∂zi∂j̄n to both parts of the latter equality and arranging the

obtained (n + 1)2 equalities in the matrix form, we get, by the definitions (1.3),

P
w
n (z) = Ls,b(z) − Lb,b(z), (4.3)

where we have set

Ls,b(z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j

1

b(z)

1 − |s(z)|2

1 − |z|2
1

b(z)

]n

i,j=0

, (4.4)

Lb,b(z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j

1

b(z)

1 − |b(z)|2

1 − |z|2
1

b(z)

]n

i,j=0

. (4.5)
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Note that if K is a sesqui-analytic kernel and f is analytic at z, then the equality
[

1

i!j!

∂i+j

∂zi∂z̄j
f(z)K(z, z)f(z)

]n

i,j=0

= U
f
n(z)∗ ·

[
1

i!j!

∂i+j

∂zi∂z̄j
K(z, z)

]n

i,j=0

· Uf
n(z)

holds by the Leibnitz rule. Upon applying this equality to

K(z, ζ) =
1 − s(z)s(ζ)

1 − zζ̄
and f(z) =

1

b(z)
,

and taking into account that U
1/b
n (z) = Ub

n(z)−1 whenever b(z) 6= 0, we get

Ls,b(z) := U
b
n(z)−∗

P
s
n(z)Ub

n(z)−1 (4.6)

where P
s
n(z) is the Schwarz-Pick matrix defined via formula (1.3). Letting s = b

in the latter formula, we get

Lb,b(z) = U
b
n(z)−∗

P
b
n(z)Ub

n(z)−1. (4.7)

Remark 4.3. Let s be a Schur function, let b be a finite Blaschke product and let
Ls,b(z) and Lb,b(z) be defined as in (4.4) and (4.5). Then

1. The nontangential limit

Ls,b(t0) := lim
zc→t0

Ls,b(z) (4.8)

exists if and only if the boundary Schwarz-Pick matrix P
s
n(t0) exists and in

this case

Ls,b(t0) = U
b
n(t0)

−∗
P

s
n(t0)U

b
n(t0)

−1. (4.9)

2. The limit

Lb,b(t0) = lim
z→t0

Lb,b(z) = U
b
n(t0)

−∗
P

b
n(t0)U

b
n(t0)

−1 (4.10)

exists for every n ∈ Z+, when z tends to t0 ∈ T unrestrictedly in C.

Proof. Since b is analytic at t0 ∈ T and b(t0) 6= 0, the limit matrix Ub
n(t0) :=

limz→t0 Ub
n(z) exists and is invertible. Now the first assertion follows from (4.6)

upon passing to limits as z→̂t0. The second assertion follows since P
b
n(t0) exists,

by Theorem 2.3. �

Corollary 4.4. Let w ∈ Sκ be of the form (4.1) with a Schur function s and a finite
Blaschke product b. Then the boundary Schwarz-Pick matrix P

w
n (t0) exists if and

only if P
s
n(t0) exists and in this case,

P
w
n (t0) = U

b
n(t0)

−∗
(
P

s
n(t0) − P

b
n(t0)

)
U

b
n(t0)

−1. (4.11)

Proof. Since the limit (4.10) exists no matter how z tends to t0, it follows from
(4.3) that P

w
n (t0) exists if and only Ls,b(t0) exists; the latter is equivalent to the

existence of P
s
n(t0), by Remark 4.3. Passing to the limits in (4.3) as z→̂t0 and

making use of (4.9) and (4.10) we arrive at (4.11). �
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Lemma 4.5. Let s ∈ S0 be a Schur function, let f be a function analytic at t0 ∈ T

and let n ∈ Z+. Then

lim inf
z→t0

∂2n

∂zn∂z̄n

(
f(z)

1 − |s(z)|2

1 − |z|2
f(z)

)
< ∞

if and only if (the “if” part is obvious) the following limits exist and are finite:

lim
zc→t0

∂i+j

∂zi∂z̄j

(
f(z)

1 − |s(z)|2

1 − |z|2
f(z)

)
< ∞ (i, j = 0, . . . , n). (4.12)

Furthermore,

lim inf
z→t0

∂2n

∂zn∂z̄n

(
f(z)

1 − |s(z)|2

1 − |z|2
f(z)

)
= lim

zc→t0

∂2n

∂zn∂z̄n

(
f(z)

1 − |s(z)|2

1 − |z|2
f(z)

)
.

(4.13)

The above result has been proved in [5] in the context of operator-valued Schur
functions s and vector valued functions f . The result is useful even in the scalar-
valued setting due to the following

Corollary 4.6. Let s be a Schur function, let b be a finite Blaschke product and let

Ls,b
nn(z) =

1

(n!)2
∂2n

∂zn∂z̄n

1 − |s(z)|2

|b(z)|2(1 − |z|2)
, (4.14)

the lower diagonal element of the matrix Ls,b(z) given in (4.4) be subject to

lim inf
z→t0

Ls,b
nn(z) < ∞ (t0 ∈ T). (4.15)

Then the nontangential boundary limit (4.8) exists and

lim
zc→t0

Ls,b
nn(z) = lim inf

z→t0
Ls,b

nn(z). (4.16)

Furthermore, the boundary Schwarz-Pick matrix P
s
n(t0) exists.

Proof. Condition means that we can apply Lemma 4.5 for f(z) = 1
b(z) . Then rela-

tions (4.12) mean that all the entries in the matrix Ls,b(z) possess nontangential
boundary limits and thus, the limit (4.8) exists. Then P

s
n(t0) exists by Remark

4.3. Finally, equality (4.13) with f = 1
b gives (4.16). �

Proof of Theorem 4.2: Let w ∈ Sκ be a generalized Schur function with the Krein–
Langer representation (4.1) and let us assume that

d̃ := lim inf
z→t0

dw,n(z) < ∞

Equating the lower diagonal entries in the matrix identity (4.3) gives

dw,n(z) = Ls,b
nn(z) − Lb

nn(z) (4.17)
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where Ls,b
nn(z) is given in (4.14) and where, according to (4.5)

Lb
nn(z) =

1

(n!)2
∂2n

∂zn∂z̄n

1 − |b(z)|2

|b(z)|2(1 − |z|2)
.

By Remark 4.3, the limit

Lb
nn(t0) = lim

z→t0
Lb

nn(z)

exists. Then it follows from (4.17) that

lim inf
z→t0

dw,n(z) = lim inf
z→t0

Ls,b
nn(z) − Lb

nn(t0) (4.18)

and since the limit inferior on the left is finite, we conclude that condition (4.15)
is satisfied. Then the boundary Schwarz-Pick matrix P

s
n(t0) exists by Corollary

4.6. By Corollary 4.4, the boundary Schwarz-Pick matrix P
w
n (t0) also exists. Now

we can pass to the limits in (4.17) as z→̂t0:

dw,n(t0) = lim
zc→t0

dw,n(z) = lim
zc→t0

Ls,b
nn(z) − Lb

nn(t0)

which implies, on account of (4.18) and of equality (4.16) (that holds, by Corollary
4.6)

dw,n(t0) = lim inf
z→t0

dw,n(z).

This completes the proof of implications (1) ⇒ (3) ⇒ (2) in Theorem 4.2 and also
the first equality in (4.2).
Furthermore, since s ∈ S, the existence of P

s
n(t0) guarantees (by Theorem 1.4)

the existence of the nontangential boundary limits

sj(t0) := lim
z→t0

s(j)(z)

j!
for j = 0, . . . , 2n + 1 (4.19)

such that |s0(t0)| = 1 and the matrix Ps
n(t0) defined via formula (1.9) is Hermitian.

Then the sequence {s0(t0), . . . , s2n+1(t0)} is t0-isometric, by Theorem 2.5:

U
s

2n+1(t0)Ψ2n+1(t0)U
s
2n+1(t0) = Ψ2n+1(t0). (4.20)

The sequence {b0(t0), . . . , b2n+1(t0)} is t0-isometric, by the second assertion in
Theorem 2.3: Thus, we have

U
b

2n+1(t0)Ψ2n+1(t0)U
b
2n+1(t0) = Ψ2n+1(t0). (4.21)

Since b is analytic at t0 and since b(t0) 6= 0, the existence of the boundary limits

wj(t0) := lim
z→t0

w(j)(z)

j!
(j = 0, . . . , 2n + 1) (4.22)

follows from (4.1) and (4.21). Since s = wb, we have Us
2n+1(t0) = Uw

2n+1(t0)U
b
2n+1(t0)

so that
U

w
2n+1(t0) = U

s
2n+1(t0)U

b
2n+1(t0)

−1.

The latter equality together with (4.20) and (4.21) implies

U
w

2n+1(t0)Ψ2n+1(t0)U
w
2n+1(t0) = Ψ2n+1(t0)
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which means that the sequence {w0(t0), . . . , w2n+1(t0)} is t0-isometric. By The-
orem 1.5, conditions (1.17) are satisfied and the matrix Pw

n (t0) constructed from
the limits (4.22) via formula (1.9), is equal to the boundary Schwarz-Pick matrix
P

w
n (t0). This proves the second equality in (4.2). Furthermore, this equality im-

plies that Pw
n (t0) is Hermitian and (by Remark 4.1) that sq−P

w
n (t0) ≤ κ. This

completes the proof of Theorem 4.2. �

The next theorem partly generalizes Theorem 4.2.

Theorem 4.7. Let w = s
f be the ratio of two Schur class functions satisfying

conditions

lim inf
z→t0

ds,n(z) < ∞ and lim inf
z→t0

df,n(z) < ∞ (4.23)

where t0 ∈ T and n ∈ Z+. Then

1. The nontangential boundary limits wj(t0) exist for j = 0, . . . , 2n + 1 and
|w0(t0)| = 1.

2. The boundary Schwarz-Pick matrix P
w
n (t0) exists and is equal to the matrix

Pw
n (t0) defined in (1.9). In particular, Pw

n (t0) is Hermitian.

By Theorem 1.4, conditions (4.23) guarantee the existence of the the boundary
Schwarz-Pick matrices P

s
n(t0) and P

f
n(t0). The rest is the same as in the proof of

Theorem 4.2.
Note that in case when w = s

f is the ratio of two Schur class functions, the

condition

lim inf
z→t0

dw,n(z) < ∞ (4.24)

follows from (4.23) but does not imply (4.23) in general. Thus, the conclusions in
Theorem 4.7 are obtained under apperantly too strong assumptions. Conditions
(4.23) in Theorem 4.7 cannot be relaxed to (4.24) and we do not know what
conditions in terms of dw,n(z) may replace (4.23).

5. Infinite t0-isometric sequences and related results

Theorem 2.5 shows that any finite t0-isometric sequence {w0, . . . , wn} arises as a
sequence of the first n + 1 Taylor coefficients of a rational unimodular function
at t0 (moreover, one can use rational unimodular functions with the only pole at
the origin to get all finite t0-isometric sequences. In this section we characterize
infinite t0-isometric sequences in similar terms.

Definition 5.1. We will say that a sequence {wj}
∞
j=0 of complex numbers is t0-

positive if |w0| = 1 and the matrix P(t0, w0, . . . , w2n+1) defined as in (1.13) is
positive semidefinite for all n ≥ 0.

Remark 5.2. By Theorem 2.5, a sequence t0-isometric if and only if |w0| = 1 and
the matrix P(t0, w0, . . . , w2n+1) is Hermitian for every n ≥ 0. In partcular, any
t0-positive sequence is t0-isometric.
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Definition 5.3. Let t0 ∈ T. We will say that a Schur function w belongs to the class
St0 if

lim inf
z→t0

dw,n(z) < ∞ for all n ≥ 0 (5.1)

or equivalently, if

lim
zc→t0

dw,n(z) < ∞ for all n ≥ 0, (5.2)

where dw,n(z) is defined as in (1.5). We denote by QSt0 the class of functions w
of the form w = s

f where s, f ∈ St0 .

Theorem 5.4. Let t0 ∈ T and let w ∈ St0 . Then the nontangential boundary limits
wj(t0) exist for every j ≥ 0 and the sequence {wj(t0)}

∞
j=0 is t0-positive. Further-

more, any t0-positive sequence arises in this way.

Proof. The first assertion follows from Theorem 1.4 and Definition (5.1) of t0-
positivity. In regard to the second assertion recall a known interpolation result [10]
(analogous to the classical Hamburger’s solvability criteria for the power moment
problem [8]) asserting that if a sequence {wj}

∞
j=0 is t0-positive, then (an only then)

there exists a Schur class function w such that

wj(t0) := lim
zc→t0

w(j)(z)

j!
= wj for j ≥ 0.

For this function w we have |w0| = 1 and Pw
n (t0) ≥ 0 for all n ≥ 0 and then it

follows by Theorem 1.4 (implication (4) ⇒ (2) that condition (1.16) holds for all
n ≥ 0, i.e., that w ∈ St0 . �

Theorem 5.5. Let t0 ∈ T and let w ∈ QSt0 . Then the nontangential boundary
limits wj(t0) exist for every j ≥ 0 and the sequence {wj(t0)}

∞
j=0 is t0-isometric.

Furthermore, any t0-isometric sequence arises in this way.

Proof. The first assertion follows from Theorem 4.7. To prove the second assertion,
let us assume that {wj(t0)}

∞
j=0 is a t0-isometric sequence. Then by Remark 5.2,

|w0| = 1 and P(t0, w0, . . . , w2n+1) is Hermitian for every n ≥ 0. Then we use the
inductive construction from the proof of Lemma 2.4 to get a t0-positive sequence
{fj}

∞
j=0 such that the sequence {sj}

∞
j=0 defined by

sj =

j∑

ℓ=0

fj−ℓ wℓ for j = 0, 1, . . . (5.3)

is t0-positive. By Theorem 5.4, there exist functions s(z) and f(z) in St0 satisfying
the conditions

s(j)(t0)

j!
= sj and

f (j)(t0)

j!
= fj for j = 0, 1, . . . . (5.4)

Now it follows from (5.3) that the quotient w(z) = s
f (which belongs to QSt0)

satisfies the conditions (5.2). �
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For general analytic functions we have the following result which is an infinite
analogue of Theorem 1.5.

Theorem 5.6. Let w be analytic in a neighborhood Ut0 of t0 ∈ T. The following are
equivalent:

1. The nontangential boundary limits wj(t0) exist for every j ∈ Z+ and the
sequence {wj(t0)}

∞
j=0 is t0-isometric.

2. There exist a function f ∈ QSt0 such that

w(z) = f(z) + o((z − t0)
n) for all n ≥ 0 as z→̂t0. (5.5)

3. w admits the analytic continuation by symmetry w(z) = 1

w(1/z̄)
across t0 into

an external nontangential neighborhood

Γ̃t0,α,ε := {z 6∈ D : |z − t0| < ε, |arg(z − t0)| < α}

of t0 for every α ∈ (0, π
2 ) and ε = ε(α) > 0.

Proof. For the proof of (1) ⇔ (3) it suffices to note that the nontangential as-
ymptotic equality (1.19) holding for every n ∈ Z+ from inside and outside of the
unit disk, is equivalent to Statement 3 in Theorem 5.6. Equivalence (1) ⇔ (2)
follows from Theorem 5.5: since the limits fj(t0) exist for j ≥ 0, the relation (5.5)
is equivalent to existence of the limits wj(t0) = fj(t0) for j ≥ 0. �
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[12] M. G. Krĕın and H. Langer, Über die verallgemeinerten Resolventen und die charak-

teristische Funktion eines isometrischen Operators im Raume Πκ, Colloq. Math.
Soc. János Bolyai 5 (1972), 353–399.
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