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The Nevanlinna–Pick interpolation problem is studied in the class Sκ of meromorphic
functions f with κ poles inside the unit disk D and with ‖ f ‖L∞(T) � 1. In the
indeterminate case, the parametrization of all solutions is given in terms of a family of
linear fractional transformations with disjoint ranges. A necessary and sufficient condition
for the problem being determinate is given in terms of the Pick matrix of the problem.
The result is then applied to obtain necessary and sufficient conditions for the existence
of a meromorphic function with a given pole multiplicity which satisfies Nevanlinna–Pick
interpolation conditions and has the minimal possible L∞-norm on the unit circle T.
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1. Introduction

Let S stand for the Schur class of analytic functions mapping the unit disk D into its closure �D and let Bκ be the set of
finite Blaschke products of degree κ . We denote by Sκ the generalized Schur class of meromorphic functions of the form

f (z) = s(z)

b(z)
, (1.1)

where s ∈ S and b ∈ Bκ do not have common zeros. Formula (1.1) is called the Kreı̆n–Langer representation of a generalized
Schur function f ; the entries s and b are defined by f uniquely if we assume that b is normalized to the form

b(z) =
κ∏

i=1

z − ai

1 − zāi
, ai ∈ D, deg b = κ. (1.2)

Via nontangential boundary limits, Sκ -functions can be identified with the functions from the unit ball of L∞(T) which
admit meromorphic continuation inside the unit disk with total pole multiplicity equal κ . Also (see [11]) Sκ -functions
can be characterized as meromorphic functions f on D with the associated kernel 1− f (z) f (ζ )∗

1−zζ̄
having κ negative squares

on ρ( f ), the domain of analyticity of f . Equivalently, all Schwarz–Pick matrices (which are clearly Hermitian)

Pn( f ; z1, . . . , zn) :=
[

1 − f (zi) f (z j)
∗

1 − zi z̄ j

]n

j,i=1
, z1, . . . , zn ∈ ρ( f ), (1.3)

have at most κ negative eigenvalues (counted with multiplicities), and at least one such matrix has exactly κ negative
eigenvalues. In what follows, we denote by π(X), ν(X) and δ(X) respectively the numbers of positive, negative and zero
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eigenvalues, counted with multiplicities, of a Hermitian matrix X . For notational convenience, we will often write f ∗ rather
than f̄ . We will be mostly concerned about the Nevanlinna–Pick interpolation problem:

NPκ : Given n distinct points z1, . . . , zn ∈ D, complex numbers f1, . . . , fn and an integer κ � 0, find all functions f ∈ Sκ (if
exist) which are analytic at z1, . . . , zn and satisfy

f (zi) = f i for i = 1, . . . ,n. (1.4)

As in the classical case κ = 0, necessary and sufficient conditions for the problem NPκ to have a solution can be given
in terms of the Pick matrix

P =
[1 − f i f ∗

j

1 − zi z̄ j

]n

i, j=1
(1.5)

of the problem. These conditions are contained in Theorem 1.2 below.

Definition 1.1. A Hermitian matrix P of rank d is said to be saturated if every d × d principal submatrix of P is invertible.

Theorem 1.2. Let P be the Pick matrix of the problem NPκ . Then:

(1) The problem has infinitely many solutions if and only if κ � ν(P ) + δ(P ).
(2) The problem has a unique solution if and only if κ = ν(P ), δ(P ) > 0, and P is saturated.
(3) Otherwise, the problem has no solutions.

The absence of solutions in case κ < ν(P ) is immediate: if the problem NPκ admits a solution f ∈ Sκ , then
Pn( f ; z1, . . . , zn) = P and consequently,

ν(P ) = ν
(

Pn( f ; z1, . . . , zn)
)
� κ. (1.6)

Statement (1) and the absence of solutions in case ν(P ) < κ < ν(P )+ δ(P ) (which is part of statement (3)) were established
in [13] in the context of a related to Sκ class Nκ of generalized Nevanlinna functions. These parts will be recovered in
Corollaries 2.6 and 2.11 below as consequences of a Schur-type reduction. A new point here is a description of the solution
set S(NPκ ) of the problem NPκ for each fixed κ � ν(P ) + δ(P ). It is known that the set S(NPκ ) can be parametrized by
a single linear fractional formula if δ(P ) = 0 (see e.g., [2–4,9]) or if P is singular and saturated [10]. Theorem 2.10 below
shows that in the general singular case, the set S(NPκ ) can be parametrized by a family of linear fractional transformations
with disjoint ranges.

The uniqueness criterion for the problem NPκ can be established as follows: it turns out that if κ = ν(P ) and δ(P ) > 0,
then the problem NPκ has at most one solution and the rational function f 0 defined explicitly in terms of interpolation data
by formula (2.21) below, is the only candidate. Upon making use of formula (2.21) one can rewrite conditions f 0(zi) = f i
entirely in terms of interpolation data. This gives a uniqueness criterion which actually reads: The problem NPκ has a unique
solution if and only if the only candidate f 0 is indeed a solution to NPκ . The uniqueness criterion given in statement (2) of
Theorem 1.2 provides yet additional evidence that the features of the Nevanlinna–Pick problem depend on spectral and
structural properties of the associated Pick matrix rather than on individual values of zi and f i . The present criterion
looks quite satisfactory from computational point of view; the next theorem gives a simple test to verify whether or not a
matrix P of the form (1.4) is saturated.

Theorem 1.3. Let P ∈ C
n×n be of the form (1.5) and let d := rank P < n. Then P is saturated if and only if at least one (d +1)× (d +1)

principal submatrix P̃ of P with rank P̃ = d is saturated.

Thus, to verify that P is saturated, it suffices to pick up any (d + 1) × (d + 1) principal submatrix P̃ of P with rank P̃ =
rank P = d and to verify invertibility of its two d × d principal submatrices.

Remark 1.4. An earlier appearance of saturated matrices in Nevanlinna–Pick interpolation theory occured in [12]. D. Sarason
showed that the boundary Nevanlinna–Pick interpolation problem has a unique Schur-class solution if and only if the cor-
responding Pick matrix is singular, positive semidefinite and saturated (we refer to [12] for the precise formulation of the
problem and definition of the boundary Pick matrix). For the classical (interior) Schur-class Nevanlinna–Pick problem (in
our notation, NP0) saturated matrices do not appear explicitly in the uniqueness criterion for a simple reason—if a matrix P
of the form (1.5) is positive semidefinite (i.e., ν(P ) = 0), then it is automatically saturated.

The proofs of Theorems 1.2 and 1.3 are given in Section 3. In Section 4 we discuss the existence of solutions of the
problem NPκ of the minimal possible L∞-norm. Our result in this direction is Theorem 1.5 below.
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Let H∞
k be the set of all functions f of the form (1.1) where s ∈ H∞ and b ∈ Bk may have common zeros. From this

definition it follows that Sk = (H∞
k \ H∞

k−1) ∩ B L∞ where B L∞ denotes the unit ball of L∞(T). Let

S := {
g: g(zi) = f i for i = 1, . . . ,n

}
(1.7)

be the set of all functions g satisfying interpolation conditions (1.4), let

P (λ) :=
[

λ2 − f i f ∗
j

1 − zi z̄ j

]n

i, j=1
(1.8)

(so that the Pick matrix P defined in (1.5) equals P (1)) and let λ0 � λ1 � · · · � λm > 0 be all positive solutions of the
equation det P (λ) = 0. Then

μk := inf
g∈S∩H∞

k

‖g‖∞ = inf
g∈S∩(H∞

k \H∞
k−1)

‖g‖∞ =
{

λk if k � m,

0 if k > m
(1.9)

(see e.g., [1]). Our contribution here is a reasonably simple criterion for the existence of a function gk,min ∈ S ∩ H∞
k for

k � m such that ‖gk,min‖∞ = μk . The case k > m is simple: the function g ≡ 0 (the only function in H∞
k with ‖g‖ = μk = 0)

belongs to S if and only if all interpolation conditions are homogeneous: f1 = · · · = fn = 0 (in which case the equation
det P (λ) = 0 has no positive solutions).

Theorem 1.5. Let 0 � k � m. There exists a (unique) function g ∈ S∩ H∞
k with ‖g‖∞ = μk = λk if and only if the matrix P (λk) defined

via formula (1.8) is saturated. This extremal function belongs to H∞
k \ H∞

k−1 if and only if either k = 0 or λk < λk−1 .

2. Preliminaries

In case δ(P ) = 0 and κ � ν(P ), all solutions of the (nondegenerate) problem NPκ can be parametrized by a linear
fractional formula which will be recalled in Theorem 2.2 below. In the degenerate case, we will first parametrize the
solution set of a maximal nondegenerate subproblem and then will match the remaining interpolation conditions by an
appropriate choice of parameters in the parametrization formula. Without loss of generality we can (and will) assume that
the d × d leading submatrix Pd of P is invertible where d = rank P :

Pd :=
[1 − f i f ∗

j

1 − zi z̄ j

]d

i, j=1
, rank Pd = rank P = d < n. (2.1)

We next introduce the 2 × 2 matrix function Θ = [Θi j]2
i, j=1 by

Θ(z) = I + (z − 1)

[
E∗

d
C∗

d

](
I − zT ∗

d

)−1
P−1

d (I − Td)
−1[ Ed −Cd ], (2.2)

where

Td =
⎡
⎣ z1

. . .

zd

⎤
⎦ , Ed =

⎡
⎣1

.

.

.

1

⎤
⎦ , Cd =

⎡
⎢⎣

f1
.
.
.

fd

⎤
⎥⎦ . (2.3)

Remark 2.1. The matrix Θ(z) is invertible at every point z ∈ C \ {z1, . . . , zd}, as it follows from the equality (see e.g.,
[6, Lemma 2.2] for the proof)

det Θ(z) =
d∏

i=1

(z − zi)(1 − z̄i)

(1 − zz̄i)(1 − zi)
. (2.4)

In (2.2) and in what follows, the symbol I stands for the identity matrix whose dimension will be always clear from the
context. We will write Z( f ) for the zero set of a meromorphic function f and N{ f } for the total number of zeroes of f
that fall inside D. We will denote by Bm

k the set of all rational functions unimodular on the unit circle T and with m zeroes
and k poles inside D, that is, the set of all coprime quotients of finite Blaschke products of degrees m and k. The two next
theorems can be found in [5] (Theorems 1.1 and 2.3 there).
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Theorem 2.2. Let Pd of the form (2.1) be invertible and let Θ be defined as in (2.2). A function f belongs to Sκ and satisfies interpo-
lation conditions

f (zi) = f i for i = 1, . . . ,d (2.5)

if and only if it is of the form

f = Θ11 S + Θ12 B

Θ21 S + Θ22 B
, (2.6)

for some S ∈ S and B ∈ Bκ−ν(Pd) with Z(S) ∩ Z(B) = ∅ and such that

Θ21(zi)S(zi) + Θ22(zi)B(zi) 
= 0 (i = 1, . . . ,d). (2.7)

The correspondence f �→ S
B is one-to-one and f is unimodular on T if and only if S is.

Theorem 2.3. Let Pd be invertible, let Θ be defined as in (2.2) and let

U S,B := Θ11 S + Θ12 B, V S,B(z) := Θ21 S + Θ22 B. (2.8)

(1) N{V S,B} = ν(P ) + deg B. If in addition, S is a finite Blaschke product, then N{U S,B} = π(P ) + deg S.
(2) Z(U S,B) ∩ Z(V S,B) ⊆ {z1, . . . , zd}.
(3) If V S,B(zi) = 0, then U S,B has simple zero at zi .

By Theorem 2.2, a function f of the form (2.6) satisfies the first d interpolation conditions in (1.4). The next theorem
shows that the remaining n − d conditions

f (z j) = f j ( j = d + 1, . . . ,n) (2.9)

can be matched upon an appropriate choice of the parameters S and B in (2.6).

Theorem 2.4. Let conditions (2.1) be satisfied, let Θ be defined as in (2.2) and let S ∈ S and B ∈ Bκ−ν(Pd) have no common zeros.
Then f of the form (2.6) satisfies interpolation conditions (2.9) if and only if

a j S(z j) = −c j B(z j) for j = d + 1, . . . ,n, (2.10)

where the numbers a j , c j are given by

[a j c j ] = [1 − f j ]Θ(z j) for j = d + 1, . . . ,n. (2.11)

These numbers are such that

|a j | = |c j| 
= 0 and
ci

ai
= c j

a j
for i, j = d + 1, . . . ,n. (2.12)

Proof. By Remark 2.1, det Θ(z j) 
= 0 for j = d + 1, . . . ,n, and therefore the numbers a j and c j defined as in (2.11) cannot

be both equal to zero. It was shown in [8, Section 3] that the matrix A = [ aia
∗
j −ci c

∗
j

1−zi z̄ j

]n
i, j=d+1 is the Schur complement of Pd

in P . It follows by the rank condition in (2.1) that A = 0. Thus, aia∗
j = cic∗

j for every i, j ∈ {d + 1, . . . ,n} and (2.12) follows.

To prove the rest, take f in the form (2.6), i.e., in the form f = U S,B
V S,B

where U S,B and V S,B are given in (2.8). If f satisfies
conditions (2.9), then

V S,B(z j) 
= 0 ( j = d + 1, . . . ,n). (2.13)

Indeed, if V S,B(z j) = 0, then U S,B(z j) = 0, since f is analytic at z j . Therefore,[
cU S,B(z j)

V S,B(z j)

]
= Θ(z j)

[
S(z j)

B(z j)

]
= 0

which is impossible, since
[ S(z j)

B(z j)

] 
= 0 and Θ(z j) is invertible. Multiplying the jth condition in (2.9) by V S,B(z j) 
= 0 brings

us to the equivalent condition U S,B(z j) = f j V S,B(z j) 
= 0, that is (on account of (2.8)), to

Θ11(z j)S(z j) + Θ12(z j)B(z j) = f j
(
Θ21(z j)S(z j) + Θ22(z j)B(z j)

)
,

which can be rewritten as
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[1 − f j ]
[

Θ11(z j)

Θ21(zi)

]
S(z j) = −[1 − f j ]

[
Θ12(z j)

Θ22(z j)

]
B(z j),

which in turn, coincides with (2.10), by definition (2.11) of a j and c j . Conversely, let us assume that S ∈ S and B ∈ Bκ−ν(Pd)

satisfy conditions (2.10). We have already seen that these conditions are equivalent to (2.9) (for the function f of the
form (2.6)) provided conditions (2.13) are met. But they indeed are: to show this, we first observe that since a j, c j 
= 0 and
since S and B do not have common zeros, it follows from (2.10) that B(z j) 
= 0 for j = d + 1, . . . ,n. The equality

V S,B(z j) = B(z j)det Θ(z j)

a j
( j = d + 1, . . . ,n) (2.14)

is verified by a straightforward calculation based on formulas (2.10), (2.11). Since B(z j) 
= 0 and det Θ(z j) 
= 0, we get (2.13)
and complete the proof. �

Let us introduce the number

γ = −Θ12(z j) − f jΘ22(z j)

Θ11(z j) − f jΘ21(z j)
= − c j

a j
, j ∈ {d + 1, . . . ,n}, (2.15)

which is unimodular and whose definition (2.15) does not depend on j, due to (2.12). Let us mention that conditions (2.1)
guarantee that ν(P ) = ν(Pd). The next proposition follows immediately from Theorems 2.2 and 2.4.

Proposition 2.5. Let conditions (2.1) be satisfied, let Θ and γ be defined as in (2.2) and (2.15). Then all solutions f of the problem NPκ

are parametrized by formula (2.6) where {S, B} runs through the set of all pairs such that

(1) S ∈ S, B ∈ Bκ−ν(P ), Z(S) ∩ Z(B) = ∅; (2.16)

(2) Θ21(zi)S(zi) + Θ22(zi)B(zi) 
= 0 for i = 1, . . . ,d; (2.17)

(3) S(z j) = γ B(z j) for j = d + 1, . . . ,n. (2.18)

Corollary 2.6. If ν(P ) < κ < ν(P ) + δ(P ), then NPκ has no solutions.

Proof. Let us assume that on the contrary, the problem NPκ has a solution f which necessarily is of the form (2.6) for
some pair {S, B} satisfying conditions (2.16)–(2.18). Since 0 < κ − ν(P ) < δ(P ) = n − d, the function γ B is a nonconstant
finite Blaschke product of degree deg B < n −d. By (2.18), the Schur-class function S coincides with B at n −d > deg B points
inside D and therefore S is equal to γ B identically. Then Z(S) ∩ Z(B) 
= ∅ which gives a contradiction. �
Corollary 2.7. If κ = ν(P ) and δ(P ) > 0, then NPκ has at most one solution.

Proof. Let us consider the associated interpolation problem (2.16)–(2.18). Since κ = ν(P ), the function B ∈ B0 is a uni-
modular constant. Since the independent parameter in (2.6) is in fact the ratio S/B , we can let without loss of generality,
B ≡ γ ∗ . By the maximum modulus principle, there exists only one Schur class function S ≡ 1 satisfying conditions (2.16).
Substituting S ≡ 1 and B ≡ γ ∗ into (2.6) leads us to the function

f 0(z) = Θ11(z) − Θ12(z)γ ∗

Θ21(z) − Θ22(z)γ ∗ , (2.19)

which by Proposition 2.5, is the only possible solution to the problem NPκ . �
Remark 2.8. By Theorem 2.4, f 0 satisfies interpolation conditions (2.9). By Proposition 2.5, f 0 satisfies conditions (2.5) if
and only if its denominator does not vanish at z1, . . . , zd:

Θ21(zi) − Θ22(zi)γ
∗ 
= 0 for i = 1, . . . ,d. (2.20)

Therefore, if κ = ν(P ), conditions (2.20) are necessary and sufficient for the problem NPκ to have a solution.

Note the explicit formula for f 0 in terms of interpolation data:

f 0(z) = 1 − (1 − zz̄ j)E∗
d(I − zT ∗

d )−1 P−1
d (I − z̄ j Td)

−1(Ed − Cd f ∗
j )

f ∗
j − (1 − zz̄ j)C∗

d (I − zT ∗
d )−1 P−1

d (I − z̄ j Td)
−1(Ed − Cd f ∗

j )
, (2.21)

where j can be picked arbitrarily form {d + 1, . . . ,n}. Indeed,
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[
Θ11(z)a∗

j − Θ12(z)c∗
j

Θ21(z)a∗
j − Θ22(z)c∗

j

]
= Θ(z)

[(
a∗

j
−c∗

j

)]
=

[
1
f ∗

j

]
− (1 − zz̄ j)

[
E∗

d
C∗

d

](
I − zT ∗

d

)−1

× P−1
d (I − z̄ j Td)

−1(Ed − Cd f ∗
j

)
(the first equality is clear while establishing the second requires some simple algebraic manipulations with explicit for-
mula (2.2) for Θ) and dividing the top components by the bottom ones leads us to (2.21).

Remark 2.9. If f 0 is a solution to the problem NPκ , then f 0 ∈ Bπ(P )
ν(P ) .

Proof. Since |γ | = 1 and Θ is rational, it follows that f 0 is rational and unimodular on T, that is, f 0 is a ratio of two finite
Blaschke products. By Theorem 2.3 (part (1)),

N
{
Θ11 − Θ12γ

∗} = π(P ) and N
{
Θ21 − Θ22γ

∗} = ν(P ).

By conditions (2.20) and by Theorem 2.3 (part (2)), the numerator and the denominator in (2.19) have no common zeros
in D. Therefore, f 0 has π(P ) zeros and ν(P ) poles in D and thus, it belongs to Bπ(P )

ν(P ) . �
Let us now pass to the case where κ � ν(P )+δ(P ) and describe all solutions {S, B} to the problem (2.16)–(2.18). In addi-

tion to these conditions, we will require B to be normalized to the form (1.2) so that different pairs {S, B} will lead via (2.6)
to different solutions of NPκ . We first observe that for a finite Blaschke product B ∈ Bκ−ν(P ) to satisfy conditions (2.16)
and (2.18), it is necessary that

B(z j) 
= 0 for j = d + 1, . . . ,n. (2.22)

Let us take any B ∈ Bκ−ν(P ) subject to (2.22). The matrix

P̃ =
[

1 − B(zi)B(z j)
∗

1 − zi z̄ j

]n

i, j=d+1
(2.23)

is positive definite as an (n − d) × (n − d) Schwarz–Pick matrix of a finite Blaschke product B of degree deg B = κ − ν(P ) �
δ(P ) = n − d. For a fixed B , equalities (2.18) can be considered as interpolation conditions for an unknown Schur-class
function S . This is the classical Nevanlinna–Pick problem which has infinitely many solutions, since its Pick matrix P̃ is
positive definite. The solution set of this problem is parametrized by the linear fractional formula

S = TΨB [E ] := ΨB,11 E + ΨB,12

ΨB,21 E + ΨB,22
(2.24)

with the free Schur-class parameter E ∈ S and the coefficient matrix ΨB(z) = [ΨB,i j(z)]2
i, j=1 given by

ΨB(z) = I + (z − 1)

[
Ẽ∗
C̃∗

](
I − zT̃ ∗)−1

P̃−1(I − T̃ )−1[ Ẽ −C̃ ], (2.25)

where P̃ is defined in (2.23) and where

T̃ =
⎡
⎢⎣

zd+1

. . .

zn

⎤
⎥⎦ , Ẽ =

⎡
⎣1

.

.

.

1

⎤
⎦ , C̃ =

⎡
⎢⎣

γ B(zd+1)

.

.

.

γ B(zn)

⎤
⎥⎦ .

To get a description of all solutions of the problem NPκ it remains to substitute (2.24) into (2.6) and to take care of
constraints in (2.16) and (2.17).

Theorem 2.10. Let us assume that κ � ν(P ) + δ(P ) and that rank Pd = rank P = d for the leading submatrix Pd of P . Let AB(z) =
[Ai j(z)]2

i, j=1 be defined by

AB(z) = Θ(z)

[
1 0
0 B(z)

]
ΨB(z), (2.26)

where Θ and γ are defined in (2.2) and (2.15), respectively, where B ∈ Bκ−ν(P ) is a Blaschke product subject to conditions (2.22), and
where ΨB(z) is defined from B by formula (2.25). Let E be a Schur-class function such that

ΨB,11(ζ )E (ζ ) + ΨB,12(ζ ) 
= 0 for ζ ∈ Z(B) (2.27)
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and

A21(zi)E (zi) + A22(zi) 
= 0, for i = 1, . . . ,d. (2.28)

Then the function

f = TAB [E ] := A11 E + A12

A21 E + A22
(2.29)

solves NPκ . Conversely, every solution f of the problem NPκ admits a representation (2.29) for a unique choice of a normalized
Blaschke product B ∈ Bκ−ν(P ) subject to (2.22) and a Schur-class function E satisfying (2.27) and (2.28).

Proof. Formula (2.29) is the result of composition of linear fractional transformations (2.6) and (2.24). By Proposition 2.5,
f of the form (2.29) solves NPκ if and only if B and S = TΨB [E ] are subject to conditions (2.16) and (2.17). Rewriting these
conditions in terms of E from (2.24) gives (2.27) and (2.28).

The uniqueness part can be justified as follows. If f is a solution of NPκ , then it is of the form (2.6) from which we have

S

B
= Θ12 − Θ22 f

Θ21 f − Θ11
=: Ẽ ∈ Sκ−ν(P ).

Thus, the function Ẽ is uniquely determined from f . Due to (2.16), the ratio S/B is the Kreı̆n–Langer representation of Ẽ
and since B is normalized to the form (1.2), S and B are defined from f uniquely. Now we conclude from (2.24) that E is
also determined uniquely by E = (Ψ12 − Ψ22 S)/(Ψ21 S − Ψ11). �
Corollary 2.11. Let P of the form (1.5) be the Pick matrix of the problem NPκ . If κ � ν(P ) + δ(P ), then NPκ has infinitely many
solutions.

Proof. Let us fix any B ∈ Bκ−ν(P ) such that Z(B) ∩ {z1, . . . , zn} = ∅ and let ΨB and AB be defined as in (2.25) and (2.26).
Then ∣∣ΨB,11(ζ )

∣∣ + ∣∣ΨB,12(ζ )
∣∣ > 0 and

∣∣A21(zi)
∣∣ + ∣∣A22(zi)

∣∣ > 0 (2.30)

for ζ ∈ Z(B) and i = 1, . . . ,d. Indeed, if ζ ∈ Z(B), then ζ /∈ {zd+1, . . . , zn}. Therefore Ψ (ζ ) is invertible (by virtue of Re-
mark 2.1), and the first relation in (2.30) follows. Assuming that A21(zi) = A22(zi) = 0, for some i ∈ {1, . . . ,d}, we get
from (2.26)[

Θ21(zi) Θ22(zi)B(zi)
]
ΨB(zi) = 0. (2.31)

Since ΨB(zi) is invertible and B(zi) 
= 0, we conclude from (2.31) that Θ21(zi) = Θ22(zi) = 0. This is a contradiction since
for Θ of the form (2.2), the entries Θ21 and Θ22 cannot have common zeros (see [5, Lemma 2.1] for the proof). This
contradiction completes the proof of the second relation in (2.30). One can easily conclude from inequalities (2.30) that
there are infinitely many functions E ∈ S subject to constraints (2.27) and (2.28). By Theorem 2.10, each such function leads
via linear fractional formula (2.29) to a solution f of the problem NPκ . �
3. Proof of Theorems 1.2 and 1.3

We first recall a result from [7, Theorem 3.4].

Theorem 3.1. Let f ∈ Bm
κ be the ratio of two finite Blaschke products. Then the Schwarz–Pick matrix Pn( f ; ζ1, . . . , ζn) constructed via

formula (1.3) has m positive and κ negative eigenvalues (counted with multiplicities) whenever n � m + κ and ζ1, . . . , ζr ∈ D ∩ρ( f ).

Corollary 3.2. If f ∈ Bm
κ , then the Schwarz–Pick matrix Pn( f ; ζ1, . . . , ζn) is saturated for every n � m + κ and any n points

ζ1, . . . , ζn ∈ D ∩ ρ( f ).

Proof. By Theorem 3.1, d := rank Pn( f ; ζ1, . . . , ζn) = m + κ . On the other hand, any d × d principal submatrix P̂ of
Pn( f ; ζ1, . . . , ζn) is itself a Schwarz–Pick matrix for f based on certain d points from {ζ1, . . . , ζn}. Then again by Theo-
rem 3.1, rank P̂ = d and thus, P̂ is invertible. �
Proof of Theorem 1.2. Let P be the Pick matrix of the problem NPκ . If κ � ν(P ) + δ(P ), then NPκ has infinitely many solu-
tions, by Corollary 2.11. If ν(P ) < κ < ν(P ) + δ(P ) or if κ < ν(P ), then the problem NPκ has no solutions (by Corollary 2.6
and by (1.6)). The last case not covered yet is where κ = ν(P ) < ν(P ) + δ(P ) (i.e., κ = ν(P ) and P is singular). In this case,
the problem NPκ has at most one solution (by Corollary 2.7) and the function f 0 defined in (2.19) is the unique candidate.
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Since all the cases listed above are disjoint, in order to complete the proof of Theorem 1.2, it suffices to show that f 0 is a
solution to the problem NPκ if and only if P is saturated.

The “only if” part: if f 0 solves NPκ , then Pn( f 0; z1, . . . , zn) = P and since f0 ∈ Bπ(P )
ν(P )

(by Remark 2.9), P is saturated by
Corollary 3.2.

The “if” part: Let us assume that P is singular and that f 0 does not solve NPκ . Then some of conditions (2.20) fail. After
rearrangements (if necessary) we may assume that only the � � 1 first conditions in (2.20) fail, i.e.,

Θ21(zi) − Θ22(zi)γ
∗ = 0 for i = 1, . . . , �.

By Theorem 2.3 (part (3)), the numerator in (2.19) must vanish at the same points

Θ11(zi) − Θ12(zi)γ
∗ = 0 for i = 1, . . . , �,

and after zero cancellations in (2.19), it turns out that f 0 ∈ Bπ(P )−�
ν(P )−�

. By Remark 2.8, f 0 still satisfies interpolation conditions

f 0(zi) = f i for i = �+1, . . . ,n. Therefore, the matrix P̃n−� := Pn−�( f 0; z�+1, . . . , zn) is an (n−�)×(n−�) principal submatrix
of P . By Theorem 3.1,

rank P̃n−� = (
π(P ) − �

) + ν(P ) − � = rank P − 2�. (3.1)

Now we will show that P is not saturated separately for two cases.

Case 1. If n − � � d := rank P , then by Theorem 3.1, every d × d principal submatrix of P̃n−� has the same rank as P̃n−�

(that is, d − 2�) and therefore, is singular. These submatrices are also principal submatrices of P , and therefore, P is not
saturated.

Case 2. If n − � < d := rank P , then P̃n−� is a principal submatrix of P ′ = [ 1− f i f ∗
j

1−zi z̄ j

]n
i, j=n−d+1, the d × d bottom principal

submatrix of P . Since the dimension of P ′ is greater than the dimension of P̃n−� by d − n + �, we have

rank P ′ � rank P̃n−� + 2(d − n + �).

Now we substitute (3.1) into the last inequality to get

rank P ′ � d − 2� + 2(d − n + �) = 3d − 2n < d.

Thus, P ′ is singular and therefore, P is not saturated. This completes the proof of Theorem 1.2. �
Proof of Theorem 1.3. The “only if” direction is trivial. To prove the “if” part, let P̃ be a (d + 1) × (d + 1) saturated principal
submatrix of P with rank P̃ = rank P = d. Without loss of generality we can assume that P̃ = Pd+1, the leading submatrix
of P . Since Pd+1 is the Pick matrix of the subproblem of NPκ with interpolation conditions f (zi) = f i (i = 1, . . . ,d + 1), it
follows by Theorem 1.2, that this subproblem admits a unique solution f 0 in the class Sκ−ν(P ) and this solution is given
by formula (2.21). By Remark 2.8, f 0 also satisfies conditions (2.9) and therefore it is a (unique) solution of the “whole”
problem NPκ with κ = ν(P ). Therefore P is saturated by Theorem 1.2 (part (2)). �
4. Extremal functions

In this section we prove Theorem 1.5. Although the statements from the next proposition are known (see [1]), we include
a short proof.

Proposition 4.1. Let λ0 � λ1 � · · · � λm > 0 be all positive solutions of the equation det P (λ) = 0, where P (λ) is defined in (1.8). Let
the set S be defined as in (1.7) and let λ̃ ∈ R+ \ {λ0, λ1, . . . , λm}. Then:

(1) If λ̃ > λk, then there exists g ∈ S ∩ (H∞
k \ H∞

k−1) with ‖g‖∞ � λ̃.

(2) If λ̃ < λk, then ‖h‖∞ > λ̃ for every h ∈ S ∩ H∞
k .

Proof. The scaled matrix λ̃−2 · P (̃λ) is the Pick matrix of the Nevanlinna–Pick problem with interpolation conditions

f (zi) = λ̃−1 f i for i = 1, . . . ,n, (4.1)

and this matrix is invertible, since λ̃ is not equal to any of λi ’s. If λ̃ > λk , then ν(P (̃λ)) � k and then by Theorem 2.2, there is
a function f ∈ Sk satisfying conditions (4.1). Then the function g = λ̃ f satisfies conditions in (1.7) and belongs to H∞

k \ H∞
k−1

with ‖g‖∞ � λ̃. This proves part (1). Now let λ̃ < λk so that
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ν
(

P (̃λ)
)
� k + 1. (4.2)

Assuming that there exists a h ∈ S ∩ H∞
k with ‖h‖∞ � λ̃, we conclude that the function f = λ̃−1h satisfies conditions (4.1)

and belongs Sκ for some κ � k. But then the Pick matrix λ̃−2 · P (̃λ) of the problem (4.1) has at most κ negative eigenvalues.
This contradicts to (4.2) and completes the proof. Note that for k � m,

λk � inf
g∈S∩H∞

k

‖g‖∞ � inf
g∈S∩(H∞

k \H∞
k−1)

‖g‖∞ � λk, (4.3)

where the second inequality is obvious while the first and the third follow by parts (2) and (1) respectively. Equalities (1.9)
(for k � m) follow from (4.3). The case where k > m can be handled similarly. �
Proof of Theorem 1.5. We seek a function g ∈ S ∩ H∞

k such that ‖g‖∞ = λk or equivalently, such that ‖g‖∞ � λk—this
equivalence follows by Proposition 4.1 (part (2)) according to which ‖g‖∞ � λk for every g ∈ S ∩ H∞

k . It is convenient to
seek g in the form g = λk f where

f ∈ H∞
k ∩ B L∞ and f (zi) = λ−1

k f i for i = 1, . . . ,n. (4.4)

Thus, the extremal function gk,min with ‖gk,min‖∞ = λk exists if and only if the Nevanlinna–Pick problem (4.4) has a solution
in Sκ for some κ � k. The extremal function belongs to S ∩ H∞

k \ H∞
k−1 if and only if the problem (4.4) has a solution in Sk .

The Pick matrix of this problem equals λ−2
k · P (λk) and is singular by the definition of λi ’s. We will consider separately two

cases.

Case 1. Let λ0 = · · · = λk . Then ν(P (λk)) = 0 and δ(P (λk)) � k + 1. By Theorem 1.3, the problem (4.4) has a unique solution
f ∈ S0 and does not have solutions in Sκ for κ = 1, . . . ,k. Thus, the problem has a solution in Sk if and only if k = 0.

Case 2. Let λ�−1 > λ� = · · · = λk . Then P (λk) = P (λ�) ,

ν
(

P (λk)
) = � and δ

(
P (λk)

)
� k − � + 1.

By Theorem 1.3, the problem (4.4) has a (unique) solution in S� if and only if the matrix P (λk) is saturated and it does not
have solutions in Sκ for κ = � + 1, . . . ,k. Thus, the problem has a solution in Sk if and only if k = � in which case we have
λk−1 > λk .

For both cases, the unique solution of the problem (4.4) (again by Theorem 1.3) is of the form f = s/b where s ∈ Bπ(P (λk ))

and b ∈ Bν(P (λk ))
. Now it follows from representation g = λk f that the extremal function gk,min (if exists) is of the form

gk,min = λk · s

b
, where s ∈ Bπ(P (λk))

and b ∈ Bν(P (λk ))
. �

Remark 4.2. A realization formula for gk,min in terms of interpolation data can be obtained as follows. For a given k, let us

rearrange the interpolation nodes so that the d × d leading submatrix P (λk)

d = [ λ2
k − f i f ∗

j

1−zi z∗
j

]d
i, j=1 of P (λk) satisfies

rank P (λk)

d = rank P (λk) = d < n and ν
(

P (λk)

d

) = ν
(

P (λk)
)
.

Let Td , Ed and Cd be the same as in (2.3). Applying formula (2.21) to the degenerate Nevanlinna–Pick problem (4.4), we
arrive at

gk,min(z) = λk fk,min = λ2
k · 1 − (1 − zz̄ j)E∗

d D(z)−1(λ2
k Ed − Cd f ∗

j )

f ∗
j − (1 − zz̄ j)C∗

d D(z)−1(λ2
k Ed − Cd f ∗

j )
,

where D(z) = (I − z̄ j Td)P (λk)

d (I − zT ∗
d ).
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