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Abstract

A higher order analogue of the classical Carathéodory–Julia theorem on boundary derivatives is proved.
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1. Introduction

We denote by S the Schur class of analytic functions mapping the open unit disk D into its
closure. We will write z→̂ t0 if a point z approaches a boundary point t0 ∈ T nontangentially
and we will write z → t0 if z approaches t0 unrestrictedly in D. We start with the classical
Carathéodory–Julia theorem ([4,5] and also [9, Chapter 4] and [8, Chapter 6]).

Theorem 1.1. For w ∈ S and t0 ∈ T, the following are equivalent:

(1) d1 := lim infz→t0
1−|w(z)|2

1−|z|2 < ∞.

(2) d2 := limz→̂ t0
1−|w(z)|2

1−|z|2 < ∞.
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(3) The limits

w0 := lim
z→̂ t0

w(z) and d3 := lim
z→̂ t0

1 − w(z)w̄0

1 − zt̄0

exist and satisfy |w0| = 1 and d3 � 0.
(4) The limits w0 := limz→̂ t0 w(z) and w1 := limz→̂ t0 w′(z) exist and satisfy |w0| = 1 and

t0w1w̄0 � 0.

Moreover, when these conditions hold, d1 = d2 = d3 = t0w1w̄0.

We refer to [7–9] for more details concerning the Carathéodory–Julia theorem.
The purpose of this paper is to establish a higher order analogue of the Carathéodory–Julia

theorem. First we introduce some needed notation.
A well-known property of Schur functions w is that the matrix

Pw
n (z) :=

[
1

i!j !
∂i+j

∂zi∂z̄j

1 − |w(z)|2
1 − |z|2

]n

i,j=0
(1.1)

which will be referred to as to a Schwarz–Pick matrix, is positive semidefinite for every n � 0
and z ∈ D.

We extend this notion to boundary points as follows: given a point t0 ∈ T, the boundary
Schwarz–Pick matrix is

Pw
n (t0) = lim

z→̂ t0
Pw

n (z) (n � 0), (1.2)

provided the limit in (1.2) exists. It is clear that once the boundary Schwarz–Pick matrix Pw
n (t0)

exists for w ∈ S , it is positive semidefinite.
Now let us assume that w ∈ S has nontangential boundary limits

wj(t0) := lim
z→̂ t0

w(j)(z)

j ! for j = 0, . . . ,2n + 1 (1.3)

and let

P
w
n (t0) :=

⎡⎣ w1(t0) · · · wn+1(t0)
...

...

wn+1(t0) · · · w2n+1(t0)

⎤⎦Ψ n(t0)

⎡⎣w0(t0) . . . wn(t0)
. . .

...

0 w0(t0)

⎤⎦ , (1.4)

where the first factor is a Hankel matrix, the third factor is an upper triangular Toeplitz matrix
and where Ψ n(t0) = [Ψj�]nj,�=0 is the upper triangular matrix with entries

Ψj� =
⎧⎨⎩

0, if j > �,

(−1)�
(

�

j

)
t
�+j+1
0 , if j � �.

(1.5)

Note that the matrix (1.4) appeared first in [6] in the context of boundary interpolation for Schur
class functions.
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We denote the lower right corner in the Schwarz–Pick matrix Pw
n (z) by

dw,n(z) := 1

(n!)2

∂2n

∂zn∂z̄n

1 − |w(z)|2
1 − |z|2 (1.6)

and formulate a higher order analogue of Theorem 1.1.

Theorem 1.2. For w ∈ S , t0 ∈ T and n ∈ Z+, the following are equivalent:

(1) lim inf
z→t0

dw,n(z) < ∞. (1.7)

(2) lim
z→̂ t0

dw,n(z) < ∞. (1.8)

(3) The boundary Schwarz–Pick matrix Pw
n (t0) exists.

(4) The nontangential boundary limits (1.3) exist and satisfy∣∣w0(t0)
∣∣ = 1 and P

w
n (t0) � 0, (1.9)

where P
w
n (t0) is the matrix defined in (1.4).

Moreover, when these conditions hold, the limits in (1.7) and (1.8) are equal and furthermore,

Pw
n (t0) = P

w
n (t0). (1.10)

Note that equality (1.10) was established in [6] under assumptions of the nature different from
the one of Carathédory–Julia. Equality (1.10) enables one to compute boundary Schwarz–Pick
matrices in terms of boundary values of w and of its derivatives, which in some cases (e.g., if w

is rational) is much easier to do than to use the original definition (1.2) of Pw
n (t0). On the other

hand, (1.9) imposes certain restriction on the boundary limits (1.3).
When n = 0, Theorem 1.2 reduces to Theorem 1.1 with statement (3) excluded. A higher order

analogue of this statement has been studied in [2, Section 9] and will be recalled in Section 5.
The paper is organized as follows. In Section 2 we discuss the de Branges–Rovnyak spaces

of analytic functions and their reproducing kernels. Section 3 deals with boundary analogues of
these reproducing kernels that (as it will be shown) make sense only if condition (1.7) is satisfied.
The proof of Theorem 1.2 is presented in Section 4. Some further results related to Theorem 1.2
are briefly reviewed in Section 5.

2. De Branges–Rovnyak spaces and their reproducing kernels

In this section we recall definitions of Hilbert spaces Lw and Hw associated to a Schur
function w and discuss their properties that we will need in what follows. We use the stan-
dard notation L2 for the Lebesgue space of square integrable functions on the unit circle T;
the symbols H+

2 and H−
2 stand for the Hardy spaces of functions with vanishing negative (re-

spectively, nonnegative) Fourier coefficients. The elements in H+
2 and H−

2 will be identified
with their unique analytic (respectively, conjugate-analytic) continuations inside the unit disk
and consequently H+ and H− will be identified with the Hardy spaces of the unit disk.
2 2
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Let w be a Schur function and let

W(t) :=
[

1 w(t)

w(t)∗ 1

]
.

The space Lw is the range space W 1/2(L2 ⊕L2) endowed with the range norm. In more detail: for
every element f in Lw , there exists a unique gf ∈ L2 ⊕ L2 which is orthogonal to KerW(t) for
almost all t ∈ T and such that f = W 1/2gf . This unique gf will be denoted by gf := W [−1/2]f
and the Lw-norm is defined by

‖f ‖2
Lw := ‖g

f
‖2
L2⊕L2

=
∫
T

∥∥∥∥[ 1 w(t)

w(t)∗ 1

][−1/2]
f (t)

∥∥∥∥2

C2
m(dt),

where m(dt) stands for the normalized arc length Lebesgue measure on T. Since

RanW(t) = RanW(t)1/2

almost everywhere on T, then we have also

〈f,h〉Lw =
∫
T

〈[
1 w(t)

w(t)∗ 1

][−1]
f (t), h(t)

〉
C2

m(dt). (2.1)

Here the inverse means that we choose an arbitrary vector function g(t) satisfying f (t) =
W(t)g(t). This g does not necessarily have to be in L2(C

2). However, the integrand in (2.1)
does not depend on the choice of such g(t) if h ∈ Lw and the integral is finite.

Definition 2.1. A function f = [ f+
f−

]
is said to belong to the de Branges–Rovnyak space Hw if

it belongs to Lw and if f+ ∈ H+
2 and f− ∈ H−

2 .

The space Hw is a closed subspace of Lw; in what follows, PHw denotes the orthogonal
projection of Lw onto Hw .

Recall that H+
2 and H−

2 are reproducing kernel Hilbert spaces with reproducing kernels

kz(t) = 1

1 − t z̄
and k̃z(t) = 1

t − z
(2.2)

in the sense that

〈f+, kz〉L2 = f+(z) and 〈f−, k̃z〉L2 = f−(z)/z̄ (2.3)

for every f+ ∈ H+
2 , f− ∈ H−

2 , and z ∈ D. More generally, the kernels

kj,z(t) := 1

j !
∂j

∂z̄j
kz(t) = tj

(1 − t z̄)j+1
, (2.4)

k̃j,z(t) := 1 ∂j

j
k̃z(t) = 1

j+1
(2.5)
j ! ∂z (t − z)
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serve to evaluate derivatives:

〈f+, kj,z〉L2 = 1

j !f
(j)
+ (z), 〈f−, k̃j,z〉L2 = 1

j !
(

f−(z)

z̄

)(j)

. (2.6)

Now we introduce the vector-valued functions

Kz(t) =
[

Kz,+(t)

Kz,−(t)

]
=

[
1 w(t)

w(t)∗ 1

][
1

−w(z)∗
]

· kz(t), (2.7)

K̃z(t) =
[

K̃z,+(t)

K̃z,−(t)

]
=

[
1 w(t)

w(t)∗ 1

][−w(z)

1

]
· k̃z(t), (2.8)

defined for z ∈ D and t ∈ T and more generally, the vector-valued functions

K
(j)
z (t) := 1

j !
∂j

∂z̄j
Kz(t) and K̃

(j)
z (t) := 1

j !
∂j

∂zj
K̃z(t) (2.9)

for j ∈ Z+. For j = 0 they coincide with (2.7) and (2.8). Upon differentiating (2.7) and (2.8)
with respect to z̄ and z, respectively, and making use of (2.4) and (2.5) we come to the following
explicit formulas for K

(j)
z and K̃

(j)
z :

K
(j)
z (t) =

[
1 w(t)

w(t)∗ 1

][
kj,z(t)

−∑j

�=0 wj−�(z)
∗k�,z(t)

]
, (2.10)

K̃
(j)
z (t) =

[
1 w(t)

w(t)∗ 1

][−∑j

�=0 wj−�(z)k̃�,z(t)

k̃j,z(t)

]
, (2.11)

where w�(z) are the Taylor coefficients from the expansion

w(ζ ) =
∞∑

�=0

w�(z)(ζ − z)�, w�(z) = w(�)(z)

�! . (2.12)

Formulas (2.10) and (2.11) define K
(j)
z (t) and K̃

(j)
z (t) on the unit circle. The analytic (conjugate-

analytic) continuations of their components to the unit disk are given as follows:

K
(j)
z,+(ζ ) = kj,z(ζ ) − w(ζ )

j∑
�=0

wj−�(z)
∗k�,zi

(ζ ), (2.13)

K
(j)
z,−(ζ ) = ζ̄

(
w(ζ )∗k̃j,z(ζ )∗ −

j∑
�=0

wj−�(z)
∗k̃�,z(ζ )∗

)
, (2.14)

K̃
(j)
z,+(ζ ) = w(ζ )k̃j,z(ζ ) −

j∑
wj−�(z)k̃�,z(ζ ), (2.15)
�=0
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K̃
(j)
z,−(ζ ) = ζ̄

(
kj,z(ζ )∗ − w(ζ )∗

j∑
�=0

wj−�(z)k�,z(ζ )∗
)

. (2.16)

Lemma 2.2. For every j ∈ Z+ and z ∈ D, the functions K
(j)
z and K̃

(j)
z belong to Hw . Further-

more, for every f = [ f+
f−

] ∈ Hw , we have

〈
f, K

(j)
z

〉
Hw = 1

j !
dj

dzj
f+(z),

〈
f, K̃

(j)
z

〉
Hw = 1

j !
dj

dz̄j

(
f−(z)

z̄

)
. (2.17)

Proof. First we note that by formulas (2.10) and (2.11), the functions[
1 w(t)

w(t)∗ 1

][−1/2]
K

(j)
z (t) and

[
1 w(t)

w(t)∗ 1

][−1/2]
K̃

(j)
z (t)

are bounded a.e. on T for every fixed z ∈ D and, therefore, K
(j)
z and K̃

(j)
z belong to Lw . Further-

more, since w ∈ H∞, k�,z ∈ H 2+ and k̃�,z ∈ H 2−, it is readily seen from the formulas (2.13) and

(2.16) that K
(j)
z,+ ∈ H+

2 and that K̃
(j)
z,− ∈ H−

2 . Upon substituting the Taylor expansion (2.12) for w

into (2.15) we arrive at

K̃
(j)
z,+(ζ ) =

∞∑
�=j+1

w�(z)(ζ − z)�−j−1 (2.18)

which implies that K̃
(j)
z,+ ∈ H+

2 . By a similar argument, it follows from (2.14) that K
(j)
z,− ∈ H−

2 .

Thus, the top components of K
(j)
z and K̃

(j)
z belong to H+

2 , the bottom components are elements

of H−
2 and therefore, K

(j)
z and K̃

(j)
z belong to Hw . Furthermore, by the formula (2.7) for Kz and

(2.1) for the inner product in Lw ,

〈f, Kz〉Hw =
〈[

f+
f−

]
,

[
1

−w(z)∗
]
kz

〉
L2⊕L2

= 〈f+, kz〉L2 + 〈
f−, w(z)∗kz

〉
L2 .

Since f− belongs to H−
2 , by Definition 2.1, and w(z)∗kz belongs to H−

2 , the second term on the
right-hand side equals zero, while the first term equals f+(z), by (2.3). Thus,

〈f, Kz〉Hw = f+(z) and 〈f, K̃z〉Hw = f−(z)

z̄
, (2.19)

where the second relation is verified in much the same way as the first one. Reproducing prop-
erties (2.17) follow from (2.19) upon differentiating the integrals with respect to parameters z

and z̄. �
Lemma 2.3. Let K

(j)
z and K̃

(j)
z be the functions defined in (2.9), and let z and ζ be two points

in D. Then

〈
K

(j)
ζ , K(i)

z

〉
Hw = 1

i!j !
∂i+j

∂zi∂ζ̄ j

(
1 − w(z)w(ζ )∗

1 − zζ̄

)
, (2.20)
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〈
K̃

(j)
ζ , K̃(i)

z

〉
Hw = 1

i!j !
∂i+j

∂z̄i∂ζ j

(
1 − w(z)∗w(ζ )

1 − z̄ζ

)
, (2.21)〈

K̃(i)
z , K

(j)
z

〉
Hw = wi+j+1(z). (2.22)

Proof. By the first formula in (2.19) and by definition (2.7),

〈Kζ , Kz〉Hw = Kζ,+(z) = 1 − w(z)w(ζ )∗

1 − zζ̄
.

On the other hand, by the first formula in (2.9),

〈
K

(j)
ζ , K

(j)
z

〉
Hw = 1

i!j !
∂i+j

∂zi∂ζ̄ j
〈Kζ , Kz〉Hw

and substituting the first of the two last formulas into the second gives (2.20). The proof of (2.21)
is quite similar. Making use of the formula (2.18) for K̃

(i)
z,+, we get, again by the first reproducing

property in (2.17), that

〈
K̃(i)

z , K
(j)
ζ

〉
Hw = 1

j !
∂j

∂zj
K̃

(i)
z,+(ζ ) = 1

j !
∂j

∂zj

( ∞∑
�=i+1

w�(z)(ζ − z)�−i−1

)

=
∞∑

�=i+j+1

(
� − i − 1

j

)
w�(z)(ζ − z)�−i−j−1,

which implies (2.22), since

lim
ζ→z

∞∑
�=i+j+1

(
� − i − 1

j

)
w�(z)(z − ζ )�−i−j−1 = wi+j+1(z). �

Remark 2.4. Upon setting � = j = n and ζ = z in formulas (2.20) and (2.21) in Lemma 2.3 we
get ∥∥K(n)

z

∥∥2
Hw = ∥∥K̃(n)

z

∥∥2
Hw = dw,n(z), (2.23)

where dw,n(z) is given by (1.6), and thus, condition (1.7) tells us that

lim inf
z→t0

∥∥K(n)
z

∥∥
Hw = lim inf

z→t0

∥∥K̃(n)
z

∥∥
Hw < ∞.

Remark 2.5. Formulas (2.20) allows us to rewrite the defining formula (1.1) for Pw
n (z) as

Pw
n (z) = [〈

K
(j)
z , K(i)

z

〉
Hw

]n
i,j=0 (2.24)

and thus, to realize the Schwarz–Pick matrix as the Gram matrix of the system of the functions
{K(j)

z }n .
j=0
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We conclude this section with three lemmas needed in the subsequent analysis. The first
lemma gives a convenient representation of kernels K

(j)
z and K̃

(j)
z as orthogonal projections

of certain simple elements in Lw onto Hw .

Lemma 2.6. Let w ∈ S , let z ∈ D, j ∈ Z+ and let K
(j)
z and K̃

(j)
z be the functions defined in (2.10)

and (2.11), respectively. Then

K
(j)
z = PHw

[
1 w

w∗ 1

][
kj,z

0

]
, K̃

(j)
z = PHw

[
1 w

w∗ 1

][
0

k̃j,z

]
, (2.25)

where PHw denotes the orthogonal projection of Lw onto Hw and where kj,z and k̃j,z are the
kernels defined in (2.4) and (2.5).

Proof. The function

g :=
[

1 w

w∗ 1

][
kj,z

0

]
obviously belongs to Lw . We use the formula (2.1) to compute the Lw inner product between g

and an arbitrary function f = [ f+
f−

] ∈ Hw:

〈f, g〉Lw =
〈[

f+
f−

]
,

[
kj,z

0

]〉
L2

= 〈f+, kj,z〉L2 = 1

j !f
(j)
+ (z).

Since f ∈ Hw, we have PHwf = f and hence,

〈f, PHwg〉Hw = 〈PHwf, g〉Lw = 〈f, g〉Lw = 1

j !f
(j)
+ (z).

The first reproducing property in (2.17) now gives 〈f, PHwg〉Hw = 〈f, K
(j)
z 〉Hw and since f is

arbitrary, the first equality in (2.25) follows. The proof of the second equality is quite similar. �
Lemma 2.7. If g1 ∈ L2 and g2 ∈ H+

2 , then

PHw

[
1 w

w∗ 1

][
g1
g2

]
= PHw

[
1 w

w∗ 1

][
g1
0

]
, (2.26)

which is straightforward from the definition of Hw and inner procuct Lw .

Lemma 2.8. Let w be a Schur function and let h be an element of the space Lw . Then for every
t0 ∈ T, z ∈ D and n � 0, the function

hz(t) =
(

1 − t t̄0

1 − t z̄

)n

h(t) (2.27)

belongs to Lw and limz→̂ t0 ‖hz − h‖Lw = 0.
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Proof. Since the space Lw is invariant under multiplication by a bounded scalar function, it
follows that hz belongs to Lw . Furthermore, by (2.1) and (2.27),

‖hz − h‖2
Lw =

∫
T

∥∥∥∥[ 1 w(t)

w(t)∗ 1

][−1/2]
h(t)

∥∥∥∥2

C2
·
∣∣∣∣(1 − t t̄0

1 − t z̄

)n

− 1

∣∣∣∣2m(dt).

Now the assertion follows by the Dominated Convergence theorem, since for every z in the
nontangential neighborhood

Γa(t0) = {
z ∈ D: |t0 − z| < a

(
1 − |z|)} (a > 1), (2.28)

of t0, and for every t ∈ T, we have∣∣∣∣1 − t t̄0

1 − t z̄

∣∣∣∣ =
∣∣∣∣1 + t

z̄ − t̄0

1 − t z̄

∣∣∣∣ � 1 +
∣∣∣∣z − t0

t − z

∣∣∣∣ < 1 + |t0 − z|
1 − |z| � 1 + a,

and therefore, ∣∣∣∣(1 − t t̄0

1 − t z̄

)n

− 1

∣∣∣∣ � (1 + a)n + 1. �
3. Boundary reproducing kernels

In this section we study boundary analogues K
(n)
t0

and K̃
(n)
t0

(here t0 ∈ T) of reproducing

kernels K
(n)
z and K̃

(n)
z , defined in (2.10) and (2.11). The central result is Theorem 3.1. As a

byproduct of this theorem we will get the proof of (1) ⇒ (2) in Theorem 1.2. We will need the
boundary analogues of the kernels (2.4) and (2.5):

kj,t0(ζ ) = zj

(1 − ζ t̄0)j+1
, k̃j,t0(ζ ) = 1

(ζ − t0)j+1
. (3.1)

Theorem 3.1. Let w ∈ S , t0 ∈ T, n ∈ Z+ and let lim infz→t0 dw,n(z) < ∞. Then

(1) The following nontangential boundary limits exist:

wj(t0) := lim
z→̂ t0

wj(z) for j = 0, . . . , n

(
wj(z) := w(j)(z)

j !
)

. (3.2)

(2) The functions

K
(n)
t0

(t) :=
[

1 w(t)

w(t)∗ 1

][
kn,t0(t)−∑n

�=0 wn−�(t0)
∗k�,t0(t)

]
, (3.3)

K̃
(n)
t0

(t) :=
[

1 w(t)

w(t)∗ 1

][−∑n
�=0 wn−�(t0)k̃�,t0(t)

k̃n,t0(t)

]
(3.4)

belong to the space Hw .
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(3) The kernels K
(n)
z and K̃

(n)
z defined in (2.10) and (2.11) converge respectively to K

(n)
t0

and

K̃
(n)
t0

in norm of Hw as z tends to t0 nontangentially:

K(n)
z

Hw−→ K
(n)
t0

and K̃(n)
z

Hw−→ K̃
(n)
t0

(z→̂ t0). (3.5)

(4) The following nontangential limit exists and

lim
z→̂ t0

dw,n(z) = ∥∥K
(n)
t0

∥∥2
Hw < ∞. (3.6)

Proof. By Remark 2.4, the assumption (1.7) guarantees that there exists a sequence {zi} of points
in D approaching t0 such that the sequences ‖K(n)

zi
‖Hw and ‖K̃(n)

zi
‖Hw are bounded. Since every

bounded set in a Hilbert space is weakly compact, there is a subsequence of {zi} (which still
will be denoted by {zi}), such that the sequences {K(n)

zi
} and {K̃(n)

zi
} weakly converge in Hw . Let

F, F̃ ∈ Hw stand for these weak limits:

F =
[

F+
F−

]
= w-lim

zi→t0
K(n)

zi
and F̃ =

[
F̃+
F̃−

]
= w-lim

zi→t0
K̃(n)

zi
. (3.7)

We will establish more explicit formulas for F and F̃ . We start with F . Since it belongs to Hw ,
we can use reproducing properties (2.19) to get

F+(ζ ) = 〈F, Kζ 〉Hw = lim
zi→t0

〈
K(n)

zi
, Kζ

〉
Hw = lim

zi→t0
K

(n)
zi ,+(ζ ), (3.8)

F−(ζ )

ζ̄
= 〈F, K̃ζ 〉Hw = lim

zi→t0

〈
K(n)

zi
, K̃ζ

〉
Hw = lim

zi→t0

K
(n)
zi ,−(ζ )

ζ̄
, (3.9)

|ζ | < 1, which can be written, on account of (2.13) and (2.14) as

F+(ζ ) = lim
zi→t0

(
kn,zi

(ζ ) − w(ζ )

n∑
�=0

wn−�(zi)
∗k�,zi

(ζ )

)
, (3.10)

F−(ζ )

ζ̄
= lim

zi→t0

(
w(ζ )∗k̃n,zi

(ζ )∗ −
n∑

�=0

wn−�(zi)
∗k̃�,zi

(ζ )∗
)

. (3.11)

It follows from (3.11) and the formula (2.5) for k̃�,z that

(ζ̄ − t̄0)
n+1 F−(ζ )

ζ̄
= w(ζ )∗ − lim

zi→t0

n∑
�=0

w�(zi)
∗(ζ̄ − z̄i )

� (3.12)

and thus, the limit on the right-hand side exists for every |ζ | < 1. Since the coefficients of a
polynomial of degree n are determined by its values at n + 1 points and depend on these values
continuously, the existence of the latter limit implies that the sequences {w�(zi)} converge for
� = 0, . . . , n. Letting

w� := lim w�(zi) (� = 0, . . . , n) (3.13)

zi→t0
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we can rewrite (3.10) and (3.11) as

F+(ζ ) = kn,t0(ζ ) − w(ζ )

n∑
�=0

w∗
n−�k�,t0(ζ ), (3.14)

F−(ζ ) = ζ̄

(
w(ζ )∗k̃n,t0(ζ )∗ −

n∑
�=0

w∗
n−�k̃�,t0(ζ )∗

)
. (3.15)

Since F ∈ Hw , we have F− ∈ H 2− and therefore, the function f (z) := F−(z)/z belongs to H 2+.
By a well-known property of H 2+ functions, limz→̂ t0(z − t0)f (z) = 0 which can be written, on
account of the formula (3.15) as

lim
z→̂ t0

(z − t0)

(
w(z)k̃n,t0(z) −

n∑
�=0

wn−�k̃�,t0(z)

)
= 0

and rewritten, by the definition (3.1) of k̃�,t0 as

w(z) =
n∑

�=0

(z − t0)
�w� + o

(
(z − t0)

n
)

(z→̂ t0).

The latter equality implies (see, e.g., [2, Corollary 7.9]) that the nontangential limits (3.2) exist
and are equal to the numbers w�’s introduced in (3.13).

Upon setting ζ = t ∈ T in (3.14) and (3.15) and taking into account that t̄ · k̃j,t0(t)
∗ = kj,t0(t)

for t ∈ T, we get the following expression for F :

F(t) =
[

F+(t)

F−(t)

]
=

[
1 w(t)

w(t)∗ 1

][
kn,t0(t)−∑n

�=0 w∗
n−�k�,t0(t)

]
. (3.16)

Since, as we have just seen, the numbers w0, . . . ,wn are equal respectively to the nontangential
boundary limits w0(t0), . . . ,wn(t0) from (3.2), the expression on the right-hand side of (3.16)
is identical with that in (3.3). Thus, F = K

(n)
t0

and the desired membership K
(n)
t0

∈ Hw follows,
since F belongs to Hw by construction (3.7).

Now we introduce the auxiliary function

hz(t) = K
(n)
t0

(t) ·
(

1 − t t̄0

1 − t z̄

)n+1

=
[

1 w(t)

w(t)∗ 1

][
g1(t)

g2(t)

]
,

where, as it is readily seen from (3.16),

g1(t) = kn,t0(t) ·
(

1 − t t̄0

1 − t z̄

)n+1

= tn

(1 − t z̄)n+1
= kn,z(t), (3.17)

g2(t) = −
n∑

w∗
n−�k�,t0(t)

(
1 − t t̄0

1 − t z̄

)n+1

= −
∑n

�=0 w∗
� t

n−�(1 − t t̄0)
�

(1 − t z̄)n+1
. (3.18)
�=0
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Setting h = K
(n)
t0

in Lemma 2.8 (which we can do since K
(n)
t0

∈ Hw), we conclude that hz
Lw−→

K
(n)
t0

as z tends to t0 nontangentially. Therefore,

PHwhz
Hw−→ PHwK

(n)
t0

= K
(n)
t0

(z→̂ t0). (3.19)

On the other hand, since g2 ∈ H 2+ (which is clearly seen from (3.18)), we have by Lemma 2.7

PHwhz = PHw

[
1 w

w∗ 1

][
g1
g2

]
= PHw

[
1 w

w∗ 1

][
g1
0

]
. (3.20)

Upon taking into account the special form (3.17) of g1 and invoking the first formula in (2.25) we

conclude from (3.20) that PHwhz = K
(n)
z . Then (3.19) turns into K

(n)
z

Hw−→ K
(n)
t0

which proves
the first convergence in (3.5). Repeating the same arguments for F̃ in (3.7) shows that F̃ is equal
to the kernel K̃

(n)
t0

given by (3.4) and that the kernels K̃
(n)
z converge to K̃

(n)
t0

in norm of Hw

as z approaches t0 nontangentially. This completes the proof of the three first statements in the
theorem. Finally, by (3.5) and (2.23),

lim
z→̂ t0

dw,n(z) = lim
z,ζ→t0

∥∥K(n)
z

∥∥2
Hw = ∥∥ lim

z→t0
K(n)

z

∥∥2
Hw = ∥∥K

(n)
t0

∥∥2
Hw < ∞

which proves (3.6). �
Remark 3.2. The limits in (1.7) and (1.8) are equal.

Proof. Inequality

lim inf
z→t0

dw,n(z) � lim
z→̂ t0

dw,n(z)

is obvious since the first limit allows z to approach t0 unrestrictedly in D, while the second limit
is nontangential. To prove the reverse inequality, assume that {zj } is a sequence that leads to the
limit inferior in (1.7), so that the sequence of numbers

∥∥K(n)
zj

∥∥2
Hw = dw,n(zj )

converges to the limit inferior. In particular, the sequence is bounded. Then there exists a sub-
sequence of the sequence {zj } (that is still denoted by {zj }) such that K

(n)
zj

converges to K
(n)
t0

weakly in Hw . Then

∥∥K
(n)
t0

∥∥2
Hw � lim

zj →t0

∥∥K(n)
zj

∥∥2
Hw = lim inf

z→t0
dw,n(z).

Since the limit in (1.8) equals ‖K(n)
t0

‖2
Hw by (3.6), then, by the latter inequality, it does not exceed

lim infz→t0 dw,n(z), which completes the proof. �
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Remark 3.3. Formulas (3.3) and (3.4) for the boundary kernels K
(n)
t0

and K̃
(n)
t0

can be viewed as
the result of replacing z by t0 and w0(z), . . . ,wn(z) by w0(t0), . . . ,wn(t0) in formulas (2.10) and
(2.11) for the corresponding interior kernels. The proof of Theorem 3.1 shows that the space Hw

contains any boundary analogues of the kernels K
(n)
z and K̃

(n)
z for the point t0 ∈ T at all if and

only if condition (1.7) holds true. If it does not, the functions K
(n)
t0

and K̃
(n)
t0

defined in (3.3) and
(3.4) do not belong to Hw no matter the boundary limits w0(t0), . . . ,wn(t0) are used in these
formulas or any other numbers.

If the condition (1.7) holds, we can use formulas (3.3) and (3.4) to define the boundary kernels
K

(j)
t0

and K̃
(j)
t0

for j = 0, . . . , n. The next result is a useful addition to Theorem 3.1.

Theorem 3.4. Let w ∈ S , t0 ∈ T, n ∈ Z+ and let us assume that condition (1.7) holds. Then
the kernels K

(j)
t0

and K̃
(j)
t0

defined via formulas (3.3) and (3.4) belong to the space Hw for
j = 0, . . . , n and

K
(j)
z

Hw−→ K
(j)
t0

, K̃
(j)
z

Hw−→ K̃
(j)
t0

as z→̂ t0, (3.21)

where the kernels K
(j)
z and K̃

(j)
z are defined in (2.10) and (2.11).

Proof. We will prove the part concerning the kernels K
(j)
t0

. Using the following recursive relation

K
(j−1)
t0

(t) = 1

t

(
(1 − t t̄0)K

(j)
t0

(t) +
[

1 w(t)

w(t)∗ 1

][
0

wj(t0)
∗
])

, (3.22)

verification of which is straightforward, we can show that

K
(j)
t0

∈ Hw ⇒ K
(j−1)
t0

∈ Hw. (3.23)

Indeed, if K
(j)
t0

∈ Hw , then in particular, K
(j)
t0

∈ Lw and it follows from (3.22) that K
(j−1)
t0

∈ Lw .

Furthermore, by (3.22), K
(j−1)
t0,+ (ζ ) = f+(ζ )/ζ , where

f+(ζ ) := (1 − ζ t̄0)K
(j)
t0,+(ζ ) + w(ζ )wj (t0)

∗.

The function f+ belongs to H+
2 , since K

(j)
t0,+ ∈ H+

2 . Since

f+(0) = K
(j)
t0,+(0) + w(0)wj (t0)

∗ = −w(0)wj (t0)
∗ + w(0)wj (t0)

∗ = 0,

then K
(j−1)
t0,+ (ζ ) = f+(ζ )/ζ ∈ H+

2 as well. Comparing the bottom components in (3.22) we get

K
(j−1)
t0,− (ζ ) = (ζ̄ − t̄0)K

(j)
t0,−(ζ ) + ζ̄wj (t0)

∗

and thus, the assumption K
(j)
t0,− ∈ H−

2 implies that K
(j−1)
t0,− ∈ H−

2 . Therefore, K(j−1)
t0

∈ Hw which

completes the proof of (3.23). Since by Theorem 3.1 K
(n)
t0

∈ Hw , the inverse induction arguments

show that K
(j)
t ∈ Hw for every j = 0, . . . , n. Then it follows by a virtue of Theorem 3.1 that the

0
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first series of convergences in (3.21) holds true. The part concerning the kernels K̃
(j)
t0

is proved
in much the same way. �

The next remark explains the role of K
(n)
t0

and K̃
(n)
t0

as boundary reproducing kernels: they
reproduce boundary limits of the derivatives of the components of Hw functions. In the case
when n = 0 the result can be found in [7,8] in a slightly different form.

Remark 3.5. Let w ∈ S and let us assume that condition (1.7) holds. Then for every function
f = [ f+

f−
] ∈ Hw , the following nontangential limits exist and are reproduced by the kernels K

(j)
t0

and K̃
(j)
t0

:

lim
z→̂ t0

1

j !
dj

dzj
f+(z) = 〈

f,K
(j)
t0

〉
Hw, lim

z→̂ t0

1

j !
dj

dz̄j

(
f−(z)

z̄

)
= 〈

f, K̃
(j)
t0

〉
Hw

for j = 0, . . . , n.

For the proof, it suffices to use reproducing properties (2.17) of K
(n)
z and K̃

(n)
z and to take

advantage of (3.21).
In conclusion we will show that under assumption (1.7), the boundary kernels K

(j)
t0

and K̃
(j)
t0

satisfy certain linear relations.

Theorem 3.6. Let w ∈ S and let us assume that condition (1.7) holds. Then

(1) The nontangential boundary limits

wj = wj(t0) := lim
z→̂ t0

wj(z) (j = 0, . . . , n) (3.24)

(that exist by Theorem 3.1) are subject to the matrix equality

⎡⎢⎢⎢⎣
w0 w1 . . . wn

0 w0
. . .

...
...

. . .
. . . w1

0 . . . 0 w0

⎤⎥⎥⎥⎦Ψ n(t0)

⎡⎢⎢⎢⎢⎣
w∗

0 w∗
1 . . . w∗

n

0 w∗
0

. . .
...

...
. . .

. . . w∗
1

0 . . . 0 w∗
0

⎤⎥⎥⎥⎥⎦ = Ψ n(t0), (3.25)

where Ψ n(t0) is the upper triangular matrix with the entries Ψj� defined in (1.5). In partic-
ular, |w0| = 1.

(2) The kernels K
(j)
t0

and K̃
(j)
t0

defined via formulas (3.3) and (3.4) for j = 0, . . . , n, satisfy
relations

j∑
K̃

(i)
t0

gi,j = K
(j)
t0

(j = 0, . . . , n), (3.26)

i=0
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where gi,j are the numbers given by

gi,j :=
j−i∑
�=0

Ψi,j−�w
∗
� for 0 � i � j � n. (3.27)

Proof. First we note that the kernels (3.1) satisfy relations

kj,t0(ζ ) = −
j∑

i=0

Ψij k̃i,t0(ζ ) (j ∈ Z+, ζ �= t0). (3.28)

Verification is straightforward and rests on definitions (3.1) and (1.5) (see [2, Proposition 10.4]
for detail). Using these relations we have

j∑
�=0

w∗
j−�k�,t0(ζ ) = −

j∑
�=0

w∗
j−�

�∑
i=0

Ψi,�k̃i,t0(ζ ) = −
j∑

i=0

(
j∑

�=i

Ψi,�w
∗
j−�

)
k̃i,t0(ζ )

= −
j∑

i=0

(
j−i∑
�=0

Ψi,j−�w
∗
�

)
k̃i,t0(ζ ) = −

j∑
i=0

gij k̃i,t0(ζ ), (3.29)

where the first equality is obtained upon replacing the kernels k�,t0 by the corresponding expres-
sions from (3.28), the second equality is the result of changing the order of summation, the third
equality is just the substitution � := j −� and the last equality holds by definition (3.27). Now we
plug in (3.28) and (3.29) into (3.3) to express the kernel K

(j)
t0

in terms of k̃i,t0 ’s rather than ki,t0 ’s:

K
(j)
t0

(t) =
[

K
(j)
t0,+(t)

K
(j)
t0,−(t)

]
=

[
1 w(t)

w(t)∗ 1

] j∑
i=0

[−Ψij

gij

]
k̃i,t0(t). (3.30)

By Theorem 3.1, the kernels K
(j)
t0

belong to Hw for j = 0, . . . , n; in particular, their top and
bottom components belong to H 2+ and to H 2−, respectively. In virtue of the arguments following

formula (3.15), the membership K
(j)
t0,− ∈ H 2− implies the asymptotic relation

w(z) =
j∑

�=0

(z − t0)
�w� + o

(
(z − t0)

j
)

as z→̂ t0. (3.31)

On the other hand, since K
(j)
t0,+ belongs to H 2+, we have

(z − t0)K
(j)
t0,+(z) → 0 as z→̂ t0. (3.32)

Making use of the formula (3.30) for K
(j)
t0,+ and the definition (3.1) of k̃i,t0 we conclude

from (3.32) that
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(z − t0)
j+1K

(j)
t0,+(z) = w(z) ·

j∑
i=0

gij (z − t0)
j−i −

j∑
i=0

Ψi,j (z − t0)
j−i

= o
(
(z − t0)

j
)

(z→̂ t0).

Substituting (3.31) into the latter asymptotic equality and using r and i instead of j − i lead us
to (

j∑
�=0

(z − t0)
�w�

)
·
(

j∑
r=0

gj−r,j (z − t0)
r

)
−

j∑
i=0

Ψj−i,j (z − t0)
i = o

(
(z − t0)

j
)
.

The expression on the left-hand side is a polynomial p(z) = ∑2j

i=0 pi(z − t0)
i and the above

condition implies that pi = 0 for i = 0, . . . , j . Thus,

pi =
i∑

�=0

w�gj−i+�,j − Ψj−i,j = 0 for i = 0, . . . , j,

which on account of (3.27), can be written equivalently as (using again j − i instead of i)

Ψi,j =
j−i∑
�=0

w�gi+�,j =
i∑

�=0

w�

j−i−�∑
r=0

Ψi+�,j−rw
∗
r (i = 0, . . . , j). (3.33)

The latter relations express equality of the ij th entries in the matrix identity (3.25) for 0 � i �
j � n. Due to the upper triangular structure, all the remaining entries on the left-hand side and
on the right-hand side of (3.25) are zeros; thus, equality (3.25) follows. Equality for the top
diagonal entries in (3.25) reads: w0Ψ00w

∗
0 = Ψ00 which is equivalent (since Ψ00 = t0 �= 0) to

|w0| = 1. This completes the proof of statement (1) of the theorem.
To verify (3.26), we will use the formulas (3.30) and (3.4) for the boundary kernels K

(j)
t0

and

K̃
(j)
t0

. Due to the common left factor [
1 w

w∗ 1

]
in these formulas, it suffices to verify equalities

j∑
i=0

[−∑i
�=0 wi−�k̃�,t0(t)

k̃i,t0(t)

]
gi,j =

j∑
i=0

[−Ψij

gij

]
k̃i,t0(t) (3.34)

for j = 0, . . . , n. Equality of the bottom components is self-evident. The top components are also
equal since

j∑
gij

i∑
wi−�k̃�,t0(t) =

j∑(
j−�∑

wigi+�,j

)
k̃�,t0(t) =

j∑
Ψ�j k̃�,t0(t),
i=0 �=0 �=0 i=0 �=0
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where the first equality is obtained by changing the order of summation and substituting i :=
i − �, and the second equality is justified by (3.33). �
Remark 3.7. Note that equality of the rightmost columns in (3.25) already implies the “whole”
matrix identity (see [2, Theorem 10.5]). In other words, the matrix identity (3.25) is equivalent
to the system of the following equalities (compare with (3.33)):

i∑
�=0

w�

n−i−�∑
r=0

Ψi+�,n−rw
∗
r = Ψi,n (i = 0, . . . , n). (3.35)

Remark 3.8. It is curious that all the assertions in Theorem 3.6 follow from the assumption that

K
(n)
t0,+ ∈ H 2+ and K

(n)
t0,− ∈ H 2−. (3.36)

Indeed, the existence of the boundary limits (3.24) follows from the fact that K
(n)
t0,− ∈ H 2−.

Furthermore, as it was shown in the proof of Theorem 3.4, conditions (3.36) guarantee that
K

(j)
t0,+ ∈ H 2+ and K

(j)
t0,− ∈ H 2− for every j = 0, . . . , n. That is all we needed to get (3.25), which, in

turn, implies (3.26). Note that (3.36) is weaker than (1.7), since (1.7) is equivalent to K
(n)
t0

∈ Hw ,

which in turn is equivalent to K
(n)
t0

∈ Lw . The latter yields (3.36) but does not follow from (3.36).

We also remark that relations (3.26) and (3.27) in Theorem 3.6 are of triangular form and can
be rewritten in matrix notation as follows.

Remark 3.9. Let Ψ n(t0) be defined as in (1.5) and let Wn and Gn be the upper triangular matrices
with the entries

Wij =
{

w∗
j−i , if j � i,

0, if j < i,
Gij =

{
gij , if j � i,

0, if j < i,
(i, j = 0, . . . , n), (3.37)

where the numbers w0, . . . ,wn and gij are defined in (3.24) and (3.27) (note that Wn appears
in (3.25) as the rightmost factor in the left-hand side expression). Then relations (3.26) in (3.27)
can be written in the matrix form as

[
K̃

(0)
t0

. . . K̃
(n)
t0

]
Gn = [

K
(0)
t0

. . . K
(n)
t0

]
and Gn = Ψ n(t0)Wn, (3.38)

respectively.

4. Proof of Theorem 1.2

In this section we complete the proof of Theorem 1.2. Recall that equivalence (1) ⇔ (2) and
equality of the limits in (1.7) and (1.8) has been already proved in Theorem 3.1 and Remark 3.2.
Now we will use the results obtained in Section 3 to prove (1) ⇒ (3), (1) ⇒ (4) and equal-
ity (1.10).
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Once again we assume that the condition (1.7) holds for a Schur function w and a boundary
point t0 ∈ T. Then the nontangential boundary limits

wj = wj(t0) := lim
z→̂ t0

w(j)(z)

j ! (4.1)

exist for j = 0, . . . , n (by Theorem 3.1), |w0| = 1 (by Theorem 3.6(1)), the kernels K
(j)
t0

and K̃
(j)
t0

defined via formulas (3.3) and (3.4) for j = 0, . . . , n belong to the space Hw (by Theorem 3.4)
and satisfy relations (3.26) (by Theorem 3.6); finally the kernels K

(j)
z and K̃

(j)
z are defined

in (2.10) and (2.11) converge to K
(j)
t0

and K̃
(j)
t0

:

K
(j)
z

Hw−→ K
(j)
t0

, K̃
(j)
z

Hw−→ K̃
(j)
t0

as z→̂ t0, (4.2)

by Theorem 3.4. Making use of (1.2), (2.24) and (4.2) we get

Pw
n (t0) := lim

z→̂ t0
Pn(z) = lim

z→̂ t0

[〈
K

(j)
z , K(i)

z

〉
Hw

]n
i,j=0 = [〈

K
(j)
t0

, K
(i)
t0

〉
Hw

]n
i,j=0 (4.3)

which proves the existence of the boundary Schwartz–Pick matrix and also shows that Pw
n (t0) is

the Gram matrix of the system of the functions {K(j)
t0

}nj=0. This completes the proof of (1) ⇒ (3)

in Theorem 1.2. Now we will show that the nontangential limits (4.1) exist also for j = n +
1, . . . ,2n + 1. We take the advantage of (2.22) and (4.2) to get

wi+j+1(t0) := lim
z→̂ t0

wi+j+1(z) = lim
z→̂ t0

〈
K̃(i)

z , K
(j)
z

〉
Hw = 〈

K̃
(i)
t0

, K
(j)
t0

〉
Hw (4.4)

for i, j = 0, . . . n. Letting i and j run through the set {1, . . . , n} we conclude from (4.4) that the
limits (4.1) indeed exist for j = n + 1, . . . ,2n + 1 and therefore, for every j = 0, . . . ,2n + 1.
Using these limits we can define the matrix P

w
n (t0) via the formula (1.4), i.e.,

P
w
n (t0) = HnΨ n(t0)Wn, (4.5)

where Hn = [wi+j+1]ni,j=0 and Wn is defined in (3.37). To complete the proof of (1) ⇒ (4), it

remains to show that P
w
n (t0) � 0. But this will follow from equality (1.10) since Pw

n (t0) � 0.
To prove (1.10), we fix two vector-columns

x =
⎡⎣ x0

...

xn

⎤⎦ , y =
⎡⎣ y0

...

yn

⎤⎦ ∈ C
n+1 and let e =

⎡⎣ e0
...

en

⎤⎦ := Gnx, (4.6)

where Gn is the matrix defined in (3.37). By formula (4.3),

y∗Pn(t0)x = 〈[
K

(0)
t0

. . . K
(n)
t0

]
x,

[
K

(0)
t0

. . . K
(n)
t0

]
y
〉
Hw.

Now we transform the latter expression, subsequently using (3.38), (4.6), (4.4), and again (4.6)
to get
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y∗Pn(t0)x = 〈[
K̃

(0)
t0

. . . K̃
(n)
t0

]
Gnx,

[
K

(0)
t0

. . . K
(n)
t0

]
y
〉
Hw

= 〈[
K̃

(0)
t0

. . . K̃
(n)
t0

]
e,

[
K

(0)
t0

. . . K
(n)
t0

]
y
〉
Hw

=
n∑

i,j=0

〈
K̃

(i)
t0

ei, K
(j)
t0

yj

〉
Hw

=
n∑

i,j=0

ȳjwi+j+1ei = y∗Hne = y∗HnGnx.

Since vectors x and y are arbitrary, it follows that Pn(t0) = HnG which on account of the second
relation in (3.38) and (4.6) gives

Pn(t0) = HnGn = HnΨ n(t0)Wn = P
w
n (t0)

which proves (1.10) and completes the proof of (1) ⇒ (4) in Theorem 1.2. Since the proof
of (3) ⇒ (2) ⇒ (1) is self-evident, it suffices to prove (4) ⇒ (2) to close the loop. The proof
presented below is based on arguments of interpolation nature.

Lemma 4.1. Let f and w be two functions analytic on a “neighborhood” U = {z ∈ D:
|z − t0| < ε} of t0 ∈ T and let us assume that the nontangential boundary limits of their 2n + 2
first derivatives at t0 exist and are equal:

wj(t0) = fj (t0) for j = 0, . . . ,2n + 1. (4.7)

Then dw,n(z) − df,n(z) = o(1) as z→̂ t0.

Proof. Straightforward differentiation of the product

1

(n!)2
w(z)

1

1 − |z|2 w(z)∗

gives

1

(n!)2

∂2n

∂zn∂z̄n

|w(z)|2
1 − |z|2 =

n∑
i,j=0

wn−i (z)
ui,j (z)

(1 − |z|2)i+j+1
wn−j (z)

∗, (4.8)

where, as before, wj(z) stands for 1
j !w

(j)(z) and

ui,j (z) =
min(i,j)∑

�=0

(i + j − �)!
(i − �)!(j − �)!l! z̄

i−�zj−�
(
1 − |z|2)�, (4.9)

for i, j = 0, . . . , n. Making use of (4.8) and of a similar formula for f , we get
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dw,n(z) − df,n(z) = 1

(n!)2

∂2n

∂zn∂z̄n

|f (z)|2 − |w(z)|2
1 − |z|2

=
n∑

i,j=0

fn−i (z)
ui,j (z)

(1 − |z|2)i+j+1
fn−j (z)

∗

−
n∑

i,j=0

wn−i (z)
ui,j (z)

(1 − |z|2)i+j+1
wn−j (z)

∗

=
n∑

i,j=0

(
fn−i (z) − wn−i (z)

) ui,j (z)

(1 − |z|2)i+j+1
fn−j (z)

∗

−
n∑

i,j=0

wn−i (z)
ui,j (z)

(1 − |z|2)i+j+1

(
wn−j (z)

∗ − fn−j (z)
∗). (4.10)

By (4.7),

fi(z) − wi(z) = o
(
(z − t0)

2n+1−i
)

as z→̂ t0,

and therefore, since z − t0 = O(1 − |z|2) when z approaches t0 nontangentially,

fn−i (z) − wn−i (z)

(1 − |z|2)i+j+1
= o

(
(z − t0)

2n+1−(n−i)−(i+j+1)
) = o

(
(z − t0)

n−j
)
, z→̂ t0,

and the latter equalities hold for all i, j = 0, . . . , n. It remains to note that (as it is readily seen
from (4.9) ui,j (z) = O(1) as z→̂ t0 and now the desired assertion follows from (4.10). �
Proof of (4) ⇒ (2) in Theorem 1.2. Thus, we assume that the nontangential limits

wj = wj(t0) := lim
z→̂ t0

w(j)(z)

j ! (j = 0, . . . ,2n + 1) (4.11)

exist and satisfy conditions (1.9). Then there exists a finite Blaschke product f such that

fj (t0) = wj for j = 0, . . . ,2n + 1. (4.12)

Indeed, equalities (4.12) can be considered as interpolation conditions for a boundary interpo-
lation problem for Schur class functions with the data t0 ∈ T and w0, . . . ,w2n+1 ∈ C satisfying
conditions (1.9), that is

|w0| = 1 and P
w
n (t0) :=

⎡⎣ w1 · · · wn+1
...

...

wn+1 · · · w2n+1

⎤⎦Ψ n(t0)

⎡⎣ w̄0 . . . w̄n

. . .
...

0 w̄0

⎤⎦ � 0. (4.13)

This problem was studied in [6], [1, Section 21], [2, Section 13]. The results obtained there show
in particular, that in case the matrix P

w
n (t0) is positive definite, there are infinitely many Schur

functions (and also infinitely many finite Blaschke products) f satisfying conditions (4.12). We
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will discuss this problem in more detail and we will describe all its solutions at another opportu-
nity.

By (4.11) and (4.12), equalities wj(t0) = fj (t0) hold for j = 0, . . . ,2n + 1 and we apply
Lemma 4.1 to conclude that dw,n(z) − df,n(z) = o(1) as z approaches t0 nontangentially. Since
f is a finite Blaschke product, limz→t0 df,n(z) exists and is finite (see, e.g., [3, Proposition 6.2]).
Therefore

lim
z→̂ t0

dw,n(z) = lim
z→t0

df,n(z) < ∞

and property (2) follows.
If P

w
n (t0) � 0 is singular, then w is a finite Blaschke product of degree equal the rank

of P
w
n (t0). Therefore, (2) holds as well. This completes the proof. �

5. Final remarks

Theorem 1.2 imposes conditions on (and establishes relations between) the quantities of two

different types: the ratio 1−|w(z)|2
1−|z|2 and its partial derivatives, on one hand (statements (1)–(3)), and

angular boundary limits of derivatives of w, on another hand (statement (4)). Condition (1.7) is
apparently the weakest condition of the first type that implies all other statements in Theorem 1.2.
We will discuss briefly to what extent conditions in statement (4) on angular boundary derivatives
can be relaxed in order to guarantee the condition (1.7) to hold true. Note that in the proof of
(4) ⇒ (2) (at the end of Section 4) we did not use the fact that w is a Schur class function. In
other words, condition (1.8) holds true for any function w analytic on D for which the angular
boundary limits (4.11) exist and satisfy conditions (1.9). Actually, the positivity assumption about
P

w
n (t0) in (4.13) can be dropped.

Theorem 5.1. Let w be analytic in a neighborhood {z ∈ D: |z − t0| < ε} of t0 ∈ T. Let the
nontangential limits (4.11) exist and let us assume that

|w0| = 1 and P
w
n (t0) = P

w
n (t0)

∗, (5.1)

where P
w
n (t0) is defined in (4.13). Then condition (1.8) holds true.

The proof will be presented elsewhere. Finally, we note that another higher order analogue of
the Carathéodory–Julia theorem different from our Theorem 1.2 appears in [2, Section 9] in the
context of matrix-valued Schur functions. In the present scalar valued case, the results from [2,
Section 9] can be formulated as follows.

Theorem 5.2. For w ∈ S , t0 ∈ T and n ∈ Z+, the following are equivalent:

(1) supz∈Γa(t0)
dw,n(z) < ∞ for some Γa(t0) of the form (2.28).

(2) The boundary Schwarz–Pick matrix Pw
n (t0) exists.

(3) The following nontangential limits exist:

wj(t0) := lim wj(z) for j = 0, . . . , n;

z→̂ t0
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Pw
n (t0) := lim

z→̂ t0

[
1

i!
di

dzi

(
kj,t0(z) − w(z)

j∑
�=0

wj−�(t0)k�,t0(z)

)]n

i,j=0

(5.2)

and satisfy conditions (3.25) and Pw
n (t0) � 0.

Moreover, in this case, Pw
n (t0) = Pw

n (t0).

Note that in case n = 0, condition (3.25) reduces to |w0(t0)| = 1, and the matrix (5.2) reduces
to

Pw
0 (t0) = lim

z→̂ t0

1 − w(z)w0(t0)

1 − zt̄0
.

Now it is readily seen that in this case, Theorem 5.2(3) is identical with Theorem 1.1(3).
Combining Theorems 1.2 and 5.2 we conclude that if the boundary Schwarz–Pick matrix

Pw
n (t0) exists (i.e., if condition (1.7) is satisfied), the matrices Pw

n (t0) and P
w
n (t0) also exist and

Pw
n (t0) = Pw

n (t0) = P
w
n (t0). Thus, in this case, both Pw

n (t0) and P
w
n (t0) can be used to represent

the boundary Schwarz–Pick matrix; however the matrix P
w
n (t0) is much more convenient for

computational purposes. If condition (1.7) is not satisfied, then the matrices Pw
n (t0) and P

w
n (t0)

may exist or not and may be equal or not; we do not proceed in detail, since in this case both of
them do not make much sense.
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