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Abstract. We extend the Carathéodory–Julia theorem on angular derivatives
as well as its higher order analogue established recently in [4] to the setting
of contractive valued functions analytic on the unit disk. Carathéodory–Julia
type conditions for an operator valued Schur-class function w are shown to be
equivalent to the requirement that every function from the de Branges-Rovnyak
space associated with w has certain directional boundary angular derivatives.

1 Introduction

The starting point of this paper is the classical Carathéodory–Julia theorem; in its
formulation and in what follows, D and T denote the open unit disk and the unit
circle, respectively, and S stands for the Schur class of analytic functions mapping
D into D. We write z→̂t0 if a point z ∈ D approaches a boundary point t0 ∈ T

nontangentially and z → t0 if z approaches t0 unrestrictedly in D.

Theorem 1.1 (Carathéodory–Julia). Let w ∈ S, let t0 ∈ T and let

(1.1) lim inf
z→t0

1− |w(z)|2

1− |z|2
< ∞.

Then the nontangential limits

d := lim
z→̂t0

1− |w(z)|2

1− |z|2
< ∞, w0 := lim

z→̂t0
w(z), w1 := lim

z→̂t0
w′(z)

exist and satisfy |w0| = 1 and d = w1t0w
∗
0 ≥ 0.

The objective of this paper is to establish analogues of Theorem 1.1 for operator-
valued Schur functions. LetL(U ,Y) denote the algebra of bounded linear operators
mapping a Hilbert space U into another Hilbert space Y, and let L(Y) := L(Y,Y).
We denote by S(U ,Y) the Schur class of all L(U ,Y)-valued functions analytic and
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contractive valued on D. We write “w-lim”, “s-lim” and “lim” for nontangential
convergence in the weak, strong, and uniform operator topologies, respectively.
By “the limit exists” we always mean that the limit is equal to a finite number (in
the scalar case) or to a bounded operator (in the operator case). For w ∈ S(U ,Y),
the quantities

(1.2) Dw(z) =
IY − w(z)w(z)∗

1− |z|2
and D̃w(z) =

IU − w(z)∗w(z)

1− |z|2

are the operator valued analogues of the scalar valued term in (1.1). The bound-
edness of one of them does not (in general) imply the boundedness of another.
Conditions (1.3) and (1.6) below are two possible extensions (in general not equiv-
alent) of condition (1.1) to the operator valued setting. They lead to different
operator analogues of Theorem 1.1.

Theorem 1.2. Let w ∈ S(U ,Y), t0 ∈ T and assume that

(1.3) lim inf
z→t0

〈Dw(z)y, y〉Y < ∞ for every y ∈ Y,

where Dw(z) is defined in (1.2). Then the strong limit w∗0 := s−lim
z→̂t0

w(z)∗ and the

weak limits

(1.4) Dw(t0) := w−lim
z→̂t0

Dw(z),

(1.5) q = w−lim
z→̂t0

w0D̃
w(z)w∗0 and f := w−lim

z→̂t0
w′(z)w∗0t0

exist and satisfy w0w
∗
0 = IY (i.e., w0 is a coisometry) and Dw(t0) = f = q ≥ 0.

Theorem 1.3. Let w ∈ S(U ,Y), t0 ∈ T and assume that

(1.6) lim inf
z→t0

〈
D̃w(z)u, u

〉
U

< ∞ for every u ∈ U ,

where D̃w(z) is defined in (1.2). Then the strong limit w0 := s−lim
z→̂t0

w(z) and the

weak limits q̃ := w−lim
z→̂t0

w∗0D
w(z)w0, f̃ := w−lim

z→̂t0
w∗0w

′(z)t0 and

(1.7) D̃w(t0) := w−lim
z→̂t0

D̃w(z)

exist and satisfy w∗0w0 = IU (i.e., w0 is an isometry) and D̃w(t0) = f̃ = q̃ ≥ 0.

In the matrix-valued setting, Theorems 1.2 and 1.3 appear in [9, Section 8] and
[11], respectively. The proofs extend to the operator case in a fairly straightforward
way; only establishing the existence of the strong limits w∗0 (resp., w0) requires
some extra work.
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Remark 1.4. Theorem 1.3 can be obtained by applying Theorem 1.2 to the
function w̃(z) := w(z̄)∗ ∈ S(Y,U), since condition (1.6) for w can be understood
as a condition of (1.3) type for w̃.

If conditions (1.3) and (1.6) both hold, we have a result that looks very much
like Theorem 1.1.

Theorem 1.5. Let w ∈ S(U ,Y), let t0 ∈ T and assume that conditions (1.3) and
(1.6) hold. Then the limits

(1.8) w0 := lim
z→̂t0

w(z) and w1 := w−lim
z→̂t0

w′(z)

exist along with the weak limits (1.4) and (1.7). Moreover, w0 is unitary and
Dw(t0) = t0w1w

∗
0 = w0D̃

w(t0)w
∗
0 ≥ 0.

Let us highlight the main distinctions between Theorems 1.2 and 1.5. The sole
assumption (1.3) about Dw(z) guarantees the strong nontangential convergence of
w(z)∗ (not the uniform nor even the strong convergence of w(z)) to a coisometric
(not unitary, in general) operator w0. It also implies the weak convergence of w′(z)

and of D̃w(z) only on the subspace Ranw∗0 ⊂ U rather than on all of U . On the
other hand, if dimY = dimU < ∞, conditions (1.3) and (1.6) are equivalent; and
in this case, one of them can be dropped in the formulation of Theorem 1.5.

In [4], the Carathéodory–Julia theorem was extended in a different direction:
condition (1.1) was replaced by its higher order analogue

(1.9) lim inf
z→t0

∂2n

∂zn∂z̄n

1− |w(z)|2

1− |z|2
<∞

with n ≥ 0 a fixed integer. The significance of this condition for boundary
interpolation theory was justified in [6]; equivalent reformulations of (1.9) in
terms of nontangential boundary limits of w and its derivatives at t0 were given in
[5]. In this paper, we focus on operator-valued analogues of condition (1.9),

(1.10) lim inf
z→t0

〈∂2nDw(z)

∂zn∂z̄n
y, y

〉
Y

<∞ and lim inf
z→t0

〈∂2nD̃w(z)

∂zn∂z̄n
u, u

〉
U

<∞

holding for every y ∈ Y and every u ∈ U , respectively. These conditions are
the higher order counterparts of (1.3) and (1.6). In Section 2 we discuss the
consequences of conditions (1.10) in terms of the boundary behavior of Dw and
D̃w and of angular boundary derivatives of w. The case where both conditions
in (1.10) hold is covered by Theorem 2.6, the higher order analogue of Theorem
1.5. In Section 3, we consider a more general left-tangential version of the first
condition in (1.10), where y is replaced by a(z)g for a fixedL(G,Y)-valued function
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a and a vector g running through a given Hilbert space G. The corresponding
Carathéodory–Julia type theorem (Theorem 3.1) is the main result of the paper.
To prove it, we follow D. Sarason’s approach [13, 14], making extensive use
of the de Branges–Rovnyak space Hw associated with a Schur class function w.
The definition and some basic properties of the space Hw are recalled in Section
4. In Sections 5 and 6, we construct certain boundary kernels which exist and
reproduce boundary derivatives of functions from the de Branges–Rovnyak space
Hw under Carathéodory–Julia type conditions. Using the reproducing properties
of the boundary kernels, we give a straightforward proof of the main result in
Section 7. Finally, in Section 8, we characterize the Carathéodory–Julia condition
in terms of boundary behavior of functions from Hw.

2 The higher order analogues

We start with a result which justifies in particular, the uniform convergence of the
limit w0 in (1.8). We write

Ut0,ε := {z ∈ D : 0 < |z − t0| < ε},(2.1)

Γt0,α,ε := {z ∈ Ut0,ε : |arg(z − t0)| < α ∈ (0, π/2)}(2.2)

respectively for a deleted and for a nontangential deleted neighborhood of t0 ∈ T.

Lemma 2.1. Let t0 ∈ T, let f be an L(U ,Y)-valued function analytic on Ut0,ε and

assume that fn(z) :=
f(n)(z)

n! is bounded on Γt0,α,ε for every α ∈ [0, π/2):

(2.3) ‖fn(z)‖ ≤ γα (z ∈ Γt0,α,ε).

Then the uniform limits fj(t0) = lim
z→̂t0

f (j)(z)/j! exist for j = 0, . . . , n − 1. In

particular, the statement holds if the weak limit w−lim
z→̂t0

fn(z) exists.

Proof. We start with the Taylor representation

fj(z) =

n−1−j∑
i=0

f
(i)
j (ω)

i!
(z − ω)i +

∫ z

ω

f
(n−j)
j (ζ)

(n− 1− j)!
(z − ζ)n−1−jdζ

for fj(z) = f (j)(z)/j! at a point ω ∈ Ut0,ε and pick α such that ω ∈ Γt0,α,ε. Since

f
(i)
j (z)

i!
=

f (j+i)(z)

i! j!
=
(j + i)!

i! j!
fj+1(z) =

(
j + i

j

)
fj+1(z),
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the latter representation can be written as

fj(z) =

n−1−j∑
i=0

(
j + i

j

)
fj+i(ω)(z − ω)i + n

(
n− 1

j

)∫ z

ω

fn(ζ) (z − ζ)n−1−jdζ.

(2.4)

The integral in (2.4) does not depend on the path of integration between ω and
z. For brevity, we write (integrating along a rectifiable Jordan curve inside Γt0,α,ε

connecting z and ω)

Gω,z :=

∫ z

ω

fn(ζ) (z − ζ)n−1−jdζ.

By (2.3), ‖Gω,z1 −Gω,z2‖ ≤ γα2
n−1−j|z1 − z2|; and thus, for a fixed ω, the family

{Gω,z}z∈Γt0,α,ε
is fundamental in the uniform operator topology. By the complete-

ness of L(U ,Y), the uniform limit

lim
Γt0,α,ε�z→t0

Gω,z =: Gω,t0 =

∫ t0

ω

fn(ζ) (t0 − ζ)n−1−jdζ

exists; and, since it exists for every α ∈ [0, π/2), it can be replaced by the nontan-
gential limit: Gω,t0 = lim

z→̂t0
Gω,z . Now let z to tend to t0 nontangentially in (2.4)

(for ω fixed) to conclude that the uniform limits

fj(t0) = lim
z→̂t0

fj(z) =

n−1−j∑
i=0

(
j + i

j

)
fj+i(ω)(t0 − ω)i + n

(
n− 1

j

)
Gω,t0

exist for j = 0, . . . , n− 1. To complete the proof of the lemma, it remains only to
note that weak convergence implies boundedness in norm, i.e., that the existence
of the weak limit fn(t0) := w−lim

z→̂t0
fn(z) implies (2.3). �

To formulate higher order Carathéodory–Julia theorems, we first introduce
some notation. With an operator valued function w (not necessarily in the Schur
class) analytic at z ∈ D, we associate the operator block matrices

Pw
n (z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j

IY − w(z)w(z)∗

1− |z|2

]n

i,j=0

,(2.5)

P̃w
n (z) :=

[
1

i!j!

∂i+j

∂z̄i∂zj

IU − w(z)∗w(z)

1− |z|2

]n

i,j=0

,(2.6)

which we refer to as to Schwarz–Pick matrices. We extend definitions (2.5)
and (2.6) to boundary points as follows: given a point t0 ∈ T, the boundary
Schwarz–Pick matrices are

(2.7) Pw
n (t0) = w−lim

z→̂t0
Pw

n (z) and P̃w
n (t0) = w−lim

z→̂t0
P̃w

n (z)
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provided the limits in (2.7) exist. A well-known property of Schur functions
w ∈ S(U ,Y) is that Pw

n (z) and P̃w
n (z) are positive semidefinite for every n ≥ 0

and z ∈ D; therefore, the boundary Schwarz–Pick matrices (once they exist) are
positive semidefinite as well. We also associate with w the Toeplitz and the Hankel
operator block matrices

(2.8) Tw
n (z) =

⎡⎢⎢⎢⎢⎢⎣
w0(z) 0 . . . 0

w1(z)
. . .

. . .
...

...
. . .

. . . 0

wn(z) . . . w1(z) w0(z)

⎤⎥⎥⎥⎥⎥⎦ and Hw
n (z) = [wi+j+1(z)]

n
i,j=0 ,

where wj(z) := w(j)(z)/j! stands for the j-th Taylor coefficient of w at z. If w is
analytic on D and the nontangential boundary limits

(2.9) wj(t0) := w−lim
z→̂t0

wj(z) = w−lim
z→̂t0

w(j)(z)

j!

exist at a boundary point t0 ∈ T, we extend definitions (2.8) to t0 by

Tw
n (t0) = w−lim

z→̂t0
Tw

n (z) =

⎡⎢⎢⎣
w0(t0) 0

...
. . .

wn(t0) . . . w0(t0)

⎤⎥⎥⎦ ,(2.10)

Hw
n (t0) = w−lim

z→̂t0
Hw

n (z) = [wi+j+1(t0)]
n
i,j=0(2.11)

and call wj(t0) the j-th angular derivative of w at t0. Furthermore, if the limits (2.9)
exist for j = 0, . . . , n, we introduce the (operator valued) polynomials pw

j (z) =∑j
�=0(z − t0)

�w�(t0)
∗ and

(2.12) pw�
j (z) := zjpw

j (1/z̄)∗ =

j∑
�=0

zj−�(1− zt̄0)
�w�(t0)

∗

for j = 0, 1, . . . , n. We set

(2.13) pw�
j,i(z) :=

1

i!

di

dzi
pw�

j (z) for 0 ≤ i ≤ j ≤ n

and introduce the polynomial upper triangular block matrix

(2.14) Uw
n (z) =

⎡⎢⎢⎢⎢⎣
pw�
0,0(z) pw�

1,1(z) . . . pw�
n,n(z)

0 pw�
1,0(z) . . . pw�

n,n−1(z)
...

. . .
. . .

...
0 . . . 0 pw�

n,0(z)

⎤⎥⎥⎥⎥⎦
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with the block entries Uw
ij(z) =

⎧⎨⎩pw�
j,j−i(z) if j ≥ i,

0, if j < i.

The next theorem is the higher order analogue of Theorem 1.2.

Theorem 2.2. Let w ∈ S(U ,Y), t0 ∈ T and n ∈ Z+ and assume that

(2.15) lim inf
z→t0

〈 ∂2n

∂zn∂z̄n

IY − w(z)w(z)∗

1− |z|2
y, y

〉
Y

<∞ for every y ∈ Y.

Then the following statements hold.
(1) The boundary Schwarz–Pick matrix Pw

n (t0) defined in (2.7) exists.
(2) The strong limits

(2.16) wj(t0)
∗ := s−lim

z→̂t0
wj(z)

∗ (j = 0, . . . , n)

exist (by Lemma 2.1, the first n of them converge in norm) and the operator
w0(t0) is coisometric.

Let Uw
n (z) be the upper triangular polynomial matrix associated with the limits

w0(t0), . . . , wn(t0) via formula (2.14), let Hw
n (z) be as in (2.11), and let M be the

diagonal matrix defined as

(2.17) M = diag {t0IY , −t20IY , . . . , (−1)ntn+10 IY}.

(3) The weak limits

Qw
n (t0) := w−lim

z→̂t0
Uw

n (z)
∗P̃w

n (z)U
w
n (z),(2.18)

P
w
n (t0) := w−lim

z→̂t0
Hw

n (z)U
w
n (z)M(2.19)

exist and, moreover, Pw
n (t0) = Pw

n (t0) = M∗Qw
n (t0)M ≥ 0.

The proof is given later (see Remark 3.2 below). Here we make several remarks
and point out some corollaries of Theorem 2.2.

Remark 2.3. When n = 0, Theorem 2.2 reduces to Theorem 1.2. This is readily
seen once we observe that Pw

0 (z) = Dw(z), P̃w
0 (z) = D̃w(z),

Hw
0 (z) = w′(z), Uw

0 (z) = pw�
0,0(z) ≡ w0(t0)

∗, M = t0IY .

Remark 2.4. Making use of the function w̃(z) := w(z̄)∗ ∈ S(Y,U),
as has been explained in Remark 1.4, one can easily derive a dual version of
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Theorem 2.2 (the higher order analogue of Theorem 1.3) concerning consequences
of the condition

(2.20) lim inf
z→t0

〈 ∂2n

∂zn∂z̄n

IU − w(z)∗w(z)

1− |z|2
u, u

〉
U

<∞ for every u ∈ U .

We omit the detailed formulation of this result and simply mention that (2.20)
guarantees the existence of the boundary Schwarz–Pick matrix P̃w

n (t0) (see the
second formula in (2.7)) and, in particular, implies (1.6).

Now we pass to the case where conditions (2.15) and (2.20) both hold. The
next proposition shows that one of these two conditions can be slightly relaxed.

Proposition 2.5. Let w ∈ S(U ,Y), t0 ∈ T and assume that condition (2.15) holds,
so that the limit w0(t0) = w−lim

z→̂t0
w(z) exists and is coisometric (by Theorem 2.2).

The following statements are equivalent:

(1) w0(t0) is unitary; (2) condition (1.6) holds; (3) condition (2.20) holds.

In case dimU = dimY < ∞, statements (1)–(3) follow from (2.15).

Proof. Assume that condition (2.15) holds and that w0(t0) is unitary. Letting
z = t0 in (2.12) gives pw�

j,0(t0) = tj0w0(t0)
∗, and therefore all the diagonal blocks

in the upper triangular matrix Uw
n (t0) are unitary. Therefore, Uw

n (t0) is boundedly
invertible. Since the Uw

n (z) converges in norm (since Uw
n (z) is a polynomial) to a

boundedly invertible operator Uw
n (t0), the limit w−lim

z→̂t0
P̃w

n (z) also exists. In parti-

cular, the weak limit of the rightmost diagonal block in P̃w
n (z) exists, which clearly

implies (2.20). This completes the proof of implication (1)⇒(3). Implication
(3)⇒(2) holds true independent of condition (2.15) (see Remark 2.4). Implication
(2)⇒(1) follows by Theorem 1.5. Finally, condition (2.15) implies that w0(t0) is
coisometric; and if dimU = dimY <∞, then (2) follows. �

The next theorem is the higher order analogue of Theorem 1.5. Condition
(1.6) in its formulation can be equivalently replaced by condition (2.20) or by the
assumption that the boundary limit w0(t0) is unitary.

Theorem 2.6. Let w ∈ S(U ,Y), t0 ∈ T, n ∈ Z+ and assume that conditions (1.6)
and (2.15) hold. Then the following statements hold.

(1) The matrices Pw
n (t0) and P̃w

n (t0) defined via the weak limits (2.7) exist.
(2) There exist the uniform limits

(2.21) wj(t0) := lim
z→̂t0

wj(z) for j = 0, . . . , 2n;
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and the weak limit w2n+1(t0) := w−lim
z→̂t0

w2n+1(z). Moreover, w0(t0) is unitary and

(2.22) Pw
n (t0) = Hw

n (t0)ΨTw
n (t0)

∗ = Tw
n (t0)Ψ

∗P̃w
n (t0)ΨTw

n (t0)
∗ ≥ 0,

where Tw
n (t0) and Hw

n (t0) are given by (2.10), (2.11) and Ψ is the upper triangular
block matrix given by

(2.23) Ψ = [Ψj� · IY ]
n
j,�=0 , Ψj� =

⎧⎨⎩0, if j > 	,

(−1)�
(

�
j

)
t�+j+1
0 , if j ≤ 	.

Proof. We prove the theorem assuming that Theorem 2.2 is already proved.
By Theorem 2.2, condition (2.15) alone guarantees the existence of Pn(t0) and of
the limits (2.16)–(2.19). The boundary limit w0(t0) is unitary, by Proposition 2.5;
and P̃n(t0) exists by Remark 2.4. Since Uw

n (z) converges in norm to a boundedly
invertible operator Uw

n (t0), it follows from (2.19) that the weak limit Hn(t0) in
(2.11) exists. This implies, in particular, the existence of the weak limit w2n+1(t0)

which, in turn, implies the existence of the uniform limits (2.21), by Lemma 2.1.
Since Uw

n (z) is a polynomial, it converges to Uw
n (t0) in norm as z → t0; therefore,

the limits on the right hand sides of (2.18) and (2.19) can be evaluated as follows:

(2.24) Qw
n (t0) = Uw

n (t0)
∗P̃w

n (t0)U
w
n (t0) and P

w
n (t0) = Hw

n (t0)U
w
n (t0)M.

Next we show that

(2.25) Uw
n (t0)M = ΨTw

n (t0)
∗,

where M is defined in (2.17). Indeed, differentiating (2.12) k times and evaluating
the result at z = t0 leads us to explicit formulas for pw�

j,k(t0) in terms of w�(t0):

pw�
j,k(t0) =

j∑
�=0

(−1)�tj−k−�
0

(
j − 	

j − k

)
w�(t0)

∗ (0 ≤ k ≤ j ≤ n),

which can be written in terms of the numbers (2.23) as

(2.26) (−1)jtj+10 pw�
j,k(t0) =

j∑
�=0

Ψj−k,j−�w�(t0)
∗ (0 ≤ k ≤ j ≤ n).

It is readily checked from the definitions of the matrices Tw
n (t0), U

w
n (t0), M, and Ψ

that (2.26) is just the entrywise reformulation of the matrix equality (2.25). Now
we combine (2.25) and (2.24) to get

Qw
n (t0) = Tw

n (t0)Ψ
∗P̃w

n (t0)ΨTw
n (t0)

∗, P
w
n (t0) = Hw

n (t0)ΨTw
n (t0)

∗,

and then (2.22) follows by the last statement in Theorem 2.2. �
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Specializing Theorems 2.2 and 2.6 to the matrix valued case (i.e., to the case
where the coefficient spaces U and Y are finite dimensional) is of some interest. If
dimU = dimY, then condition (1.6) in the formulation of Theorem 2.6 is redundant
(it follows from (2.15) by Proposition 2.5). Thus, for square matrix valued Schur
functions, condition (2.15) alone implies the existence of the boundary Schwarz–
Pick matrices Pw

n (t0) and P̃w
n (t0) and of boundary angular derivatives wj(t0) for

j = 0, . . . , 2n+ 1, which then are related as in (2.22). Extracting the part relating
Pw

n (t0) with boundary angular derivatives wj(t0) from Theorem 2.6, we get the
“only if” part in the following result.

Theorem 2.7. Let w ∈ S(U ,Y) and let dimU = dimY < ∞. Then condition
(2.15) holds if and only if the boundary derivatives wj(t0) exist for j = 0, . . . , 2n+1

and are such that (1) w0(t0) is unitary and (2) Hw
n (t0)ΨTw

n (t0)
∗ ≥ 0.

In other words, condition (2.15) not only guarantees the existence of the bound-
ary angular derivatives wj(t0) but forces them to be quite special. The “if” direction
in Theorem 2.7 can be proved under the weaker assumptions that w is analytic on
D (not necessarily in the Schur class) and that the matrix Hw

n (t0)ΨTw
n (t0)

∗ is Her-
mitian; the proof is much the same as in the scalar-valued case (see [5]). Note also
that Theorems 2.6 and 2.7 can be easily translated to the context of Nevanlinna–
Herglotz functions or Carathéodory (positive real) functions using Caley transforms
relating these functions to square matrix-valued Schur-class functions. In contrast,
Theorem 2.2 does not have analogues in matrix valued Nevanlinna–Herglotz or
Carathéodory classes. If dimY < dimU < ∞, then condition (1.6) cannot hold at
all; and the statements in Theorem 2.2 are all we can get for the non-square matrix
valued Schur functions. However, if the boundary angular derivatives wj(t0) exist
for j = n+ 1, . . . , 2n+ 1, then, as was observed in [3, Lemma 12.5], we still have
Pw

n (t0) = Hw
n (t0)ΨTw

n (t0)
∗.

3 The main result

The main result of the paper is Theorem 3.1 below. It is a left-tangential version of
Theorem 2.2 and contains the latter theorem as a particular case. This more general
theorem also displays the bi-tangential nature of the operator valued Carathéodory–
Julia theorem, which is not that explicit in the formulation of Theorem 2.2.

For a Schur function w ∈ S(U ,Y) and an L(Y, G)-valued function a(z) analytic
at t0, define the tangential Schwarz–Pick matrix

(3.1) Pw,a
n (z) :=

[
P

w,a
ij (z)

]n

i,j=0
,
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where

(3.2) P
w,a
ij (z) =

1

i!j!

∂i+j

∂zi∂z̄j

(
a(z)

IY − w(z)w(z)∗

1− |z|2
a(z)∗

)
.

This matrix is related to the matrix Pw
n (z) introduced in (2.5) via

(3.3) Pw,a
n (z) = Ta

n(z)P
w
n (z)T

a

n(z)
∗,

where Ta

n(z) is defined according to (2.10) by

(3.4) Ta

n(z) =

⎡⎢⎢⎣
a0(z) 0

...
. . .

an(z) . . . a0(t0)

⎤⎥⎥⎦ , a�(z) =
a(�)(z)

	!
.

Definition (3.2) makes sense at every point z ∈ D where a is analytic; and (3.3)
follows from definitions (2.5), (3.1) and (3.4) by the Leibnitz rule. The following
theorem is the main result of the paper.

Theorem 3.1. Let w ∈ S(U ,Y), t0 ∈ T, n ∈ Z+, let a be an L(Y, G)-valued
function analytic in a neighborhood of t0 and let us assume that
(3.5)

lim inf
z→t0

〈
∂2n

∂zn∂z̄n

(
a(z)

IY − w(z)w(z)∗

1− |z|2
a(z)∗

)
g, g

〉
< ∞ for every g ∈ G.

Then the following statements hold.
(1) The weak limit Pw,a

n (t0) := w−lim
z→̂t0

Pw,a
n (z) exists.

(2) The function b(z) := a(z)w(z) possesses the strong boundary limits

(3.6) bj(t0)
∗ := lim

z→̂t0

b(j)(z)∗

j!
for j = 0, . . . , n;

and the operator b0(t0) satisfies a0(t0)a0(t0)
∗ = b0(t0)b0(t0)

∗.
Let Bj,i := pb�

j,i be the polynomials defined via formulas (2.12), (2.13) (see also the
explicit formulas (5.32) and (6.1) below) and let Ub

n(z) be the upper triangular
operator valued polynomial defined via (2.14):

(3.7) Ub

n(z) =

⎡⎢⎢⎢⎢⎣
B0,0(z) B1,1(z) . . . Bn,n(z)

0 B1,0(z) . . . Bn,n−1(z)
...

. . .
. . .

...
0 . . . 0 Bn,0(z)

⎤⎥⎥⎥⎥⎦ .

(3) The functions cj(z) := w(z)Bj(z) possess the strong boundary limits

cj,i(t0) := lim
z→̂t0

1

i!
(w(z)Bj(z))

(i) for 0 ≤ i ≤ j ≤ n.
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(4) The weak limits

P
w,a
n (t0) := w−lim

z→̂t0
Ta(z)Hw

n (z)U
b

n(z)M,(3.8)

Qw
n (t0) := w−lim

z→̂t0
Ub

n(z)
∗P̃w

n (z)U
b

n(z),(3.9)

exist, where Ta

n(z) and Hw
n (z) are given by (3.4), (2.8) and M is defined via

formula (2.17) with the identity operator IY replaced by IG . Moreover,

(3.10) Pw,a
n (t0) = P

w,a
n (t0) = M∗Qw

n (t0)M ≥ 0.

Note that statements (1)–(3) in Theorem 3.1 were proved in [3, Section 9]
for matrix-valued Schur functions under the stronger (than (3.5)) assumption that
‖Pw,a

nn (z)‖ is uniformly bounded in a nontangential neighborhood of t0.

Remark 3.2. Theorem 2.2 follows from Theorem 3.1.

Indeed, if G = Y and a(z) ≡ IY in Theorem 3.1, then condition (3.5) collapses
to (2.15). Furthermore, Pw,a

n (z) = Pw
n (z), b(z) = w(z), Ta(z) ≡ IYn+1 ; and it is

readily seen that statements (1), (2) and (3) in Theorem 2.2 follow, respectively,
from statements (1), (2) and (4) in Theorem 3.1.

Another special choice G = C and a(z) ≡ y ∈ Y in Theorem 3.1 gives the
consequences of condition (2.15) holding just for a fixed vector y. We omit the
precise formulation. The proof of Theorem 3.1 is presented in Section 6. The next
three sections contain definitions and constructions needed for the proof.

4 de Branges–Rovnyak spaces and their reproducing
kernels

In this section, we recall the definitions of the Hilbert spaces Lw and Hw [7, 8, 12]
and their properties needed for the subsequent analysis. Given a separable Hilbert
space U , we denote by L2(U) the space of U-valued measurable functions u(t) with

‖u‖2L2(U)
:=

∫
T

‖u(t)‖2U m(dt) <∞,

where m(dt) stands for the normalized arc length Lebesgue measure on T; the
symbols H+

2 (U) and H−
2 (U) stand for the Hardy spaces of U-valued functions with

vanishing Fourier coefficients with negative (respectively, nonnegative) indices.
The elements in H+

2 (U) and H−
2 (U) are identified with their unique analytic (resp.,

conjugate-analytic) continuations inside the unit disk so that H+
2 (U) and H−

2 (U)

are identified with the Hardy spaces of the unit disk.
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Let w : D → L(U ,Y) be a Schur function and let W (t) :=
[

IY w(t)
w(t)∗ IU

]
. The

space Lw is the range space W 1/2(L2(Y ⊕ U)) endowed with the range norm. In
more detail: for every element f in Lw, there exists a unique gf ∈ L2(Y ⊕U) which
is orthogonal to KerW (t) for almost all t ∈ T and such that f = W 1/2gf . This
unique gf is denoted by gf := W [−1/2]f , and the Lw-norm is defined by

(4.1) 〈f, h〉Lw = 〈g
f
, g

h
〉L2(Y⊕U) =

∫
T

〈
W (t)[−1/2]f, W (t)[−1/2]h

〉
Y⊕U

m(dt).

Definition 4.1. A function f =
[
f+

f−

]
is said to belong to the de Branges–Rovnyak

space Hw if it belongs to Lw and if f+ ∈ H+
2 (Y) and f− ∈ H−

2 (U).

The space Hw is a closed subspace of Lw; in what follows, P
Hw denotes the

orthogonal projection of Lw onto Hw.

Recall that H+
2 (Y) and H−

2 (U) are reproducing kernel Hilbert spaces with
reproducing kernels kz(t) =

1
1−tz̄ and k̃z(t) =

1
t−z in the sense that

(4.2) 〈f+, kzy〉L2(Y)
= 〈f+(z), y〉Y , 〈f−, k̃z u〉L2(U) =

〈f−(z)

z̄
, u

〉
U

for every f+ ∈ H+
2 (Y), f− ∈ H−

2 (U), y ∈ Y, u ∈ U and z ∈ D. We let

kj,z(t) :=
1

j!

∂j

∂z̄j
kz(t) =

tj

(1− tz̄)j+1
,(4.3)

k̃j,z(t) :=
1

j!

∂j

∂zj
k̃z(t) =

1

(t− z)j+1
.(4.4)

Now we introduce the operator-valued functions

Kz(t) = kz(t) ·

[
IY w(t)

w(t)∗ IU

][
IY

−w(z)∗

]
,(4.5)

K̃z(t) = k̃z(t) ·

[
IY w(t)

w(t)∗ IU

][
−w(z)

IU

]
(4.6)

defined for z ∈ D and t ∈ T and, more generally, the vector-valued functions

(4.7) K(j)
z (t) =

1

j!

∂j

∂z̄j
Kz(t) and K̃(j)

z (t) =
1

j!

∂j

∂zj
K̃z(t)

for j ∈ Z+. The next lemma displays reproducing properties of Kz and K̃z. The
straightforward proof is based on relations (4.2), formulas (4.3)–(4.6) and the
definition (4.1) of the inner product in Lw (see [4, Lemma 2.2] for the proof).
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Lemma 4.2. For every j ∈ Z+, z ∈ D, y ∈ Y, and u ∈ U , the functions K
(j)
z y and

K̃
(j)
z u belong to Hw. Furthermore, for every f =

[
f+

f−

]
∈ Hw,〈

f, K(j)
z y

〉
Hw

=
1

j!

〈 dj

dzj
f+(z), y

〉
Y
,(4.8) 〈

f, K̃(j)
z u

〉
Hw

=
1

j!

〈 dj

dz̄j

(
f−(z)

z̄

)
, u

〉
U
.(4.9)

We conclude this section with three more lemmas. The proofs are much the
same as in the scalar case (see Lemmas 2.6, 2.7 and 2.8 in [4]) and are omitted.
The first lemma gives a convenient representation of the kernels K

(j)
z and K̃

(j)
z as

orthogonal projections of certain simple elements in Lw onto Hw.

Lemma 4.3. Let w ∈ S(U ,Y), let z ∈ D, j ∈ Z+ and let K
(j)
z and K̃

(j)
z be the

functions defined in (4.7). Then for every pair of vectors y ∈ Y and u ∈ U ,

K(j)
z y = PHw

([
IY w

w∗ IU

][
kj,z · y

0

])
,(4.10)

K̃(j)
z u = PHw

([
IY w

w∗ IU

][
0

k̃j,z · u

])
.(4.11)

Lemma 4.4. Let PHw be the orthogonal projection of Lw onto Hw.
(1) If g1 ∈ L2(Y) and g2 ∈ H+

2 (U), then

(4.12) PHw

[
IY w

w∗ IU

][
g1

g2

]
= PHw

[
IY w

w∗ IU

][
g1

0

]
.

(2) If g1 ∈ H−
2 (Y) and g2 ∈ L2(U), then

(4.13) PHw

[
IY w

w∗ IU

][
g1

g2

]
= PHw

[
IY w

w∗ IU

][
0

g2

]
.

Lemma 4.5. Let w ∈ S(U ,Y) and h ∈ Lw. Then for every t0 ∈ T, z ∈ D and
n ∈ N, the functions

hz(t) =

(
1− tt̄0
1− tz̄

)n

h(t) and h̃z(t) =

(
t− t0
t− z

)n

h(t)

belong to Lw and tend to h in norm of Lw as z→̂t0:

lim
z→̂t0

‖hz − h‖Lw = 0 and lim
z→̂t0

‖h̃z − h‖Lw = 0.
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5 The kernels L
(j)
z and their boundary analogues

For a Schur function w ∈ S(U ,Y) and an L(Y, G)-valued function a analytic at t0,
let us introduce the kernels

(5.1) L(j)z (t) =
1

j!

∂j

∂z̄j
(Kz(t)a(z)

∗) (j ≥ 0),

where Kz is defined as in (4.5). By the Leibnitz rule and the definition (4.7) of
K
(j)
z ,

(5.2) L(j)z (t) =

j∑
�=0

K(�)
z (t)aj−�(z)

∗.

On the other hand, letting b(z) := a(z)w(z), we get from (4.5)

Kz(t)a(z)
∗ =

[
IY w(t)

w(t)∗ IU

][
a(z)∗

−b(z)∗

]
· kz(t);

and another application of the Leibnitz rule leads us to

(5.3) L(j)z (t) =

[
IY w(t)

w(t)∗ IU

]
j∑

�=0

[
aj−�(z)

∗

−bj−�(z)
∗

]
k�,z(t),

where a�(z) = a(�)(z)/	! and b�(z) = b(�)(z)/	!. Formula (5.3) defines L
(j)
z only on

the unit circle. The analytic (conjugate-analytic) continuations of its top (bottom)
component inside the unit disk are given by

L
(j)
z,+(ζ) =

j∑
�=0

(aj−�(z)
∗ − w(ζ)bj−�(z)

∗) · k�,z(ζ),(5.4)

L
(j)
z,−(ζ) = ζ̄ ·

j∑
�=0

(w(ζ)∗aj−�(z)
∗ − bj−�(z)

∗) k̃�,z(ζ)
∗.(5.5)

By definition (5.1), the kernels L
(j)
z inherit the reproducing property (4.8) of K

(j)
z .

Lemma 5.1. For every j ∈ Z+, g ∈ G and z ∈ D at which a is analytic, the
function L

(j)
z g belongs to Hw; furthermore, for every f =

[
f+

f−

]
∈ Hw,

(5.6)
〈
f, L(j)z g

〉
Hw

=
1

j!

〈 dj

dzj
(a(z)f+(z)) , g

〉
G
.
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Proof. By Lemma 4.2, K
(�)
z y� belongs to Hw for every y� ∈ Y. Choosing

y� = aj−�(z)
∗g we get the first statement of the lemma from (5.2). The rest follows

from (4.8) and (5.1):

〈f, L(j)z g〉Hw =
1

j!

dj

dzj
〈f, Kz a(z)∗g〉Hw

=
1

j!

dj

dzj
〈f+(z), a(z)∗g〉Y

=
1

j!

dj

dzj
〈a(z)f+(z), g〉G .

�

Lemma 5.2. For every z ∈ D and g, g′ ∈ G,

(5.7)
〈
L(�)z g′, L(j)z g

〉
Hw

=
〈
P

w,a
j� (z)g′, g

〉
G

,

where P
w,a
ij (z) is given in (3.2). In particular,

(5.8) 〈L(n)z g, L(n)z g〉Hw =
∥∥∥L(n)z g

∥∥∥2
Hw

= 〈Pw,a
nn (z)g, g〉G .

Proof. Upon setting f = L
(�)
z g′ in (5.6), we get

〈L(�)z g′, L(j)z g〉Hw =
1

j!

〈 ∂j

∂zj
a(z)L

(�)
z,+(z) g

′, g
〉
G
.

This coincides with (5.7), since by (5.1) and (4.5),

L
(�)
z,+(t) g

′ =
1

	!

∂�

∂z̄j
(Kz,+(t)a(z)

∗g′) =
1

	!

∂�

∂z̄j

( IY − w(t)w(z)∗

1− tz̄
a(z)∗

)
g′;

and, on the other hand, a(z)L
(�)
z,+(z) = Pw,a

nn (z), by the last equality and (3.2).
Letting 	 = j = n in (5.7) gives (5.8). �

It turns out that if condition (3.5) holds, then the kernels L
(j)
z converge to the

“boundary kernels”

(5.9) L
(j)
t0 (t) :=

[
IY w(t)

w(t)∗ IU

]
j∑

�=0

[
aj−�(t0)

∗

−bj−�(t0)
∗

]
k�,t0(t)

for j = 0, . . . , n as z→̂t0 ∈ T, where

(5.10) kj,t0(ζ) =
ζj

(1− ζt̄0)j+1
and k̃j,t0(ζ) =

1

(ζ − t0)j+1
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are the boundary analogues of the kernels (4.3) and b0(t0)
∗, . . . ,bn(t0)

∗ are defined
via the limits

(5.11) bj(t0)
∗ := s−lim

z→̂t0
bj(z)

∗ = s−lim
z→̂t0

[ (a(z)w(z))(j)
j!

]∗
for j = 0, . . . , n,

whose existence is also a consequence of (3.5).

Theorem 5.3. Let w ∈ S(U ,Y), t0 ∈ T, n ∈ Z+ and let us assume that condition
(3.5) holds for an L(Y,G)-valued function a analytic at t0. Then the following
statements hold.

(1) The strong limits (5.11) exist; and the functions L
(j)
t0 (t) defined for j = 0, . . . , n

by formula (5.9) belong to the space Hw⊗G in the sense that L
(j)
t0 g ∈ Hw for

every g ∈ G.
(2) The kernels L

(j)
z defined by (5.3) converge to L

(j)
t0 in norm of Hw ⊗ G:

(5.12) L(j)z g
Hw

−→ L
(j)
t0 g as z→̂t0

for j = 0, . . . , n and every vector g ∈ G.
(3) The nontangential weak limit

(5.13) Pw,a
nn (t0) := w−lim

z→̂t0
Pw,a

nn (z)

(where Pw,a
nn (z) is defined in (3.2)) exists; moreover, for every g ∈ G,

(5.14) 〈Pw,a
nn (t0)g, g〉 = lim inf

z→t0
〈Pw,a

nn (z)g, g〉 .

Proof. According to (5.8), condition (3.5) tells us that lim inf
z→t0

‖L(n)z g‖
Hw <∞

for everyg ∈ G. Fix g ∈ G and pick a sequence {zi} of points in D approaching t0

such that the sequence ‖L(n)zi ‖Hw is bounded. Since every bounded set in a Hilbert
space is weakly compact, there is a subsequence of {zi} (which we continue to
denote by {zi}), such that the sequence {L(n)zi g} converges weakly in Hw, say to
Fg:

(5.15) Fg =

[
Fg,+

Fg,−

]
= w−lim

zi→t0
L(n)zi

g ∈ Hw.

Since Fg belongs to Hw, we can use the reproducing properties (4.8), (4.9) (with
j = 0) to conclude that

〈Fg,+(ζ), y〉Y = 〈Fg, Kζ y〉Hw = lim
zi→t0

〈
L(n)zi

g, Kζ y
〉

Hw
= lim

zi→t0

〈
L
(n)
zi,+(ζ) g, y

〉
,

〈Fg,−(ζ)

ζ̄
, u

〉
U
= 〈Fg, K̃ζ u〉Hw = lim

zi→t0
〈L(n)zi

g, K̃ζ u〉Hw = lim
zi→t0

〈L
(n)
zi,−(ζ)

ζ̄
g, u

〉
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for every ζ ∈ D, y ∈ Y, and u ∈ U . Then, by the explicit formulas (5.4) and (5.5)
for L

(n)
zi,+ and L

(n)
zi,−, we have

Fg,+(ζ) = w−lim
zi→t0

n∑
�=0

(a�(zi)
∗ − w(ζ)b�(zi)

∗) kn−�,zi
(ζ)g,(5.16)

Fg,−(ζ)

ζ̄
= w−lim

zi→t0

n∑
�=0

(w(ζ)∗a�(zi)
∗ − b�(zi)

∗) k̃n−�,zi
(ζ)∗g.(5.17)

It follows from (5.17) and formula (4.4) for k̃�,z that

(ζ̄ − t̄0)
n+1Fg,−(ζ)

ζ̄
= w−lim

zi→t0

n∑
�=0

(w(ζ)∗a�(zi)
∗ − b�(zi)

∗) (ζ̄ − z̄i)
�g

(5.18)

= w(ζ)∗
n∑

�=0

a�(t0)
∗(ζ̄ − t̄0)

�g − w−lim
zi→t0

n∑
�=0

(ζ̄ − z̄i)
�b�(zi)

∗g.

Thus, the weak limit on the right hand side of (5.18) exists for every ζ ∈ D. Since
the coefficients of a (vector-valued) polynomial of degree n are determined by its
values at n+1 points and depend on these values continuously, the existence of the
latter weak limit implies that the sequences {b�(zi)

∗g}i converge weakly for every
	 ∈ {0, . . . , n}. We set

(5.19) u� := w−lim
zi→t0

b�(zi)
∗ g for 	 = 0, . . . , n.

Making use of (5.19), we can rewrite (5.16) and (5.17) as

Fg,+(ζ) =

n∑
�=0

(a�(t0)
∗g − w(ζ)u�) kn−�,t0(ζ),

Fg,−(ζ) = ζ̄ ·

n∑
�=0

(w(ζ)∗a�(t0)
∗g − u�) k̃n−�,t0(ζ)

∗.

Setting ζ = t ∈ T in the last two formulas and taking into account that t̄ · k̃j,t0(t)
∗ =

kj,t0(t) for t ∈ T, we get the following expression for Fg:

(5.20) Fg(t) =

[
Fg,+(t)

Fg,−(t)

]
=

[
IY w(t)

w(t)∗ IU

]
n∑

�=0

[
a�(t0)

∗g

−u�

]
kn−�,t0(t).

Now we show that

(5.21) L(n)z g
Hw

−→ Fg as z→̂t0.
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To this end, we introduce auxiliary functions

(5.22) fz(t) =

[
IY w(t)

w(t)∗ IU

]
n∑

�=0

[
a�(z)

∗g

−u�

]
kn−�,z(t)

and

(5.23) hz(t) =

[
IY w(t)

w(t)∗ IU

]
n∑

�=0

[
a�(t0)

∗g

−u�

]
kn−�,t0(t) ·

(1− tt̄0
1− tz̄

)n+1

which belong to Lw for every fixed z ∈ D. Since
∑n

�=0 u�kn−�,z(t) belongs to
H2(U), it follows by formula (4.12) in Lemma 4.4 that

P
Hw fz = P

Hw

[
IY w

w∗ IU

]
n∑

�=0

[
kn−�,z · a�(z)

∗g

0

]
.

Therefore, by (4.10) and (5.2),

P
Hw fz =

n∑
�=0

P
Hw

[
IY w

w∗ IU

][
kn−�,z · a�(z)

∗g

0

]

=
n∑

�=0

K(n−�)
z a�(z)

∗g = L(n)z g.(5.24)

On the other hand, since

k�,z(t) =
t�(1 − z̄t)n−�

(1− z̄t)n+1
converges to

t�(1 − t̄0t)
n−�

(1− z̄t)n+1
= k�,t0(t) ·

(1− tt̄0
1− tz̄

)n+1

uniformly in t ∈ T as z tends to t0 and since a is analytic at t0 so that

lim
z→t0

‖a�(z)
∗g − a�(t0)

∗g‖U = 0 for 	 = 0, 1, . . . ,

it is readily seen from (5.22) and (5.23) that

(5.25) lim
z→t0

‖fz − hz‖Hw = 0.

Furthermore, comparing formula (5.23) for hz with (5.2) gives

(5.26) hz(t) = Fg(t)
(1− tt̄0
1− tz̄

)n+1

.

Setting h = Fg in Lemma 4.5, we conclude that the function hz of the form (5.26)

belongs to Lw for every z ∈ D and hz
Lw

−→ Fg as z→̂t0. Combining this latter

convergence with (5.25) gives fz
Lw

−→ Fg as z→̂t0. Since Fg ∈ Hw, we have

P
Hw hz

Hw

−→ P
Hw Fg = Fg as z→̂t0,
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which, together with (5.24), gives (5.21). Upon applying the standard estimates

‖f±(z)‖Y ≤
‖f‖Hw√
1− |z|2

(f =
[

f+

f−

]
∈ Hw, z ∈ D)

to the function f = Fg − L
(n)
z g, we get

‖Fg,±(ζ)− L
(n)
z,±(ζ) g‖Y ≤

‖Fg − L
(n)
z g‖Hw√

1− |ζ|2
.

This, together with (5.21), implies that

Fg,+(ζ) = s−lim
z→t0

L
(n)
z,+(ζ) g, Fg,−(ζ) = s−lim

z→t0
L
(n)
z,−(ζ) g

for every ζ ∈ D; thus,

(5.27) Fg(ζ) = s−lim
z→t0

L(n)z (ζ) g.

Now we repeat the arguments used to derive (5.19) from (5.15). However, since
now we start with the strong limit (5.27) rather than the weak subsequential limit
(5.15), the conclusion strengthening (5.19) is that for every g ∈ G, the strong limits
uj = s−lim

z→t0
bj(z)

∗g exist for j = 0, . . . , n.

Define operators bj(t0)
∗ : G → U by

bj(t0)
∗g = s−lim

z→t0
bj(z)

∗g (j = 0, . . . , n).

It is clear that bj(t0)
∗ is a linear operator defined on all of G. Thus, by the Banach–

Steinhaus theorem, it is bounded. This proves statement (1) in the theorem.
Again, let g ∈ G be fixed. Substituting uj = bj(t0)

∗g into (5.20) and comparing
the resulting formula with (5.9), we see that L

(n)
t0 g = Fg. Therefore, L

(n)
t0 g belongs

to Hw for every g ∈ G. It now follows from (5.21) that L
(n)
z g

Hw

−→ L
(n)
t0 g, which

completes the proof of statements (1) and of statement (2) for j = n. To complete
the proof of statement (2), we take advantage of the recursive relation

(5.28) L
(j−1)
t0 (t) =

1

t

(
(1− tt̄0)L

(j)
t0 (t)−

[
IY w(t)

w(t)∗ IU

][
aj(t0)

∗

−bj(t0)
∗

])
,

verification of which is straightforward, and show that

(5.29) L
(j)
t0 g ∈ Hw =⇒ L

(j−1)
t0 g ∈ Hw.

Indeed, if L
(j)
t0 g ∈ Hw, then in particular, L

(j)
t0 g ∈ Lw; and it follows from (5.28)

that L
(j−1)
t0 g ∈ Lw. Furthermore, by (5.28),

L
(j−1)
t0,+ (ζ) g = f+(ζ)/ζ,
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where

f+(ζ) := (1− ζt̄0)L
(j)
t0,+(ζ) g − aj(t0)

∗ g + w(ζ)bj(t0)
∗ g.

The function f+ belongs to H+
2 (Y) since L

(j)
t0,+ g ∈ H+

2 (Y). Since

f+(0) = L
(j)
t0,+(0) g − aj(t0)

∗g + w(0)bj(t0)
∗g = 0,

the function L
(j−1)
t0,+ g = f+(ζ)/ζ also belongs to H+

2 (Y). Comparing the bottom
components in (5.28), we get

L
(j−1)
t0,− (ζ) g = (ζ̄ − t̄0)L

(j)
t0,−(ζ) g − ζ̄w(ζ)∗aj(t0)

∗ g + ζ̄bj(t0)
∗ g;

thus, the assumption L
(j)
t0,− g ∈ H−

2 (U) implies that L
(j−1)
t0,− g ∈ H−

2 (U). Therefore,
L
(j−1)
t0 g ∈ Hw, by Definition 4.1. Since the membership L

(n)
t0 g ∈ Hw is already

proved, the inverse induction arguments show that L
(j)
t0 g ∈ Hw for every g ∈ G and

j ∈ {0, . . . , n}. Repeating the arguments used to get (5.21) (now with j replacing
n), we conclude that (5.12) holds for every j = 0, . . . , n.

To prove statement (3), we note that by formula (5.8) and in view of (5.12),

(5.30) lim
z→̂t0

〈Pw,a
nn (z)g, g〉G = lim

z→̂t0

∥∥L(n)z g
∥∥2

Hw
=

∥∥ lim
z→̂t0

L(n)z g
∥∥2

Hw
=

∥∥L
(n)
t0 g

∥∥2
Hw

,

which proves the existence of the weak limit in (5.13). Observe that the inequality

(5.31) lim inf
z→t0

〈Pw,a
nn (z)g, g〉 ≤ lim

z→̂t0
〈Pw,a

nn (z)g, g〉

is obvious, since the first limit allows z to approach t0 unrestrictedly in D (more
precisely, unrestrictedly in the neighborhoodUt0,ε of t0 of the form (2.1) on which a

is analytic), while the second limit is nontangential. To prove the reverse inequality,
assume that {zj} is a sequence that leads to the limit inferior in (5.14). Then the
sequence of numbers ‖L(n)zj g‖2Hw converges to the limit inferior and, in particular,
is bounded. Thus there exists a subsequence of the sequence {zj} (still denoted by
{zj}) such that L

(n)
zj g converges to L

(n)
t0 g weakly in Hw. Then

‖L
(n)
t0 g‖2Hw ≤ lim

zj→t0
‖L(n)zj

g‖2Hw = lim inf
z→t0

〈Pw,a
nn (z)g, g〉 .

Combining the latter inequality with (5.30) gives

lim
z→̂t0

〈Pw,a
nn (z)g, g〉G = ‖L

(n)
t0 g‖2Hw ≤ lim inf

z→t0
〈Pw,a

nn (z)g, g〉 ,

which, together with (5.31), implies (5.14) and completes the proof. �
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In the next section, we make extensive use of the polynomials

(5.32) Aj(z) =

j∑
�=0

zj−�(1− zt̄0)
�a�(t0)

∗, Bj(z) =

j∑
�=0

zj−�(1− zt̄0)
�b�(t0)

∗,

which can be written in terms of the formula (2.12) as pa�
j and pb�

j , respectively.

Here we just note that formula (5.9) for L
(j)
t0 can be written in terms of these

polynomials as

(5.33) L
(j)
t0 (t) =

[
IY w(t)

w(t)∗ IU

][
Aj(t)

−Bj(t)

]
1

(1− tt̄0)j+1
.

6 The kernels L̃
(j)
z and their boundary analogues

The kernels L
(j)
z were introduced in Section 4 as certain tangential analogues

of the kernels K
(j)
z defined in (4.7). In this section, we introduce the kernels

L̃
(j)
z , which are tangential counterparts of the kernels K̃

(j)
z also defined in (4.7).

The construction is carried out under the assumption (3.5), so that we have at
our disposal the operators a�(t0) = a(�)(t0)/	! ∈ L(Y, G) for all 	 ∈ Z+ and
b�(t0)

∗ = s−lim
z→̂t0

[a(z)w(z)]∗j ∈ L(G, U) for 	 = 0, . . . , n. Therefore, we can introduce

the polynomials (5.32) for j = 0, . . . , n and their derivatives

(6.1) Aj,i(z) :=
1

i!

di

dzi
Aj(z) and Bj,i(z) :=

1

i!

di

dzi
Bj(z),

so that

(6.2) Aj(z) =

j∑
i=0

Aj,i(t0)(z − t0)
i and Bj(z) =

j∑
i=0

Bj,i(t0)(z − t0)
i.

Now we introduce the kernels

(6.3) L̃(j)z (t) :=
1

j!

∂j

∂zj

(
K̃z(t)Bj(z)

)
=

j∑
i=0

K̃(i)
z (t)Bj,j−i(z)

for j = 0, . . . , n, where K̃z is given by (4.6) and where the second equality follows
by the Leibnitz rule. Making use of (4.6) and of the functions

(6.4) cj(z) = w(z)Bj(z) (j = 0, . . . , n),

we can write

K̃z(t)Bj(z) =

[
IY w(t)

w(t)∗ IU

][
−cj(z)

Bj(z)

]
· k̃z(t);
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another application of Leibnitz rule leads us to

(6.5) L̃(j)z (t) =

[
IY w(t)

w(t)∗ IU

]
j∑

i=0

[
−cj,j−i(z)

Bj,j−i(z)

]
k̃i,z(t).

The next lemma establishes a reproducing property of the kernel L̃
(j)
z (t).

Lemma 6.1. For every j ∈ Z+, g ∈ G and z ∈ D, the function L̃
(i)
z g belongs to

Hw; furthermore, for every f =
[
f+

f−

]
∈ Hw,

(6.6)
〈
f, L̃(j)z g

〉
Hw

=
1

j!

〈 dj

dz̄j

(Bj(z)
∗f−(z)

z̄

)
, g

〉
G
.

Proof. By Lemma 4.2, K̃
(i)
z ui belongs to the space Hw for every ui ∈ U .

Upon choosing ui = Bj,j−i(z) g, we get the first statement directly from (6.3).
Using the reproducing property (4.9), we get (6.6):

〈f, L̃(j)z g〉Hw =
1

j!

dj

dz̄j

〈
f, K̃z Bj(z) g

〉
Hw

=
1

j!

dj

dz̄j

〈f−(z)

z̄
, Bj(z) g

〉
U
=

1

j!

〈 dj

dz̄j

(Bj(z)
∗f−(z)

z̄

)
, g

〉
G
.

�

To extend definitions (6.5) of L̃
(j)
z to the boundary by continuity (that is, letting

z→̂t0 in (6.5)), we need to be sure that the functions

cj,i(z) =
1

i!

di

dzi
cj(z) =

1

i!

di

dzi
(w(z)Bj(z))

possess at least weak angular limits at t0. The next theorem shows that condition
(3.5) guarantees the existence of such limits even in the strong sense.

Theorem 6.2. Assume that condition (3.5) holds for w ∈ S(U , Y) and an L(Y,G)-
valued function a analytic at t0 ∈ T. Let Aj and Bj be the polynomials defined in
(5.32). Then the strong nontangential boundary limits

(6.7) cj,i(t0) :=
1

i!
· s−lim

z→̂t0
(w(z)Bj(z))

(i)
(0 ≤ i ≤ j ≤ n)

exist; moreover,

(6.8) cj,i(t0) = Aj,i(t0) for 0 ≤ i ≤ j ≤ n.
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Proof. Fix j ∈ {0, . . . , n} and g ∈ G. By Theorem 5.3, L
(j)
t0 g belongs to Hw;

therefore, its top component L
(j)
t0,+g belongs to H+

2 (Y). By formula (5.33),

L
(j)
t0,+(t)g =

Aj(t)− w(t)Bj(t)

(1− tt̄0)j+1
g.

Now we apply the standard H2 estimate∥∥∥L
(j)
t0,+(ζ)g

∥∥∥
Y
≤ (1 − |ζ|2)−1/2 ·

∥∥∥L
(j)
t0,+g

∥∥∥
H+

2 (Y)

to the analytic extension of L
(j)
t0,+g inside the unit disk to get

‖(Aj(ζ) − w(ζ)Bj(ζ))g‖ ≤
|1− ζt̄0|

j+1√
1− |ζ|2

·
∥∥∥L

(j)
t0,+g

∥∥∥
H+

2 (Y)
.

Therefore,
‖(Aj(ζ) − w(ζ)Bj(ζ))g‖ = o(|ζ − t0|

j) as z→̂t0.

Consequently,

(6.9) s−lim
z→̂t0

di

dζi
(Aj(ζ)− w(ζ)Bj(ζ)) g = 0 for i = 0, . . . , j.

Since g ∈ G is arbitrary, since Aj is a polynomial and since by (6.2)

1

i!
· lim

z→t0

di

dζi
Aj(ζ) = Aj,i(t0),

(6.9) implies (6.7) and (6.8). �

Now we introduce the boundary kernels L̃
(j)
t0 upon letting z → t0 in (6.5):

(6.10) L̃
(j)
t0 (t) =

[
IY w(t)

w(t)∗ IU

]
j∑

i=0

[
−Aj,j−i(t0)

Bj,j−i(t0)

]
k̃i,t0(t).

Since, by (6.2),

j∑
i=0

[
−Aj,j−i(t0)

Bj,j−i(t0)

]
k̃i,t0(t) = k̃j,t0(t) ·

j∑
i=0

[
−Aj,i(t0)

Bj,i(t0)

]
(t− t0)

i

=

[
−Aj(t)

Bj(t)

]
k̃j,t0(t),

we can rewrite (6.10) as

(6.11) L̃
(j)
t0 (t) =

[
IY w(t)

w(t)∗ IU

][
−Aj(t)

Bj(t)

]
k̃j,t0(t).

Comparing the latter formula with (5.33) leads to the conclusion that

(6.12) L
(j)
t0 (t) = (−1)jtj+10 L̃

(j)
t0 (t) for j = 0, . . . , n.
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Theorem 6.3. Assume that (3.5) holds for w ∈ S(U ,Y) and an L(Y,G)-valued
function a analytic at t0, and let L̃

(j)
z and L̃

(j)
t0 be the kernels introduced in (6.5)

and (6.10), respectively. Then for every vector g ∈ G, the function L̃
(j)
t0 (t) g belongs

to Hw, and L̃
(j)
z g

Hw

−→ L̃
(j)
t0 g as z→̂t0.

Proof. If condition (3.5) holds, then L
(j)
t0 g belongs to Hw by Theorem 5.3.

Then it follows by (6.12), that

h(t) := L̃
(j)
t0 (t) g

belongs to Hw as well. Furthermore, by Lemma 4.5,

(6.13) h̃z(t) =

(
t− t0
t− z

)j+1

h(t) =

(
t− t0
t− z

)j+1

L̃
(j)
t0 (t) g

belongs to Lw and tends to h in norm of Lw as z→̂t0. Then PHw h̃z (the orthogonal
projection of h̃z onto Hw) belongs to Hw and tends to h in norm of Hw as z→̂t0.
Thus, to complete the proof, it suffices to show that

(6.14) PHw h̃z = L̃(j)z g.

To this end, we use the formula (6.11) for L̃
(j)
t0 to rewrite (6.13) in the form

h̃z(t) =

[
IY w(t)

w(t)∗ IU

][
−Aj(t)

Bj(t)

]
1

(t− z)j+1
.

By construction (6.2), Aj is a polynomial in t ∈ T of degree j; thus the function

Aj(t) g

(t− z)j+1
=

t̄j+1Aj(t) g

(1− t̄z)j+1
belongs to H−

2 (Y).

Then by formula (4.13) in Lemma 4.4,

(6.15) PHw h̃z = PHw

[
IY w(t)

w(t)∗ IU

][
0

Bj(t)g

]
1

(t− z)j+1
.

Note that by (6.2),

Bj(t)

(t− z)j+1
=

j∑
i=0

Bj,j−i(t0)(t− t0)
j−i 1

(t− z)j+1

=

j∑
i=0

j−i∑
�=0

(
j − i

	

)
Bj,j−i(t0)

(z − t0)
�

(t− z)i+�+1

=

j∑
k=0

1

(t− z)k+1

∑
i+�=k

(
j − i

	

)
Bj,j−i(t0)(z − t0)

�.
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Substituting the latter relation into (6.15) and then making use of (4.11), we get

PHw h̃z =

j∑
k=0

PHw

([
IY w(t)

w(t)∗ IU

][
0
IU

(t−z)k+1

])

×
∑

i+�=k

(
j − i

	

)
Bj,j−i(t0)(z − t0)

�

=

j∑
k=0

K̃(k)
z (t)

∑
i+�=k

(
j − i

	

)
Bj,j−i(t0)(z − t0)

� g.(6.16)

On the other hand, differentiating the second equality in (6.2), we get

Bj,i(z) =
1

i!

di

dzi
Bj(z) =

j−i∑
�=0

(
i+ 	

	

)
Bj,i+�(t0)(z − t0)

�;

therefore,

Bj,j−k(z) =
∑

i+�=k

(
j − 	

	

)
Bj,j−i(t0)(z − t0)

�.

Substituting the latter formula into (6.16), we obtain

PHw h̃z =

j∑
k=0

K̃(k)
z (t)Bj,j−k(t) g,

which, together with (6.3), implies (6.14). This completes the proof of the
theorem. �

7 Proof of Theorem 3.1

Now we are in a position to give a proof of Theorem 3.1. Since statements (2) and
(3) have been already proved in Theorems 5.3 and 6.2, respectively, it remains to
prove the two other statements. First we recall that, by Theorems 5.3 and 6.3, the
functions L

(j)
t0 g and L̃

(j)
t0 g defined via formulas (5.9) and (6.10) belong to Hw for

every j ∈ {0, . . . , n}, g ∈ G and, furthermore,

(7.1) L(j)z g
Hw

−→ L
(j)
t0 g and L̃(j)z g

Hw

−→ L̃
(j)
t0 g as z→̂t0.

Writing

Lz = [ L
(0)
z . . . L

(n)
z ], L̃z =[ L̃

(0)
z . . . L̃

(n)
z ],(7.2)

Lt0 = [ L
(0)
t0 . . . L

(n)
t0

], L̃t0 =[ L̃
(0)
t0 . . . L̃

(n)
t0

],(7.3)
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we can express (7.1) equivalently as

(7.4) Lzg
Hw

−→ Lt0g and L̃zg
Hw

−→ L̃t0g (z→̂t0),

holding for every vector g ∈ Gn+1.

Proof of statement (1). We first note that (5.8) for the block entries P
w,a
i,j (z)

of the tangential Schwarz–Pick matrix Pw,a
n (z) can be equivalently expressed as a

single equality

(7.5) 〈Lzg
′〉Hw = 〈Pw,a

n (z)g, g′〉Gn+1

holding for every g, g′, where Lz is given in (7.2). By the first convergence in
(7.4), we have

lim
z→̂t0

〈Lzg, Lzg
′〉Hw =

〈
lim

z→̂t0
Lzg, lim

z→̂t0
Lzg

′

〉
Hw

= 〈Lt0g, Lt0g
′〉Hw ,

which together with (7.5) implies (since g and g′ are arbitrary) that the weak limit
Pw,a

n (t0) := w−lim
z→̂t0

Pw,a
n (z) exists and is uniquely defined by the equality

(7.6) 〈Pw,a
n (t0)g, g′〉Gn+1 = 〈Lt0g, Lt0g

′〉Hw , g,g′ ∈ Gn+1.

Proof of statement (4). From definitions (2.8), (3.4) and (2.14) of Hn(z),
Ta

n(z) and Ub

n(z) respectively, it follows that the ij-th block entry Rij(z) of the
matrix R(z) := Ta

n(z)Hn(z)U
b

n(z) equals

(7.7) Rij(z) =

j∑
�=0

i∑
k=0

aj−�(z)w�+k+1(z)Bi,i−k(z) (i, j = 0, . . . , n).

On the other hand, it follows from (5.2) and (6.3), that for every g, g′ ∈ G,〈
L̃(i)z g, L(j)z g′

〉
Hw

=

〈 i∑
k=0

K̃(k)
z (t)Bi,i−k(z)g,

j∑
�=0

K(�)
z (t)aj−�(z)

∗g′
〉

Hw

=

j∑
�=0

i∑
k=0

〈
K̃(k)

z (t)Bi,i−k(z)g, K(�)
z (t)aj−�(z)

∗g′
〉

Hw
.(7.8)

Recall the equality 〈
K̃(k)

z u, K(�)
z y

〉
Hw

= 〈wk+�+1(z)u, y〉Y

holding for every z ∈ D, k, 	 ∈ Z+, u ∈ U , and y ∈ Y (see Lemma 2.3 in [4] for the
proof). Letting u = Bi,i−k(z)g and y = aj−�(z)

∗g′ in this equality, we get〈
K̃(k)

z Bi,i−k(z), K(i)
z aj−�(z)

∗g′
〉

Hw
= 〈wk+�+1(z)Bi,i−k(z)g

′, aj−�(z)
∗g〉G

= 〈aj−�(z)wk+�+1(z)Bi,i−k(z)g, g′〉G .
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Substituting the latter equalities into the right hand side of (7.8) and making use
of (7.7) leads to〈

L̃(i)z g′, L(j)z g
〉

Hw
= 〈Rij(z)g, g′〉G (i, j = 0, . . . , n; g, g′ ∈ G),

which can be written equivalently in terms of (7.2) as〈
L̃zg, Lzg

′
〉

Hw
= 〈R(z)g, g′〉Gn+1 =

〈
Ta

n(z)Hn(z)U
b

n(z)g, g′
〉
Gn+1 ,

holding for all vectors g, g′ ∈ Gn+1. Since matrix M given by (2.17) is unitary, we
can replace g by Mg to get

(7.9)
〈
L̃zMg, Lzg

′
〉

Hw
=

〈
Ta

n(z)Hn(z)U
b

n(z)Mg, g′
〉
Gn+1 ,

also holding for all g, g′ ∈ Gn+1. By (7.4), we can pass in (7.9) to the limits
as z→̂t0 to conclude (as in the proof of statement (1) above) that the weak limit
Pw,a

n (t0) in (3.8) exists and satisfies

(7.10) 〈Pw,a
n (t0)g, g′〉Gn+1 =

〈
L̃t0Mg, Lt0g

′
〉

Hw
for all g, g′ ∈ Gn+1.

Note that relations (6.13) can be written in matrix form as

(7.11) Lt0 = L̃t0M,

using which we combine (7.10) and (7.6) to get

〈Pw,a
n (t0)g, g′〉 =

〈
L̃t0Mg, Lt0g

′
〉

Hw
= 〈Lt0g, Lt0g

′〉Hw = 〈Pw,a
n (t0)g, g′〉.

Since the latter holds for every g, g′ ∈ Gn+1, we also have Pw,a
n (t0) = Pw,a

n (t0).

By definitions (2.6) of P̃w
n (z) and (3.7) of Ub

n(z), the ij-th block entry Qw
ij(z)

of the matrix Qw
n (z) := Ub

n(z)
∗P̃w

n (z)U
b

n(z) equals

Qw
ij(z) =

i∑
�=0

j∑
k=0

1

	!k!
Bi,i−�(z)

∗
( ∂�+k

∂z̄�∂zk

IU − w(z)∗w(z)

1− |z|2

)
, Bj,j−k(z)

=
1

i!j!

∂i+j

∂z̄i∂zj

(
Bi(z)

∗ IU − w(z)∗w(z)

1− |z|2
Bj(z)

)
,(7.12)

where the second equality follows from (6.1) by the Leibnitz rule. On the other
hand, letting f = L̃

(i)
z g′ (for an arbitrary fixed g′ ∈ G) in (6.6) gives

(7.13) 〈L̃(j)z g′, L̃(i)z g〉Hw =
1

i!

〈 ∂i

∂z̄i

(Bi(z)
∗L̃

(j)
z,−(z)

z̄

)
g′, g

〉
G
.
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By (6.3) and (4.6), the bottom component of L̃
(j)
z (z) is equal to

L̃
(j)
z,−(z) =

1

j!

∂j

∂zj
(K̃z,−(z)Bj(z)) =

1

j!

∂j

∂zj

(
z̄
1− w(z)∗w(ζ)

1− z̄ζ
Bj(z)

)
.

Substituting the latter formula into the right hand side expression in (7.13) and
comparing the result with (7.12), we conclude that〈

L̃(j)z g′, L̃(i)z g
〉

Hw
=

〈
Qw

ij(z)g
′, g

〉
G

.

Since the latter equalities hold for every i, j = 0, . . . , n and every g, g′ ∈ G, they can
be equivalently written in terms of (7.2) as

(7.14)
〈
L̃zg, L̃zg

′
〉

Hw
= 〈Qw

n (z)g, g′〉 , g, g′ ∈ Gn+1.

By the second convergence in (7.4), we can pass in (7.9) to the limits as z→̂t0 to
conclude that the weak limit Qw

n (t0) in (3.9) exists and satisfies

〈Qw
n (t0)g, g′〉 =

〈
L̃t0g, L̃t0g

′
〉

Hw
.

Replacing g and g′ by Mg and Mg′ respectively, and making use of (7.11) and
(7.6), we get

〈Qw
n (t0)Mg′, Mg〉 =

〈
L̃t0Mg, L̃t0Mg′

〉
Hw

= 〈Lt0g, Lt0g
′〉Hw = 〈Pw,a

n (t0)g, g′〉

and conclude that Pw,a
n (t0) = M∗Qw

n (t0)M. Finally, the positivity of Pw,a
n (t0)

follows from (7.6). This completes the proof of Theorem 3.1.

8 Carathéodory–Julia condition and boundary behav-
ior of functions in H

w

In this section, we justify the terminology “boundary kernels” for L
(j)
t0 and L̃

(j)
t0 by

showing that these kernels reproduce (directional) nontangential boundary limits
for the j-th derivative of functions f ∈ Hw.

Let us assume that condition (3.5) holds. Then the kernels L
(j)
t0 and L̃

(j)
t0 are

well-defined by formulas (5.9) and (6.10) for j = 0, . . . , n; furthermore, (7.1) holds.
Then for every function f =

[
f+

f−

]
∈ Hw and every vector g ∈ G, we can pass to the

limits in (5.6) and (6.6) to get

〈
lim

z→̂t0
(af+)j(z), g

〉
G
=

〈
f, L

(j)
t0 g

〉
Hw , (af+)j(z) :=

(af+)
(j)(z)

j!
,(8.1) 〈

lim
z→̂t0

1

j!

dj

dz̄j

(Bj(z)
∗f−(z)

z̄

)
, g

〉
G
=

〈
f, L̃

(j)
t0 g

〉
Hw .(8.2)
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Therefore, the weak limits

(8.3) (af+)j(t0) := w−lim
z→̂t0

(af+)j(z), Cj(t0) := w−lim
z→̂t0

1

j!

dj

dz̄j

Bj(z)
∗f−(z)

z̄

exist for j = 0, . . . , n. By (5.6), (8.1) and (7.1),

‖(af+)j(z)− (af+)j(t0)‖Y = sup
‖g‖≤1

∣∣〈(af+)j(z)− (af+)j(t0), g〉G
∣∣

=
∣∣∣〈f, L(j)z g − L

(j)
t0 g〉Hw

∣∣∣
≤ ‖f‖Hw · ‖L(j)z g − L

(j)
t0 g‖Hw → 0

as z→̂t0; and, therefore, the first limit in (8.3) exists in the strong sense. The strong
convergence of the second limit in (8.3) follows in much the same way. Note also
that, conversely, if the nontangential boundary limit

(8.4) (af+)n(t0) =
1

n!
w−lim

z→̂t0
(af+)

(n)(z) exists for every f =

[
f+

f−

]
∈ Hw,

then condition (3.5) holds. Indeed, by (5.6), (8.4) means that the limit
lim

z→̂t0
〈f, L(n)z g〉Hw exists for every g ∈ G and every f ∈ Hw. Fix g and a non-

tangential neighborhood Γt0,α,ε of t0 (see (2.2)). Then 〈f, L
(n)
z g〉Hw is bounded for

every f ∈ Hw and z ∈ Γt0,α,ε, so by the uniform boundedness principle, ‖L(n)z g‖Hw

is uniformly bounded on Γt0,α,ε. By (5.8), we conclude that
〈
Pw,a

n,n(z)g, g
〉
G

is
uniformly bounded on Γt0,α,ε, which clearly implies (3.5). We have arrived at the
following result.

Theorem 8.1. Let w ∈ S(U ,Y), n ∈ Z+ and let a be an L(Y, G)-valued function
analytic in a neighborhood of t0 ∈ T. Then condition (3.5) is equivalent to (8.4).
In this case, the strong limits

(af+)j(t0) = s−lim
z→̂t0

(af+)j(z) and Cj(t0) = s−lim
z→̂t0

1

j!

dj

dz̄j

Bj(z)
∗f−(z)

z̄

exist and are reproduced via the inner product of Hw by formulas (8.1) and (8.2).

In the case where G = Y and a(z) ≡ IY , Theorem 8.1 simplifies as follows.

Theorem 8.2. Let w ∈ S(U ,Y), n ∈ Z+ and t0 ∈ T. Then (2.15) holds if and only
if the nontangential boundary limit

(8.5) f+,n(t0) =
1

n!
w−lim

z→̂t0
f
(n)
+ (z) exists for every f =

[
f+

f−

]
∈ Hw.
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In this case, the strong limits

s−lim
z→̂t0

f
(j)
+ (z) and s−lim

z→̂t0

dj

dz̄j

pw,�
j (z)∗f−(z)

z̄

exist for j = 0, . . . , n, where pw�
j are the polynomials defined in (2.12).

Making use of Theorem 8.2 and following the recipe of Remark 1.4, one can
formulate the dual condition (2.20) in terms of boundary limits of Hw-functions.
We omit the precise formulation and pass directly to the “combined” result.

Theorem 8.3. Let w ∈ S(U ,Y), n ∈ Z+ and t0 ∈ T. Then conditions (2.15) and
(2.20) hold if and only if the nontangential boundary limit

(8.6) fn(t0) :=
1

n!
w−lim

z→̂t0

[
dn

zn f+(z)
dn

z̄n f−(z)

]
exists for every f =

[
f+

f−

]
∈ Hw.

In this case, the strong limits fj(t0) exist for j = 0, . . . , n.

The latter results look somewhat more elegant in the context of the “one-
component” de Branges-Rovnyak space H(w), which was introduced in [7] as the
space of all functions h ∈ H+

2 (Y) such that

(8.7) ‖h‖2H(w) := sup
g∈H+

2 (U)

{
‖h+ wg‖2

H+
2 (Y)

− ‖g‖2
H+

2 (U)

}
<∞.

Alternatively, H(w) can be defined as the reproducing kernel Hilbert space with
reproducing kernel

(8.8) N(z, ζ) =
IY − w(z)w(ζ)∗

1− zζ̄

obtained via Aronszajn’s construction [2]. The “two-component” space Hw was
originally introduced in [8] (in a slightly different, but equivalent, form) as the
reproducing kernel Hilbert space with reproducing kernel

(8.9) Rζ(z) =

⎡⎢⎣ Nζ(z) ζ
w(z)− w(ζ)

z − ζ

z̄
w(z)∗ − w(ζ)∗

z̄ − ζ̄
z̄ζ

IU − w(z)∗w(ζ)

1− z̄ζ

⎤⎥⎦ .

Its range space definition with the integral formula for the inner product presented
in Section 4 comes from [12]. The space Hw serves as the state space for the unitary
realization of w; namely, there exist a unitary operator U = [A B

C D ] :
[

Hw

U

]
→

[
Hw

Y

]
such that

w(z) = D + zC(IHw − zA)−1B for every z ∈ D.
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Using equalities UU∗ = IHw⊕Y and U∗U = IHw⊕U , one can factorize the kernel
(8.9) in terms of the entries of U as

(8.10) Rζ(z) = H(z)H(ζ)∗ where H(z) =

[
C(I− zA)−1

z̄B∗(I− z̄A∗)−1

]
.

Theorem 8.4. Let w ∈ S(U ,Y), n ∈ Z+ and let a be an L(Y, G)-valued function
analytic at t0 ∈ T. Then condition (3.5) holds if and only if the nontangential
boundary limit

(8.11) w−lim
z→̂t0

(ah)(n)(z) exists for every h ∈ H(w).

In this case, the strong limits s−lim
z→̂t0

(ah)(j)(z) exist for j = 0, . . . , n.

Proof. It follows from factorization (8.10) that for every h ∈ H(w), there
exists a function h̃ ∈ H−

2 (U) such that f =
[

h
h̃

]
belongs to Hw. Indeed, every

h ∈ H(w) is of the form h(z) = C(I− zA)−1x for some x ∈ Hw, and we can simply
take h̃(z) = z̄B∗(I − z̄A∗)−1x. If we now assume that condition (3.5) holds, then
(8.11) and the last statement in the theorem follow by Theorem 8.1.

To prove that (8.11) implies (3.5), we reproduce the arguments from the proof of
Theorem 8.1, adapted to the single-component framework. Namely, we introduce

Tz(t) =
1

n!

∂n

∂z̄n
(N(ζ, z)a(z)∗) ,

(the analogue of L
(n)
z (see (5.1)) and note the equalities

(8.12)
1

n!
〈(a(z)h(z))(n), g〉G = 〈h, Tzg〉H(w)

and

(8.13) ‖Tzg‖
2
H(w) = 〈P

w,a
nn (z)g, g〉G

holding for every g ∈ G and h ∈ H(w). To prove (8.12) and (8.13), we repeat the
proofs of Lemma 5.1 and Lemma 5.2, respectively, and use the fact that N(z, ζ) is a
reproducing kernel for H(w). Assuming that condition (8.11) holds, we conclude
by (8.12) that the limit lim

z→̂t0
〈h, Tzg〉H(w) exists for every g ∈ G and every h ∈ H(w).

Then 〈h, Tzg〉H(w) is bounded for every fixed h ∈ H(w) and every z from a fixed
nontangential neighborhood Γt0,α,ε of t0. By the uniform boundedness principle,
‖Tzg‖H(w) is uniformly bounded on U , which implies (3.5) by (8.13). �
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Recently, Fricain and Mashreghi [10] showed that if a(z) ≡ 1 and

w(z) =
∏
k

āk

ak
·

z − ak

1− zāk
· exp

{
−

∫ 2π

0

eiθ + z

eiθ − z
dμ(θ)

}

is a scalar Schur-class function, then (8.11) holds if and only if

(8.14)
∑

k

1− |ak|
2

|t0 − ak|2n+2
+

∫ 2π

0

dμ(θ)

|t0 − eiθ|2n+2
<∞

(in case w is inner, this result was established in the remarkable paper [1]).
Thus, in the scalar valued case, condition (8.14) appears to be equivalent to the
Carathéodory–Julia condition (1.9). A natural question concerning the opera-
tor valued analogue of (8.14) (supposedly equivalent to condition (3.5)) will be
presented on a separate occasion.
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