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Abstract. It is known [6] that for every function f in the generalized Schur
class Sκ and every nonempty open subset Ω of the unit disk D, there exist

points z1, . . . , zn ∈ Ω such that the n × n Pick matrix
h

1−f(zi)f(zj)∗
1−ziz̄j

in

j,i=1

has κ negative eigenvalues. In this paper we discuss existence of an integer
n0 such that any Pick matrix based on z1, . . . , zn ∈ Ω with n ≥ n0 has κ
negative eigenvalues. Definitely, the answer depends on Ω. We prove that if
Ω = D, then such a number n0 does not exist unless f is a ratio of two finite
Blaschke products; in the latter case the minimal value of n0 can be found.
We show also that if the closure of Ω is contained in D then such a number
n0 exists for every function f in Sκ.

Mathematics Subject Classification (2000). 41A05, 32A35.

Keywords. Pick matrices, generalized Schur functions.

1. Introduction

Let κ be a fixed nonnegative integer. We say that a meromorphic function f on
the unit disk D belongs to the generalized Schur class Sκ if the kernel

kf (z, ζ) :=
1 − f(z)f(ζ)∗

1 − zζ̄
(1.1)

has κ negative squares on D∩ρ(f), where ρ(f) stands for the domain of analyticity
of f ; in formulas:

sq−(kf ) = κ. (1.2)

In more detail, the definition can be given as follows: for every choice of an integer
n and of n points z1, . . . , zn ∈ D ∩ ρ(f), the Pick matrix

Pn(f ; z1, . . . , zn) :=
[
1 − f(zi)f(zj)∗

1 − ziz̄j

]n

j,i=1

(1.3)
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has at most κ negative eigenvalues (counted with multiplicities), and at least one
such Pick matrix has exactly κ negative eigenvalues; in formulas:

sq−Pn(f ; z1, . . . , zn) = κ. (1.4)

The class S0 is the classical Schur class consisting of functions f such that the
kernel in (1.1) is positive (that is, has no negative squares) on D. This turns out
to be equivalent to the property for f to be analytic and less than one in modulus
on D.

The classes Sκ appeared implicitly in [12] in connection with interpolation
problems (see discussion in [1, Chapter 19]), and were studied by Krein and Langer
[6]. It was shown in particular, that a function f belongs to the class Sκ if and
only if it admits a representation of the form

f(z) =
S(z)
B(z)

, (1.5)

for some Schur function S ∈ S0 and a Blaschke product B of degree κ, such that
the zero set of S and the zero set of B are disjoint. This representation in turn,
leads to a characterization of Sκ as the class of all functions f such that

1. f is meromorphic in D and has κ poles inside D counted with multiplicities.
2. f is bounded on an annulus {z : r < |z| < 1} for some r ∈ (0, 1).
3. Boundary nontangential limits f(t) := limz→t f(z) exist for almost all t ∈ T

and satisfy |f(t)| ≤ 1.
By definition of the class Sκ, for every function f ∈ Sκ there exists an n× n Pick
matrix with exactly κ negative eigenvalues (squares). If points z1, . . . , zκ are close
enough to the poles of the function f (if ω is a pole of f of multiplicity �, we take
� points zi’s around ω), then the corresponding Pick matrix Pκ(f ; z1, . . . , zκ) is
negative definite (see e.g., [3]). In other words, there are κ×κ Pick matrices having
κ negative eigenvalues. On the other hand, not every κ× κ Pick matrix of f ∈ Sκ

has to have this property. In this paper we consider the following

Question 1: Does there exist an integer n0 such that

sq−Pn0(f ; z1, . . . , zn0) = κ (1.6)

for every choice of n0 points z1, . . . , zn0 ∈ D ∩ ρ(f)?

Note that if such an n0 exists, then all the Pick matrices Pn(f ; z1, . . . , zn) of
a size n ≥ n0 will have exactly κ negative eigenvalues; this follows by the Cauchy’s
interlacing theorem (see e.g., [2, p. 59]) and inequality sq−Pn(f ; z1, . . . , zn) ≤ κ.

The answer to Question 1 is given by the following

Theorem 1.1. Let f ∈ Sκ. Then there exists an integer n0 such that (1.4) holds
for every n ≥ n0 and for every choice of n points z1, . . . , zn ∈ D∩ρ(f) if and only
if f is a ratio of two finite Blaschke products with no common zeroes:

f(z) =
B̃(z)
B(z)

, deg B = κ, deg B̃ = κ̃. (1.7)



Vol. 56 (2006) On Negative Inertia of Pick Matrices 325

In this case,
nmin = deg B + deg B̃ = κ + κ̃. (1.8)

In other words, if the numerator S in the Krein–Langer representation (1.5)
of f is not a finite Blaschke product, then there exist Pick matrices Pn(f) of an
arbitrarily large size having less than κ negative eigenvalues. In fact we shall show
more: in this case there exist positive definite Pick matrices of arbitrarily large
sizes.

It turns out that Pick matrices of “large” sizes with negative inertia less than
κ necessarily invoke points zj close to the boundary T of the unit disk. This is a
consequence of the following

Theorem 1.2. Given a function f ∈ Sκ and given a compact infinite subset Ω ⊂ D,
there exists an integer n0 = n0(f, Ω) such that (1.4) holds for every n ≥ n0 and
for every choice of n points z1, . . . , zn ∈ Ω ∩ ρ(f).

Remark 1.3. Note that the conclusion of Theorem 1.2 holds for any infinite set Ω
such that its closure Ω is a subset of D.

The paper is organized as follows: in Section 2 we show that for every gen-
eralized Schur function which is not a ratio of two finite Blaschke products, there
exist positive definite Pick matrices of arbitrarily large sizes (we call this the “Ne-
cessity” part of Theorem 1.1). In Section 3 we shall get formulas for the inertia
of Pick matrices corresponding to ratios of two finite Blaschke products (we call
this the “Sufficiency” part of Theorem 1.1). Theorem 1.2 will be proved in Sec-
tion 5. The key tool for the proof of Theorem 1.2 is the notion of a Carathéodory
matrix which will be discussed along with some elementary properties in Section
4. Finally, Theorems 1.1, 1.2 and Remark 1.3 give a partial answer to a general
question which is posed and illustrated by two examples in Section 6.

2. Theorem 1.1: Necessity

In this section we prove the necessity part of Theorem 1.1. We start with a pre-
liminary

Lemma 2.1. Let Λ ⊂ D be a discrete set, let E be a function analytic in D \Λ and
let E ∈ Sκ, i.e.,

sq−

(
1 − E(z)E(ζ)∗

1 − zζ̄

)
= κ (z, ζ ∈ D \ Λ). (2.1)

Assume also that
|E(z)| ≥ 1 (z ∈ D \ Λ). (2.2)

Then
E(z) =

1
B(z)

(z ∈ D \ Λ), (2.3)

where B is a finite Blaschke product of degree κ.
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Proof. Due to (2.2), 0 <
∣∣∣ 1
E(z)

∣∣∣ ≤ 1 for every z ∈ D \ Λ. Therefore, the function
1

E(z) can be uniquely extended to a Schur function S on the whole D with all zeroes
falling in Λ. Then the function 1

S is meromorphic on D, it may have poles only in
Λ and it coincides with E on D \ Λ. Since D \ Λ is an open set and the restriction
of the meromorphic function 1

S on this set is in the class Sκ, then (see [3]) the
function 1

S is in the class Sκ on its domain of definition. Therefore, it admits a
Krein–Langer representation

1
S(z)

=
S1(z)
B1(z)

for some Schur function S1 ∈ S0 and a Blaschke product B1 of degree κ, having no
common zeroes. Thus, B1(z) = S(z)S1(z) everywhere in D and therefore, S and
S1 are divisors of B1, that is, finite Blaschke products. Since S1 and B1 do not
have common zeroes, S1 is a unimodular constant and therefore, S is a Blaschke
product of degree κ, which leads us to (2.3). �

Let f ∈ Sκ. We will be dealing with a special property of f that we formulate
below and which, for the sake of shortness, we will call the Property.

Property. There exists an integer n ≥ 0 such that
1. For every � > n and every choice of � points ζ1, . . . , ζ� ∈ D ∩ ρ(f) the Pick

matrix P�(f ; ζ1, . . . , ζ�) is not positive definite.
2. There exist points z1, . . . , zn ∈ D ∩ ρ(f) such that the corresponding Pick

matrix is positive definite:

P := Pn(f ; z1, . . . , zn) =
[
1 − f(zi)f(zj)∗

1 − ziz̄j

]n

j,i=1

> 0. (2.4)

Note that the integer n specified in the Property is unique (if exists): it is
just the minimal integer satisfying the first part of the Property.

Lemma 2.2. Let f ∈ Sκ satisfy the Property. Then f is a ratio of two finite
Blaschke products.

Proof. First we consider the case when the integer n in the Property is zero. In
this case the number

P1(f ; z) =
1 − |f(z)|2

1 − |z|2
is not positive for every z ∈ D, which means that |f(z)| ≥ 1 on D. Thus, f meets
the conditions of Lemma 2.1 and therefore, f = 1

B for some Blaschke product of
degree κ.

Now let n > 0. The technique we are going to apply in the remaining part
of the proof was developed by V. P. Potapov and I. V. Kovalishina in 70’s. Fix a
positive integer k and points ζ1, . . . , ζk ∈ D∩ρ(f). We pick also points z1, . . . , zn ∈
D ∩ ρ(f) such that (2.4) holds. The matrix

Pn+k(f ; z1, . . . , zn, ζ1, . . . , ζk)
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has at most κ negative eigenvalues as a Pick matrix of f ∈ Sκ. On the other
hand, by the Property, this matrix is not positive definite. The Pick matrix can
be written in the block form corresponding to two groups of points {z1, . . . , zn}
and {ζ1, . . . , ζk} as

Pn+k(f ; z1, . . . , zn, ζ1, . . . , ζk) =
[

P Ψ∗

Ψ Pk(f ; ζ1, . . . , ζk)

]
, (2.5)

where Ψ is the k × n matrix with the entries

Ψij =
1 − f(ζi)f(zj)∗

1 − ζiz̄j
(i = 1, . . . , k; j = 1, . . . , n).

Since P is positive definite, it follows that the matrix

R = [Rij ]
k
i,j=1 := Pk(f ; ζ1, . . . , ζk) − ΨP−1Ψ∗, (2.6)

the Schur complement of the block P in the matrix (2.5), is not positive definite
and has at most κ negative eigenvalues:

R � >0 and sq−R ≤ κ. (2.7)

The next step is to represent the matrix R in certain factorized form. To this end,
let us consider the matrices

T =




z1

. . .
zn


 , E =




1
...
1


 , C =




f(z1)
...

f(zn)


 , J =

[
1 0
0 −1

]

(2.8)
and the 2 × 2 matrix valued rational function

Θ(z) =
[

Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

]
(2.9)

= I2 + (z − 1)
[

E∗

C∗

]
(I − zT ∗)−1P−1(I − T )−1

[
E −C

]
,

where P is given by (2.4). It is seen from definitions (2.4) and (2.8) that P satisfies
the Stein identity

P − TPT ∗ = EE∗ − CC∗. (2.10)

Straightforward calculations using just the latter identity lead us to relations

J − Θ(z)JΘ(ζ)∗ = (1− zζ̄)
[

E∗

C∗

]
(I − zT ∗)−1P−1(I − ζ̄T )−1

[
E C

]
(2.11)

and

detΘ(z) =
k∏

j=1

(z − zj)(1 − zj)
(1 − zzj)(1 − zj)

. (2.12)
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holding for every choice of points z and ζ at which Θ is analytic (the proof can be
found in many sources; see e.g., [4, p. 771]). It turns out that the entries Rij in
the matrix (2.6) can be written as

Rij =
[

1 −f(ζi)
] Θ(ζi)JΘ(ζj)∗

1 − ζiζ̄j

[
1

−f(ζj)∗

]
. (2.13)

The proof of (2.13) can be found in [4, pp. 773-774]. Note that the function

d(z) := f(z)Θ21(z) − Θ11(z)

does not vanish identically. Indeed since Θ11 and Θ21 are rational functions with
Θ11(1) = 1 and Θ21(1) = 0, the assumption d(z) ≡ 0 would imply that the

function f(z) =
Θ11(z)
Θ21(z)

of the class Sκ is rational and has a pole at z = 1. The

latter cannot happen by the characterization (1)–(3) of the class Sκ mentioned in
the introduction.

Thus, the function

E(z) =
Θ12(z) − f(z)Θ22(z)
f(z)Θ21(z) − Θ11(z)

(2.14)

is defined on D except for a discrete set Λ and is analytic on D \ Λ (to be more
specific, we can choose Λ to be the set of all poles of the function f and all zeroes
of the function d). We observe now that E meets conditions (2.1) and (2.2) of
Lemma 2.1. Indeed, by (2.14),[

1 −f(ζ)
]
Θ(ζ) = −d(ζ)

[
1 −E(ζ)

]
and thus, under the additional assumption that ζ1, . . . , ζk ∈ D \ Λ, formula (2.13)
can be written in terms of E as

Rij = d(ζi) · [ 1 −E(ζi)
] J

1 − ζiζ̄j

[
1

−E(ζj)∗

]
· d(ζj)∗

= d(ζi) · 1 − E(ζi)E(ζj)∗

1 − ζiζ̄j
· d(ζj)∗.

Thus,

R =
[
d(ζi) · 1 − E(ζi)E(ζj)∗

1 − ζiζ̄j
· d(ζj)∗

]k

i,j=1

. (2.15)

Since d(ζ) �= 0 on D \ Λ, it follows from (2.15) and the second relation in (2.7),
that

sq−

[
1 − E(ζi)E(ζj)∗

1 − ζiζ∗j

]k

i,j=1

≤ κ.

Since ζ1, . . . , ζk are arbitrary points in D \Λ, the latter inequality means that the
kernel

kE(z, ζ) =
1 − E(z)E(ζ)∗

1 − zζ̄
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has at most κ negative squares on D \ Λ. Actually, this kernel has exactly κ neg-
ative squares. Indeed, let us pick points ζ1, . . . , ζk ∈ D \ Λ so that the block
Pk(f ; ζ1, . . . , ζk) in (2.5) has κ negative eigenvalues (it can be done, since f ∈ Sκ

and Λ is discrete). Then, since P is positive definite, it follows from (2.6) that
R ≤ Pk(f ; ζ1, . . . , ζk) and thus,

sq−R ≥ sq−Pk(f ; ζ1, . . . , ζk) = κ.

Therefore, sq−R = κ which leads us to (2.1). Thus, E is in Sκ.

On the other hand we saw that the Property implies that the matrix R
associated to the function f is not positive definite for every choice of k and of k
points ζ1, . . . , ζk ∈ D \ Λ. For k = 1, the latter reads: for every point z ∈ D \ Λ,

|d(z)|2 · 1 − |E(z)|2
1 − |z|2 ≤ 0,

which is equivalent to (2.2), since d(z) �= 0 on D \ Λ and |z| < 1.

Thus, E meets the conditions of Lemma 2.1 and therefore, it is of the form
(2.3) for a Blaschke product B of degree κ. The zeros of B are in Λ, since all
singularities of E are in Λ.

Substituting (2.3) into (2.14), we arrive at

f(z) =
Θ11(z) + Θ12(z)B(z)
Θ21(z) + Θ22(z)B(z)

(2.16)

and the latter representation holds at every point z ∈ D \ Λ̃, where Λ̃ is a discrete
subset of D. Thus, f is rational. Note that the denominator in (2.16) vanishes at
no point of T. Indeed, assuming that

Θ21(ζ) + Θ22(ζ)B(ζ) = 0

for some ζ ∈ T, we conclude that

Θ11(ζ) + Θ12(ζ)B(ζ) = 0,

since f cannot have poles on T. The two last equalities imply

Θ(ζ)
[

1
B(ζ)

]
= 0

and therefore, det Θ(ζ) = 0, which contradicts (2.12). Furthermore, f is unimod-
ular on T. Indeed, it follows from (2.11) that Θ is J-unitary on T, i.e., that

Θ(z)JΘ(z)∗ = J (z ∈ T).

A straightforward calculation based on the latter relation shows that for f of the
form (2.16) and for every z ∈ T,

1 − |f(z)|2 =
1 − |B(z)|2

|Θ21(z) + Θ22(z)B(z)|2 .
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Since |B(z)| = 1 for |z| = 1, the last relation implies that f is unimodular on T.
Thus, f is a rational function unimodular on T and therefore, it is a ratio of two
finite Blaschke products. �

As a consequence we obtain that for every function f ∈ Sκ which is not a
ratio of two finite Blaschke products, Property does not hold, which means that
for every such function there exist positive definite Pick matrices of arbitrarily
large sizes.

3. Theorem 1.1: Sufficiency

Let H2 be the Hardy space of square integrable functions on the unit circle T that
admit analytic continuations inside the unit disk. It is a reproducing kernel Hilbert
space with reproducing kernel

eλ(t) =
1

1 − tλ̄
,

(the Cauchy kernel) in the sense that

〈h, eλ〉H2 = h(λ) for every λ ∈ D and h ∈ H2. (3.1)

Also we shall make use of the functions

eλ,k(t) =
tk

(1 − tλ̄)k+1
∈ H2, λ ∈ D, k = 0, 1, . . . (3.2)

Definitely, eλ,0 ≡ eλ.

Let B be a finite Blaschke product of the form

B(z) =
�∏

j=1

(
z − λj

1 − zλ̄j

)rj

, (3.3)

where r1, . . . , r� are positive integers such that r1 + . . . + r� = κ = deg B and
λ1, . . . , λ� are distinct points in D. The next lemma contains some needed known
facts that can be found, e.g., in [7].

Lemma 3.1. Let B be the Blaschke product of the form (3.3), let KB be the subspace
of H2 defined by

KB := H2 
 BH2

and let PKB denote the orthogonal projection of H2 onto KB . Then

1. The functions

eλj ,0, . . . , eλj ,rj−1, j = 1, . . . , �, (3.4)

defined via (3.2), form a basis for KB ; therefore, dim KB = κ.
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2. A function g belongs to KB if and only if it admits a representation

g(t) =
q(t)∏�

j=1(1 − tλ̄j)rj

(3.5)

for some polynomial q of degree deg q ≤ κ − 1.
3. It holds that

(PKB eλ) (t) =
1 − B(t)B(λ)∗

1 − tλ̄
for every λ ∈ D. (3.6)

To verify the first statement one can check that the functions (3.4) belong to
KB and that any H2 function orthogonal to them has a zero of multiplicity at least
rj at λj . It follows directly from (3.2) that a function g is a linear combination of
the functions (3.4) if and only if it is of the form (3.5), which proves the second
statement. The last statement follows from the observation that g1 + g2 = eλ for
every fixed λ ∈ D, where the functions

g1(z) =
B(t)B(λ)∗

1 − tλ̄
and g2(z) =

1 − B(t)B(λ)∗

1 − tλ̄

belong to BH2 and KB, respectively.

Remark 3.2. Let h and g be two functions on D, let z1, . . . , zn ∈ D and let

g(zi) �= 0 (i = 1, . . . , n).

Then

Pn(h; z1, . . . , zn) − Pn(g; z1, . . . , zn) = GPn

(
h

g
; z1, . . . , zn

)
G∗ (3.7)

where G is the diagonal matrix given by

G =




g(z1) 0
. . .

0 g(zn)


 .

Proof. By definition (1.3) of the Pick matrix,

Pn(h; z1, . . . , zn) − Pn(g; z1, . . . , zn)

=
[
1 − h(zi)h(zj)∗

1 − ziz̄j

]n

i,j=1

−
[
1 − g(zi)g(zj)∗

1 − ziz̄j

]n

i,j=1

=
[
g(zi)g(zj)∗ − h(zi)h(zj)∗

1 − ziz̄j

]n

i,j=1

= G




1 − h(zi)h(zj)∗

g(zi)g(zj)∗

1 − ziz̄j




n

i,j=1

G∗

= GPn

(
h

g
; z1, . . . , zn

)
G∗.

�
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Since G is invertible, it follows from (3.7) that

sq−Pn

(
h

g
; z1, . . . , zn

)
= sq− (Pn(h; z1, . . . , zn) − Pn(g; z1, . . . , zn))

which explains the importance of differences of two Pick matrices (associated with
Schur functions) in the context of the generalized Schur class Sκ. The next lemma
treats the case when h and g are two finite Blaschke products with no common
zeros.

Lemma 3.3. Let

B(z) =
�∏

j=1

(
z − λj

1 − zλ̄j

)rj

and B̃(z) =
e�∏

j=1

(
z − wj

1 − zw̄j

)erj

, (3.8)

be two finite Blaschke products with no common zeros and with deg B = κ and
deg B̃ = κ̃, and let z1, . . . , zn be arbitrary n points in D.

1. If n = κ + κ̃, then the difference of the Pick matrices

Pn := Pn(B̃; z1, . . . , zn) − Pn(B; z1, . . . , zn) (3.9)

is invertible.
2. If n ≥ κ + κ̃, then

sq− Pn = κ and sq+ Pn = κ̃. (3.10)

3. If n < κ + κ̃, then the points z1, . . . , zn can be chosen so that sq− Pn < κ.

Proof. Let

K = span{ez1 , . . . , ezn} = span
{

1
1 − tz̄1

, . . . ,
1

1 − tz̄n

}
. (3.11)

Note that by (3.6) and the reproducing property (3.1),〈
PKBezj , PKB ezi

〉
H2 =

〈
PKBezj , ezi

〉
H2

=
(
PKBezj

)
(zi) =

1 − B(zi)B(zj)∗

1 − ziz̄j

and thus, by definition (1.3) of the Pick matrix,

Pn(B; z1, . . . , zn) =
[〈

PKBezj , PKBezi

〉
H2

]n
i,j=1

. (3.12)

Similarly,
Pn(B̃; z1, . . . , zn) =

[〈
PK eB

ezj , PK eB
ezi

〉
H2

]n

i,j=1
, (3.13)

where PK eB
stands for the orthogonal projection of H2 onto the subspace

K eB = H2 
 B̃H2.

Therefore, the matrix Pn defined as in (3.9) is nonsingular if and only if the
quadratic form

D(x, y) :=
〈
PK eB

x, PK eB
y
〉

H2 − 〈PKBx, PKBy〉H2 (3.14)
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is not degenerate on K. Note also that since the spaces KB and K eB are of dimen-
sions κ and κ̃ respectively (by Statement 1 in Lemma 3.3), it follows from (3.12)
and (3.13) that for every n,

rankPn(B; z1, . . . , zn) ≤ κ and rankPn(B̃; z1, . . . , zn) ≤ κ̃

and, since the latter Pick matrices are positive semidefinite, we have for their
difference

sq− Pn ≤ κ and sq+ Pn ≤ κ̃ for every n. (3.15)

To prove the first statement in the lemma, assume that n = κ + κ̃ and that the
form D is degenerate, i.e., that there exists x ∈ K such that D(x, y) = 0 for every
element y ∈ K. Then we have, by (3.14),

0 =
〈
PK eB

x, PK eB
y
〉

H2 − 〈PKBx, PKB y〉H2

=
〈
PK eB

x, y
〉

H2 − 〈PKBx, y〉H2

=
〈(

PK eB
− PKB

)
x, y

〉
H2 for every y ∈ K.

Upon letting y = ezj in the latter equality, we conclude, by the reproducing prop-
erty (3.1), that (

PK eB
x − PKB x

)
(zj) = 0 for j = 1, . . . , n. (3.16)

The functions PKBx and PK eB
x belong to the spaces KB and K eB, respectively,

and therefore, by the second statement in Lemma 3.3, they are of the form

(PKBx)(t) =
q(t)∏�

j=1(1 − tλ̄j)rj

and (PK eB
x)(t) =

q̃(t)∏e�
j=1(1 − tw̄j)erj

(3.17)

for some polynomials q and q̃ with

deg q ≤ κ − 1 and deg q̃ ≤ κ̃ − 1. (3.18)

Recall that the denominators in (3.17) are polynomials of degree κ and κ̃, respec-
tively, and thus, it follows readily from (3.17) that

(PK eB
x)(t) − (PKB x)(t) =

r(t)
p(t)

, (3.19)

where

p(t) =
�∏

j=1

(1 − tλ̄j)rj ·
e�∏

j=1

(1 − tw̄j)erj

and

r(t) = q(t)
e�∏

j=1

(1 − tw̄j)erj − q̃(t)
�∏

j=1

(1 − tλ̄j)rj

are polynomials with deg p = κ + κ̃ = n and (according to (3.18))

deg r ≤ κ + κ̃ − 1 = n − 1. (3.20)
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By (3.16), the rational function r
p has n distinct zeros which together with (3.20)

implies that r ≡ 0. Thus, we have from (3.19)

PKBx ≡ PK eB
x. (3.21)

By the first statement in Lemma 3.3, the spaces KB and K eB are spanned by
functions (3.4) and by functions

ewj ,0, . . . , ewj,erj−1, j = 1, . . . , �̃,

respectively. Since all the functions in (3.4) are linearly independent and since
λi �= wj for i = 1, . . . , � and j = 1, . . . , �̃, it follows that KB ∩ K eB = {0}. Thus,
relation (3.21) implies

PKBx = 0 and PK eB
x = 0.

Therefore, x is orthogonal to both of KB and K eB and thus,

x ∈ BH2 ∩ B̃H2.

Since B and B̃ have no common zeros, it follows that

x ∈ (B · B̃)H2.

In particular, x has at least κ + κ̃ = n zeros (counted with multiplicities). On the
other hand, x belongs to K and therefore, by definition (3.11),

x(t) =
n∑

j=1

αj

1 − tz̄j
=

q(t)∏n
j=1(1 − tz̄j)

,

where q is a polynomial with deg q ≤ n − 1. Therefore, if x �= 0, it cannot have
more than n − 1 zeros. Therefore, x = 0 and the form D is nondegenerate on K.
Therefore, the matrix Pn is invertible. Moreover, we have

κ + κ̃ = n = rankPn = sq− Pn + sq+ Pn,

which together with bounds (3.15) implies (3.10) for the case when n = κ + κ̃.

Now let n > κ + κ̃ =: n1 and let Pn1 be the top n1 × n1 principal submatrix
of Pn:

Pn1 = Pn1(B; z1, . . . , zn1) − Pn1(B̃; z1, . . . , zn1).

By the preceding analysis, Pn1 is invertible and

sq− Pn1 = κ and sq+ Pn1 = κ̃.

Therefore, since Pn1 is a principal submatrix of Pn,

sq− Pn ≥ sq− Pn1 = κ, sq+ Pn ≥ sq+ Pn1 = κ

which together with bounds (3.15) complete the proof of (3.10).

Finally, if κ + κ̃ > n > κ̃, we first fix the points zeκ+1, . . . , zn and choose then
the points z1, . . . , zeκ sufficiently close to the zeros w1, . . . , we� of B̃ (taking r̃j points
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around wj) to make the top κ̃× κ̃ principal submatrix of Pn positive definite. Then
sq+ Pn = κ̃ and therefore,

sq− Pn = rankPn − sq+ Pn ≤ n − κ̃ < κ.

If n ≤ κ̃, one can use a similar choice to get Pn > 0. �

Theorem 3.4. Let f be the ratio of two finite Blaschke products

f(z) =
B̃(z)
B(z)

, deg B = κ, deg B̃ = κ̃

with no common zeros, let z1, . . . , zn be points in D∩ρ(f) and let Pn(f ; z1, . . . , zn)
be the corresponding Pick matrix. Then

1. If n = κ + κ̃, then Pn(f ; z1, . . . , zn) is invertible.
2. If n ≥ κ + κ̃, then

sq− Pn(f ; z1, . . . , zn) = κ and sq+ Pn(f ; z1, . . . , zn) = κ̃.

3. If n < κ + κ̃, then the points z1, . . . , zn can be chosen so that

sq− Pn(f ; z1, . . . , zn) < κ.

Proof. Since z1, . . . , zn are the points of analyticity of f , then B(zi) �= 0 for i =
1, . . . , n and we can apply Remark 3.2 with h = B̃ and g = B to obtain

Pn := Pn(B̃; z1, . . . , zn) − Pn(B; z1, . . . , zn)

= GPn

(
B̃

B
; z1, . . . , zn

)
G∗

= GPn (f ; z1, . . . , zn)G∗,

where G is the diagonal matrix defined by

G =




B(z1) 0
. . .

0 B(zn)


 .

Thus, Pn (f ; z1, . . . , zn) is congruent to Pn and all the statements of the theorem
follow from the corresponding statements in Lemma 3.3. �

Now the “sufficiency” part in Theorem 1.1 is immediate: indeed, the second
statement in Theorem 3.4 implies that nmin ≤ κ + κ̃ (see Question 1 for the
definition of the integer nmin), whereas the third statement implies nmin ≥ κ + κ̃
and the two last inequalities lead us to (1.8).
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4. Carathéodory matrices

Let f be a function analytic at a point ω ∈ D. Then we can define the Carathéodory
matrix

Cn(f ; ω) =
[

1
i! j!

∂i+j

∂ωi∂ω̄j

(
1 − f(ω)f(ω)∗

1 − ωω̄

)]n−1

i,j=0

, (4.1)

for any n ≥ 0. It is known that f belongs to the class Sκ (i.e., the kernel kf (z, ζ)
given by (1.1) has κ negative squares on D ∩ ρ(f)) if and only if the following
property holds: for every ω ∈ D ∩ ρ(f), there exists an integer nω such that

sq−Cn(f ; ω) = κ for all n ≥ nω. (4.2)

Actually, it was shown by M. G. Krein and H. Langer in [6] that any meromorphic
function f satisfying (4.2) even at a single point ω ∈ D ∩ ρ(f) belongs to Sκ.
Conversely, if f ∈ Sκ, then continuity arguments (see Lemma 4.4) yield that

sq−Cn(f ; ω) ≤ κ

for every integer n ≥ 0 and every point ω ∈ D ∩ ρ(f). If for some ω (4.2) holds
with κ′ < κ then, by the mentioned above result of M. G. Krein and H. Langer
f ∈ Sκ′ , which is a contradiction.

Since property (4.2) of Carathéodory matrices characterizes the class Sκ,
a question similar to Question 1 can be raised in the context of Carathéodory
matrices (see Question 2 at the end of Section 5). Perhaps, this question is of
certain independent interest. However, we do not know the answer and we will
not discuss the question here; we rather use Carathéodory matrices as a tool to
prove Theorem 1.2. In this section we present some auxiliary results concerning
Carathéodory matrices needed for that proof. For the rest of the section, f will
be assumed to be a function (not necessarily of the class Sκ) analytic at a point
ω ∈ D.

Remark 4.1. It follows from the the definition (4.1) that Cn(f ; ω) depends only
on the n first Taylor coefficients of f at ω. Therefore, the Taylor polynomial

pn−1(z) =
n−1∑
k=0

(z − ω)k f (k)(ω)
k!

has the same Carathéodory matrix of order � at ω as f does for every � ≤ n.
Therefore, studying the Carathéodory matrices of function f at point ω we may
replace the function with the Taylor polynomial of the proper degree. Sometimes
we will use the same notation f for this polynomial.

Remark 4.2. We shall also need to write all the Carathéodory matrices as matrices
of quadratic forms with respect to certain bases. Let

bn(z) :=
(

z − ω

1 − zω̄

)n
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and let Kbn := H2 
 bnH2. By Lemma 3.1, the functions

eω,0, . . . , eω,n−1 (4.3)

defined via (3.2) form a basis for Kbn . let Tbn be the compressed shift operator
restricted to Kbn :

Tbnh = PKbn
(th) (h ∈ Kbn , t ∈ T),

where PKbn
is the orthogonal projection of H2 onto Kbn . The adjoint of Tbn

is the restricted backward shift operator T ∗
bn

= P+t̄|Kbn
, where P+ stands for

the orthogonal projection of the Lebesgue space L2 onto H2. By H∞ functional
calculus (see, e.g., [7]), for every ϕ ∈ H∞

ϕ(Tbn) = PKbn
ϕ|Kbn

and
ϕ(Tbn)∗ = P+ϕ|Kbn

. (4.4)
The matrix of the sesquilinear form

〈(IKbn
− ϕ(Tbn)ϕ(Tbn)∗

)
x, y〉

L2 , (x, y ∈ Kbn), (4.5)

with respect to the basis (4.3) for Kbn is equal to the Carathéodory matrix
Cn(ϕ; ω). The proof of this fact can be found, for instance, in [7] (Lecture VIII)
and [8, Chapter 2]. We will give here a brief explanation. Since eω,k = 1

k!
∂k

∂ωk eω,0,
we get

ϕ(Tbn)∗eω,k = P+ϕeω,k =
1
k!

∂k

∂ωk
P+ϕeω,0 =

1
k!

∂k

∂ωk

(
ϕ(ω)eω,0

)
.

Then

〈ϕ(Tbn)∗eω,j, ϕ(Tbn)∗eω,i〉L2 =
1

i! j!
∂i+j

∂ωi∂ω̄j

(
ϕ(ω)ϕ(ω)〈eω,0, eω,0〉

)

=
1

i! j!
∂i+j

∂ωi∂ω̄j

ϕ(ω)ϕ(ω)
1 − ωω

. (4.6)

Upon setting φ ≡ 1 in the latter equality we get

〈eω,j , eω,i〉L2 =
1

i! j!
∂i+j

∂ωi∂ω̄j

1
1 − ωω

(4.7)

and now, subtracting (4.6) from (4.7) we see that the ij-th entry in the matrix of
the sesquilinear form (4.5) with respect to the basis (4.3) for Kbn coincides with
the corresponding entry in the Carathéodory matrix Cn(ϕ; ω).

Lemma 4.3. Let f be analytic at ω ∈ D and such that f(ω) �= 0, let

br(z) :=
(

z − ω

1 − zω̄

)r

(4.8)

and let Cn(f ; ω) and Cn(b; ω) be the Carathéodory matrices of order n > r. Then

sq− (Cn(f ; ω) − Cn(br; ω)) = r + sq−Cn−r(f ; ω). (4.9)
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Proof. By Remark 4.1, we can replace the function f with the Taylor polynomial
pn−1, but we will keep notation f for it. Besides the space Kbn we shall also use
its subspaces

Kbr = H2 
 brH
2 = span{eω,0, . . . , eω,r−1}, (4.10)

K2 = span{eω,r, . . . , eω,n−1}. (4.11)

Note that
Kbn = Kbr

·
+ K2. (4.12)

The latter decomposition is not orthogonal. Orthogonal complement of Kbr in Kbn

is brKbn−r , where

bn−r(z) =
(

z − ω

1 − zω̄

)n−r

and
Kbn−r = H2 
 bn−rH

2 = span{eω,0, . . . , eω,n−r−1}. (4.13)
By Remark 4.2, the matrices Cn(f ; ω) − Cn(br; ω) and Cn−r(f ; ω) in (4.9) are
the matrices of quadratic forms associated with the operators

br(Tbn)br(Tbn)∗ − f(Tbn)f(Tbn)∗ and IKbn−r
− f(Tbn−r)f(Tbn−r)

∗,

with respect to the bases (4.3) and (4.13) for Kbn and Kbn−r , respectively. These
forms can be written as

L1(x, x) := ‖br(Tbn)∗x‖2 − ‖f(Tbn)∗x‖2 (x ∈ Kbn) (4.14)

and
L2(y, y) := ‖y‖2 − ∥∥f(Tbn−r)

∗y
∥∥2 (y ∈ Kbn−r ). (4.15)

Thus, (4.9) is equivalent to

sq−L1 = r + sq−L2. (4.16)

We break the proof into steps.

Step 1. The mapping Γ = P+br maps K2 onto Kbn−r and vanishes on Kbr . More-
over,

Γx2 =
(

IKbn−r
− ωT ∗

bn−r

)−r

Γ̃x2 (4.17)

for every x2 ∈ K2, where Γ̃ : K2 → Kbn−r is the linear operator uniquely defined
by equalities

Γ̃eω,k = eω,k−r for k = r, r + 1, . . . , n − 1. (4.18)
Proof of Step 1. By definitions (3.2) and (4.8) of eω,k and br, we get

br(t)eω,k(t) =
(1 − tω̄)r

(t − ω)r
· tk

(1 − tω̄)k+1

=
tr

(t − ω)r
· tk−r

(1 − tω̄)k−r+1

= (1 − t̄ω)−reω,k−r(t)
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for k = r, . . . , n − 1. Therefore,

P+br(t)eω,k(t) = P+

(
(1 − t̄ω)−reω,k−r(t)

)
for k = r, . . . , n − 1. Since eω,k−r ∈ Kbn−r for k = r, . . . , n − 1, and in virtue of
(4.4) applied to the function φ(t) = (1 − tω̄)−r, the latter equality reads as

P+breω,k =
(

IKbn−r
− ωT ∗

bn−r

)−r

eω,k−r (r ≤ k ≤ n − 1),

which in turn, on account of definition (4.18) of Γ̃, can be written as

P+breω,k =
(

IKbn−r
− ωT ∗

bn−r

)−r

Γ̃eω,k (r ≤ k ≤ n − 1). (4.19)

Equality (4.19) means that (4.17) holds for x2 equals eω,r, . . . , eω,n−1. Since K2 is
the linear span of those vectors, (4.17) follows. The map Γ̃ is a bijection between
K2 and Kbn−r since (by (4.18)) it maps a basis {eω,r, . . . , eω,n−1} for K2 onto the
basis {eω,0, . . . , eω,n−r−1} for Kbn−r . Since T ∗

bn−r
is a contraction and since |ω| < 1,

the operator IKbn−r
− ωT ∗

bn−r
is invertible on Kbn−r . Therefore, the operator

Γ|K2 =
(

IKbn−r
− ωT ∗

bn−r

)−r

Γ̃|K2

maps K2 bijectively onto Kbn−r . Finally, for x1 ∈ Kbr

brx1 ∈ H2
− := L2 
 H2

and thus,
Γx1 = P+brx1 = 0 for every x1 ∈ Kbr . (4.20)

Step 2. Let x be an element of Kbn decomposed as

x = x1 + x2 where x1 ∈ Kbr and x2 ∈ K2 (4.21)

(existence and uniqueness of such a decomposition follows from (4.12)) and let L1

be the quadratic form defined in (4.14). Then

L1(x, x) = − ∥∥f(Tbr)
∗x1 + PKbr

fx2

∥∥2
+ ‖Γx2‖2 − ∥∥f(Tbn−r)

∗Γx2

∥∥2
. (4.22)

Proof of Step 2. By (4.4),

br(Tbn)∗x = P+brx = Γx = Γx1 + Γx2

and since Γ vanishes on Kbr ,

br(Tbn)∗x = Γx2. (4.23)

Next,
f(Tbn)∗x = P+fx = P+fx1 + P+fx2. (4.24)

Since x1 ∈ Kbr , we have (by the formula (4.4))

P+fx1 = f(Tbr)
∗x1 ∈ Kbr .

Furthermore, since (see [7], The Projection Lemma in Lecture II, p.34)

P+ = PKbr
+ PbrH2 = PKbr

+ brP+br,
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we also have
P+fx2 = PKbr

fx2 + brP+brfx2.

Substituting the latter into (4.24) we get

f(Tbn)∗x =
(
f(Tbr)

∗x1 + PKbr
fx2

)
+ brP+brfx2.

Since

f(Tbr)
∗x1 + PKbr

fx2 ∈ Kbr and brP+brfx2 ∈ brH
2 = H2 
Kbr ,

it follows by the Pythagorean theorem, that

‖f(Tbn)∗x‖2 =
∥∥f(Tbr)

∗x1 + PKbr
fx2

∥∥2
+
∥∥brP+brfx2

∥∥2

=
∥∥f(Tbr)

∗x1 + PKbr
fx2

∥∥2
+
∥∥P+brfx2

∥∥2
. (4.25)

The latter equality holds since br is an inner function. Now we focus on the second
term on the right hand side in (4.25). Let P− be the orthogonal projection of L2

onto H2− = L2 
 H2. Then clearly,

P+fP−brx2 = 0

and therefore,

P+br fx2 = P+f brx2

= P+f (P+ + P−) brx2

= P+fP+brx2

= P+fΓx2 (4.26)

where Γ is the operator introduced in Step 1. Since x2 ∈ K2, it follows by Step 1,
that Γx2 ∈ Kbn−r and thus, by formula (4.4),

P+fΓx2 = f(Tbn−r)
∗Γx2.

Substituting the latter relation into (4.26) and then (4.26) into (4.25) we arrive at

‖f(Tbn)∗x‖2 =
∥∥f(Tbr )∗x1 + PKbr

fx2

∥∥2
+
∥∥f(Tbn−r)

∗ Γx2

∥∥2
. (4.27)

Now we substitute (4.23) and (4.27) into (4.14) and get (4.22).

Step 3 (completion of the proof). Since the spectrum of the operator Tbr consists
of a single point ω and since f(ω) �= 0, the operator f(Tbr)∗ is invertible on Kbr

(by the Spectrum Mapping Theorem). Since moreover, Kbr and K2 are linearly
independent, the formula

x1 + x2 → (
f(Tbr)

∗x1 + PKbr
f(Tbn)∗x2

)
+ x2

defines a nonsingular transformation of Kbn = Kbr

·
+ K2 onto itself. Therefore (and

in view of (4.22)),

sq−L1(x, x) = sq−
(
− ∥∥f(Tbr)

∗x1 + PKbr
fx2

∥∥2
+ ‖Γx2‖2 − ∥∥f(Tbn−r)

∗Γx2

∥∥2
)

= sq−
(
−‖x1‖2 + ‖Γx2‖2 − ∥∥f(Tbn−r)

∗Γx2

∥∥2
)

.
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Using again linear independence of the subspaces Kbr and K2, we get

sq−L1(x, x) = sq−
(−‖x1‖2

)
+ sq−

(
‖Γx2‖2 − ∥∥f(Tbn−r)

∗Γx2

∥∥2
)

.

Since x1 runs over Kbr ,

sq−
(−‖x1‖2

)
= dim Kbr = r

and since Γ maps K2 onto Kbn−r , the vector y = Γx2 runs over Kbn−r as x2 runs
over K2. Thus,

sq−L1(x, x) = r + sq−
(
‖y‖2 − ∥∥f(Tbn−r)

∗y
∥∥2
)

= r + sq−L2(y, y)

which proves (4.16) and completes the proof of the lemma. �

Lemma 4.4. Let f be analytic at ω ∈ C, let n ≥ 0 be a fixed integer and let Cn(f ; ω)
be the Carathéodory matrix given by (4.1). There exists a neighborhood Uω of ω
such that

sq−Cn(f ; ω) ≤ sq−Pn(f ; z1, . . . , zn) (4.28)

and
sq+Cn(f ; ω) ≤ sq+Pn(f ; z1, . . . , zn) (4.29)

for any choice of n points z1, . . . , zn ∈ Uω, where Pn(f ; z1, . . . , zn) is the Pick
matrix defined in (1.3).

Proof. Let Dω be a disk centered at ω on which f is analytic: that is, let Dω ⊂ ρ(f).
Pick any points z1, . . . , zn ∈ Dω and consider the lower triangular n × n matrix
Φz1,...,zn = [Φi,j ]

n
i,j=1 with the entries

Φi,j =




1
φ′

i(zj)
if i ≥ j,

0 if i < j,
, where φi(z) =

i∏
j=1

(z − zj). (4.30)

Then for every function v(z) analytic at ω, with the Taylor series

v(z) =
∞∑

k=0

(z − ω)kvk,

it holds that

lim
z1,...,zn→ω

Φz1,...,zn




v(z1)
v(z2)

...
v(zn)


 =




v0

v1

...
vn−1




(see [5] for the proof, also see [3, Lemma 3.1]). Now it follows from definitions (1.3)
and (4.1) that

Cn(f ; ω) = lim
z1,...,zn→ω

Φz1,...,zn · Pn(f ; z1, . . . , zn) · Φ∗
z1,...,zn

. (4.31)
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Therefore, there exists a neighborhood Uω ⊂ Dω of ω such that

sq±Cn(f ; ω) ≤ sq±
[
Φz1,...,zn · Pn(f ; z1, . . . , zn) · Φ∗

z1,...,zn

]
= sq±Pn(f ; z1, . . . , zn)

for every choice of n points z1, . . . , zn ∈ Uω. The latter equality holds since Φz1,...,zn

is nonsingular. �

Corollary 4.5. Let f and g be analytic at ω ∈ C, let n ≥ 0 be a fixed integer and let
Cn(f ; ω) and Cn(g; ω) be the corresponding Carathéodory matrices. There exists
a neighborhood Uω of ω such that

sq− (Cn(f ; ω) − Cn(g; ω)) ≤ sq− (Pn(f ; z1, . . . , zn) − Pn(g; z1, . . . , zn))

for any choice of n points z1, . . . , zn ∈ Uω.

Proof. Similar to relation (4.31), we have also

Cn(g; ω) = lim
z1,...,zn→ω

Φz1,...,zn · Pn(g; z1, . . . , zn) · Φ∗
z1,...,zn

which, being subtracted from (4.31), leads us to

Cn(f ; ω) − Cn(g; ω)
= lim

z1,...,zn→ω
Φz1,...,zn (Pn(f ; z1, . . . , zn) − Pn(g; z1, . . . , zn))Φ∗

z1,...,zn
.

The rest follows as in Lemma 4.4. �

Note also the following “multiple” analogue of Remark 3.2.

Remark 4.6. Let h and g be two functions on D, let ω ∈ D and let g(ω) �= 0 (i =
1, . . . , n). Then

Cn(h; ω) − Cn(g; ω) = GCn

(
h

g
; ω

)
G∗ (4.32)

where G is the lower triangular toeplitz matrix given by

G =




g(ω) 0 . . . 0

g′(ω) g(ω)
. . .

...
...

. . . . . . 0
g(n−1)(ω)

(n−1)! . . . g′(ω) g(ω)




.

The proof is immediate and follows from the definition (4.1) of the Carathéo-
dory matrix by the Leibnitz rule.
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5. Proof of Theorem 1.2

The proof of Theorem 1.2 can be obtained by standard compactness arguments
based on the following result.

Theorem 5.1. Let f belong to Sκ. Then for every point ω ∈ D, there exists an open
neighborhood Uω ⊂ D and a positive integer nω such that

sq−Pn(f ; z1, . . . , zn) = κ (5.1)

for every n ≥ nω and every choice of n points z1, . . . , zn ∈ Uω ∩ ρ(f).

Proof. Let us assume first that ω ∈ ρ(f), i.e., that f is analytic at ω. Then we can
define Carathéodory matrices Cn(f ; ω) of any order n ≥ 0 via formula (4.1). By
the classical Krein–Langer result, there exists an integer nω such that

sq−Cn(f ; ω) = κ for all n ≥ nω. (5.2)

By Lemma 4.4, there exists a neighborhood Uω of ω such that

sq−Cn(f ; ω) ≤ sq−Pn(f ; z1, . . . , zn)

for every choice of n points z1, . . . , zn ∈ Uω, where Pn(f ; z1, . . . , zn) is the Pick
matrix defined in (1.3). Taking into account that

sq−Pn(f ; z1, . . . , zn) ≤ κ, (5.3)

since f ∈ Sκ, and making use of (5.2), we come to (5.1).

Now we consider the case when ω is a pole of f . Then f can be represented
as

f(z) =
S(z)

b(z)B1(z)
, where b(z) =

(
z − ω

1 − zw̄

)r

(5.4)

and B1 is a Blaschke product of degree κ− r that does not vanish at ω. Thus, the
function

f̃(z) =
S(z)
B1(z)

(5.5)

is analytic at ω and belongs to the class Sκ−r, by the Krein–Langer characterization
theorem. We apply the first part of the proof to the function f̃ and conclude that
there exists an integer n0 such that

sq−Cn0(f̃ ; ω) = κ − r. (5.6)

The number
n := n0 + r

and the functions b and f̃ meet the conditions of Lemma 4.3. Therefore, by (4.18),

sq−
(
Cn(f̃ ; ω) − Cn(b; ω)

)
= r + sq−Cn0(f̃ ; ω),

which together with (5.6) implies

sq−
(
Cn(f̃ ; ω) − Cn(b; ω)

)
= κ. (5.7)
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By Corollary 4.5, there exists a neighborhood Uω of ω such that

sq−
(
Cn(f̃ ; ω) − Cn(b; ω)

)
≤ sq−

(
Pn(f̃ ; z1, . . . , zn) − Pn(b; z1, . . . , zn)

)
(5.8)

for every choice of n points z1, . . . , zn ∈ Uω. Since B1(ω) �= 0, the neighborhood
Uω can be chosen so that B1(z) �= 0 for every z ∈ Uω. Then we can apply Remark
3.2 with h = f̃ and g = b to conclude that

sq−
(
Pn(f̃ ; z1, . . . , zn) − Pn(b; z1, . . . , zn)

)
= sq−Pn

(
f̃

b
; z1, . . . , zn

)

= sq−Pn(f ; z1, . . . , zn).

Upon combining the last relation with (5.7) and (5.8), we obtain

sq−Pn(f ; z1, . . . , zn) ≥ κ for every z1, . . . , zn ∈ Uω.

Taking into account the reverse inequality (5.3) which holds for any choice of
z1, . . . , zn ∈ ρ(f), we arrive at (5.1). �

Proof of Theorem 1.2. Let Ω be a compact subset of D. For every point ω ∈ Ω one
can find Uω and nω indicated in Theorem 5.1. The set

⋃
ω∈Ω Uω is an open covering

of Ω. Pick a finite subcovering of Ω: let ω1, . . . , ωm ∈ Ω and nω1 , . . . , nωm ∈ N be
such that

Ω ⊂
m⋃

i=1

Uωi (5.9)

and (5.1) holds for n ≥ nωi for every choice of z1, . . . , zn ∈ Uωi ∩ ρ(f) and i =
1, . . . , m.

Let n be an integer such that

n ≥ mn̂, where n̂ := max
i

nωi . (5.10)

We shall show that (5.1) holds for every choice of points z1, . . . , zn in Ω ∩ ρ(f).
Indeed let z1, . . . , zn be such points. By (5.9) and (5.10), there exist the

index i (1 ≤ i ≤ m) such that at least n̂ of points z1, . . . , zn fall inside Uωi . After a
suitable rearrangement we assume that these points are z1, . . . , zbn. Since n̂ ≥ n1,
it follows that

sq−Pbn(f ; z1, . . . , zbn) = κ.

Since sq−Pbn(f ; z1, . . . , zbn) is a principal submatrix of Pn(f ; z1, . . . , zn),

sq−Pn(f ; z1, . . . , zn) ≥ sq−Pbn(f ; z1, . . . , zbn) = κ.

On the other hand,
sq−Pn(f ; z1, . . . , zn) ≤ κ,

since f ∈ Sκ. Thus, every Pick matrix Pn(f ; z1, . . . , zn) of size n ≥ mn̂ has κ
negative eigenvalues, whenever z1, . . . , zn ∈ Ω. The latter means that the integer
n0 in Question 1 can be chosen so that n0 ≤ mn̂. �
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Analogues of some of the results obtained above can be established in the
context of Carathéodory matrices. For example, the analogue of Theorem 1.2 reads
as follows.

Theorem 5.2. Given a function f ∈ Sκ and given a compact subset Ω ∈ D, there
exists an integer n0 = n0(f, Ω) such that

sq−Cn0(f ; ω) = κ (5.11)

for every point ω ∈ Ω ∩ ρ(f).

Proof. The proof is actually contained in the proof of Theorem 1.2. For every point
ω ∈ Ω we choose an integer nω such that

sq−Cnω (f ; ω) = κ

and therefore, sq−Cn(f ; ω) = κ for every n ≥ nω. By continuity, there exists a
neighborhood Uω of ω (depending on ω and nω) such that

sq−Cnω (f ; z) ≥ sq−Cnω (f ; ω) = κ for every z ∈ Uω. (5.12)

Since f ∈ Sκ, we have
sq−Cn(f ; z) ≤ κ

for every n ≥ 0 and every z ∈ D, which together with (5.12) implies

sq−Cnω (f ; z) = κ for every z ∈ Uω.

It remains to choose a finite open covering (5.9) of Ω and to note that (5.11) holds
for every ω ∈ Ω with n0 = maxi nωi . �

Theorem 1.1 also admits a partial analogue in the context of Carathéodory
matrices:

Theorem 5.3. Let f be the ratio of two finite Blaschke products

f(z) =
B̃(z)
B(z)

, deg B = κ, deg B̃ = κ̃ (5.13)

with no common zeros, let ω be a point in D∩ ρ(f) and let Cn(f ; ω) be the corre-
sponding Carathéodory matrix. Then

1. If n = κ + κ̃, then Cn(f ; ω) is invertible.
2. If n ≥ κ + κ̃, then

sq− Cn(f ; ω) = κ and sq+ Cn(f ; ω) = κ̃.

3. If n < κ + κ̃, then there is ω ∈ D ∩ ρ(f) such that sq− Cn(f ; ω) < κ.

We omit the proof, which is based on the arguments close to those in the
proofs of Lemma 3.3 and Theorem 3.4. Theorem 5.3 says, in particular, that for
f of the form (5.13), one can find and integer n such that

sq−Cn(f ; ω) = κ for every ω ∈ D ∩ ρ(f) (5.14)

and that the minimal value of such n is

n0 = degB + degB̃.
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This gives the sufficiency part for the “Carathéodory” analogue of Theorem 1.1.
However, we do not know if the complete analogue (that is, including necessity
part) of Theorem 1.1 holds true. This gives rise to the following

Question 2: Does there exist a function f ∈ Sκ having property (5.14) and which
is not a ratio of two finite Blaschke products?

Theorem 1.1 allows us to reformulate this question in the following equivalent
form: Does there exist a function f ∈ Sκ having positive definite Pick matrices of
arbitrarily large orders and such that all Carathéodory matrices of order n0 have
κ negative eigenvalues?

Roughly speaking, property (5.14) means that Pick matrices Pn(f ; z1, . . . , zn)
have κ negative eigenvalues if the points z1, . . . , zn are close to each other. However,
Pick matrices based on relatively distant points do not have to enjoy this property.

6. General subdomains of D.

Theorems 1.1 and 1.2 and Remark 1.3 give a partial answer to the following

Question 3: Given an infinite set Ω ⊆ D, characterize the set Pκ(Ω) of all functions
f ∈ Sκ with the following property:

There exists an integer n0 such that sq−Pn(f ; z1, . . . , zn) = κ for every n ≥ n0

and every choice of points z1, . . . , zn ∈ Ω.

More precisely, Theorem 1.1 states that if Ω = D, then Pκ(Ω) coincides with
Bκ, the set of all ratios of two finite Blaschke products with no common zeros and
degree of the denominator equal κ. On the other hand, Theorem 1.2 and Remark
1.3 claim that if Ω ⊂ D i.e., if Ω ∩ T = ∅, then Pκ(Ω) = Sκ. In general,

Bκ ⊆ Pκ(Ω) ⊆ Sκ

(the left inclusion follows from Theorem 3.4 and the right inclusion is selfevident).
Theorem 6.1 below asserts that the right inclusion is proper unless we are in the
assumption of Theorem 1.2. Theorem 6.4 asserts that the left inclusion is proper
if Ω misses an arbitrarily small arc of T (compare with Theorem 1.1).

Theorem 6.1. Let Ω be an open subset of D. Then the inclusion Pκ(Ω) ⊂ Sκ is
proper if and only if

Ω ∩ T �= ∅. (6.1)

Proof. The “only if” part follows from Theorem 1.2 and Remark 1.3. To prove the
“if” part we pick a point t0 from Ω∩T (without loss of generality we may assume
that t0 = −1) and show that the function

f(z) =
(

z + 1
2z

)κ

(6.2)
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belongs to Sκ \ Pκ(Ω). It belongs to Sκ, since it admits the Krein–Langer factor-
ization (1.5) with

S(z) =
(

z + 1
2

)κ

and B(z) = zκ. (6.3)

We shall show that for every fixed n,

Cn(f ; ω) > 0 whenever
∣∣∣∣ω − 1

2n + 1

∣∣∣∣ >
2n

2n + 1
(6.4)

Assuming for a moment that (6.4) is already proved, let us show that f �∈ Pκ(Ω).
Indeed, choosing any ω such that the corresponding Carathéodory matrix Cn(f ; ω)
is positive, we conclude by the second statement in Lemma 4.4 (inequality
(4.29)), that there exists a neighborhood Uω of ω such that the Pick matrix
Pn(f ; z1, . . . , zn) is positive definite for every choice of n points z1, . . . , zn ∈ Uω.
Since Ω is open, we can choose Uω to be a subset of Ω. Thus, we have shown that for
every fixed integer n there exists a positive definite Pick matrix Pn(f ; z1, . . . , zn)
based on n points z1, . . . , zn ∈ Ω. The latter means that f �∈ Pκ(Ω).

Thus, it remains to prove (6.4). To this end we once again use the construction
from the proof of Lemma 4.3. Since B(ω) = ωκ �= 0 for ω �= 0, it follows by
Remark 4.6 that Cn(f ; ω) is congruent to the difference Cn(S; ω) − Cn(B; ω) of
Carathéodory matrices and thus, Cn(f ; ω) > 0 if and only if

Cn(S; ω) − Cn(B; ω) > 0. (6.5)

Let, as in the proof of Lemma 4.3,

bn(z) :=
(

z − ω

1 − zω̄

)n

, Kbn := H2 
 bnH2, T := Tbn = PKbn
t |Kbn

.

Step 1. Cn(f ; ω) > 0 if and only if the operator

An,κ = T κ(T κ)∗ − (T + I)κ(T ∗ + I)κ

22κ
: Kbn → Kbn (6.6)

is positive definite.

Proof of Step 1. As in the proof of Lemma 4.3, we refer to the fact that Cn(S; ω)
and Cn(B; ω) are the matrices of the quadratic forms associated with the operators

I − S(T )S(T )∗ and I − B(T )B(T )∗

with respect to the basis (4.3) for Kbn . Therefore, condition (6.5) can be equiva-
lently written as

An,κ := B(T )B(T )∗ − S(T )S(T )∗ > 0.

By definition (6.3) of functions B and S, this operator Aκ coincides with that in
(6.6)

Step 2. If ω is such that

An,1 = TT ∗ − (T + I)(T ∗ + I)
4

> 0, (6.7)

then the operator An,κ is also positive for every positive integer κ.
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Proof of Step 2. We prove it by induction. Let the operator An,κ defined via (6.6)
be positive, i.e., let

T κ(T κ)∗ > 2−2κ(T + I)κ(T ∗ + I)κ.

Then, since T is invertible,

T κ+1(T κ+1)∗ = TT κ(T κ)∗T ∗ > 2−2κT (T + I)κ(T ∗ + I)κT ∗

= 2−2κ(T + I)κTT ∗(T ∗ + I)κ

> 2−2κ−2(T + I)κ+1(T ∗ + I)κ+1.

The last inequality is due to the assumption (6.7). So, we got that An,κ+1 is
positive.

Step 3. We will use the following known property of the operator T :

I − TT ∗ = ee∗, (6.8)

where e : C → Kbn is the operator of multiplication by the function

e(t) = 1 − bn(t)bn(0) = PKbn
1 ∈ Kbn ,

e∗ is its adjoint
e∗x = 〈x, e〉 = x(0) (x ∈ Kbn).

Step 4. Since the spectrum of T consists of a single point ω, |ω| < 1, the operator
is I − T is invertible on Kbn . It holds that

(I − T )−1e =
1 − bnbn(1)

1 − t
. (6.9)

Proof of Step 4. Since I−T is invertible on Kbn , then x = (I−T )−1e is the unique
solution of the equation

(I − T )x = e (6.10)
in Kbn . In a detailed form the equation reads as

(1 − t)x − bnP+bn(1 − t)x = e = 1 − bnbn(0). (6.11)

Since x ∈ Kbn , it follows that bnx ∈ H2
− and hence,

P+bnx = 0 and P+bntx = α = const.

Then (6.11) takes the form

(1 − t)x − bn · α = 1 − bnbn(0).

Thus,

x =
1 − bnbn(0) + bn · α

1 − t
(6.12)

and since x is in H2, we have also

1 − bn(1)bn(0) + bn(1) · α = 0.
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The latter equality gives (since |bn(1)| = 1) α = bn(0)− bn(1) which being substi-
tuted into (6.12) leads us to

x =
1 − bnbn(1)

1 − t
.

One can easily check that the above function is indeed in Kbn , but there is no
need to do that. This follows from the above computation since we know that the
equation (6.10) has a unique solution in Kbn and since the obtained function is
the only conceivable candidate for this solution. Formula (6.9) follows.

Step 5. The operator An,1 introduced in (6.7) is positive if and only if∥∥∥∥∥
1 − bnbn(1)

1 − t

∥∥∥∥∥
2

L2

<
1
2
. (6.13)

Proof of Step 5. Making use of (6.8) we represent An,1 as

An,1 := TT ∗ − I + T

2
· I + T ∗

2

=
1
4
(I − T )(I − T ∗) − 1

2
(I − TT ∗)

=
1
4
(I − T )(I − T ∗) − 1

2
ee∗.

and conclude that An,1 > 0 if and only if

I − 2(I − T )−1ee∗(I − T ∗)−1 > 0

or, equivalently, if and only if

1 − 2e∗(I − T ∗)−1(I − T )−1e > 0.

The latter inequality is equivalent to
∥∥(I − T )−1e

∥∥2

L2
<

1
2

which can be written in the form (6.13), due to formula (6.9).

Step 6. It holds that ∥∥∥∥∥
1 − bnbn(1)

1 − t

∥∥∥∥∥
2

L2

= b′n(1)bn(1). (6.14)

Proof of Step 6. One of variations of the classical Carathéodory–Julia theorem on
boundary derivatives claims that if w is a Schur function such that

lim inf
r→1

1 − |w(rβ)|2
1 − r2

< ∞ (6.15)

where β is a point on T, then there exist the radial boundary limits

w0 = lim
r→1

w(rβ), w1 = lim
r→1

w′(rβ) (6.16)
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and ∥∥∥∥1 − ww0

1 − t

∥∥∥∥
2

L2

+
∥∥∥∥1 − |w|2
|t − β|2

∥∥∥∥
L1

= w1w0 β. (6.17)

We apply this result to a simple case when w = bn and β = 1. Condition (6.15)
is clearly satisfied, the limits (6.16) exist regardless condition (6.15): since bn is
analytic at β = 1, it holds that w0 = bn(1) and w1 = b′n(1). Furthermore, since bn

is inner, ∥∥∥∥1 − |bn|2
|t − β|2

∥∥∥∥
L1

= 0

and thus, (6.17) reduces to (6.14).

Step 7. We complete now the proof of the theorem. Upon combining (6.13) and
(6.14) we conclude that An,1 is positive definite if and only if

b′n(1)bn(1) <
1
2

which reduces, since

bn(1) =
(

1 − ω

1 − ω̄

)n

and b′n(1) = n ·
(

1 − ω

1 − ω̄

)n 1 − |ω|2
|1 − ω|2 ,

to

n · 1 − |ω|2
|1 − ω|2 <

1
2
.

Solving the latter quadratic inequality gives∣∣∣∣ω − 1
2n + 1

∣∣∣∣ >
2n

2n + 1
. (6.18)

Thus, An,1 is positive if and only if ω meets condition (6.18). Now (6.4) follows by
Steps 1 and 2. �

We have completed the first part of this section (we proved that the inclusion
Pκ(Ω) ⊆ Sκ is proper under the assumption that Ω ∩ T �= ∅). The goal of the
second part is proving Theorem 6.4, which deals with assumption that Ω misses
an arbitrarily small arc of T and asserts that then the inclusion Bκ ⊆ Pκ(Ω) is
proper.

Recall that formula (4.1) defines the Carathéodory matrix Cn(f ; ω) at any
point w ∈ D at which f is analytic. It turns out that if w ∈ T and f is analytic at
ω and unimodular on an arc of T around ω, then the notion of the Carathéodory
matrix can be meaningfully extended to this boundary situation.

Proposition 6.2. Let g be a function analytic on a simply connected domain U and
let

Φ(z, ζ) :=




g(z) − g(ζ)
z − ζ

, if z �= ζ,

g′(z), if z = ζ.
(6.19)
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Then Φ(z, ζ) is analytic in z and ζ on U × U and

∂i+j

∂zi∂jζ
Φ(z, ζ) =




1
(z − ζ)i+j+1

∫ z

ζ

g(i+j+1)(u)(u − ζ)i(z − u)j du if z �= ζ,

i! j!
(i + j + 1)!

g(i+j+1)(z) if z = ζ.

Verification of this result is straightforward and will be omitted.

Corollary 6.3. For every i, j ≥ 0, the function ∂i+j

∂zi∂jζ Φ(z, ζ) is analytic on U ×U
and ∥∥∥∥ ∂i+jΦ

∂zi∂jζ

∥∥∥∥
∞

≤
∥∥∥g(i+j+1)

∥∥∥
∞

,

where ‖g‖∞ := max
z∈U

|g(z)|.

Let g be a Schur function on D that admits an analytic continuation across
an arc of T and is unimodular on this arc. Let the region

Uρ :=
{

z ∈ C : θ1 < arg z < θ2, ρ < |z| <
1
ρ

}
, (0 < ρ < 1) (6.20)

be such that
1. Uρ is contained in the domain of analyticity of g and
2. g is unimodular on Uρ ∩ T.

Then we have by the symmetry principle,

g(z)g(1/z̄) = 1 for every z ∈ Uρ. (6.21)

Let us consider the function C0,0 defined by the formula

C00(z, z̄) :=
1 − g(z)g(z)

1 − zz̄
(6.22)

for every z ∈ D. However, if z ∈ D ∩ Uρ, then due to symmetry relation (6.21),
this function can be represented as

C00(z, z̄) =
g(z) − g(1/z̄)

z − 1
z̄

· g(z)
z̄

= Φ(z, 1/z̄) · g(z)
z̄

(6.23)

where Φ is given in (6.19). Formula (6.23) makes sense on the whole Uρ and thus,
C00(z, z̄) is now well defined on D ∪ Uρ (it is defined on D and on Uρ by formulas
(6.22) and (6.23), respectively, and these formulas coincide on D ∩ Uρ).

We define now the Carathéodory matrix Cn(g; z) for every z ∈ D∪Uρ as the
matrix with the ij-th entry

Cij(z, z̄) =
1

i! j!
∂i+j

∂zi∂z̄j
C00(z, z̄). (6.24)

It is readily seen from (6.22) that this definition coincides with (4.1) for every
z ∈ D. Let us show that Cij is well defined on D ∪ Uρ.
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For z ∈ D we have, by the Leibnitz’s rule,

Cij(z, z̄) =
1

i! j!
uij(z, z̄) · (1 − |g(z)|2) (6.25)

− 1
i! j!

i∑
k = 0
k + � <

j∑
� = 0
i + j

(
i
k

)(
j
�

)
uk�(z, z̄)g(i−k)(z)g(j−�)(z)

where

uk�(z, z̄) =
∂k+�

∂zk∂z̄�

1
1 − zz̄

.

For z ∈ Uρ, again using the Leibnitz’s rule, we get from (6.23):

Cij(z, z̄) =
1

i! j!

j∑
�=0

(
j
�

)(
∂i+�

∂zi∂z̄�
Φ(z, 1/z̄)

)
·
(

g(z)
z

)(j−�)

. (6.26)

Since

∂�

∂z̄�
=

�∑
k=0

pk�(1/z̄)
∂k

∂
(

1
z̄

)k
,

where p0� = δ0�, the Kronecker symbol, and pk� is a polynomial of degree k + �
(1 ≤ k ≤ �), it follows from (6.26) that

Cij(z, z̄) =
1

i! j!

j∑
�=0

�∑
k=0

(
j
�

)
pk�(1/z̄)

(
∂i+k

∂zi∂
(

1
z̄

)k
Φ(z, 1/z̄)

)
·
(

g(z)
z

)(j−�)

(6.27)
for z ∈ Uρ. It follows from (6.25) that Cij(z, z̄) is well defined and continuous on
D. The same conclusion for Uρ follows from (6.27), by Proposition 6.2.

Theorem 6.4. Let Ω be an open subset of D and let

Ω ∩ T �= T. (6.28)

Then the inclusion Bκ ⊂ Pκ(Ω) is proper.

Proof. Assumption (6.28) means that there exists a point t0 ∈ T which does not
belong to Ω. We consider the function

fa(z) =
Sa(z)
B(z)

, where Sa(z) = ea
z+t0
z−t0 and B(z) = zκ (6.29)

and show that it belongs to Pκ(Ω) \ Bκ for an appropriate choice of a > 0. Since
Sa in (6.29) is a Schur function and Sa(0) = e−a �= 0, the function fa belongs to
the class Sκ, by the Krein–Langer characterization. On the other hand, fa �∈ Bκ,
since Sa is a singular inner function (with the mass a at the point z = t0). We shall
show that there exists a > 0 such that the function fa of the form (6.29) belongs
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to Pκ(Ω). First we note that since Ω is open and t0 �∈ Ω, there is a neighborhood
of t0 disjoint with Ω. This neighborhood can be chosen to be of the form

Vρ,α(t0) =
{

z ∈ C : ρ < |z| <
1
ρ
, | arg z − arg t0| < α

}
(0 < ρ < 1, α > 0)

for an appropriate choice of ρ and α. Define

Uρ,α :=
{

z ∈ C : ρ < |z| <
1
ρ

}
\ Vρ,α(t0)

and let Dρ denote the disk of radius ρ centered at the origin. Define the domain

Ω1 := Dρ ∪ Uρ,α = D1/ρ \ Vρ,α. (6.30)

It is clear that Ω ⊆ Ω1 ∩ D and therefore, Pκ(Ω1 ∩ D) ⊆ Pκ(Ω) (this follows
directly from the definition of the class Pκ(Ω)). Thus, to complete the proof, it
suffices to show that the function fa of the form (6.29) belongs to Pκ(Ω1 ∩ D) for
an appropriate choice of a > 0. This verification is broken into three steps.

Step 1. There exists δ > 0 such that

Cκ(B; z) > δIκ for every z ∈ D. (6.31)

Proof of Step 1. Since B(z) = zκ, we have

1 − B(z)B(z)
1 − zz̄

=
κ−1∑
�=0

z�z̄�

and subsequently,

1
i! j!

∂i+j

∂zi∂z̄j

(
1 − B(z)B(z)

1 − zz̄

)
=

κ−1∑
�=max(i,j)

(
�
i

)(
�
j

)
z�−i · z�−j

=
κ−1∑
�=0

Ri�Rj�

for i, j = 0, . . . , κ − 1, where

Ri� =




(
�
i

)
z�−i if i ≤ �,

0 if i > �.

Now it follows from the definition (4.1) of the Carathéodory matrix that

Cκ(B; z) = RR∗,

where R is the upper triangular matrix with the entries Ri�. Since Rii = 1 for
i = 1, . . . , κ−1, it follows that R is not singular and therefore the matrix Cκ(B; z)
is positive definite for every z ∈ C. The above representation also implies that
Cκ(B; z) depends continuously on z ∈ C. The rest follows by the standard com-
pactness argument.
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Step 2. Let Ω1 be the domain defined in (6.30). Then for every ε > 0 there exists
aε > 0 such that

‖Cκ(Sa; z)‖ ≤ ε for every a < aε and z ∈ Ω1, (6.32)

where Sa is the inner Schur function defined in (6.29).

Proof of Step 2. It suffices to show that the entries Cij(z, z̄) of the Carathéodory
matrix Cκ(Sa; z) tend to zero uniformly on Ω1 as a tends to zero. To this end,
we first note that since ω+t0

ω−t0
is bounded on Ω1, it follows from the formula for

definition of Sa that

lim
a→0

Sa(z) = 1 and lim
a→0

S(j)
a (z) = 0 for j ≥ 1 (6.33)

and convergences are uniform on Ω1. Now the uniform estimate (6.32) follows
for Dρ from (6.25) and (6.33) and for Uρ,α it follows from (6.27) and (6.33) by
Corollary 6.3. It is worthwhile to note that formula (6.27) is relevant since Sa is
analytic and unimodular on Uρ,α ∩ T.

Step 3. Combining (6.31) and (6.32) we conclude that there exists a > 0 such that
for every point ω ∈ Ω,

Cκ(Sa; z) − Cκ(B; z) < 0.

By Remark 4.6, the latter difference is congruent to the Carathéodory matrix
Cκ(Sa

B ; z) of the ratio of Sa and B, that is, of fa. Thus, there exists a > 0 such that
for every point z ∈ Ω, the Carathéodory matrix Cκ(fa; z) is negative definite. Now
we repeat the compactness arguments from the proof of Theorem 1.2 in Section 5
to conclude that there exists an integer n such that

sq−Pn(fa; z1, . . . , zn) = κ (6.34)

for every choice of n points z1, . . . , zn ∈ Ω. Thus, fa belongs to Pκ(Ω). �

7. Concluding remarks

The problems discussed in the paper can be put in a more abstract framework as
the following question.

Question 4: Given a Pontryagin space H , sq−H = κ and a family G of finite
dimensional subspaces of H . Determine whether or not the following is true: there
exists a positive integer n0 such that for every G ∈ G with dim G ≥ n0 it holds
that sq−G = κ.

Apparently the answer depends on how the subspaces in G are located relative
to the negative cone in H . For instance, if G is a family of all finite dimensional
subspaces of H and dim H = ∞ then the answer is negative. If G is the family of
all finite dimensional subspaces that contain a fixed maximal negative subspace
then the answer is affirmative. We do not know how to approach this problem and
what are the interesting families G to be considered.
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In the present paper G can be viewed as a family of subspaces spanned by
the reproducing kernels associated with an Sκ class function f for Ω a subset of
D. Theorems 1.1, 1.2, 6.1, 6.4 give affirmative or negative answers depending on f
and Ω. Question 2 addresses one more situation that we do not know the answer.

We are grateful to Prof. J. Ball for useful discussions.
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