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analogue of the Abstract Interpolation Problem formulated by Katsnelson,
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1. Introduction

A multivariable generalization of the Szegö kernel k(x, y) = (1 − xy)−1 is the
positive kernel

kd(z, ζ) =
1

1 − 〈z, ζ〉
on Bd × Bd where Bd =

{
z = (z1, . . . , zd) ∈ Cd : 〈z, z〉 < 1

}
is the unit ball of the

d-dimensional Euclidean space Cd. By 〈z, ζ〉 =
∑d

j=1 zjζj we mean the standard
inner product in Cd. The reproducing kernel Hilbert space (RKHS) H(kd) associ-
ated with kd via Aronszajn’s construction [8] is a natural multivariable analogue
of the Hardy space H2 of the unit disk and coincides with H2 if d = 1. In what
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follows, the symbol L(U ,Y) stands for the algebra of bounded linear operators
mapping U into Y, and we abbreviate L(U ,U) to L(U). For Y an auxiliary Hilbert
space, we consider the tensor product Hilbert space HY(kd) := H(kd) ⊗ Y whose
elements can be viewed as Y-valued functions in H(kd). Then HY(kd) can be
characterized as follows:

HY(kd) =





f(z) =

∑

n∈Z
d
+

fnzn : ‖f‖2 =
∑

n∈Z
d
+

n!
|n|! · ‖fn‖2

Y < ∞





. (1.1)

Here and in what follows, we use standard multivariable notations: for multi-
integers n = (n1, . . . , nd) ∈ Zd

+ and points z = (z1, . . . , zd) ∈ Cd we set

|n| = n1 + n2 + . . . + nd, n! = n1!n2! . . . nd!, zn = zn1
1 zn2

2 . . . znd

d .

We will be particularly interested in the space of multipliers Md(U ,Y) defined
as the space of all L(U ,Y)-valued analytic functions z �→ F (z) on Bd such that
the multiplication operator MF : f(z) �→ F (z)f(z) maps HU (kd) into HY(kd). It
follows by the closed graph theorem that for every F ∈ Md(U ,Y), the operator
MF is bounded. We denote by Sd(U ,Y) the unit ball of Md(U ,Y):

Sd(U ,Y) = {S ∈ Md(U ,Y) : ‖MS‖op ≤ 1}.

We let Mz denote the commuting d-tuple Mz := (Mz1 , . . . , Mzd
) consisting of

operators of multiplication by the coordinate functions of Cd on H(kd) (called
the shift (operator-tuple) of HY(kd)), whereas we refer to the commuting d-tuple
M∗

z := (M∗
z1

, . . . , M∗
zd

) consisting of the adjoints of Mzj ’s (in the metric of H(kd))
as the backward shift. Then the space Md(U ,Y) can be characterized as those ele-
ments R of L(HU (kd),HY(kd)) which intertwine the shifts of HU (kd) and HY(kd)
(i.e., such that MzjR = RMzj for j = 1, . . . , d); if such an R is a contraction,
then R = MS for some S ∈ Sd(U ,Y). The simplest generalization of the classical
Nevanlinna-Pick interpolation problem for the operator-valued case is:

Operator-valued Nevanlinna-Pick problem (see [7, 30, 2, 26]): Given points ζ(i)

= (ζ(i)
1 , . . . , ζ

(i)
d ) in Bd and operators Xi ∈ L(U ,Y) for i = 1, . . . , N , find S ∈

Sd(U ,Y) so that

S(ζ(i)) = Xi for i = 1, . . . , N. (1.2)

If S is any multiplier in Md(U ,Y), then an easy reproducing-kernel-space compu-
tation shows that

M∗
Skd,ζ ⊗ y = kd,ζ ⊗ S(ζ)∗y for ζ ∈ B

d and y ∈ Y,
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where kd,ζ(z) := kd(z, ζ) so that kd,ζ ⊗ y ∈ HY(kd) and kd,ζ ⊗ S(ζ)∗y ∈ HU (kd).
Hence, if S ∈ Sd(U ,Y) satisfies (1.2), then we see that

N∑

i,j=1

〈
IY − XiX

∗
j

1 − 〈ζ(i), ζ(j)〉yj , yi

〉

= ‖
N∑

j=1

kd,ζj ⊗ yj‖2
HY(kd) − ‖M∗

S

N∑

j=1

kd,ζj ⊗ yj‖2
HU(kd) ≥ 0

for any finite collection y1, . . . , yN of vectors in Y, and hence we see that a necessary

condition for solutions to exist is that the Pick matrix
[

IY−XiX
∗
j

1−〈ζi,ζj〉
]N

i,j=1
be positive

semidefinite. In view of the fact that the Drury-Arveson kernel kd is a complete
Pick kernel, it follows that this necessary condition is also sufficient (see e.g. [2]).

A more natural problem for the vector-valued setting is the following more general
form of the operator-valued Nevanlinna-Pick problem:

Left-tangential Nevanlinna-Pick interpolation problem (LNPP) (see [26, 52, 53]:
Given points ζ(i) = (ζ(i)

1 , . . . , ζ
(i)
d ) ∈ Bd and vectors ai ∈ Y and ci ∈ U for

i = 1, . . . , N , find all functions S ∈ Sd(U ,Y) such that

a∗
i S(ζ(i)) = c∗i for i = 1, . . . , N. (1.3)

There are various ways to study higher multiplicity versions of LNPP; three of
which which we study here we call (1) the Sarason Interpolation Problem (SIP),
(2) the Commutant Lifting Problem (CLP), and (3) the strongly stable Operator
Argument Problem (ssOAP). For example, for the case of ssOAP, the data set
consists of a set of the form (T, E, N) where T = (T1, . . . , Td) is a commutative
d-tuple of operators on a state space X satisfying a strong stability hypothesis,
E : X → Y and N : X → U are output operators such that the associated observ-
ability operators OE,T : X → HY(kd) and ON,T : X → HU (kd) make sense, and
the interpolation conditions on a Schur multiplier S assume the compact form

O∗
E,TMS = O∗

N,T. (1.4)

One way to study these problems is to study instead the corresponding problem on
the asymmetric Fock space �2(Fd) (where Fd is the free semigroup on d letters)—
see [49, 50, 30, 7, 51, 52, 53, 17], and then use the result of [7, 30] (see also [18])
that the Drury-Arveson multiplier space is exactly the image of the free-semigroup
algebra after applying a point-evaluation map associated with points in the unit
ball Bd; indeed many of the results concerning this problem were first arrived at in
this way. It is also possible to study these problems directly, as in [2, 26, 3, 5, 6].
While the work in [50, 7, 51, 52, 53] relies on Commutant Lifting techniques, that
of [30] is based on the original duality/Fejér-Riesz-type factorization approach
of Sarason [55], that of [2, 26] on the “lurking isometry” technique, and that of
[5, 6] on an adaptation of the Schur algorithm. It is also possible to approach
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these problems by using the grassmannian Krĕın-space approach of Ball-Helton
(see [35]). A broad survey of multivariable interpolation problems going beyond
the context of the Drury-Arveson space is given in [23].
In the present paper, we review the well-known solution criteria for these prob-
lems and how all these problems can be considered as mutually equivalent once
one understands how to transform an admissible data set of one type to admissible
data sets of each of the other two types; for the one-variable case these ideas are
addressed in detail in the books [21, 36, 37]. We obtain a chain-matrix type linear-
fractional parametrization for the set of all solutions of such a problem for the
case where the Pick operator is strictly positive definite by adapting the methods
of Dym [33] and Potapov [45]. That these ideas can be adapted to this multivari-
able setting was already observed by the second author in [28]. We mention that
recently Popescu (see [53, Theroem 2.3]) has obtained a parametrization formula
for the set of all solutions in the context of the noncommutative commutant lifting
theorem of Popescu [49] as well as a maximum entropy principle for this con-
text (see Theorem 2.8 there). By the symmetrization technique mentioned above,
this result in principle gives a parametrization for the set of solutions of inter-
polation problems discussed here, once one transforms the interpolation data to
commutant-lifting data.
We mention that the more complicated bitangential problem is studied in [13, 14]
as well as in [16, 15] in a more general setting; when specialized to the left-
tangential case, the analysis there gives a Redheffer linear-fractional parametriza-
tion for a particular case of the ssOAP-type problem (where it is assumed that
the joint spectrum of T is contained in the open unit ball from which it follows in
particular that T is strongly stable).
It turns out that the problem ssOAP still makes sense without the strongly stable
hypothesis; we refer to a problem of this type as a (not necessarily strongly stable)
Operator Argument interpolation Problem OAP. The same methodology used here
for ssOAP applies equally well to the OAP case; the associated reproducing kernel
Hilbert space H(KJ,J

A ) (see Theorem 2.3 below) constructed from the interpolation
data is contained contractively rather than isometrically in the ambient Drury-
Arveson Krĕın space.
We also introduce here a still more general interpolation problem, called the an-
alytic Abstract Interpolation Problem (aAIP), where the assumption that the ob-
servability operators OE,T and ON,T map into the Drury-Arveson space is re-
moved. Instead, in this more general formulation it is only assumed that the OE,T

and ON,T map the state space into holomorphic vector-valued functions on the
ball. For this setting the formulation (1.4) of the interpolation conditions does not
make sense and one uses instead the following formulation: a Schur-multiplier S is
said to solve the interpolation problem aAIP if the operator FS = [ I −MS ]

[OE,T

ON,T

]

maps the state space into the de Branges-Rovnyak space H(KS) associated with S.
We show that the same solution procedure as for the previous cases still applies,
despite the fact that the associated reproducing kernel Hilbert space H(KJ,J

A ) is no
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longer contained in the Drury-Arveson space. It was shown in [27] that the bound-
ary Nevanlinna-Pick problem on the ball is a particular instance of this problem
aAIP which does not fit into the OAP framework. The boundary Nevanlinna-Pick
problem for the Drury-Arveson space setting has also been studied in [4, 14].
Our final interpolation problem is a more implicit version of aAIP which we call
the Abstract Interpolation Problem (AIP). The problem formulation calls for find-
ing not only a Schur-class function S ∈ Sd(U ,Y) but also a map F from the part
of the state space specified by the problem data into the de Branges-Rovnyak
space H(KS). When specialized to the single-variable case d = 1, this problem
coincides with a particular case (the “left-sided version”) of the Abstract Interpo-
lation Problem introduced by Katsnelson, Kheifets and Yuditskii [40] and further
studied in [41, 42, 43, 44, 46, 25]. We show how the approach of Arov-Grossman
[10, 11] can be used to obtain a Redheffer-type linear-fractional description for
the set of all solution pairs (F, S). This approach has already been used in other
several-variable contexts in [13, 14, 15].
The paper is organized as follows. Section 2 collects various preliminary material
on Schur multipliers, reproducing kernel Hilbert spaces and linear-fractional maps
which will be needed in the sequel. Section 3 studies the three problems SIP, CLP
and ssOAP and lays out the well-known solution criteria and the data manipula-
tions showing the mutual equivalences among them. Section 4 extends the theory
to the setting of OAP. Finally Section 5 studies the analytic Abstract Interpola-
tion Problem and Section 6 handles the most general version of our problems, the
Abstract Interpolation Problem. Section 3 is essentially a review of known mate-
rial to set the context while Sections 4, 5, 6 present new results on more general
types of interpolation problems for the Drury-Arveson Schur-multiplier class.

2. Schur multipliers, reproducing kernel Hilbert spaces, and
linear-fractional transformations

In this section we collect miscellaneous preliminary results needed for the work in
the sequel. The following result appears in [26, 2, 34].

Theorem 2.1. Let S be a L(U ,Y)-valued function analytic in Bd. The following
are equivalent:

1. S belongs to Sd(U ,Y).

2. The kernel KS(z, ζ) =
IY − S(z)S(ζ)∗

1 − 〈z, ζ〉 is positive definite on Bd×Bd or equiv-

alently, there exists an auxiliary Hilbert space H and an analytic L(H,Y)-
valued function H(z) on Bd so that

I − S(z)S(ζ)∗

1 − 〈z, ζ〉 = H(z)H(ζ)∗. (2.1)



306 Ball and Bolotnikov IEOT

3. There is a unitary operator

U =
[

A B
C D

]
=








A1 B1

...
...

Ad Bd

C D








:
[

H
U

]
→
[

Hd

Y

]
(2.2)

such that
S(z) = D + C (IH − Z(z)A)−1

Z(z)B, (2.3)
where

Z(z) =
[

z1IH · · · zdIH
]
. (2.4)

The representation (2.3) is called a unitary realization of S ∈ Sd(U ,Y). More
formally, we shall say that a collection C of the form C = {H, U , Y, U} with U
of the form (2.2) is a (d-variable) colligation with connecting operator equal to U
and with associated characteristic function equal to S(z) given by (2.3). If U is
unitary, we say that the colligation is unitary. We say that the unitary colligation
C is closely connected if the smallest subspace H0 ⊂ H such that H0 is reducing
for A1, . . . , Ad and H0 contains Ran C∗ as well as Ran Bj for j = 1, . . . , d is the
whole space H. In case H0 is not the whole space H, then

U0 =
[
A0 B0

C0 D

]
=
[
A|H0 B
C|H0 D

]
:
[
H0

U

]
→
[
Hd

0

Y

]

is again unitary and gives rise to the same characteristic function S(z). Hence there
is no loss of generality in Theorem 2.1 if we assume that the unitary colligation C
with connecting operator U in (2.2) is closely connected.
Note that for S of the form (2.3), relation (2.1) holds with

H(z) = C (IH − Z(z)A)−1 . (2.5)

Note also that formulas (2.3) and (2.5) can be written directly in terms of the
unitary operator U as follows:

S(z) = PYU (IH⊕U − P∗
HZ(z)PHdU)−1 |U , (2.6)

H(z) = PYU (IH⊕U − P∗
HZ(z)PHdU)−1 |H, (2.7)

where PY and PHd are the orthogonal projections of the space Hd ⊕Y onto Y and
Hd, respectively, and P ∗

H is the inclusion map of H into H⊕ U .

Associated with any S ∈ Sd(U ,Y) is the de Branges-Rovnyak space H(KS), the
reproducing kernel Hilbert space with reproducing kernel KS (which is positive by
Theorem 2.1). The original characterization of H(KS), as the space of all functions
f ∈ HY(kd) such that

‖f‖2
H(KS) := sup

g∈HU (kd)

{
‖f + Sg‖2

HY(kd) − ‖g‖2
HU(kd)

}
< ∞, (2.8)

is due to de Branges and Rovnyak [29] (for the case d = 1). In particular, it follows
from (2.8) that ‖f‖H(KS) ≥ ‖f‖HY(kd) for every f ∈ H(KS), i.e., that H(KS) is
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contained in HY(kd) contractively. On the other hand, the general complementa-
tion theory applied to the contractive operator MS provides the characterization
of H(KS) as the operator range

H(KS) = Ran(I − MSM∗
S)

1
2 (2.9)

with the lifted norm

‖(I − MSM∗
S)

1
2 f‖H(KS) = ‖(I − π)f‖HY(kd) (2.10)

for all f ∈ HY(kd) where π here is the orthogonal projection onto Ker(I−MSM∗
S)

1
2 .

Upon setting f = (I − MSM∗
S)

1
2 h in (2.10) we get

‖(I − MSM∗
S)h‖H(KS) = 〈(I − MSM∗

S)h, h〉HY(kd). (2.11)

More complete details concerning the spaces H(KS) and related matters of real-
ization and the model theory for commutative row contractions can be found in
the recent series of papers [18, 19, 20].
We shall also have use of the Beurling-Lax theorem for the Drury-Arveson space.
The following definition of inner multiplier is useful.

Definition 2.2. A contractive multiplier Θ ∈ Sd(F ,Y) is called inner if the multi-
plication operator MΘ : HF (kd) → HY(kd) is a partial isometry.

If Θ is inner, then the associated de Branges-Rovnyak space H(KΘ) is isometrically
included in HY(kd) and

H(KΘ) = HY(kd) 
 ΘHF(kd). (2.12)

Moreover, the orthogonal projection PH(KΘ) of HY(kd) onto H(KΘ) is given by

PH(KΘ) = IHY (kd) − MΘM∗
Θ. (2.13)

Since the space ΘHF (kd) is shift invariant (i.e., Mzj -invariant for j = 1, . . . , d), it
follows from (2.12) that the space H(KΘ) is backward shift invariant (i.e., M∗

zj
-

invariant for j = 1, . . . , d). The Beurling-Lax theorem for HY(kd) (see [12, 48, 18,
20] for the commutative setting and [50, 31, 18] for the noncommutative setting
from which the commutative setting can be derived) asserts that any shift invariant
closed subspace M of HY(kd) necessarily has the form ΘHF (kd) for some inner
multiplier Θ ∈ Sd(F ,Y); in this situation we say that Θ is a Beurling-Lax repre-
senter for the shift-invariant subspace M. Therefore any backward-shift-invariant
subspace M of HY(kd) has the form M = H(KΘ).
It is convenient to introduce the following noncommutative multivariable func-
tional-calculus notation from [18] even though here we are only interested in the
commutative setting. We let Fd denote the free semigroup generated by the al-
phabet consisting of the letters {1, . . . , d}. Elements of Fd are words v = iN · · · i1
where each ik ∈ {1, . . . , d}. Given such a word v = iN · · · i1 ∈ Fd, we let |v| = N
denote the length of the word (i.e., the number of letters in v) and we let a(v) ∈ Z

d
+
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be the abelianization of v, i.e., the d-tuple (n1, . . . , nd) of nonnegative integers de-
termined by

a(v) = (n1, . . . , nd) where nj = #{k : ik = j} for j = 1, . . . , d

(where in general #Ξ denotes the cardinality of the set Ξ). If T = (T1, . . . , Td) is a
d-tuple of Hilbert-space operators and if z = (z1, . . . , zd) is a collection of complex
variables, we use the standard multivariable notation:

T v = TiN · · ·Ti1 , zv = ziN · · · zi1

if v = iN · · · i1. If n = (n1, . . . , nd) ∈ Zd
+ and if T is a commutative operator

d-tuple, we write

Tn = T n1
1 · · ·T nd

d , zn = zn1
1 · · · znd

d .

If v ∈ Fd and T is a commutative operator d-tuple, we then have the following con-
nections between the noncommutative and commutative multivariable functional
calculus:

Tv = Ta(v), zv = za(v).

A useful combinatorial fact is the following: for a given n ∈ Zd
+,

#{v ∈ Fd : a(v) = n} =
|n|!
n!

.

We shall need some J-analogues of results concerning ranges of observability
operators and associated reproducing kernel Hilbert spaces given in [18]. Let
T = (T1, · · · , Td) be a d-tuple of operators in L(X ) and let C ∈ L(X ,Y). The
pair (C,T) is said to be output-stable if the associated observability operator

OC,T : x �→ C(IX − z1T1 − · · · − zdTd)−1x = C(IX − Z(z)T )−1x

where

T =






T1

...
Td




 : X → X d and Z(z) =

[
z1IX · · · zdIX

]
,

maps X into HY(kd) and is bounded, i.e., OC,T ∈ L(X ,HY(kd)). To obtain the
Taylor expansion for OC,Tx ∈ HY(kd), we compute:

(OC,Tx)(z) = C(IX − Z(z)T )−1x =
∞∑

N=0

C(Z(z)T )Nx

= C

∞∑

N=0

∑

v∈Fd : |v|=N

Tvzvx = C
∑

v∈Fd

Tvzvx

= C
∑

n∈Z
d
+

∑

v∈Fd : a(v)=n

Tvzvx =
∑

n∈Z
d
+

|n|!
n!

CTnznx. (2.14)

We now introduce the observability gramian

GC,T := O∗
C,TOC,T
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whose representation in terms of strongly convergent power series

GC,T =
∑

n∈Z
d
+

|n|!
n!

Tn∗C∗CTn =
∑

v∈Fd

Tv∗C∗CTv (2.15)

follows from the power-series expansion (2.14) for the observability operator to-
gether with the characterization (1.1) of the HY(kd)-norm. An important property
of GC,T is that it satisfies the Stein equation

P −
d∑

j=1

T ∗
j PTj = C∗C (2.16)

as can be seen by plugging in the series expansion (2.15).
It is useful to identify the special case where in addition the commutative d-tuple
is strongly stable, i.e.,

lim
N→∞

∑

v∈Fd : |v|=N

‖Tvx‖2
X = lim

N→∞

∑

n∈Z
d
+ : |n|=N

N

n!
‖Tnx‖2

X = 0 for all x ∈ X .

(2.17)
We will consider an output-stable pair (C,T) where

C =
[
E
N

]
: X →

[
Y
U

]
(2.18)

and T = (T1, . . . , Td) is a commutative d-tuple of operators on X . We let

J =
[
IY 0
0 −IU

]
. (2.19)

In addition, we shall often have use for the operator J ⊗ IHY⊕U(kd) acting on
HY⊕U (kd); we shall abuse notation and write this operator also as simply J . We
define the J-gramian GJ

C,T of the pair (C,T) by

GJ
C,T := O∗

[ E
N ],TJO[ E

N ],T = O∗
E,TOE,T −O∗

N,TON,T = GE,T − GN,T. (2.20)

An important property of GJ
C,T is that it solves the Stein equation

P −
d∑

j=1

T ∗
j PTj = C∗JC, (2.21)

as follows easily from the fact that GE,T and GN,T satisfy Stein equations of the
type (2.16), or by plugging in the infinite series representations

GJ
C,T = GE,T − GN,T

=
∑

v∈Fd

Tv∗ (E∗E − N∗N)Tv =
∑

v∈Fd

Tv∗C∗JCTv (2.22)

for GJ
C,T.
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If X is a Hilbert space and X is a selfadjoint operator operator on X , we use the
notation (X , X) to denote the space X with the indefinite inner product induced
by X :

〈x, y〉X := 〈Xx, y〉X .

Usually it is assumed that X is invertible, so (X , X) is a Hilbert space if X is
positive definite and a Krĕın space in general. The following result is an indefinite
analogue of Theorem 3.14 from [18].

Theorem 2.3. Let T = (T1, . . . , Td) be a commutative d-tuple on X and let C of
the form (2.18) be such that the pair (C,T) is output-stable and the J-gramian
P := GJ

C,T given by (2.20) is strictly positive definite on X . Then:

1. The operator OC,T : (X , P ) → (HY⊕U (kd), J) is a contraction. This operator
is isometric if and only if T is strongly stable.

2. If the space M := RanOC,T is given the lifting norm

‖OC,Tx‖2 = 〈Px, x〉X ,

then M is isometrically equal to the reproducing kernel Hilbert space with
reproducing kernel KP

C,T given by

KP
C,T(z, ζ) = C(I − Z(z)T )−1P−1(I − T ∗Z(ζ)∗)−1C∗. (2.23)

3. If a Hilbert space F and an operator
[
B
D

]
:
[
F
U

]
→
[

X d

Y ⊕ U

]
are such that

the operator

U =
[
T B
C D

]
:
[

X
F ⊕ U

]
→
[

X d

Y ⊕ U

]
(2.24)

satisfies

U
[
P−1 0

0 J

]
U∗ =

[
P−1 ⊗ Id 0

0 J

]
, where J =

[
IF 0
0 −IU

]
, (2.25)

then the kernel KP
C,T(z, ζ) appearing in (2.23) can be expressed as

KP
C,T(z, ζ) = KJ,J

A (z, ζ) :=
J − A(z)JA(ζ)∗

1 − 〈z, ζ〉 (2.26)

where A(z) is the characteristic function of the colligation U in (2.24):

A(z) = D + C(I − Z(z)T )−1Z(z)B. (2.27)

If the operators B and D are such that U in (2.24) is subject to

U
[
P ⊗ Id 0

0 J

]
U =

[
P 0
0 J

]
, (2.28)

then A(z) is bi-(J, J)-contractive for each z ∈ B
d:

A(z)JA(z)∗ ≤ J, A(z)∗JA(z) ≤ J (z ∈ B
d). (2.29)
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One such construction of B, D in (2.24) is to take F = X d−1 ⊕ Y and then
to solve the J-Cholesky factorization problem

[
B
D

]
J
[
B∗ D∗] =

[
P−1 ⊗ Id 0

0 J

]
−
[
T
C

]
P−1

[
T ∗ C∗] (2.30)

with [ B
D ] injective.

Proof. To prove (1), we make subsequent use of (2.20), (2.22) and (2.21) to get

〈JOC,Tx,OC,T〉HY⊕U(kd) =
〈
GJ

C,Tx, x
〉
X

=
∑

v∈Fd

〈Tv∗C∗JCTvx, x〉X

=
∞∑

N=0

∑

v∈Fd : |v|=N

〈

Tv∗(P −
d∑

j=1

T ∗
j PTj)Tvx, x

〉

X

= lim
N→∞



〈Px, x〉X −
∑

v∈Fd : |v|=N+1

Tv∗PTvx, x

〉

X
≤ 〈Px, x〉

with equality in the last step for all x ∈ X if and only if T is strongly stable.
Statement (2) follows by standard reproducing kernel Hilbert space considerations;
for this we refer the reader to [18].
As for statement (3), assume first that U as in (2.24) has been constructed so as
to satisfy (2.25) and that we set A equal to the characteristic function of U as in
(2.27). From the J-coisometry property (2.25) of U we read off the relations

TP−1T ∗ + BJB∗ = P−1 ⊗ Id, CP−1T ∗ + DJB∗ = 0,

TP−1C∗ + BJD∗ = 0, CP−1C∗ + DJD∗ = J.

Then we compute

A(z)JA(ζ)∗ = DJD∗ + C(I − Z(z)T )−1Z(z)BJD∗

+ DJB∗Z(ζ)∗(I − T ∗Z(ζ)∗)−1C∗

+ C(I − Z(z)T )−1Z(z)BJB∗Z(ζ)∗(I − TZ(ζ)∗)−1C∗

= J − CP−1C∗ − C(I − Z(z)T )−1Z(z)TP−1C∗

− CP−1T ∗Z(ζ)∗(I − T ∗Z(ζ)∗)−1C∗

+ C(I − Z(z)T )−1(P−1 ⊗ Id − TP−1T ∗)Z(ζ)∗(I − T ∗Z(ζ)∗)−1C∗

= J − C(I − Z(z)T )−1Γ(I − T ∗Z(ζ)∗)−1C∗
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where Γ is given by

Γ = (I − Z(z)T )P−1(I − T ∗Z(ζ)∗) + Z(z)TP−1(I − T ∗Z(ζ)∗)
+(I − Z(z)T )P−1T ∗Z(ζ)∗ + Z(z)(TP−1T ∗ − P−1 ⊗ Id)Z(ζ)∗

= P−1 − Z(z)(P−1 ⊗ Id)Z(ζ)∗ = (1 − 〈z, ζ〉)P−1

from which (2.26) follows.
If B and D are constructed so that U also satisfies (2.28), then we have the
additional relations

T ∗(P ⊗ Id)T + C∗JC = P, T ∗(P ⊗ Id)B + C∗JD = 0,

B∗(P ⊗ Id)T + D∗JC = 0, B∗(P ⊗ Id)B + D∗JD = J.

Then a computation similar to that used in the previous paragraph shows that

J− A(w)∗JA(z) = B∗(I − Z(w)∗T ∗)−1(P ⊗ Id − Z(w)∗PZ(z))(I − TZ(z))−1B.

In particular, taking w = z gives

J− A(z)∗JA(z) = (I − Z(z)∗T ∗)Π(z)(I − TZ(z))−1B

where

Π(z) = P ⊗ Id − Z(z)∗PZ(z) = (Id − z∗z) ⊗ P

is the tensor product of two positive-definite operators Id−z∗z (where here we view
z as the row matrix z =

[
z1 · · · zd

]
: C

d → C) and hence is positive-definite.
To construct B, D so that U as in (2.24) satisfies (2.25), proceed as follows. From

the Stein equation (2.21), we see that G := Ran
[
T
C

]
is a uniformly positive sub-

space of the Krĕın space (X d⊕Y⊕U ,
[

P⊗Id 0
0 J

]
). Hence the Krĕın-space orthogonal

complement G[⊥] of G is also a Krĕın space in inner product inherited from the
ambient space (X d ⊕Y⊕U ,

[
P⊗Id 0

0 J

]
) with inertia equal to the complement of the

inertia of P with respect to the inertia of
[
P ⊗ Id 0

0 J

]
on the large space, namely,

with inertia equal to that of
[
P ⊗ Id−1 0

0 J

]
on X d−1 ⊕ Y ⊕ U . Therefore there is

an isometry
[
B
D

]
from (X d−1⊕Y⊕U ,J) where we set J =

[
IXd−1⊕Y 0

0 −IU

]
. If

[
B
D

]

is such an isometry, then the orthogonal (with respect to the Krĕın-space inner

product) projection PG[⊥] of X d ⊕Y ⊕U onto G[⊥] is given by PG[⊥] =
[
B
D

] [
B
D

][∗]

where X [∗] denotes the Krĕın-space adjoint of the Hilbert space operator X . For
the case of

[
B
D

]
:
([

X d−1 ⊕ Y
U

]
,J
)

→
([

X d

Y ⊕ U

]
,

[
P ⊗ Id 0

0 J

])
,
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the Krĕın-space adjoint of [ B
D ] is given by

[
B
D

][∗]
= J

[
B∗ D∗]

[
P ⊗ Id 0

0 J

]

and hence we have

PG[⊥] =
[
B
D

]
J
[
B∗ D∗]

[
P ⊗ Id 0

0 J

]
. (2.31)

On the other hand the Krĕın-space orthogonal projection of X d ⊕ Y ⊕ U onto

G = Ran
[
T
C

]
is given by PG =

[
T
C

] [
T
C

][∗]
where the Krĕın-space adjoint of [ T

C ]

is given by
[
T
C

][∗]
= P−1

[
T ∗ C∗]

[
P ⊗ Id 0

0 J

]
.

Therefore we get a second expression for the Krĕın-space orthogonal projection
PG[⊥] , namely

PG[⊥] = IX d⊕Y⊕U − PG = I −
[
T
C

]
P−1

[
T ∗ C∗]

[
P ⊗ Id 0

0 J

]
. (2.32)

Equating the two expressions (2.31) and (2.32) for PP[⊥] gives the identity

I −
[
T
C

]
P−1

[
T ∗ C∗]

[
P ⊗ Id 0

0 J

]
=
[
B
D

]
J
[
B∗ D∗]

[
P ⊗ Id 0

0 J

]
.

Multiplication on the right by
[

P−1⊗Id 0
0 J

]
then leaves us with the expression (2.30)

as the equation to be solved for B and D to complete the construction. We can
always solve (2.30) so that [ B

D ] is injective; this then guarantees that the resulting
U of the form (2.24) also satisfies (2.28). �

The hypothesis that (C,T) is output-stable in Theorem 2.3 can be weakened as
follows. Rather than assuming that OC,T maps the space X into HY⊕U (kd), we
assume only that OC,T maps X into the space HolY⊕U (Bd) of (Y ⊕ U)-valued
holomorphic functions on Bd. Then there of course is no hope for the validity of
statement (1) in Theorem 2.3, but statement (2) holds as stated. For the validity
of statement (3) all that is required (for the construction of [ B

D ] so that U as in
(2.24) satisfies (2.25) and (2.28)) is that P be a positive definite solution of the
Stein equation (2.21). We are led to the following result; as the proof is essentially
the same as that of Theorem 2.3, we leave the details to the reader.

Theorem 2.4. Suppose that (C,T) is an analytic output-pair, i.e.,

C(I − Z(z)T )−1x ∈ HolY⊕U (Bd) for all x ∈ X .

Assume also that P ∈ L(X ) is a positive definite solution of the Stein equation
(2.21). Then statements (2) and (3) in Theorem 2.3 hold without change.
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Remark 2.5. In the setting of Theorem 2.3, we have

H(KJ,J
A ) ⊂ HY⊕U (kd). (2.33)

If we assume in addition that T is strongly stable, then the inclusion (2.33) is
isometric. The L(F⊕U ,Y⊕U)-valued function A in general is not in the multiplier
class Md(F⊕U ,Y⊕U) but it is true that A maps constant functions in HF⊕U(kd)
(and hence also polynomials) into HY⊕U (kd). In this case the operator I−MAM

[∗]
A ,

initially only defined on linear combinations of kernel functions via

I−MAM
[∗]
A = I−MAJM∗

AJ : kd(·, ζ)
[
y
u

]
�→ kd(·, ζ)

[
y
u

]
−A(·)kd(·, ζ)JA(ζ)∗J

[
y
u

]

extends continuously to the J-orthogonal projection operator mapping HY⊕U (kd)
onto H(KJ,J

A ). In this situation we say that A is a (J, J)-inner multiplier. In the
single-variable case (d = 1), we have J = J and these functions coincide with
the strongly regular J-inner functions in the sense of Arov-Dym [9] (see also [24])
which are analytic on the unit disk D = B1.

Remark 2.6. Suppose that M ⊂ HY⊕U (kd) is a shift-invariant subspace which is
J-regular in the sense that the J-orthogonal complement M[⊥]J of M in HY⊕U (kd)
with respect to the J-inner product together with M forms a direct-sum decom-
position of HY⊕U (kd):

HY⊕U (kd) = M+̇M[⊥]J .

As shown in [20, Theorem 4.8], there exists an output-stable pair (C,T) so that
M = KerO∗

JC,T. It then follows that

M[⊥]J = RanOC,T.

One choice of C : X → Y ⊕ U and T = (T1, . . . , Td) ∈ L(X )d is

X = M[⊥]J , Tj = M∗
zj
|M[⊥]J for j = 1, . . . , d, C : f �→ f(0).

(Note that M[⊥]J is backward-shift-invariant since M is shift-invariant.) Since
M[⊥]J is a Krĕın subspace of HY⊕U (kd), it follows that the J-observability gramian
P := GJ

C,T = O∗
C,TJOC,T is invertible. Moreover, (C,T) satisfies the Stein equa-

tion (4.4). One can then construct a solution U of the form (4.10) which satisfies
(2.25) and define A(z) as in (2.27). Then, as in the proof of Theorem (2.3) we see
that M[⊥]J is isometrically equal to H(KJ,J

A ). If it is the case that A is a bounded
multiplier between HF⊕U(kk) and HY⊕U (kd), it follows that

M = (M[⊥]J )[⊥]J = MAHF⊕U(kd)

where the multiplication operator MA in addition is a (J, J)-partial isometry. This
representation of the shift-invariant subspace M is a Krĕın-spaces version of the
Beurling-Lax theorem [12, 48, 18, 20] cited above and goes back to [22] for the
single-variable case.
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Suppose that we are given a holomorphic L(F ⊕ U ,Y ⊕ U)-valued function A(z)
on Bd as in Theorem 2.4 so that A(z) is bi-(J, J)-contractive for each z ∈ Bd. If
we decompose A as a block 2 × 2 matrix

A(z) =
[
A11(z) A12(z)
A21(z) A22(z)

]
:
[
F
U

]
→
[
Y
U

]

and recall the conformal decompositions (2.19) and (2.25) for J and J, then we
see from the (2, 2)-entry in the inequalities (2.29) that

A21(z)A21(z)∗ − A22(z)A22(z)∗ ≤ −IU ,

A12(z)∗A12(z) − A22(z)∗A22(z) ≤ −IU

from which we get

A22(z)A22(z)∗ ≥ IU + A21(z)A21(z)∗,

A22(z)∗A22(z) ≥ IU + A12(z)∗A12(z)

and hence also

A22(z) is invertible and ‖A22(z)−1A21(z)‖ < 1 for each z ∈ B
d. (2.34)

We conclude that

A21(z)E(z) + A22(z) = A22(z)(A22(z)−1A21(z)E(z) + I)

is invertible for all z ∈ Bd and E ∈ Sd(U ,F) and hence the linear fractional
transform of E

TA[E ](z) = (A11(z)E(z) + A12(z))(A21(z)E(z) + A22(z))−1 (2.35)

is a well-defined holomorphic L(U ,Y)-valued function on Bd. We denote by
SJ,J

d (F⊕U ,Y⊕U) the indefinite Schur class of L(F⊕U ,Y⊕U)-valued functions A

analytic and bi-(J, J)-contractive on Bd and such that the kernel KJ,J
A (z, ζ) given

by (3.7) is positive on Bd × Bd. Thus, for an A ∈ SJ,J
d (F ⊕ U ,Y ⊕ U), the linear

fractional map TA given by (2.35) is well-defined on Sd(U ,F). Theorem 2.8 gives
a useful characterization of its range. As a first step in this direction, we need the
following interpolation result (the Leech theorem for Drury-Arveson-space multi-
pliers) which was established in [3, 14].

Theorem 2.7. Let E be a Hilbert space and let

a : B
d → L(Y, E) and c : B

d → L(U , E)

be operator valued functions defined on Bd. The following are equivalent:
1. There exists a function S ∈ Sd(U ,Y) such that

a(z)S(z) = c(z) for all z ∈ B
d.

2. There exist a Hilbert space H and a function R(z) : Bd → L(H, E), such that

a(z)a(ζ)∗ − c(z)c(ζ)∗

1 − 〈z, ζ〉 = R(z)R(ζ)∗. (2.36)
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Theorem 2.8. Let A ∈ SJ,J
d (F ⊕ U ,Y ⊕ U). Then a holomorphic L(U ,Y)-valued

function S has the form
S = TA[E ] (2.37)

for some E ∈ Sd(U ,F) if and only if S ∈ Sd(U ,Y) and the operator
[
I −MS

]
:
[
y(z)
u(z)

]
�→ y(z) − S(z)u(z)

maps H(KJ,J
A ) contractively into the de Branges-Rovnyak space H(KS).

Proof. The result can be found in the proof of Theorem 3.8 in [28] and appears in
[33] for the case d = 1; we include the short proof for completeness. Suppose that
S ∈ Sd(U ,Y) and that

[
I −MS

]
maps H(KJ,J

A ) contractively into H(KS). Then
the kernel KS is positive and we have the kernel inequality

[
I −S(z)

]
KJ,J

A (z, ζ)
[

I
−S(ζ)∗

]
� KS(z, ζ),

or, what is the same,
[
I −S(z)

] J − A(z)JA(ζ)∗

1 − 〈z, ζ〉

[
I

−S(ζ)∗

]
� I − S(z)S(ζ)∗

1 − 〈z, ζ〉 . (2.38)

Note that
[
I −S(z)

]
J

[
I

−S(ζ)∗

]
= I − S(z)S(ζ)∗.

Hence we can rearrange (2.38) to
[
I −S(z)

] A(z)JA(ζ)∗

1 − 〈z, ζ〉

[
I

−S(ζ)∗

]
� 0. (2.39)

If we set [
u(z) −v(z)

]
:=
[
I −S(z)

]
A(z),

then we get
u(z)u(ζ)∗ − v(z)v(ζ)∗

1 − 〈z, ζ〉 � 0, (2.40)

where

u(z) = A11(z) − S(z)A21(z), −v(z) = A12(z) − S(z)A22(z).

By Theorem 2.7, it follows that there exists E ∈ Sd(U ,Y) so that v(z) = u(z)E(z),
i.e.,

−(A12(z) − S(z)A22(z)) = (A11(z) − S(z)A21(z))E(z)
which can be rearranged as

S(z)(A21(z)E(z) + A22(z)) = A11(z)E(z) + A12(z).

It now follows that we recover S as S = TA[E ].
Conversely, suppose that E ∈ Sd(U ,F) and S = TA[E ]. By reversing the steps in
the argument above and using that condition (2.40) is necessary as well as sufficient
in Theorem 2.36, we arrive at (2.39). We then add KS(z, ζ) to both sides of (2.39)
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to arrive at (2.38). As KJ,J
A is a positive kernel by assumption, we conclude that

KS is a positive kernel, i.e., that S ∈ Sd(U ,Y). Then the inequality (2.38) is the
statement that

[
I −MS

]
maps H(KJ,J

A ) contractively into H(KS). �

In addition to the linear-fractional transformations of chain-matrix form (2.35)
as discussed above we shall also have use of linear-fractional transformations of
Redheffer form. To define these, we suppose that we are given a matrix function
Σ(z) =

[
Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

]
holomorphic on the ball Bd with values in L(X⊕∆̃∗,X ′⊕∆̃)

for some Hilbert spaces X , ∆̃∗, X ′, ∆̃. We assume that ‖Σ22(z)‖ < 1 for all z ∈ Bd.
Suppose that W is in the Schur-multiplier class Sd(∆̃, ∆̃∗). From the positivity of
the kernel KW(z, ζ) = [I − W(z)W(ζ)∗]/(1 − 〈z, ζ〉) we see in particular that
‖W(z)‖ ≤ 1 for each z ∈ Bd and it follows that (I −W(z)Σ22(z))−1 makes sense
as a holomorphic L(∆̃∗)-valued function on Bd. We then can define the associated
Redheffer linear-fractional map RΣ acting from Sd(∆̃, ∆̃∗) to HolL(X ,X ′)(Bd) by

RΣ[W ] := Σ11(z) + Σ12(z)(I −W(z)Σ22(z))−1W(z)Σ21(z). (2.41)

The following criterion for a given function S to be in the range of RΣ, while less
explicit than the criterion in Theorem 2.8, nevertheless is useful in some applica-
tions (see Theorem 6.4 below). For this purpose we say that a pair of functions

a ∈ HolL(∆̃∗,X )(B
d), c ∈ HolL(∆̃,X ′)(B

d)

is a Schur-pair if the associated kernel below is positive:

a(z)a(ζ)∗ − c(z)c(ζ)∗

1 − 〈z, ζ〉 � 0. (2.42)

Theorem 2.9. Suppose that we are given

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
∈ HolL(X⊕∆̃∗,X ′⊕∆̃)(B

d)

with ‖Σ22(z)‖ < 1 for each z ∈ B
d. Suppose that we are also given an operator-

valued function S ∈ HolL(X ,X ′)(Bd). Then there exists a Schur-class multiplier
W ∈ Sd(∆̃, ∆̃∗) such that S = RΣ[W ] if and only if there exists a Schur-pair
(a(z), c(z)) so that [

I c(z)
]
Σ(z) =

[
S(z) a(z)

]
. (2.43)

Proof. Suppose that (a(z), c(z)) is a Schur-pair satisfying (2.43). By Theorem 2.7,
there is a Schur-class multiplier W ∈ Sd(∆̃, ∆̃∗) so that

c(z) = a(z)W(z). (2.44)

Then (2.43) can be written as

Σ11(z) + a(z)W(z)Σ21(z) = S(z)

Σ12(z) + a(z)W(z)Σ22(z) = a(z). (2.45)
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From the second of equations (2.45) we can solve for a(z):

a(z) = Σ12(z)(I −W(z)Σ22(z))−1. (2.46)

If we plug this expression into the first of equations (2.45) we get

S(z) = Σ11(z) + Σ12(z)(I −W(z)Σ22(z))−1W(z)Σ21(z) = RΣ[W ](z)

as wanted.
For the converse direction, given that S = RΣ[W ], if we define (a(z), c(z)) by
(2.44) and (2.46), then (a, c) is a Schur-pair meeting the criterion (2.43). �

Remark 2.10. As the solution of the Leech problem appearing in both the proof
of Theorem 2.8 and the proof of Theorem 2.9 does not appear to be unique, in
general we would expect that S does not uniquely determine E (or W) in the
formula (2.37) (or (2.41)). A similar issue appears in the parametrization of all
solutions of the commutant lifting problem for the single-variable case [36, 37]
and in connection with the more general relaxed commutant lifting problem (see
[38, 39]). Remarkably it turns out in this context that one can parametrize the free
parameters E which give rise to a given S and that, in the context of (nonrelaxed
or “stiff”) commutant lifting, it happens that S does uniquely determine E . It
remains to be seen if something similar can be worked out in the multivariable
context here.

3. Higher-order left tangential Nevanlinna-Pick interpolation:
compact operator-theoretic formulations

Suppose that we are given the data {ζ(i), a∗
i , c

∗
i : i = 1, . . . , N} for a LNPP (i.e.,

a left-tangential Nevanlinna-Pick interpolation problem with associated interpo-
lation conditions of the form (1.3)), and suppose that we know one solution
Ψ ∈ Md(U ,Y) (with MΨ not necessarily contractive) of the set of interpolation
conditions (1.3) (with Ψ in place of S). We note that the subspace N ⊂ HY(kd)
defined by

N = {h ∈ HY(kd) : a∗
i h(ζ(i)) = 0 for i = 1, . . . , N}

is closed and shift-invariant. Hence, by the Beurling-Lax theorem for the Drury-
Arveson space mentioned at the end of Section 2 above, we know that there is
an inner multiplier Θ ∈ Sd(F ,Y) (for some auxiliary Hilbert space F) so that
N = ΘHF(kd). If S ∈ Md(U ,Y) is another solution of the interpolation conditions
(1.3), then we see that

MS−Ψ : HU (kd) → Θ · HF (kd).

It then follows as a consequence of the Leech theorem for multipliers on the Drury-
Arveson space (see [3]) that there is a F ∈ Md(U ,F) so that S has the form
S = Ψ + ΘF . With the new data set {Ψ, Θ} (where F is a multiplier in Md(U ,Y)
and where Θ is an inner multiplier in Sd(F ,U), we see that the LNPP can be
reformulated as a Sarason interpolation problem:
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Sarason interpolation problem (SIP): Given Ψ ∈ Md(U ,Y) and an inner Θ ∈
Sd(F ,U), find all S ∈ Sd(U ,Y) such that

S(z) = Ψ(z) + Θ(z)F (z) for some F ∈ Md(U ,F).

As was first done for the single-variable case in the classical paper [55] of Sarason
and then in [50, 53] for both the noncommutative and commutative ball setting,
the SIP can be put in more operator-theoretic form as follows. Given the data set
{Ψ, Θ} for a Sarason interpolation problem, introduce the subspace M by

M = HY(kd) 
 ΘHY(kd)

and define the operator Φ: HU (kd) → M by

Φ = PMMΨ.

Note that M is backward-shift-invariant and that Φ satisfies the intertwining
property:

PMMzjΦ = ΦMzj (j = 1, . . . , d). (3.1)
Furthermore, one easily checks that a multiplier S∈Md(U ,Y) solves the SIP(Ψ, Θ)
if and only if MS satisfies the conditions

PMMS = Φ and ‖MS‖ ≤ 1.

From these conditions we read off that necessarily

‖Φ‖ ≤ 1 (3.2)

if SIP(Ψ, Θ) has a solution. As mentioned previously, multipliers MS are char-
acterized as those operators between HU (kd) and HY(kd) which intertwine the
respective shift operators Mzj ⊗ IU and Mzj ⊗ IY for j = 1, . . . , d. It now follows
that the SIP can be reformulated as the following Commutant Lifting Problem:

Commutant Lifting Problem (CLP): Given an M∗
z-invariant subspace M of

HY(kd) and an operator Φ : HU(kd) → M subject to (3.1), find an operator
R : HU (kd) → HY(kd) such that

‖R‖ ≤ 1, PMR = Φ and Mzj R = RMzj (j = 1, . . . , d), (3.3)

or equivalently, find a contractive multiplier S ∈ Sd(U ,Y) such that

PMMS = Φ. (3.4)

If R is a solution of CLP, then it follows from (3.3) that ‖Φ‖ = ‖PMR‖ ≤ ‖R‖ ≤ 1
and also

ΦMzj = PMRMzj = PMMzj R = PMMzjPMR = PMMzjΦ,

where the third equality holds due to the backward shift invariance of M. Hence
the conditions (3.1) and (3.2) are certainly necessary for the existence of a solution
to CLP. That the converse holds is the assertion of the commutant lifting theorem
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(see [55, 36] for the single-variable case and [26] as well as [49] combined with
[7, 30] for the present Drury-Arveson space setting).
Given a Sarason interpolation problem SIP(Ψ, Θ), we have seen how to pass to a
CLP(M, Φ). Conversely, it is possible to pass from a CLP(M, Φ) to a SIP(Ψ, Θ)
as follows. Take any Beurling-Lax representer Θ ∈ Sd(F ,Y) for M ⊂ HY(kd)
and choose any Ψ ∈ Md(U ,Y) (not necessarily contractive) so that Φ = PMMΨ.
The fact that such a multiplier Ψ always exists is of course a consequence of the
commutant lifting theorem.
We next formulate the left-tangential interpolation problem with operator argu-
ment and show that the CLP is a particular case of this problem.
For an output-stable pair (E,T) (in the sense defined in Section 2) with a commu-
tative d-tuple T we define a left-tangential functional calculus f → (E∗f)∧L(T∗)
on HY(kd) by

(E∗f)∧L(T∗) =
∑

n∈Z
d
+

T∗nE∗fn if f =
∑

n∈Z
d
+

fnzn ∈ HY(kd). (3.5)

The computation
〈
∑

n∈Z
d
+

T∗nE∗fn, x

〉

X

=
∑

n∈Z
d
+

〈fn, ETnx〉Y

=
∑

n∈Z
d
+

n!
|n|!

〈
fn,

|n|!
n!

ETnx

〉

Y
= 〈f, OE,Tx〉HY (kd)

shows that the output-stability of the pair (E,T) is exactly what is needed to
verify that the infinite series in the definition (3.5) of (E∗f)∧L(T∗) converges
in the weak topology on X . In fact the left-tangential evaluation with operator
argument f → (E∗f)∧L(T∗) amounts to the adjoint of the observability operator:

(E∗f)∧L(T∗) = O∗
E,Tf for f ∈ HY(kd). (3.6)

The evaluation map (3.6) extends to multipliers S ∈ Md(U ,Y) by

(E∗S)∧L(T∗) = O∗
E,TMS : U → X (3.7)

and suggests the interpolation problem with operator argument OAP(T, E, N)
whose data set consists of a commutative d-tuple T = (T1, . . . , Td) and operators
E ∈ L(X ,Y) and N ∈ L(X ,U) such that the pair (E,T) is output stable.

Operator Argument interpolation Problem (OAP(T, E, N)): Given the data set
{T, E, N} as above, find all S ∈ Sd(U ,Y) such that

(E∗S)∧L(T∗) := O∗
E,TMS|U = N∗. (3.8)

Such problems have been considered in [52, 16, 53, 17] for the commutative and
noncommutative setting. In case the d-tuple T = (T1, . . . , Td) is strongly stable (see
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(2.17)), we shall refer to OAP(T, E, N) as a strongly stable Operator Argument
interpolation Problem (ssOAP(T, E, N)).
If (ζ(i), a∗

i , c
∗
i ) (i = 1, . . . , N) is the data set for a left Nevanlinna-Pick problem

LNPP and if we set

T ∗
j =







ζ
(1)
j

. . .
ζ
(N)
j





 for j = 1, . . . , d, E∗ =






a∗
1
...

a∗
N




 , N∗ =






c∗1
...

c∗N






and if we set T = (T1, . . . , Td), then it is easily checked that condition (3.8)
amounts to the LNPP interpolation conditions (1.3). Furthermore, as by assump-
tion ζ(k) ∈ Bd for k = 1, . . . , N , one can show that T is strongly stable. Thus we
see that any LNPP can be encoded as a strongly stable Operator Argument inter-
polation Problem ssOAP. More generally, Carathéodory-Fejér-type interpolation
problems can be embedded into ssOAP problems—see [16].
We shall see in Theorem 3.3 below that, more generally, ssOAP is exactly equiv-
alent to commutant lifting and Sarason interpolation problems after appropriate
transformations of the data sets. First we observe a simple necessary conditions
for a problem OAP(T, E, N) (as well as for a problem ssOAP(T, E, N)) to have
a solution.

Proposition 3.1. Let (E,T) be an output-stable pair with E ∈ L(X ,Y), let S ∈
Md(U ,Y) and let N be defined as in (3.8). Then

1. The pair (N,T) is output stable and

O∗
E,TMS = O∗

N,T : HU (kd) → X . (3.9)

2. If S ∈ Sd(U ,Y), then O∗
N,TON,T ≤ O∗

E,TOE,T.

Hence, if the problem OAP(T, E, N) has a solution S ∈ Sd(U ,Y), then (N,T) is
also output-stable and

P := O∗
E,TOE,T −O∗

N,TON,T ≥ 0. (3.10)

Proof. Let h(z) =
∑

n∈Z
+
d

hnzn ∈ HU (kd). By (3.6) and (3.8),

O∗
E,TMSh = (E∗Sh)∧L(T∗) =

∑

n,m∈Z
+
d

(T∗)n+mE∗Smhn (3.11)
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where the latter series converges weakly since the pair (E,T) is output stable and
since Sh ∈ HY(kd). On the other hand,

O∗
N,Th = (N∗h)∧L(T∗) =

∑

n∈Z
+
d

T∗nN∗hn

=
∑

n∈Z
+
d

T∗n




∑

m∈Z
+
d

T∗mE∗Sm



hn =
∑

n,m∈Z
+
d

(T∗)n+mE∗Smhn

where all the series converge weakly, since that in (3.11) does. Since h was picked
arbitrarily in HU (kd), we get (3.9). The operator O∗

N,T is bounded and therefore
the pair (N,T) is output stable.
If S ∈ Sd(U ,Y), then I − MSM∗

S ≥ 0 and by (3.9) we have for every x ∈ X ,

0 ≤ 〈(I − MSM∗
S)OE,Tx, OE,Tx〉HY(kd)

= ‖OE,Tx‖2
HY(kd) − ‖M∗

SOE,Tx‖2
HU(kd)

= ‖OE,Tx‖2
HY(kd) − ‖ON,Tx‖2

HU (kd)

which proves the second statement and completes the proof of the proposition. �

Corollary 3.2. Conditions (3.8) and (3.9) are equivalent.

Proof. Indeed, Proposition 3.1 shows that (3.8) implies (3.9). The converse impli-
cation follows upon restricting equality (3.9) to constant functions from HU (kd):

O∗
E,TMSu = O∗

N,Tu

and taking into account that O∗
E,TMSu = (E∗S)∧L(T∗)u and O∗

N,T|U = N∗. �

A convenient way to impose various hypotheses in the formulation of a particular
class of interpolation problems is to demand that the data set for the interpolation
problem of the class satisfy certain admissibility criteria. In what follows, we call
the data set {M, Φ} to be admissible for a CLP if M is a backward shift invariant
subspace of HY(kd) and Φ : HU (kd) → M satisfies relations (3.1), Furthermore,
the collection {T = (T1, . . . , Td), E, N} is admissible for an OAP if T is a commu-
tative d-tuple of operators on the Hilbert space X and E : X → Y and N : X → U
are such that both (E,T) and (N,T) are output-stable. The same collection will
be called admissible for a ssOAP, if in addition, the d-tuple T is strongly stable.

Theorem 3.3. Let M be a backward shift invariant subspace of HY(kd), let Φ ∈
HU (kd) → M satisfy conditions (3.1) and let T = (T1, . . . , Td) ∈ L(M)d, E ∈
L(M,Y) and N ∈ L(M,U) be defined by

Tj = M∗
zj
|M (j = 1, . . . , d), E : f �→ f(0) and N : h �→ (Φ∗h)(0). (3.12)

Then {T, E, N} is an admissible data set for a problem ssOAP(T, E, N) and a
contractive multiplier S solves CLP(M, Φ) if and only if S solves ssOAP(T, E, N).
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Conversely, suppose that {T, E, N} is an admissible data set for a problem ssOAP.
Set M = RanOE,T and define Φ: HU (kd) → M via its adjoint Φ∗:

Φ∗ : OE,Tx �→ ON,Tx. (3.13)

Then {M, Φ} is the admissible data set for a Commutant Lifting Problem and a
contractive multiplier S ∈ Sd(U ,Y) solves ssOAP(T, E, N) if and only if S solves
CLP(M, Φ).

Proof. Let T, E, N be defined as in (3.12). From the fact that the backward-shift
d-tuple M∗

z = (M∗
z1

, . . . , M∗
zd

) is strongly stable on HY(kd) we see that T = M∗
z|M

is strongly stable.
Now note that (OE,Th)(z) = h(z) for every h ∈ M, i.e., that the observability
operator OE,T acting on an element h ∈ M simply reproduces h and hence can be
viewed as the operator of inclusion of M in HY(kd); in particular, (E,T) is also
output-stable. Therefore we have

O∗
E,TOE,T = IM, O∗

E,T|M = IM (3.14)

and furthermore,
O∗

E,T|M⊥ = 0 and PM = O∗
E,T. (3.15)

We refer to [18, Section 3] for more details.
Next we show that, for operators Tj and N given by (3.12), we have

ON,T = Φ∗ (3.16)

from which it will follow immediately that the pair (N,T) is also output-stable.
To this end, pick up an arbitrary h(z) =

∑

n∈Z
+
d

hnzn ∈ M and note that

(M∗n
z Φ∗h)(0) =

n!
|n|! (Φ

∗h)n for every n ∈ Z
d
+.

By (3.1), Φ∗M∗
zj
|M = M∗

zj
Φ∗ for j = 1, . . . , d and therefore, Φ∗M∗n

z |M = M∗n
z Φ∗

for every n ∈ Zd
+. Now we have

N(I −
d∑

j=1

zjTj)−1h =
∑

n∈Z
d
+

|n|!
n!

znNTnh

=
∑

n∈Z
d
+

|n|!
n!

zn(Φ∗M∗n
z h)(0)

=
∑

n∈Z
d
+

|n|!
n!

zn(M∗n
z Φ∗h)(0)

=
∑

n∈Z
d
+

zn(Φ∗h)n = (Φ∗h)(z)
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and since h is arbitrary, (3.16) follows. It follows immediately from (3.16) that the
pair (N,T) is output-stable and therefore {T, E, N} is an admissible data set for
a problem ssOAP. By Corollary 3.2, condition (3.8) is equivalent to

O∗
E,TMS = O∗

N,T = Φ

which coincides with (3.4) due to (3.15).

Conversely, let {T, E, N} be an admissible data set for a problem ssOAP. Since
T is strongly stale, M = RanOE,T is a closed backward-shift-invariant sub-
space of HY(kd) and OE,T is an isomorphism of X onto M (see [18]). We define
Φ: HU (kd) → M via its adjoint Φ∗ given by (3.13). Then, for S ∈ Sd(U ,Y), from
Proposition 3.1 we see that S solves ssOAP(T, E, N) is equivalent to condition
(3.9), or, after taking adjoints, to

M∗
SOE,T = ON,T. (3.17)

By definition, this in turn is equivalent to M∗
S |M = Φ∗, i.e., to S solving the

problem CLP(M, Φ). �

Remark 3.4. We have seen in Proposition 3.1 that a necessary condition for a
problem OAP(T, E, N) to have a solution is that P ≥ 0 where P : X → X is given
by (3.10). In the context of a problem ssOAP(T, E, N), note that the operator
Φ given by (3.13) satisfies ‖Φ‖ ≤ 1 if and only if P ≥ 0. It thus follows from
the Commutant Lifting Theorem that the condition P ≥ 0 is also sufficient for a
problem ssOAP(T, E, N) to have a solution. In the next section we shall see that
the same statement holds for the more general problem OAP(T, E, N).

4. The general Operator Argument interpolation Problem

In this section we present our solution of the general Operator Argument Interpo-
lation Problem, including the parametrization of the set of all solutions for the case
where the operator P (3.10) is invertible. As a first step we present several useful
reformulations of the problem. The main tool for this analysis is the following
well-known Hilbert space result.

Proposition 4.1. A Hilbert space operator
[
P B∗

B A

]
:
[
X
H

]
→
[
X
H

]

is positive semidefinite if and only if A is positive semidefinite and for every x ∈ X ,
there exists a vector hx ∈ H 
 KerA such that

A
1
2 hx = Bx and ‖hx‖H ≤ ‖P 1

2 x‖X .
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Theorem 4.2. Let {T, E, N} be an admissible data set for the OAP(T, E, N). Let
P : X → X be defined as in (3.10), let S be an L(U ,Y)-valued function defined on
Bd, and let FS : X → HY(kd) be the linear map given by

FS : x → (OE,T − MSON,T)x. (4.1)

The following are equivalent:
1. S is a solution of the OAP(T, E, N).
2. The operator

P :=
[

P (FS)∗

FS I − MSM∗
S

]
:
[

X
HY(kd)

]
→
[

X
HY(kd)

]
(4.2)

is positive semidefinite.
3. The following kernel is positive on Bd × Bd:

K(z, ζ) =




P G(ζ)∗ (E∗ − N∗S(ζ)∗)

(E − S(z)N)G(z)
IY − S(z)S(ζ)∗

1 − 〈z, ζ〉



 � 0 (4.3)

where
G(z) = (I − z1T1 − · · · − zdTd)

−1
. (4.4)

4. S ∈ Sd(U ,Y) and the function FSx belongs to the de Branges-Rovnyak space
H(KS) and satisfies

‖FSx‖H(KS) ≤ ‖P 1
2 x‖X for every x ∈ X . (4.5)

5. S ∈ Sd(U ,Y) and the function FSx belongs H(KS) and satisfies

‖FSx‖H(KS) = ‖P 1
2 x‖X for every x ∈ X . (4.6)

Proof. First note, as was observed in (3.17), that S ∈ Sd(U ,Y) solves the problem
OAP(T, E, N) if and only

M∗
SOE,T = ON,T : X → HU (kd). (4.7)

To prove Theorem 4.2, we shall show that (2) ⇐⇒ (3) and that (1) =⇒ (5) =⇒
(4) =⇒ (2) ⇐⇒ (1).
(2) ⇐⇒ (3): Simply note that that the identity

〈Pf, f〉X⊕HY(kd) =
r∑

j,�=1

〈
K(z(j), z(�))

[
x�

y�

]
,

[
xj

yj

]〉

X⊕Y

holds for every vector f ∈ X ⊕HY(kd) of the form

f =
r∑

j=1

[
xj

kd(· , z(j))yj

]
(xj ∈ X , yj ∈ Y, z(j) ∈ B

d)

(see [28, Theorem 2.4] for details).
(1) =⇒ (5): Assume that S ∈ Sd(U ,Y) solves OAP(T, E, N). Then from (4.7) we
see that

FS = OE,T − MSON,T = OE,T − MSM∗
SOE,T = (I − MSM∗

S)OE,T .
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Hence

‖FSx‖2
H(KS) = 〈(I − MSM∗

S)OE,Tx,OE,Tx〉HY(kd)

= 〈(O∗
E,TOE,T −O∗

N,TON,T)x, x〉X = 〈Px, x〉X = ‖P 1
2 x‖2

X

for all x ∈ X and (5) follows.
(5) =⇒ (4): This is trivial.
(4) =⇒ (2): Since S is in Sd(U ,Y), the operator A := I − MSM∗

S is positive
semidefinite on HY(kd). Furthermore, FSx belongs to H(KS) for every x ∈ X
which means, due to (2.9) that FSx = (I − MSM∗

S)
1
2 hx for some element hx ∈

HY(kd) which can be chosen to be orthogonal to the Ker (I − MSM∗
S). Then the

norm constraint (4.5) implies
∥
∥
∥(I − MSM∗

S)
1
2 hx

∥
∥
∥
H(KS)

= ‖hx‖HY(kd) ≤ ‖P 1
2 x‖X

and positivity of the operator (4.2) follows by Proposition 4.1.
(2) ⇐⇒ (1): Let the operator (4.2) be positive semidefinite. Then the operator
I−MSM∗

S is positive semidefinite (equivalently, MS is a contraction) which implies
S ∈ Sd(U ,Y). By definitions (3.10) and (4.1) we have

P =
[
O∗

E,TOE,T −O∗
N,TON,T O∗

E,T −O∗
N,TM∗

S

OE,T − MSON,T I − MSM∗
S

]
≥ 0.

By the standard Schur complement argument, the latter inequality is equivalent
to

P̂ :=




IHU (kd) ON,T M∗

S

O∗
N,T O∗

E,TOE,T O∗
E,T

MS OE,T IHY (kd)



 ≥ 0,

since P is the Schur complement of the block IHU (kd) in P̂. On the other hand, the
latter inequality holds if and only if the Schur complement of the block IHY (kd) in
P̂ is positive semidefinite:

[
IHU (kd) ON,T

O∗
N,T O∗

E,TOE,T

]
−
[

M∗
S

O∗
E,T

]
[
MS OE,T

]
≥ 0. (4.8)

Now we write (4.8) as
[
IHU (kd) − M∗

SMS ON,T − M∗
SOE,T

O∗
N,T −O∗

E,TMS 0

]
≥ 0

and arrive at O∗
E,TMS = ON,T which means that S is a solution of OAP(T, E, N).

Since we have already proved (1) =⇒ (5) =⇒ (4) =⇒ (2), it follows that (1) =⇒
(2). However we think it instructive to include the following direct path:
(1) =⇒ (2): If S ∈ Sd(U ,Y) is a solution of OAP(T, E, N), then we know that
I −MSM∗

S ≥ 0 and we have the identity (4.7). Recalling also the definition (3.10)
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of P , we then have

P =
[
O∗

E,TOE,T −O∗
E,TMSM∗

SOE,T O∗
E,T(I − MSM∗

S)
(I − MSM∗

S)OE,T I − MSM∗
S

]

=
[
O∗

E,T

I

]
(I − MSM∗

S)
[
O∗

E,T I
]
≥ 0

and (2) follows.
Similarly, since we have already proved (2) =⇒ (1) =⇒ (5) =⇒ (4), we know that
(2) =⇒ (4). However, for purposes of more general considerations to come in the
next section, we shall need the following direct path:
(2) =⇒ (4): If the operator (4.2) is positive semidefinite, then by Proposition 4.1
the operator I − MSM∗

S is positive semidefinite (i.e., MS is a contraction which
implies S ∈ Sd(U ,Y)) and for every x ∈ X , there exists a function hx ∈ HY(kd)
which is orthogonal to the Ker (I − MSM∗

S) such that

(I − MSM∗
S)

1
2 hx = FSx and ‖hx‖HY(kd) ≤ ‖P 1

2 x‖X . (4.9)

The first relation in (4.9) implies in particular that FSx belongs to Ran(I −
MSM∗

S)
1
2 or equivalently, to H(KS), due to characterization (2.9). Furthermore,

since hx is orthogonal to Ker (I −MSM∗
S), we conclude from (2.10) and (4.9) that

‖FSx‖H(KS) = ‖(I − MSM∗
S)

1
2 hx‖H(KS)

= ‖(I − π)hx‖HY(kd) = ‖hx‖HY(kd) ≤ ‖P 1
2 x‖X ,

which proves (4.5).
�

As a corollary, we get the following curious reformulation of the CLP(M, Φ).

Theorem 4.3. Assume that we are given an admissible data set {M, Φ} for a
commutant lifting problem and that the necessary conditions (3.1) and (3.2) are
satisfied so that the operator P := IM − ΦΦ∗ is positive semidefinite. Then S ∈
Sd(U ,Y) is a solution of the CLP(M, Φ) if and only if for every h ∈ M, the
function

Fh(z) := h(z) − S(z)(Φ∗h)(z) (4.10)

belongs to the de Branges-Rovnyak space H(KS) and ‖Fh‖H(KS) ≤ ‖P 1
2 h‖M.

Proof. By Theorem 3.3, a function S ∈ Sd(U ,Y) is a solution of the CLP(M, Φ)
if and only if it is a solution of the OAP(T, E, N) with the data given by (3.12)
which is equivalent (by Theorem 4.2) to the function

(FSh)(z) := (E − S(z)N) (IM −
d∑

j=1

zjTj)−1h (4.11)

being an element of H(KS) and satisfying ‖FSh‖H(KS) ≤ ‖P 1
2 h‖M for every

h ∈ X = M. It remains to show that the right hand side expressions in formulas
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(4.11) and (4.10) coincide, i.e., that

(E − S(z)N) (IM −
d∑

j=1

zjTj)−1h = h(z) − S(z)(Φ∗h)(z) for every h ∈ M.

But this follows from (3.16) and the second equality in (3.14). �

Reformulation of the problem OAP(T, E, N) in terms of the operator

FS =
[
I −MS

]
O[ E

N ],T

mapping (X , P ) contractively into the de Branges-Rovnyak space H(KS) (con-
dition (4) in Theorem 4.2), when combined with Theorems 2.3 and 2.8, leads
immediately the a linear-fractional description of the set of all solutions in case
the Pick operator P = GJ

[ E
N ],T (see (2.20) and (3.10)) is strictly positive definite.

Theorem 4.4. Let {T, E, N} be an admissible data set for the OAP and let the
operator P be defined as in (3.10) be strictly positive. Also let

A(z) =
[
A11(z) A12(z)
A21(z) A22(z)

]
= D +

[
E
N

]
(I − Z(z)T )−1Z(z)B

be the (J, J)-inner operator-valued function constructed according to the recipe
in Theorem 2.3. Then an L(U ,Y)-valued function S is a solution of the problem
OAP(T, E, N) if and only if S can be written in the form

S(z) = (A11(z)E(z) + A12(z)) (A21(z)E(z) + A22(z))−1
, (4.12)

for some E ∈ Sd(U , Y ⊕ X d−1).
Moreover the condition P ≥ 0 is both necessary and sufficient for the problem
OAP(T, E, N) to have solutions.

Proof. By condition (4) in Theorem 4.2 we know that S solves OAP(T, E, N) if
and only if S ∈ Sd(U ,Y) and the operator

FS :=
[
I −MS

]
[
OE,T

ON,T

]

maps (X , P ) contractively into the de Branges-Rovnyak space H(KS). By The-
orem 2.3, we know that O[ E

N ],T is a unitary identification between (X , P ) and

H(KP

[ E
N ],T) = H(KJ,J

A ). Hence the condition for S to solve OAP(T, E, N) trans-

lates to: S ∈ Sd(U ,Y) and the operator
[
I −MS

]
maps H(KJ,J

A ) contractively
into H(KS). By Theorem 2.8, this last condition is equivalent to S = TA[E ] for
some E ∈ Sd(U ,F).
If P is strictly positive definite, it follows in particular that OAP(T, E, N) has solu-
tions. If we only have P ≥ 0, then via a rescaling the result for the strictly positive
definite case implies that, for each δ > 0 there exists solutions Sδ ∈ Sd(U ,Y) of
the interpolation conditions (3.8) with ‖MSδ

‖ ≤ 1 + δ. The existence of a solution
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S of (3.8) with ‖MS‖ ≤ 1 then follows by a standard weak-∗ compactness argu-
ment which makes use of the fact that the operators OE,T and ON,T have range
inside the Drury-Arveson spaces HY(kd) and HU (kd) respectively. The necessity
of the condition P ≥ 0 for the existence of solutions is the content of part (2) of
Proposition 3.1. �

5. The analytic Abstract Interpolation Problem

The very formulation of the problem OAP(T, E, N) appears to require that the
operators OE,T and ON,T be bounded operators from X into HY(kd) and HU (kd)
respectively. However, upon close inspection, one can see that conditions (2), (3),
(4) in Theorem 4.2 make sense if we take P to be any positive semidefinite operator
on X and if we only assume that

(a) T = (T1, . . . , Td) is a not necessarily commutative d-tuple of operators on X
and E : X → Y and N : X → U are such that

O[ E
N ],T : x �→

[
E
N

]
(I − Z(z)T )−1x

maps X into the space HolY⊕U (Bd) of holomorphic (Y ⊕U)-valued functions
on Bd.

A careful inspection of the proof of Theorem 4.2 (specifically, of steps (2) ⇐⇒
(3), (4) =⇒ (2) and (2) =⇒ (4) (direct path)) shows that the mutual equivalence
of conditions (2), (3), (4) continues to hold in this more general situation. This
suggests that we use any of these conditions as the definition of a more general
interpolation problem. In order to apply Theorems 2.4 and 2.8 to this more general
situation, we must also require:

(b) P is a positive semidefinite solution of the Stein equation (2.21).

This leads to the formulation of the analytic Abstract Interpolation Problem:

The analytic Abstract Interpolation Problem (aAIP(T, E, N, P )): Given the data
{E, N,T, P} subject to assumptions (a), (b), find all S ∈ Sd(U ,Y) such that the
function FSx defined as in (4.1) belongs to the de Branges-Rovnyak space H(KS)
and satisfies the norm constraint (4.5).

The next Theorem summarizes the observations made above. We note that the
proof of the linear-fractional parametrization goes through Theorem 2.4 in place
of Theorem 2.3.

Theorem 5.1. Let P , T, E and N satisfy assumptions (a), (b). The following are
equivalent:

1. S is a solution of the aAIP(E, N,T, P ).
2. The operator P ∈ L(X ⊕HY(kd)) of the form (4.2) is positive semidefinite.
3. The kernel K(z, ζ) of the form (4.3) is positive on B

d × B
d.
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Moreover, if P is strictly positive definite and if the function A ∈ SJ,J
d (F⊕U ,Y⊕U)

is constructed as in Theorem 2.4, then S solves aAIP(E, N,T, P ) if and only if S
can be realized in the form (4.12) for a Schur-class function E ∈ Sd(U ,F).

Remark 5.2. It is tempting to use a weak-∗ compactness argument as in the proof
of Theorem 4.4 to conclude from Theorem 5.1 that the problem aAIP always
has a solution (even when P is only positive semidefinite rather than strictly
positive definite). However the details of such an argument are not so clear since
the observability operators OE,T and ON,T no longer have range in the Drury-
Arveson space. We will see that the problem aAIP(T, E, N, P ) always has solutions
based on a different approach whereby we get a description, even in the degenerate
case, of the set of all solutions in terms of a Redheffer-type linear-fractional map
(see Corollary 6.6 below).

By Theorem 4.2, the OAP(T, E, N) is a particular case of the aAIP(E, N,T, P )
(corresponding to a commutative T, output stable (E,T), (N,T) and the Pick
operator P defined in (3.10). One of the special features of this case is expressed
by the equivalence (4) ⇔ (5) in Theorem 4.2: for every solution S of the problem,
inequality (4.5) implies equality (4.6) (in [41] such problems were called possessing
the Parseval equality). We next present another interesting particular case of the
aAIP(E, N,T, P ) for which this phenomenon does not take place.

The boundary Nevanlinna-Pick problem: Given n points t(i) = (t(i)1 , . . . , t
(i)
d ) (i =

1, . . . , n) on the unit sphere Sd = {t = (t1, . . . , td) :
∑d

j=1 |tj |2 = 1}, given vectors
ξi ∈ Y and ηi ∈ U and given numbers γi ≥ 0, (i = 1, . . . , n), find all S ∈ Sd(U ,Y)
such that

lim
r→1

S(rt(i))∗ξj = ηj and lim
r→1

〈
IY − S(rt(i))S(rt(i))∗

1 − r2
ξj , ξj

〉

Y
≤ γi (5.1)

for i = 1, . . . , n.

This problem has been studied in [4, 27, 14]. From [27, 14] it is known that the
problem has a solution if and only if

‖ξi‖Y = ‖ηi‖U for i = 1, . . . , n (5.2)

and the matrix P = [Pij ]ni,j=1 with the entries

Pij =
〈ξj , ξi〉Y − 〈ηj , ηi〉U

1 − 〈t(i), t(j)〉 (i �= j) and Pii = γi

is positive semidefinite. It is easily seen that P defined as above satisfies the Stein
identity

P −
d∑

j=1

T ∗
j PTj = E∗E − N∗N (5.3)

where Tj’s are the diagonal n × n matrices defined by

Tj = diag
{

t
(j)
1 , t

(j)
2 , . . . , t(j)n

}
j = 1, . . . , d.
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and where
E =

[
ξ1 ξ2 . . . ξn

]
, N =

[
η1 η2 . . . ηn

]
.

Note that the pairs (E,T) and (N,T) are not output stable, but the functions
E(I − Z(z)T )−1 and N(I − Z(z)T )−1 are analytic on Bd. Thus the problem
aAIP(E, N,T, P ) is well defined. As it was shown in [27], this latter problem
is equivalent to the boundary Nevanlinna-Pick problem (5.1). Note that equalities
(5.2) are necessary for the Stein equation (5.3) to have a solution. Note also that
P is not completely determined by the Stein equation (5.1); its diagonal entries
form a piece of information independent of that contained in T, E and N . Finally,
note that equality (4.6) for a solution S of the aAIP(E, N,T, P ) corresponds to
equalities in the second series of interpolation conditions (5.1). When one consid-
ers the boundary Nevanlinna-Pick problem with the inequality in (5.1) replaced
by equality, then a necessary and sufficient condition for existence of solutions as
well as a description for the set of all solutions is unknown; it is known that P ≥ 0
is necessary and that P > 0 is sufficient for existence of solutions.

Remark 5.3. If the tuple T = (T1, . . . , Td) is not commutative, then condition
(3.8) is not equivalent to (3.9) in general. For example, let

T1 =




0 1 0
0 0 0
0 0 0



 , T2 =




0 0 0
0 0 1
0 0 0



 , E =
[
1 0 0

]
, N =

[
α β γ

]
.

Then

(I − z1T1 − z2T2)
−1 =




1 z1 z1z2

0 1 z2

0 0 1



 ,

so that

OE,Tx = x1 + x2z1 + x3z1z2,

ON,Tx = x1α + x2(αz1 + β) + x3(αz1z2 + βz2 + γ) if x =




x1

x2

x3



 ∈ C
3.

Using the definition of inner product in H(Kd) it is readily seen that

O∗
E,Tf =




f00

f01
1
2f11



 and O∗
N,Tf =




αf00

αf01 + βf00
α
2 f11 + βf01 + γf00





if f(z1, z2) =
∑∞

i,j=0 fijz
i
1z

j
2 ∈ H(k2). Condition (3.8) is equivalent to

S00 = α, S01 = β, S11 = 2γ. (5.4)

On the other hand, condition (3.9) is equivalent to the conditions

(Sh)00 = αh00, (Sh)01 = αh10 + βh00,
1
2
(Sh)11 =

α

2
h11 + βh01 + γh00,
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or, in more detail,

S00h00 = αh00,

S00h01 + S01h00 = h01 + βh00,

1
2

(S00h11 + S10h01 + S01h10 + S11h00) =
α

2
h11 + βh01 + γh00

holding for every h(z1, z2) =
∑∞

i,j=0 hijz
i
1z

j
2 ∈ H(k2). It is easily checked that this

is the case if and only if

S00 = α, S10 = S01 = β = 0, S11 = 2γ. (5.5)

We conclude that conditions (5.4) and (5.5) are not equivalent.

6. The Abstract Interpolation Problem

We are now ready to formulate the Abstract Interpolation Problem AIP based on
a data set {D, T,T, E, N} described as follows. We are given a linear space X ,
a positive semidefinite Hermitian form D on X , Hilbert spaces U and Y, linear
operators T, T = (T1, . . . , Td) on X , and linear operators N : X → U and E : X →
Y. In addition we assume that

D(Tx, Tx) + ‖Nx‖2
U =

d∑

j=1

D(Tjx, Tjx) + ‖Ex‖2
Y for every x ∈ X . (6.1)

Definition 6.1. Suppose that we are given the data set {D, T,T, E, N} for an AIP
as in (6.1). We say that the pair (F, S) is a solution of the AIP if S is a Schur-
class function Sd(U ,Y) and F is a linear mapping from X into H(KS) such that
the two conditions hold:

‖Fx‖2
H(KS) ≤ D(x, x) for all x ∈ X , (6.2)

(FTx)(z) −
d∑

j=1

zj(FTjx)(z) = (E − S(z)N)x for all z ∈ B
d. (6.3)

Denote by X0 the Hilbert space equal to the completion of the space of equivalence
classes of elements of X (where the zero equivalence class consists of elements x
with D(x, x) = 0) in the D-inner product. Note that if (S, F ) solves AIP, then
condition (6.2) implies that F has a factorization F0 ◦ π where π is the canonical
projection operator π : X → X0 and where F0 : X0 → H(KS) has ‖F0‖ ≤ 1. We
abuse notation and denote also by T and Tk the operators T and Tk followed by
the canonical projection into the equivalence class in X0; so T, Tk : X → X0. Let
for short

T =






T1

...
Td




 : X → X d

0 , Z(z) =
[
z1IX0 · · · zdIX0

]
.
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If we further identify F0 with the operator-valued holomorphic function z �→
F0(z) ∈ L(X0,Y) defined by

F0(z)x0 = (F0x0)(z)

then we can rewrite (6.3) in the form

F0(z)T − F0(z)Z(z)T = E − S(z)N for all z ∈ B
d. (6.4)

Note that the import of the hypothesis (6.1) is that there is a well-defined isometry
V from

DV = Ran
[

T
N

]
⊂
[

X0

U

]
onto RV = Ran

[
T
E

]
⊂
[

X d
0

Y

]
(6.5)

such that

V :
[
T
N

]
x →

[
T
E

]
x for all x ∈ X . (6.6)

Note also that the definition (6.5) and (6.6) of V is completely determined by the
problem data {D, T,T, E, N}.
If X is already a Hilbert space and there exists a bounded positive semidefinite
operator P ≥ 0 such that D(x, y) = 〈Px, y〉X for every x, y ∈ X , then identity
(6.1) can be written as

T∗PT −
d∑

k=1

T ∗
j PTj = E∗E − N∗N.

Furthermore, equality (6.4) can be written as

F0(z)(T − Z(z)T )x = (E − S(z)N)x

and if the pencil (T−Z(z)T ) is invertible for every z ∈ Bd, then the latter equation
defines F0 uniquely by

F0(z)x = (E − S(z)N) (T − Z(z)T )−1x.

If furthermore, T = IX , then it is readily seen that the AIP(D, IX ,T, E, N) col-
lapses to the aAIP(E, N,T, P ).
However, it can happen that S(z) does not uniquely determine F0(z) and therefore
the problem AIP cannot be reduced to a problem aAIP. The following example
illustrates this point.

Example 6.2. Consider the following single-variable example. Choose operators T
and T on a Hilbert space X so that

1. the pencil T − zT is singular,
2. T ∗T − T ∗T is positive semidefinite, and
3. RanT + Ran T is dense in X

One such choice is

X = C
2, T =

[
0 0
δ 0

]
, T =

[
1 0
0 0

]
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for some δ > 0. Then choose the operator N : X → U so that

N∗N = T ∗T − T ∗T .

For the example at hand, we take

U = C, N =
[√

1 − δ2 0
]
.

We also take the output space Y = C and we set E = 0: X → Y. We take the
Hermitian form D on X to be D(x, x) = 〈x, x〉X . Then {D, T , T, E, N} is an
admissible data set for an AIP in the sense above with d = 1. If we define S ∈
S(U ,Y) by S(z) = 0, then H(KS) = H2. We seek solutions of the AIP associated
with this data set such that S(z) = 0. Thus we seek F : X = C2 → H(KS) = H2

so that
(FT x)(z) − z(FTx)(z) = Ex − S(z)Nx = 0.

The associated operator-valued function z �→ F0(z) given by F0(z)x = (Fx)(z)
then must satisfy

F0(z)T x − zF0(z)Tx = 0.

Expressing F0(z) as a row matrix F0(z) =
[
F1(z) F2(z)

]
, we arrive at

[
F1(z) F2(z)

]
[
0 0
δ 0

]
− z

[
F1(z) F2(z)

]
[
1 0
0 0

]
= 0

which can be rewritten as
[
δF2(z) − zF1(z) 0

]
=
[
0 0

]
.

Solving gives [
F1(z) F2(z)

]
= F0(z)

[
δ z

]

where F0 is a free-parameter H2-function. Choosing F0 of sufficiently small 2-
norm then guarantees that the resulting operator MF : X → H2 is contractive. In
particular, such F ’s are not uniquely determined. Thus there are many distinct
solution-pair solutions to AIP of the form (F, 0).

Our next goal is to show that solutions of a problem AIP(D, T,T, E, N) corre-
spond to minimal unitary-colligation extensions of the partially defined isometric
colligation V in (6.5), (6.6). Here we say that the unitary colligation C with con-
necting operator U : H⊕U → H⊕Y is a minimal unitary-colligation extension of
V if

1. X0 is a subspace of H,
2. U|DV = V : DV → RV, and
3. the smallest reducing subspace for U contained in H and containing X is the

whole space H.

Theorem 6.3. Let V be the isometry defined by (6.6) associated with the data of a
problem AIP and let

C =
{
X0 ⊕X1,U ,Y,U =

[
A B
C D

]}
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be a minimal unitary-colligation extension of V. Define S ∈ Sd(U ,Y) and F0 : X0⊕
X1 → H(KS) by

S(z) = D + C(I − Z(z)A)−1Z(z)B, (6.7)

F0(z) = C(I − Z(z)A)−1|X0 . (6.8)

Then the pair (S, F0) is a solution of AIP.
Conversely, every solution of AIP arises in this way.

Proof. Let H = X0 ⊕X1, let

U =
[
A B
C D

]
:
[
H
U

]
→
[
Hd

Y

]

be the connecting operator for a minimal unitary-colligation extension of V and
let

S(z) = D + C (I − Z(z)A)−1
Z(z)B (6.9)

be the characteristic function of the colligation C = {H, U , Y, U}. Then S ∈
Sd(U ,Y) by Theorem 2.1. Furthermore, let H(KS) be the associated de Branges-
Rovnyak space and define F0 : X → H(KS) by

(F0x0)(z) = F0(z)x0 = C(I − Z(z)A)−1

[
x0

0

]
for x0 ∈ X0. (6.10)

Then F0 is a contraction (see e.g. part (2) of Theorem 2.1 in [19]). It remains to
check the identity (6.4) which, due to (6.10) is the same as

H(z)Tx = H(z)Z(z)Tx + Ex − S(z)Nx (6.11)

(with H(z) as in (2.5)). Using the unitary realization (6.9) of S written as

S(z) = D + H(z)Z(z)B,

we rewrite (6.11) as

H(z)T = H(z)Z(z)T + E − [D + H(z)Z(z)B]N (6.12)

To establish (6.12), we use the identity
[
A B
C D

] [
T
N

]
=
[
T
E

]
,

or, in more detail,
AT + BN = T, CT + DN = E,

which is true by the hypothesis that U extends V, to see that the right hand side
of (6.12) is equal to

H(z)Z(z)T + E − DN − H(z)Z(z)BN

= H(z)Z(z)T + CT − H(z)Z(z)(T − AT)
= CT + H(z)Z(z)AT = H(z)T

as wanted.
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We postpone the proof of the converse direction to the proof of Theorem 6.4 where
a more general result is proved. We leave as an open question the problem of finding
a direct proof of the converse direction. �

We next introduce the defect spaces

∆ =
[
X0

U

]

DV and ∆∗ =

[
X d

0

Y

]

RV

and let ∆̃ be another copy of ∆ and ∆̃∗ another copy of ∆∗ with unitary identifi-
cation maps

i : ∆ → ∆̃ and i∗ : ∆∗ → ∆̃∗.

Define a unitary operator U0 from DV ⊕ ∆ ⊕ ∆̃∗ onto RV ⊕ ∆∗ ⊕ ∆̃ by the rule

U0x =






Vx, if x ∈ DV,
i(x) if x ∈ ∆,

i−1
∗ (x) if x ∈ ∆̃∗.

(6.13)

Identifying
[
DV

∆

]
with

[
X0

U

]
and

[
RV

∆∗

]
with

[
X d

0

Y

]
, we decompose U0 defined by

(6.13) according to

U0 =




U11 U12 U13

U21 U22 U23

U31 U32 0



 :




X0

U
∆̃∗



→




X d

0

Y
∆̃



 . (6.14)

The (3, 3) block in this decomposition is zero, since (by definition (6.13)), for

every δ̃∗ ∈ ∆̃∗, the vector U0δ̃∗ belongs to ∆, which is a subspace of
[

X d
0

Y

]
and

therefore, is orthogonal to ∆̃; in other words P∆̃U0|∆̃∗ = 0 where P∆̃ stands for
the orthogonal projection of RV ⊕ ∆∗ ⊕ ∆̃ onto ∆̃.
The unitary operator U0 is the connecting operator of the unitary colligation

C0 =
{
X0,

[
U
∆̃∗

]
,

[
Y
∆̃

]
, U0

}
, (6.15)

which is called the universal unitary colligation associated with the AIP.
According to (2.6), the characteristic function of the colligation C0 defined in (6.15)
is given by

Σ(z) =
[
Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

]

=
[
U22 U23

U32 0

]
+
[
U21

U31

]
(I − Z(z)U11)

−1 Z(z)
[
U12 U13

]

= PY⊕∆̃U0(I − P∗
X0

Z(z)P∗
X0

Z(z)PX d
0
U0)−1|U⊕∆̃∗ (6.16)
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and belongs to the class Sd(U ⊕ ∆̃∗, Y ⊕ ∆̃) by Theorem 2.1. The associated
observability operator is given by

HΣ(z) =
[
U21

U31

]
(I − Z(z)U11)−1

= PY⊕∆̃U0(I − P∗
X0

Z(z)PX d
0
U0)−1|X0 . (6.17)

By another application of Theorem 2.1 we see that

KΣ(z, ζ) :=
I − Σ(z)Σ(ζ)∗

1 − 〈z, ζ〉 = HΣ(z)HΣ(ζ)∗. (6.18)

We shall also need an enlarged colligation

C0,e =





X0,




X0

U
∆̃∗



 ,

[
Y
∆̃

]
,U0,e =




U11 U11 U12 U13

U21 U21 U22 U23

U31 U31 U32 0









(6.19)

with associated characteristic function

Σe(z) =
[
U11 U12 U13

U31 U32 0

]
+
[
U21

U31

]
(I − Z(z)U11)−1Z(z)

[
U11 U12 U13

]

=
[
U21(I − Z(z)U11)−1 Σ11(z) Σ12(z)
U31(I − Z(z)U11)−1 Σ21(z) Σ22(z)

]

= PY⊕∆̃U0(I − P∗
X0

Z(z)PX d
0
U0)−1. (6.20)

These are the ingredients for the following parametrization for the set of all solu-
tions of AIP. In particular, solutions of AIP exist for any data set (D, T,T, E, N)
which is admissible (i.e., condition (6.1) is satisfied).

Theorem 6.4. Suppose that (D, T,T, E, N} is an admissible data set for a prob-
lem AIP. Let U0 be the universal unitary-colligation extension of V given by
(6.13) with characteristic function (6.16) and let U0,e be the connecting operator
for the enlarged universal unitary colligation C0,e given by (6.19). Then the pair
(S(z), F0(z)) solves the problem AIP if and only if there is a Schur-class multiplier
W ∈ Sd(∆̃, ∆̃∗) such that

[
F0(z) S(z)

]
= RΣe [W ](z), (6.21)

i.e., such that

S(z) = Σ11(z) + Σ12(z)(I −W(z)Σ22(z))−1W(z)Σ21(z),

F0(z) = U21(I − Z(z)U11)−1

+ Σ12(z)(I −W(z)Σ22(z))−1W(z)U31(I − Z(z)U11)−1. (6.22)

Proof. We have already seen in Theorem 6.3 that (F0(z), S(z)) is a solution of
AIP whenever

S(z) = D + C(I − Z(z)A)−1B,

F0(z) = C(I − Z(z)A)−1|X0 (6.23)
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where

U =
[
A B
C D

]
:
[
X0 ⊕X1

U

]
→
[
X d

0 ⊕X d
1

Y

]

is the connecting operator for a unitary-colligation extension of the partially de-
fined isometry V ((6.5) and (6.6)). It is also known (see [10, 11]) that such unitary
extensions U are parametrized via a free-parameter closely-connected unitary col-
ligation matrix

U1 =
[
A1 B1

C1 D1

]
:
[
X1

∆̃

]
→
[
X1

∆̃∗

]

in feedback connection with the universal colligation U0:

U :




x0

x1

u



 �→




x̃0

x̃1

y





if and only if there exist δ̃ ∈ ∆̃, δ̃∗ ∈ ∆̃∗ so that

U0 :




x0

u

δ̃∗



 �→




x̃0

y

δ̃



 and U1 :
[
x1

δ̃

]
�→
[
x̃1

δ̃∗

]
.

One can solve explicitly for U := FU0 [U1] and arrive at

U =
[
A B
C D

]
=





[
A00 A01

A10 A11

] [
B0

B1

]

[
C0 C1

]
D





=







[
U11 + U12D1U31 U13C1

B1U31 A1

] [
U12 + U13D1U32

B1U32

]

[
U21 + U23D1U31 U23C1

]
U22 + U23D1U32





 . (6.24)

To plug this formula into (6.23) we need to be able to compute the resolvent term
(I − Z(z)A)−1. The following computation is an adaptation of the ideas in [43]
where the same result for the case d = 1 is proved (for the closely related AIP
problem where the de Branges-Rovnyak space is taken to have two components).
We introduce the associated multidimensional system of Fornasini-Marchesini type
(see [18])

Σ(U) :






x(n) = A1x(n − e1) + · · · + Adx(n − ed)
+B1u(n − e1) + · · · + bBdu(n − ed)

y(n) = Cx(n) + Du(n)

where we write

A =






A1

...
Ad




 : X0 ⊕X1 →






X0 ⊕X1

...
X0 ⊕X1




 , B =






B1

...
Bd




 : U →






X0 ⊕X1

...
X0 ⊕X1




 .
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We assume an initial condition x(0) = x(0) and we assume zero boundary condi-
tions: x(n) = 0 for n ∈ Zd

+ \ {0} with nk = 0 for some k ∈ {1, . . . , d}. Then we
define the initial condition/input–output map

TΣ(U) :
[
X0 ⊕X1

HU (kd)

]
→
[
HolX0⊕X1(Bd)

HY(kd)

]
(6.25)

by

TΣ(U) :

[
x(0)

∑
n∈Z

d
+

u(n)

]

�→
[∑

n∈Z
d
+

x(n)zn

∑
n∈Zd y(n)

]
.

Then it can be shown (see e.g. [18]) that

TΣ(U) =
[

(I − Z(z)A)−1 (I − Z(z)A)−1B
C(I − Z(z)A)−1 S(z)

]
.

This object in turn can be computed as the feedback connection FTΣ(U0) [TΣ(U1)]
of the state/input—state-trajectory/output map

TΣ(U0) =




(I − Z(z)U11)−1 (I − Z(z)U11)−1Z(z)

[
U12 U13

]
[
U21

U31

]
(I − Z(z)U11)−1 Σ(z)





with the the state/input–state-trajectory/output map as the free-parameter load

TΣ(U1) =
[

(I − Z(z)A1)−1 (I − Z(z)A1)−1Z(z)B1

C1(I − Z(z)A1)−1 W(z)

]

where

W(z) = D1 + C1(I − Z(z)A1)−1Z(z)B1

is the characteristic function of the free-parameter unitary colligation C1, and
therefore is itself a free-parameter Schur-class function in Sd(∆̃, ∆̃∗). We note
that (I − W(z)Σ22(z))−1 makes sense for all z ∈ Bd since both W and Σ22 are
Schur multipliers and hence have contractive values on B

d and the value of Σ22(z)
is actually strictly contractive for z ∈ Bd since Σ22(0) = 0. Hence the feedback
connection FTΣ(U0) [TΣ(U1)] is well-defined. Moreover, one can see that

TΣ(U) = FTΣ(U0) [TΣ(U1)]

and hence the various matrix entries on the right-hand side of (6.25) can be com-
puted explicitly in terms of matrix entries of U0 and U1. In particular, one can
show that

(I − Z(z)A)−1 =
[
X00(z) X01(z)
X10(z) X11(z)

]
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where

X00(z) = (I − Z(z)U11)−1 + (I − Z(z)U1)−1Z(z)U13(I −W(z)Σ22(z))−1W(z)

× U31(I − Z(z)U11)−1,

X01(z) = (I − Z(z)U11)−1Z(z)U13(I −W(z)Σ22(z))−1C1(I − Z(z)A1)−1,

X10(z) = (I − Z(z)A1)−1B1(I − Σ22(z)W(z))−1U31(I − Z9z)U11)−1,

X11(z) = (I − Z(z)A1)−1 + (I − Z(z)A1)−1Z(z)B1(I − Σ22(z)W(z))−1Σ22(z)

× C1(I − Z(z)A1)−1. (6.26)

Using (6.24) and (6.26), we compute from (6.23) that

S(z) = U22 + U23D1U32

+
[
U21 + U23D1U33 U23C1

] [X00(z) X01(z)
X10(z) X11(z)

] [
U12 + U13D1U32

B1U32

]
,

F0(z) =
[
U21 + U23D1U31 U23C1

]
[
X00(z)
X10(z)

]

= (U21 + U23D1U31)X00(z) + U23C1X10(z).

After a lengthy but elementary calculation, one can see that these formulas collapse
to (6.22) as asserted. Furthermore, a closer look at these formulas reveals that the
two equations in (6.22) can be combined into a single matrix equation

[
F0(z) S(z)

]
= Σe,11(z) + Σe,12(z)(I −W(z)Σ22,e(z))−1W(z)Σe,21(z)

where

Σe(z) =
[
Σe,11(z) Σe,12(z)
Σe,21(z) Σe,22(z)

]

=





[
U21(I − Z(z)U11)−1 Σ11(z)

]
Σ12(z)

[
U31(I − Z(z)U11)−1 Σ21(z)

]
Σ22(z)





=
[
U21 U22 U23

U31 U32 0

]
+
[
U21

U31

]
(I − Z(z)U11)−1Z(z)

[
U11 U12 U13

]

from which we see that Σe(z) can be viewed as the characteristic function of
the colligation C0,e in (6.19). We conclude that the solution (F0(z), S(z)) of the
problem AIP has the compact representation given by (6.21).
Conversely, let us suppose that the pair (F0(z), S(z)) is a solution of AIP. The
problem is to show that necessarily

[
F0(z) S(z)

]
is in the range of the linear-

fractional map RΣe acting on the Schur class Sd(∆̃, ∆̃∗). To show that there is a
W ∈ Sd(∆̃, ∆̃∗) so that (6.21) holds, by Theorem 2.9 it suffices to produce a Schur
pair (a, c) so that

[
I c(z)

]
Σe(z) =

[
F0(z) S(z) a(z)

]
.
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Using the last expression for Σe(z) in (6.20), we may rewrite this condition as
[
I c(z)

]
PY⊕∆̃U0(I − PX ∗

0
Z(z)PX d

0
U0)−1 =

[
F0(z) S(z) a(z)

]

which in turn can be converted to the more linear form
[
I c(z)

]
PY⊕∆̃U0 =

[
F0(z) S(z) a(z)

]
(I − P∗

X0
Z(z)PX d

0
U0). (6.27)

Let us define analytic operator-valued functions

a : B
d → L(∆̃∗,Y), c : B

d → L(∆̃,Y)

by the formulas

a = F0(z)
(
Z(z)PX d

0
U0

)∣∣
∣
∆̃∗

+ PYU0|∆̃∗ , (6.28)

c = F0(z)PX0U
∗
0|∆̃ + S(z) PUU∗

0|∆̃ . (6.29)

Our goal is to show that (a, c) is a Schur-pair satisfying the condition (6.27). This
will then complete the proof of Theorem 6.4.
Note that the condition (6.27) must be verified on vectors from the space X0 ⊕
U ⊕ ∆̃∗. Recall that X0 ⊕ U has the alternative decomposition

X0 ⊕ U = DV ⊕ ∆.

To verify the validity of (6.27), it suffices to consider the three cases: (1) y ∈ DV,
(2) y ∈ ∆, and (3) y ∈ ∆̃∗.
Case 1: y ∈ DV. By construction a dense subset of DV consists of vectors of the
form

y =




Tx
Nx
0



 where x ∈ X .

By definition we then have

U0y =




Tx
Ex
0



 .

Then condition (6.27) applied to the vector y for this case becomes simply

Ex = F0(z)Tx + S(z)Ex − F0(z)Z(z)Tx

which holds true due the data-admissibility condition (6.4). Note that this case
holds automatically independently of the definition of (a, c).

Step 2: y =
[
δ
0

]
with δ ∈ ∆. Note that in this case

U0

[
δ
0

]
=




0
0

i(δ)



 .

and hence the left-hand side of (6.27) is simply

c(z)i(δ). (6.30)
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On the other hand, the right-hand side is

F0(z)PX0δ + S(z)PUδ. (6.31)

The equality of (6.30) with (6.31) amounts to the definition of c(z) in (6.29).
Step 3: y = 0 ⊕ 0 ⊕ δ̃∗ with δ̃∗ ∈ ∆̃∗. In this case we know that

U0y =
[
i−1
∗ (δ∗)

0

]
.

Then the left-hand side of (6.27) applied to a vector y of this form gives us

[
I c(z)

]
[
PY i−1∗ (δ̃∗)

0

]
= PY i−1

∗ (δ̃∗) (6.32)

while the right-hand side gives us

[
F0(z) S(z) a(z)

]



−Z(z)PX d

0
i−1
∗ (δ̃∗)

0
δ̃∗



 = −F0(z)Z(z)PX d
0
i−1
∗ (δ̃∗) + a(z)δ̃∗.

(6.33)
Equality of (6.32) with (6.33) collapses to the definition (6.28) of a(z).
It remains only to verify that (a, c) defined via (6.28) and (6.29) is a Schur-pair.
We use the notation HΣ(z) for the observability operator (6.17) associated with
the universal colligation C0 and H(z) for any function giving rise to a factorization
of the kernel KS(z, ζ) as in (2.1). We note that a particular consequence of (6.27)
is that [

IY c(z)
]
HΣ(z)x0 = F0(z)x0 ∈ H(KS) (6.34)

for each x0 ∈ X0. Furthermore, for every x ∈ X0, there is a unique gx ∈ H which
is orthogonal to KerH(z) for every z ∈ B

d and such that
[
IY c(z)

]
HΣ(z)x = H(z)gx.

Therefore we can define a linear operator Γ : X → H by the rule Γx = gx. Thus,
[
IY c(z)

]
HΣ(z) = H(z)Γ. (6.35)

By the definition of the norm in H(KS),

‖Fx‖H(KS) = ‖gx‖H = ‖Γx‖H.

On the other hand, the operator F : X0 → H(KS) is contractive by assumption;
hence ‖Fx‖H(KS) ≤ ‖x‖X0 and Γ is a contraction:

‖Γx‖H = ‖Fx‖H(KS) ≤ ‖x‖X0.

The next step is to show that the functions a and c defined in (6.28) and (6.29)
satisfy

a(z)a(ζ)∗ − c(z)c(ζ)∗

1 − 〈z, ζ〉 = R(z)R(ζ)∗

with
R(z) = H(z)(I − ΓΓ∗)

1
2 (6.36)
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from which it will follow that (a, c) is a Schur-pair. Indeed, by (6.34), (2.1), (6.18)
and (6.35),

a(z)a(ζ)∗ − c(z)c(ζ)∗

1 − 〈z, ζ〉

=
IY − S(z)S(ζ)∗

1 − 〈z, ζ〉 +

[
S(z) a(z)

]
[
S(ζ)∗

a(ζ)∗

]
−
[
IY c(z)

]
[

IY
c(ζ)∗

]

1 − 〈z, ζ〉

=
IY − S(z)S(ζ)∗

1 − 〈z, ζ〉 −
[
IY c(z)

] I − Σ(z)Σ(ζ)∗

1 − 〈z, ζ〉

[
IY

c(ζ)∗

]

= H(z)H(ζ)∗ −
[
IY c(z)

]
HΣ(z)HΣ(ζ)∗

[
IY

c(ζ)∗

]

= H(z) (I − ΓΓ∗)H(ζ)∗ = R(z)R(ζ)∗,

where R is defined in (6.36) It follows that (a, c) is a Schur-pair and the proof of
Theorem 6.4 is complete. �

We are now in position to complete the proof of Theorem 6.3

Proof of the converse direction in Theorem 6.3. Suppose that (F0(z), S0(z)) is a
solution of AIP. Then Theorem 6.4 tells us that there is a Schur-class multiplier
W ∈ Sd(∆̃, ∆̃∗) so that S(z) = RΣ[W ](z). If we plug in a closely-connected unitary
colligation

C1 = {X1, ∆̃, ∆̃∗,U1}
having W as its characteristic function together with the realization C0 for Σ, we
arrive at a realization

C = {X0 ⊕X1,U ,Y,U}
for S(z) having connecting operator U which is a minimal unitary-colligation
extension of V. Moreover, the associated mapping F0(z) is the restriction of the
associated observability operator x �→ PYU(I−P ∗

X0⊕X1
Z(z)P(X0⊕X1)dU)−1|X0⊕X1

to X0. Thus every solution of the AIP arises from the procedure given in the
statement of Theorem 6.3. �

Corollary 6.5. Suppose that {T, E, N} is an admissible data set for a problem
OAP(T, E, N) and we set

P = O∗
E,TOE,T −O∗

N,TON,T.

Then P is the minimal solution of the Stein equation (2.21), i.e., if P̃ is a solution
of (2.21) with P̃ ≤ P , then P̃ = P .

Proof. Let P̃ be a positive semidefinite solution of the Stein equation (2.21) and
let us assume that P̃ ≤ P := O∗

E,TOE,T −O∗
N,TON,T. Then any solution S of the
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aAIP(E, N,T, P̃ ) is also a solution of the aAIP(E, N,T, P ). In other words, for
every x ∈ X , the function FSx belongs to H(KS) and

‖FSx‖2
H(KS) ≤ 〈P̃ x, x〉X ≤ 〈Px, x〉X .

But by Theorem 4.2, ‖FSx‖2
H(KS) = 〈Px, x〉X which implies therefore, that P =

P̃ . �

Corollary 6.6. For any aAIP-admissible data set {T, E, N, P}, aAIP has solutions.

Proof. We have already observed that the aAIP is a special form of AIP. Hence the
result of Theorem 2.7 that any admissible problem of the type AIP has solutions
implies the same for aAIP. �

We conclude by continuing Example 6.2 to illustrate the general theory.

Example 6.2 continued: Note that the partial unitary colligation associated with
the AIP given in Example 6.2 is V : DV �→ RV given by

V :




0
δ√

1 − δ2



 �→




1
0
0





with

DV = Ran




0
δ√

1 − δ2



 and RV = Ran




1
0
0



 .

Therefore,

∆ = Ran




0 1√

1 − δ2 0
−δ 0



 and ∆∗ = Ran




0 0
1 0
0 1



 .

The universal colligation U0 takes the form

U0 =








0 δ
√

1 − δ2 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0

√
1 − δ2 −δ 0 0








that is,

U11 =
[
0 δ
0 0

]
, U31 =

[
1 0
0

√
1 − δ2

]
, U13 =

[
0 0
1 0

]
, U33 =

[
0 0
0 0

]
,

U21 =
[
0 0

]
, U12 =

[√
1 − δ2

0

]
, U22 = 0, U32 =

[
0
−δ

]
, U23 =

[
0 1

]
.
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Then

Σ(z) =
[
Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

]

=
[
U22 U23

U32 0

]
+ z

[
U21

U31

]
(I − zU11)

−1 [U12 U13

]

=




0 0 1
0 0 0
−δ 0 0



+ z




0 0
1 0
0

√
1 − δ2




[
1 zδ
0 1

] [√
1 − δ2 0 0
0 1 0

]

=




0 0 1

z
√

1 − δ2 z2δ 0
−δ z

√
1 − δ2 0



 .

Thus,

Σ11(z) = 0, Σ12(z) =
[
0 1

]
, Σ21(z) =

[
z
√

1 − δ2

−δ

]
, Σ22(z) =

[
z2δ 0

z
√

1 − δ2 0

]
.

Now we apply Theorem 6.4 to get the linear fractional parametrizations:

S(z) = Σ11(z) + Σ12(z)W(z)(I − Σ22(z)W(z))−1Σ21(z),

=
[
0 1

]
W(z)

(
I −

[
z2δ 0

z
√

1 − δ2 0

]
W(z)

)−1 [
z
√

1 − δ2

−δ

]
(6.37)

and

F0(z) = U21(I − zU11)−1

+Σ12(z)(I −W(z)Σ22(z))−1W(z)U31(I − zU11)−1

= Σ12(z)W(z)(I − Σ22(z)W(z))−1U31(I − zU11)−1

=
[
0 1

]
W(z)

(
I −

[
z2δ 0

z
√

1 − δ2 0

]
W(z)

)−1 [1 zδ

0
√

1 − δ2

]
(6.38)

where W is a free-parameter 2 × 2 matrix valued Schur function. The function

G(z) =
[
G11(z) G12(z)
G21(z) G22(z)

]
:= W(z)

(
I −

[
z2δ 0

z
√

1 − δ2 0

]
W(z)

)−1

(6.39)

belongs to H2 and in turn,

W(z) = G(z)
(

I −
[

z2δ 0
z
√

1 − δ2 0

]
G(z)

)−1

. (6.40)

The formulas (6.37) and (6.38) can be written in terms of G as follows:

S(z) = z
√

1 − δ2G21(z) − δG22(z), (6.41)

F0(z) =
[
G21(z) zδG21(z) +

√
1 − δ2G22(z)

]
. (6.42)
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We conclude that different parameters W may lead via formula (6.37) to the same
S and to different F0’s via formula (6.38). This phenomenon exhibits explicitly
the nonuniqueness of F0 corresponding to the same S.
For example, the function S(z) ≡ 0 is a solution corresponding to the parameter
W ≡ 0; then formula (6.38) gives F0 = 0 : X → H(KS) = H2. But also we have
we have S(z) ≡ 0 via (6.41) whenever

G22(z) =
√

1 − δ2

δ
zG21(z) (6.43)

and for this relation in force we have from (6.42)

F0(z) =
[
G21(z) z

δ G21(z)
]

= G21(z)
[
1 z

δ

]
. (6.44)

To show that there are many F0’s corresponding to S(z) ≡ 0, take G21 in H∞

(rather than in H2) with ‖G21‖H∞ small enough. Then define G22 as in (6.43)
and choose G11(z) and G12(z) so that G(z) in (6.39) has ‖G‖∞ still small (much
less than one). Then formula (6.40) gives a Schur function W which produces via
formulas (6.37) and (6.38) S(z) ≡ 0 and the corresponding F0 of the form (6.44)
with the prescribed G21.
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kernel Hilbert spaces in the ball, Linear Algebra Appl. 343 (2002), 163-186.

[4] D. Alpay and C. Dubi, Boundary interpolation in the ball, Linear Algebra Appl. 340
(2002), 33-54.
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