
AN ALGORITHM FOR FINDING LOW DEGREE RATIONAL

SOLUTIONS TO THE SCHUR COEFFICIENT PROBLEM

VLADIMIR BOLOTNIKOV

Abstract. We present an algorithm producing all rational functions f with
prescribed n + 1 Taylor coefficients at the origin and such that ‖f‖∞ ≤ 1 and
deg f ≤ k for every fixed k ≥ n. The case where k < n is also discussed.

1. Introduction

Let H∞ be the Banach space of bounded analytic functions on the open unit
disk D with norm ‖f‖∞ := supz∈D

|f(z)| < ∞. The closed unit ball S of H∞

(sometimes called the Schur class) thus consists of analytic functions mapping D

into its closure. The classical Schur problem which we will denote by SPn consists
of finding f ∈ S having prescribed n + 1 Taylor coefficients at the origin.

SPn: Given c0, . . . , cn ∈ C, find all functions f ∈ S of the form

f(z) = c0 + c1z + . . . + cnzn + O(zn+1). (1.1)

The problem has a solution if and only if the Pick matrix of the problem given by

Pn = I − T (cn, . . . , c0)T (cn, . . . , c0)
∗

is positive semidefinite. Here and in what follows, I denotes the identity matrix
of the size always clear from the context, and T (c0, . . . , cn) stands for the lower
triangular Toeplitz matrix with the bottom row entries indicated in the parentheses:

T (cn, . . . , c0) :=




c0 0 0 · · · 0
c1 c0 0 · · · 0
...

...
... 0

cn cn−1 cn−2 · · · c0


 . (1.2)

If Pn ≥ 0 is singular, then the problem SPn has a unique solution which is a finite
Blaschke product of degree equal to the rank of Pn. In what follows, we assume
that the data set {c0, . . . , cn} is such that Pn > 0 and we will call such a data
set admissible. For an admissible data set, the parametrization of the solution set
of the problem SPn was established in [7] via the famous Schur algorithm which

we now recall. Starting with c0, . . . , cn, define the numbers c
(j)
k (j = 1, . . . , n; k =
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0, . . . , n − j) from the following recursion:



c
(0)
0

c
(0)
1
...

c
(0)
n




=




c0

c1

...
cn


 and




c
(j+1)
0

c
(j+1)
1

...

c
(j+1)
n−j−1




= M−1
j




c
(j)
1

c
(j)
2
...

c
(j)
n−j




(j ≥ 0), (1.3)

where the matrix

Mj = T
(
−c

(j)
0 cn−j−1, . . . , −c

(j)
0 c

(j)
2 , −c

(j)
0 c

(j)
1 , 1 − |c

(j)
0 |2

)

is defined via formula (1.2). Let

γj = c
(j)
0 for j = 0, . . . , n. (1.4)

If c0, . . . , cn are the Taylor coefficients of an f ∈ S, then the numbers γi constructed
above are the n + 1 first Schur parameters of f and condition Pn > 0 is equivalent
to |γi| < 1 for i = 0, . . . , n. The Schur algorithm relies on the following fact:

A function f belongs to S and satisfies (1.1) if and only if it is of the form

f(z) =
zf1(z) + c0

zc̄0f1(z) + 1
(1.5)

for some f1 ∈ S such that f1(z) = c
(1)
0 + c

(1)
1 z + . . . + c

(1)
n−1z

n−1 + O(zn) where

c
(1)
0 , . . . , c

(1)
n−1 are the numbers defined via (1.3).

Starting with a function f0 := f ∈ S of the form (1.1) and applying recursion
(1.5) n times one gets a sequence of Schur class functions satisfying

fj(z) =
zfj+1(z) + c

(j)
0

zc̄
(j)
0 fj+1(z) + 1

=
zfj+1(z) + γj

zγ̄jfj+1(z) + 1
(j = 0, . . . , n) (1.6)

and such that fj(z) = c
(j)
0 + c

(j)
1 z + . . . + c

(j)
n−jz

n−j + O(zn−j+1) where c
(j)
k are

the numbers defined via (1.3). Upon taking the superposition of linear fractional
transformations (1.6) one gets the linear fractional formula

f = TΘ[E ] :=
AE + B

CE + D
(1.7)

which parametrizes all solutions to the SPn where the free parameter E := fn runs

through S and the coefficient matrix Θ =
[

A B
C D

]
is given by

Θ(z) = W0(z)W1(z) · · ·Wn(z) where Wj(z) =

[
z γj

zγ̄j 1

]
. (1.8)

Motivated by engineering applications (where it is desirable for the solution f of an
interpolation problem to be rational and of small McMillan degree), the rational
coefficient interpolation problem (as well as its multi-point analogs) was considered
in [1] with an additional constraint on the degree (complexity) of rational inter-
polants. In what follows, the polynomials Nf and Df will denote the numerator
and the denominator from the coprime representation f = Nf/Df of a rational
function f . By deg f = max{deg Nf , deg Df} we mean the McMillan degree of f .
The algebra of rational functions will be denoted by R and we will let

Rk := {f ∈ R : deg f = k} and R≤k := {f ∈ R : deg f ≤ k} .
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Being adapted to the single-point case, the problem formulated in [1] is:

RPn,k: Given c0, . . . , cn ∈ C and k ≥ 0, find all f ∈ R≤k of the form (1.1).

The problem was solved in [1] and in [2] (for the matrix-valued case) as follows.

Theorem 1.1. Let q denote the rank of the Hankel matrix H = [ci+j−1]i,j≥1

constructed from the given numbers cj (the matrix H is n−1
2 × n−1

2 if n is odd or
n−2

2 × n
2 if n is even). Then

(1) There is no f ∈ Rk satisfying (1.1) for every k < q or q < k ≤ n − q.
(2) There exists at most one function f of complexity k = q subject to (1.1).
(3) For every k > n − q, there are infinitely many solutions of the problem

RPn,k which are parametrized by the formula

f = TA[g] :=
A11g + A12

A21g + A22
, (1.9)

where the coefficients Aij are polynomials explicitly constructed from the
data set and such that

deg

[
A11

A21

]
= q and deg

[
A12

A22

]
= n + 1 − q,

and where the parameter g = Ng/Dg ∈ R is such that

deg Ng ≤ k − q, deg Dg ≤ k + q − n − 1, A21(0)Ng(0) + A22(0)Dg(0) 6= 0.

We refer to [2] for more details. In what follows, we use notation

SR = S ∩ R, SRk = S ∩ Rk and SR≤k = S ∩R≤k

for the classes of functions in R, Rk and R≤k respectively, which are bounded by one
in modulus on D. Upon imposing both H∞-norm and complexity constraints (i.e.,
upon combining problems SPn and RPn,k) we arrive at the following interpolation
problem.

RSPn,k: Given an admissible data set c0, . . . , cn and k ≥ 0, find all functions
f ∈ SR≤k of the form (1.1).

One may try to treat the latter problem using either formula (1.9) or (1.7). In
the first case, the complexity of f is completely controlled by the complexity of the
corresponding parameter g and it suffices to pick up all parameters g with deg g ≤
k−q leading via formula (1.9) to Schur-class functions f . However, this task is hard,
since formula (1.9) does not control ‖TA[g]‖∞ in terms of ‖g‖∞. It may happen
that a Schur class parameter g produces f 6∈ S and on the other hand, a Schur
class function f ∈ SR≤k may arise from a non-Schur class parameter g. Although
Theorem 1.1 guarantees that there are infinitely many functions f ∈ Rn+1−q of
the form (1.1), it is not known whether or not one of them is of the Schur class.
The question about the minimal possible k for which the problem RSPn,k has a
solution, is still open.

It is not even clear from (1.9) that the problem RSPn,k has solutions for k large
enough. On the other hand, the affirmative answer for the latter question is read-
ily seen from parametrization formula (1.7) which in contrast to (1.9), perfectly
controls the H∞-norm of f : all Schur-class rational solutions to the problem SPn

arise via formula (1.7) from some Schur-class rational parameter E . The complexi-
ties of interpolants are controlled here to some extent. A straightforward induction
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argument deduces from (1.8) that the coefficients A, B, C and D in (1.7) are poly-
nomials of respective degrees deg A = n + 1, deg B ≤ n, deg C ≤ n + 1, deg D ≤ n
and therefore,

deg TΘ[E ] ≤ n + 1 + deg E . (1.10)

Letting E in (1.7) to run through the class of constant functions (not exceeding one
in modulus), one gets a family of solutions f of the problem RSPn,n+1, but not all
the solutions. It turns out that zero cancellations may occur in (1.7) due to which
some solutions to the RSPn,n+1 may arise from non-constant parameters. We also
observe that the parameter E ≡ 0 leads via (1.7) to the function TΘ[0] = B/D ∈
SR≤n which is therefore, a solution to the problem RSPn,n. The next example
shows that this function might be the only solution to the RSPn,n.

Example 1.2. Let |c0| < 1 and cj = 0 for j = 1, . . . , n. With this data, the
problem RSPn,n has only one solution f ≡ c0. This follows from Theorem 1.1
since in this case q = 0.

Otherwise (that is, if cj 6= 0 at least for one j ≥ 1 so that q ≥ 1), Theorem 1.1
guarantees the existence of infinitely many functions f ∈ R≤n of the form (1.1),
at least one of which (TΘ[0]) belongs to SR≤n. As was shown in [4]-[6], the set of
such functions is infinite and can be parametrized by polynomials σ with deg σ ≤ n
and with all the roots outside D. More precisely, for every such σ, there exists a
unique (up to a common unimodular constant factor) pair of polynomials a(z) and
b(z), each of degree at most n and such that

(1) |a(z)|2 − |b(z)|2 = |σ(z)|2 for |z| = 1 and
(2) the function f = b/a (which belongs to SRn by part (1)) satisfies (1.1) and

therefore, solves the RSPn,n.

The objective of this note is to present an alternative parametrization of the solu-
tion set of the problem RSPn,k (see Theorem 1.3 below) which relies entirely on
parametrization formula (1.7). Some elementary analysis of the Schur algorithm
will relate complexities of E and deg TΘ[E ] more accurately than in (1.10); this in
turn, will allow us to describe all parameters E ∈ SR leading via formula (1.7) to
solutions f of the problem RSPn,k (these parameters will be called admissible).
Explicit construction of these parameters is given below in terms of certain algo-
rithm which seems to be quite efficient and simple from the computational point of
view. Here is the Algorithm:

Step 1: Given c0, . . . , cn, compute the numbers γ0, γ1, . . . , γn by formula (1.4)
using iteration (1.3).

Step 2: Using the numbers γ0, . . . , γn compute the polynomials

An(z) =

n∑

j=0

ajz
j and Bn(z) =

n∑

j=0

bjz
j (1.11)

from the system of recursions




A0(z) ≡ γn, B0(z) ≡ 1,
Aj+1(z) = zAj(z) + γn−j−1Bj(z),
Bj+1(z) = zγn−j−1Aj(z) + Bj(z),

(j = 0, . . . , n − 1).
(1.12)

It is readily seen that Bj(0) = 1 for j = 0, . . . , n. In particular, b0 = Bn(0) = 1.
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Step 3: Using the coefficients aj, bj from (1.11) define the lower triangular Toeplitz
matrices

A =




an 0 · · · 0
an−1 an · · · 0

...
...

. . . 0
a1 a2 · · · an


 , B̃ =




1 0 · · · 0

b1 1 · · · 0
...

...
. . . 0

bn−1 bn−2 · · · 1


 (1.13)

and compute the lower triangular Toeplitz matrix

R = T (r1, r2 . . . , rn) := B̃−1A. (1.14)

The three first steps are preliminary and can be carried out in finitely many steps.
The last step tells which parameters E in (1.7) should be taken to get solutions to
the problem RSPn,k. We first consider the case where k = n.

Step 4: For any n-tuple {α1, . . . , αn} of complex numbers, compute the function

E(z) =
β0 + β1z + . . . + βn−1z

n−1

α0 + α1z + . . . + αnzn
(1.15)

where β0, . . . , βn−1 are defined by



βn−1

...
β0


 = −R




αn

...
α1


 (1.16)

where R is given in (1.14) and α0 is such that E ∈ S.

The main result of the paper is the following theorem; the proof will be given in
Section 2.

Theorem 1.3. Let E be constructed as in Step 4 and let Θ be as in (1.8). Then the
function f = TΘ[E ] (1.7) solves the problem RSPn,n and conversely, all solutions
of the RSPn,n arise in this way.

Remark 1.4. The only relatively uncertain part in Step 4 is the choice of α0.

However, it is readily seen that for any α0 satisfying |α0| ≥

n∑

i=1

(|αi| + |βi−1|), the

function E in (1.16) belongs to the Schur class which immediately gives infinitely
many solutions of the problem RSPn,n. To be more precise, let us write (1.15) as

E(z) =
P (z)

α0 + zQ(z)
,

where P (z) = β0 + β1z + . . . + βn−1z
n−1 and Q(z) = α1 + . . . + αnzn−1 and let

D(c, r) denote the disk of radius r centered at c. Then the set of all admissible
α0’s (for already chosen α1, . . . , αn and β0, . . . , βn−1) is the exterior (complement)
of the domain Ω defined as

Ω =
⋃

|z|<1

D(−zQ(z), |P (z)|).

Remark 1.5. It follows from (1.15) that a parameter E leading to a solution of
the RSPn,n has to satisfy E(∞) = 0. Thus, E ≡ 0 is the only admissible constant
parameter for the problem RSPn,n . Combining this fact with (1.10), we conclude
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that every other constant function E ∈ S leads via (1.7) to a solution of RSPn,n+1.

As we have already seen, in contrast to the case n = k, the existence of infin-
itely many solutions of the problem RSPn,k with k > n is immediate. However,
the description of all solutions is even somewhat more complicated. We get this
description by an appropriate modification of Step 4 as follows.

Step 4′: Let k > n be fixed and let Θ and R be as above. All solutions f to the
problem RSPn,k are obtained via formula (1.7) where the parameter E is either any
function from SR≤k−n−1 or a function from SR≤k of the form

E(z) =
βn−k + βn−k+1z + . . . + βn−1z

k−1

αn−k + αn−k+1z + . . . + αnzk
(1.17)

where the coefficients αn−k+1, αn−k+2, . . . , αn and βn−k, βn−k+1, . . . , β−1 are picked
up arbitrarily, after which the coefficients β0, . . . , βn−1 are defined as in (1.16) and
where after all, the coefficient αn−k is chosen so that the function E of the form
(1.17) belongs to the Schur class S.

Justification of Step 4′ will be given in Section 2. In Section 3 we will present a
version of Step 4 suitably modified for the case where k < n. There we will explain
the reasons (by means of parametrization formula (1.7)) for which the algorithm is
not efficient for k < n.

2. Proof of Theorem 1.3.

In this section we justify the algorithm presented in the previous section. Let

Θk(z) := Wn−k(z) · · ·Wn(z) (2.1)

where the factors Wj are defined in (1.8). Comparing (2.1) and (1.8) we see that
Θn equals the coefficient matrix Θ of the transformation (1.7). It is not hard to
check by induction that Θk is of the form

Θk(z) =

[
zB♯

k(z) Ak(z)

zA♯
k(z) Bk(z)

]
(2.2)

where the polynomials Ak and Bk are constructed from system (1.12) and where

A♯
k and B♯

k are defined as follows:

A♯
k(z) = zkAk(1/z̄), B♯

k(z) = zkBk(1/z̄). (2.3)

Let us take any E = NE

DE
∈ SR and substitute it together with formula (2.2) for

Θn = Θ into (1.7):

f(z) =
zB♯

n(z)NE(z) + An(z)DE(z)

zA♯
n(z)NE(z) + Bn(z)DE(z)

. (2.4)

Remark 2.1. The numerator and the denominator in (2.4) do not have common
zeros and thus,

Nf = zB♯
nNE + AnDE and Df = zA♯

nNE + BnDE . (2.5)
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Proof: Taking determinants in (1.8), (2.1) and (2.2) (with k = n) gives

Bn(z)B♯
n(z) − An(z)A♯

n(z) =
1

z
· detΘn(z) (2.6)

=
1

z
·

n∏

j=0

detWj(z) = zn ·

n∏

j=0

(1 − |γj |
2).

Therefore, the only possible common zero for the numerator and the denominator
in (2.4) is z = 0. But if this is the case, we then have Bn(0)DE(0) = DE(0) = 0
which is impossible since the Schur function E cannot have a pole at the origin. �

We shall now compare McMillan degrees of f and f1 in formula (1.5).

Lemma 2.2. Let f ∈ SR be of the form (1.5). Then deg f − 1 ≤ deg f1 ≤ deg f .
Moreover,

deg f1 = deg f ⇐⇒ f1(∞) = 0 ⇐⇒ f(∞) 6= 1/c̄0 (2.7)

and
deg f1 = deg f − 1 ⇐⇒ f1(∞) 6= 0 ⇐⇒ f(∞) = 1/c̄0. (2.8)

Proof: Take f1 in the form f1 = Nf1
/Df1

and rewrite (1.5) as

f(z) =
zNf1

(z) + c0Df1
(z)

zc̄0Nf1
(z) + Df1

(z)
=

F (z)

G(z)
(2.9)

from which we see that deg Nf ≤ deg f1 +1, deg Df ≤ deg f1 +1 and thus, deg f ≤

deg f1 + 1. Now let us take f in the form f =
Nf

Df
and solve equation (1.5) for f1:

f1(z) =
(Nf (z) − c0Df (z))/z

Df (z) − c̄0Nf (z)
(2.10)

Since c0 = f(0) = Nf (0)/Df(0), it follows that the numerator in (2.10) is a polyno-
mial of degree not exceeding deg f−1. Therefore, deg Nf1

≤ deg f , deg Df1
≤ deg f

and thus, deg f1 ≤ deg f . This completes the proof of the first statement.

Since there are only two possibilities for the value of (deg f −deg f1), statements
(2.7) are equivalent to (2.8). We next observe that the polynomials F and G in (2.9)
do not have common zeros (the proof is the same as in Lemma 2.2) and therefore
we can conclude from (2.9) that

deg f = max{deg F, deg G}. (2.11)

Now we verify (2.7) (or (2.8)) separately for the following three cases.

Case 1: Let deg Df1
> deg Nf1

+ 1. Then it follows from (2.9) that deg f =
deg Df1

= deg f1 and on the other hand, f1(∞) = 0 and f(∞) = c0 6= 1/c̄0.

Case 2: Let deg Df1
< deg Nf1

+ 1. Then deg f = deg Nf1
+ 1 = deg f1 + 1 and

on the other hand, f1(∞) 6= 0 and f(∞) = 1/c̄0.

Case 3: Let deg Df1
= deg Nf1

+1. Let a0 and b0 be the leading coefficients of the
polynomials Nf1

and Df1
respectively. Then the leading coefficients of F and G are

a0 + c0b0 and c̄0a0 + b0 = 0, respectively. Assuming that deg F < deg Nf1
+ 1 and

deg G < deg Nf1
+1 we have a0+c0b0 = 0 and c̄0a0+b0 = 0 which gives a0 = b0 = 0

which is a contradiction. Therefore, max{deg F, deg G} = deg Nf1
+1 and by (2.11),

deg f = deg Nf1
+ 1 = deg Df1

= deg f1. Finally, since deg Df1
= deg Nf1

+ 1, we
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have f1(∞) = 0 and it follows from (2.9) that f(∞) =
a0 + c0b0

c̄0a0 + b0
which is not equal

to 1/c̄0, since b0 6= 0 and |c0| 6= 1. �

Let us apply the backward Schur algorithm (1.6) to a function E ∈ SRk by
letting

fn+1 = E and fj(z) =
zfj+1(z) + γj

zγjfj+1(z) + 1
for j = 0, . . . , n. (2.12)

Lemma 2.3. If deg fi = deg fi+1 + 1, then deg fj = deg fj+1 + 1 for every j < i.
If fi(∞) = 0, then fj(∞) = 0 and deg fj = deg fi for every j > i.

Proof: If deg fi = deg fi+1 + 1, then by virtue of (2.8) (with f , f1 and c
replaced respectively by fi, fi+1 and γi) we have fi(∞) = 1

γi
6= 0. Then again by

(2.8) (applied to the new triple fi−1, fi and γi−1) we get deg fi−1 = deg fi + 1 and
therefore, fi−1(∞) = 1

γi−1

6= 0. The first statement then follows by induction.

We now assume that fi(∞) = 0. Since fi(∞) 6= 1
γi

, we conclude from (2.7) that

fi+1(∞) = 0 and deg fi+1 = deg fi. The induction argument completes the proof
of the second statement. �

Proof of Theorem 1.3: Let f be a solution to the problem RSPn,n, i.e., f is a
rational Schur-class function of degree at most n satisfying equality (1.1). Then f
is of the form (1.7) for some rational Schur-class function E or equivalently, f = f0

is obtained from E = fn via recursion (2.12). Then we necessarily have

deg E ≤ n and E(∞) = 0. (2.13)

Indeed, deg f ≥ deg E by Lemma 2.2 and since deg f ≤ n by the assumption, the
first relation in (2.13) follows. If we assume that E(∞) 6= 0, then we get by virtue of
(2.8), that deg fn−1 = deg E+1 and then we also have deg f = deg E+n+1 ≥ n+1
(by the first statement in Lemma 2.3) which contradicts the assumption. Thus,
E(∞) = 0. Due to (2.13) we can take E in the form (1.15), i.e., we can let

NE(z) =

n−1∑

j=0

βjz
j and DE(z) =

n∑

j=0

αjz
j . (2.14)

It remains to show that the coefficients αi and βi are related as in (1.16). Observe,
that the polynomials An and Bn constructed in (1.12) are of degree at most n;
we take them in the form (1.11) so that the reflected polynomials A♯

n and B♯
n (see

(2.3)) are given by

A♯
n(z) =

n∑

j=0

an−jz
j and B♯

n(z) =

n∑

j=0

bn−jz
j. (2.15)

Substituting (1.11), (2.14) and (2.15) into (2.5) we get

Nf (z) = zn+1 ·

n−1∑

ℓ=0




n−ℓ−1∑

j=0

(bn−ℓ−j−1βn−j−1 + aℓ+j+1αn−j)



 zℓ + P1(z),

Df (z) = zn+1 ·

n−1∑

ℓ=0




n−ℓ−1∑

j=0

(an−ℓ−j−1βn−j−1 + bℓ+j+1αn−j)



 zℓ + P2(z),
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where P1 and P2 are polynomials of degree at most n. The two latter formulas
imply that deg f ≤ n if and only if

n−ℓ−1∑

j=0

(bn−ℓ−j−1βn−j−1 + aℓ+j+1αn−j) = 0 (ℓ = 0, . . . , n − 1), (2.16)

n−ℓ−1∑

j=0

(an−ℓ−j−1βn−j−1 + bℓ+j+1αn−j) = 0 (ℓ = 0, . . . , n − 1). (2.17)

Making use of the Toeplitz matrices

A = T (a1, a2, . . . , an), B = T (b1, b2, . . . , bn),

Ã = T (an−1, an−2, . . . , a0), B̃ = T (bn−1, bn−2, . . . , b0),
(2.18)

and of the vectors

α =




αn

...
α1


 and β =




βn−1

...
β0


 , (2.19)

one can write equations (2.16) and (2.17) in the matrix form as

B̃β + Aα = 0 and Ãβ + Bα = 0 (2.20)

respectively. Since b0 = Bn(0) = 1, the matrix B̃ is invertible. Then we get from
the first equation in (2.20)

β = −B̃−1Aα = −Rα (2.21)

which is the same as (1.16). We thus showed that every solution f to the problem
RSPn,n can be obtained via the Schur algorithm from a parameter E ∈ S of the
form (1.15), (1.16).

To show that any such parameter is admissible, we have to verify that the vectors
α and β related as in (2.21) satisfy both equations in (2.20). The first equation
is clearly equivalent to (2.21). Substituting (2.21) into the second equation and
taking into account that all the matrices in (2.18) commute, we get

Ãβ + Bα = −ÃB̃−1Aα + Bα = B̃−1
(
BB̃ − AÃ

)
α. (2.22)

We next substitute formulas (1.11) and (2.15) into (2.6) and examine the coefficients
of z2n−ℓ for ℓ = 0, . . . , n − 1 to get equalities

ℓ∑

j=0

(bn+j−ℓbj − an+j−ℓaj) = 0 (ℓ = 0, . . . , n − 1), (2.23)

which can be written in terms of matrices (2.18) as BB̃ = AÃ. We now conclude
from (2.22) that the second equation in (2.20) is satisfied. Thus, for every E ∈ S
of the form (1.15), (1.16), the coefficients αi, βi satisfy equalities (2.16), (2.17)
(i.e., equalities (2.20)), which in turn guarantees that the McMillan degree of the
function f obtained from E via the Schur algorithm, does not exceed n. Since this
f belongs to S and satisfies (1.1), it solves the problem RSPn,n. �

Justification of Step 4′: Let k > n be a fixed integer. Every solution f to
the problem RSPn,k is of the form (1.7) for some rational parameter E ∈ SR
with deg E ≤ k. We have either E(∞) 6= 0 or E(∞) = 0. In the first case,
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deg f = deg E+n+1 (by Lemmas 2.2 and 2.3) and therefore, deg E ≤ k−n−1. On
the other hand, for every E ∈ SR≤k−n−1, it follows from (1.10) that deg TΘ[E ] ≤ k.
In the second case, we can take E in the form (1.17), that is to let

NE(z) =

k−1∑

j=0

βn−k+jz
j and DE(z) =

k∑

j=0

αn−k+jz
j.

Substituting the latter formulas along with (1.11) and (2.15) into (2.5) we get the
formulas for Nf and Df as in the proof of Theorem 1.3 but with the factor zk+1

(rather than zn+1) on the left and with polynomials P1 and P2 of degree at most
k. Then we conclude that deg f ≤ k if and only if conditions (2.20) hold which is
equivalent to (2.21).

3. Concluding remarks

In conclusion we present a version of the main algorithm for the case where
k < n. The three first steps are the same as before; the last step describing all
admissible parameters in parametrization formula (1.7) is the following.

Step 4′′: Let k < n be fixed and let Θ and R = T (r1, r2, . . . , rn) be as above.
All solutions f to the problem RSPn,k are obtained via formula (1.7) where the
parameter E is a Schur-class function of the form

E(z) =
NE(z)

DE(z)
=

β0 + β1z + . . . + βk−1z
k−1

α0 + α1z + . . . + αkzk
. (3.1)

where the coefficients α0, . . . , αk and β0, . . . , βk−1 satisfy the system



βk−1

...
β1

β0


 =




rn 0 · · · 0
rn−1 rn · · · 0

...
...

. . . 0
rn−k+1 rn−k · · · rn







αk

...
α2

α1


 , (3.2)




r1 r2 . . . rk+1

r2 r3 . . . rk+2

...
...

...
rn−k rn−k+1 . . . rn







αk

αk−1

...
α0


 = 0, (3.3)

(the matrix in (3.3) is of Hankel structure).

Proof: As in the proof of Theorem 1.3 we first observe that every solution
f of the problem RSPn,k is of the form (1.7) for some E ∈ SR≤k subject to
E(∞) = 0. Therefore, E can be taken in the form (3.1). Substituting (1.11),
(2.15) and (3.1) into (2.5) we now get Nf and Df the polynomials of degree at
most n + k. Then equating the coefficients of zk+ℓ of these polynomials to zero for
j = ℓ, . . . , n − 1, we get necessary and sufficient conditions (similar to (2.16) and
(2.17)) for deg f = max{deg Nf , deg Df} not to exceed k. These conditions are

min{n−ℓ−1,k−1}∑

j=0

bn−ℓ−j−1βk−j−1 +

min{n−ℓ−1,k}∑

j=0

aℓ+j+1αk−j = 0,

min{n−ℓ−1,k−1}∑

j=0

an−ℓ−j−1βk−j−1 +

min{n−ℓ−1,k}∑

j=0

bℓ+j+1αk−j = 0
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(ℓ = 0, . . . , n) and it is not hard to see that they can be written in the matrix form
(2.20) as

B̃β + Aα = 0 and Ãβ + Bα = 0 (3.4)

respectively where the matrices A, B, Ã and B̃ are the same as in (2.18) and where
now

α =




αk

...
α1

α0

0
...
0




and β =




βk−1

...
β0

0
0
...
0




. (3.5)

Since BB̃ = AÃ, it follows as in the proof of Theorem 1.3, that α and β solve
the system (3.4) if and only if they are related as in (2.21). Substituting (3.5)
into (2.21) and comparing the k top entries in the obtained equality, we get (3.2);
comparison of the n − k bottom entries gives (3.3). �

Remark 3.1. Although Step 4′′ looks very similar to Step 4 in Section 1, in fact it
is much less efficient. Let us demonstrate this by the case where k = n − 1. Then
condition (3.3) takes the form

r1αn−1 + r2αn−2 + . . . + rn−1α1 + rnα0 = 0 (3.6)

and if rn 6= 0, then a0 is uniquely determined by α1, . . . , αn−1. The problem is to
describe all the tuples {α1, . . . , αn−1} (which now are the only free parameters) for
which the function

E(z) =
β0 + β1z + . . . + βn−2z

n−2

α0 + α1z + . . . + αn−1zn−1
(3.7)

with the coefficients α0, β0, . . . , βn−2 determined by formulas (3.6) and (3.2) (with
k = n − 1), belongs to the Schur class. The problem is hard; at the moment we
even do not know necessary and sufficient conditions for the existence of at least
one such tuple.
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