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We consider a general bitangential interpolation problem for matrix Schur func-
tions and focus mainly on the case when the associated Pick matrix is singular
(and positive semidefinite). Descriptions of the set of all solutions are given in
terms of special linear fractional transformations which are obtained using two
quite different approaches. As applications of the obtained results we consider the
maximum entropy and the maximum determinant extension problems suitably
adapted to the degenerate situation.

1 Introduction

This paper is devoted to three main themes. The first and major theme is a study of

representation formulas for bitangential matrix problems in the Schur class with a finite
number of interpolation constraints when the associated Pick matrix is singular. The second

two themes are applications of these representation formulas to appropriate versions of a
maximum entropy problem and a maximum determinant extension problems in the singular

case. We shall work within the framework of the augmented Basic Interpolation Problem.
An introduction to this problem, which includes an account of its development from more

elementary problems as well as other formulations, appears in [16].

In order to describe the Basic Interpolation Problem (BIP) we need to introduce some
notation. Let H

p×q
2 denotes the set of Cp×q–valued functions with entries in the Hardy space

H2 of the unit disc ID and let Hk×1
2 be abbreviated by Hk

2. Similarly, let Lk
2(TT) designate the

Hilbert space of measurable and square integrable Ck–valued functions with inner product

〈f, g〉 =
1

2π

∫ 2π

0
g(eit)∗f(eit)dt, (f, g ∈ Lk

2(TT)). (1.1)

The space Hk
2 is identified as the closed subspace of Lk

2(TT) which consists of all f ∈ Lk
2(TT)

whose negative Fourier coefficients are equal to zero. The symbol Hk⊥
2 stands for the or-

thogonal complement of Hk
2 with respect to the inner product (1.1). More generally, H

p×q
2

⊥
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denotes the set of Cp×q–valued functions with entries in H2
⊥. The Schur class of Cp×q–

valued analytic contractions in ID is denoted by Sp×q. Throughout the paper J denotes the

signature matrix defined by

J =

(
Ip 0
0 −Iq

)
, (1.2)

where Iq stands for the identity matrix in Cq×q.

Let

M, N, P ∈ Cn×n and C ∈ C(p+q)×n (1.3)

be a given set of matrices and let aBIP(M, N, P, C) denote the following “augmented basic

interpolation problem” which is now formulated under the assumption that the mvf (matrix
valued function)

G(z) = M − zN (1.4)

is invertible at every point on the unit circle:

det G(ζ) 6= 0 for |ζ | = 1. (1.5)

1. Find necessary and sufficient conditions which ensure the existence of a Schur function

S ∈ Sp×q such that
(

Ip −S(ζ)
−S(ζ)∗ Iq

)
CG(ζ)−1 ∈

(
H

p×n
2

(Hq×n
2 )⊥

)
(1.6)

and
〈(

Ip −S(ζ)
−S(ζ)∗ Iq

)
CG(ζ)−1y, CG(ζ)−1x

〉

L
p+q
2

(TT)

= x∗Py (∀ x, y ∈ Cn). (1.7)

2. Describe the set of all such functions.

The solvability criterion of the aBIP(M, N, P, C) is easily stated:

Theorem 1.1 Let (1.5) be in force. Then the aBIP(M, N, P, C) has a solution if and only
if P is a nonnegative solution of the Lyapunov–Stein equation

M∗PM − N∗PN = C∗JC. (1.8)

The proof of necessity reduces to a straightforward calculation which is reviewed in Section

2. The asserted sufficiency is an immediate consequence of the next theorem which will be
established in Section 7. The partition

C =

(
C1

C2

)
, C1 ∈ Cp×n, C2 ∈ Cq×n, (1.9)

which enables us to express the Lyapunov–Stein equation (1.8) in the form

M∗PM − N∗PN = C∗
1C1 − C∗

2C2, (1.10)

will be useful.



Theorem 1.2 Let (1.5) be in force, let P be a nonnegative solution of the Lyapunov–Stein
equation (1.8) and let

ν = rank (M∗PM + C∗
2C2) − rank P = rank (N∗PN + C∗

1C1) − rank P. (1.11)

Then
0 ≤ ν ≤ min (p, q) (1.12)

and there exists a rational (p + q) × (p + q) mvf Θ(z),

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
:

(
Cp

Cq

)
→
(

Cp

Cq

)
,

which is J–inner in ID and defines a one to one map via the linear fractional transformation

S(z) = (Θ11(z)E(z) + Θ12(z)) (Θ21(z)E(z) + Θ22(z))−1 (1.13)

from the set of all E ∈ Sp×q of the form

E(z) =

(
Ê(z) 0

0 Iν

)
, Ê ∈ S(p−ν)×(q−ν), (1.14)

onto the set of all solutions S(z) of the aBIP(M, N, P, C). Moreover, the McMillan degree

of Θ(z) is equal to the rank of P .

In other words, a mvf S is a solution of the aBIP(M, N, P, C) if and only if it admits a
representation (1.13) for some (uniquely defined) parameter E of the form (1.14).

The aBIP(M, N, P, C) is termed nondegenerate if P > 0 and is termed degenerate if P is
singular (and positive semidefinite).

Let us mention two particular cases of Theorem 1.2 corresponding to the extreme values of

ν. The first one is well known. If P is invertible, then ν = 0 and the set of all solutions
of the nondegenerate aBIP is parametrized by the linear fractional transformation (1.13)

when the parameter E varies over all of Sp×q.

In the opposite extreme case when ν = min (p, q) we conclude from (1.14) that the parameter
E is constant:

E(z) ≡ (0 Ip) if p ≤ q and E(z) ≡
(

0
Iq

)
if p ≥ q,

and so, by Theorem 1.2, the aBIP has a unique solution. Thus, we obtain the following

simple criterion of uniqueness:

Theorem 1.3 Let (1.5) be in force, let P be a nonnegative solution of the Lyapunov–Stein
equation (1.8). Then the aBIP(M, N, P, C) has a unique solution if and only if

rank (M∗PM + C∗
2C2) − rank P = min (p, q).



The latter situation clearly can happen only if P is singular. Degenerate cases of the classical
Nevanlinna–Pick and Carathéodory-Fejér interpolation problems for Schur functions were

studied using quite different approaches in [9], [10], [11] and [13, Section 7]. The results
obtained below in Section 7 rely on Potapov’s method (which characterizes the solutions

of an interpolation problem in terms of a related fundamental matrix inequality suitably
adapted to the present framework; for some early examples of this method, see [27]).

In Section 8 we present another description of all the solutions of the aBIP in terms of the

Redheffer transformation

S(z) = Ψ12(z) + Ψ11(z)Ê(z)
(
Iq−ν − Ψ21(z)Ê(z)

)−1
Ψ22(z),

where the Ψjk(z) are obtained from the θjk(z) by the Potapov–Ginzburg transform and Ê is a

free parameter varying over all of S(p−ν)×(q−ν). In Section 9 we obtain a Redheffer description
of all the solutions of the aBIP using quite a different approach which is based on identifying

the set of solutions to the aBIP with the characteristic functions of unitary colligations which
extend an isometric operator constructed in a natural way from the data of the problem.

This approach is adapted from the work of Katsnelson, Kheifets and Yuditskii [23] on the
abstract interpolation problem and the works of Arov and Grossman [?], [?] on the coupling

of open systems. Explicit formulas for the coefficients Ψjk are given in Section 10 and are
then applied in Sections 11 and 12 to solve two extremal problems for Schur functions. The

first one consists of finding the solution S of the aBIP, which maximizes an entropy integral.
The second is a maximum determinant extension problem for structured matrices which is

formulated in purely algebraic language, but is solved using analytic methods. This is a
generalization of results from [13], [15] and [17], where the above extremal problems were

considered for the nondegenerate situation. In Section 13 we discuss the aBIP for analytic
contractions defined on a general class of domains.

We shall make frequent use of the mvf

H(z) = zM∗ − N∗, (1.15)

and the notations
ρω(z) = 1 − zω̄ and δω(z) = z − ω. (1.16)

In this paper we shall focus on the case when G is invertible on TT. However, for ease of
future reference, we shall carry out parts of the analysis under the less restrictive assumption

that
det G(z) 6≡ 0. (1.17)

For the case when G is invertible on TT, the interpolation conditions of the aBIP can be
expressed in terms of contour integrals. The formulation of one sided interpolation problems

in terms of contour integrals was suggested by A. Nudelman in [?] and extended to two sided
problems in [8], where a full description of the set of all solutions is given for the case when

the associated Pick matrix P is invertible; for additional discussion and comparison, see [14,
Section 7.4].



2 Preliminary analysis of the problem

Let [ , ]S be the matrix valued Hermitian form which is associated with S ∈ Sp×q by the

rule

[h, g]S =
1

2π

∫ 2π

0
g(eit)∗

(
Ip −S(eit)

−S(eit)∗ Iq

)
h(eit)dt, (2.1)

for every pair h ∈ L
(p+q)×k
2 (TT) and g ∈ L

(p+q)×ℓ
2 and any positive integers k and ℓ.

Lemma 2.1 Let S ∈ Sp×q satisfy the condition (1.6). Then the matrix

PS :=
[
CG(ζ)−1, CG(ζ)−1

]
S

(2.2)

is nonnegative and satisfies the Lyapunov–Stein equation

M∗PSM − N∗PSN = C∗
1C1 − C∗

2C2. (2.3)

Proof: If S ∈ Sp×q, then

(
Ip −S(ζ)

−S(ζ)∗ Iq

)
≥ 0 (for a.e. ζ ∈ TT) (2.4)

which implies that the form (2.1) is nonnegative. In particular, the matrix PS defined by

(2.2) is nonnegative. In view of (1.4),

ζG(ζ)−1N = G(ζ)−1M − In (2.5)

and therefore,

M∗
[
CG(ζ)−1, CG(ζ)−1

]
S

M − N∗
[
CG(ζ)−1, CG(ζ)−1

]
S

N

=
[
CG(ζ)−1M, CG(ζ)−1M

]
S
−
[
CG(ζ)−1N, CG(ζ)−1N

]
S

=
[
CG(ζ)−1M, CG(ζ)−1M

]
S
−
[
C(G(ζ)−1M − In), C(G(ζ)−1M − In)

]
S

=
[
CG(ζ)−1M, C

]
S

+
[
C, CG(ζ)−1M

]
S
− [C, C]S . (2.6)

But in view of (1.6),

[
CG(ζ)−1M, C

]
S

=
〈
{C1 − S(ζ)C2}G(ζ)−1M, C1

〉
L

p
2
(TT)

+
〈
{C2 − S(ζ)∗C1}G(ζ)−1M, C2

〉
L

q
2
(TT)

=
〈
{C1 − S(ζ)C2}G(ζ)−1M, C1

〉
L

p
2
(TT)

+ 0

=
〈
{C1 − S(ζ)C2}G(ζ)−1 (M − ζN) , C1

〉
L

p
2
(TT)

= 〈C1 − S(ζ)C2, C1〉Lp
2
(TT) ,



whereas [
C, CG(ζ)−1M

]
S

= 〈C1, C1 − S(ζ)C2〉Lp
2
(TT)

and
[C, C]S = 〈C1 − S(ζ)C2, C1〉Lp

2
(TT) + 〈C2 − S(ζ)∗C1, C2〉Lq

2
(TT) .

Formula (2.3) now emerges easily from (2.6) upon substituting the preceding three evalua-
tions.

As a corollary we obtain the necessity part of Theorem 1.1: if S satisfies the conditions (1.6)
and (1.7), then the Pick matrix P is necessarily nonnegative and satisfies the Lyapunov–

Stein equation (1.8).

We shall say that two aBIP’s are equivalent if they have the same set of solutions. The

following simple observation is useful.

Lemma 2.2 Let T1 and T2 be two invertible n × n matrices and let

M̂ = T1MT2, N̂ = T1NT2, P̂ = T−∗
1 PT−1

1 , and Ĉ = CT2. (2.7)

Then the problems aBIP(M, N, P, C) and aBIP(M̂, N̂ , P̂ , Ĉ) are equivalent.

Proof: It suffices to note that the matrices from (2.7) satisfies the equality

M̂∗P̂ M̂ − N̂∗P̂ N̂ = Ĉ∗JĈ

and that

ĈĜ(z)−1 :=

(
Ĉ1

Ĉ2

)
(M̂ − zN̂)−1 =

(
C1

C2

)
(M − zN)−1T−1

1 = CG(z)−1T−1
1 ,

which implies

[
ĈĜ(ζ)−1, ĈĜ(ζ)−1

]
S

=
[
CG(ζ)−1T−1

1 , CG(ζ)−1T−1
1

]
S

= T−∗
1 PT−1

1 = P̂ .

The next lemma allows us to express G(z) in a certain canonical form which will simplify

some later computations.

Lemma 2.3 Let M and N satisfy (1.17). Then there exist invertible matrices T1 and T2

from Cn×n and matrices A1 ∈ Ck1×k1, A2 ∈ Ck2×k2 and A3 ∈ C(n−k1−k2)×(n−k1−k2) with

spec A1

⋃
spec A2 ⊂ ID and spec A3 ⊂ TT (2.8)

such that

T1MT2 =




Ik1
0 0

0 A2 0
0 0 A3


 and T1NT2 =




A1 0 0
0 Ik2

0
0 0 In−k1−k2


 . (2.9)



Proof: By (1.17), G(z) is a regular pencil and therefore (see e.g., [18, p. 28, Theorem 3]),
there exist a pair of invertible matrices L1 and L2 such that

L1ML2 =

(
Ir 0

0 M̃

)
and L1NL2 =

(
Ñ 0
0 In−r

)
,

where the matrices M̃ and Ñ are in Jordan form and are such that

det M̃ 6= 0 and spec Ñ = {0}.

Without loss of generality, M̃ can be assumed to be of the following block diagonal form

M̃ = diag {M1, M2, M3} ,

where
spec M1 ⊂ C\ID, spec M2 ⊂ ID and spec M3 ⊂ TT

and all of the blocks M̃j are of Jordan form. Then spec M−1
1 ∈ ID and setting

T1 = L1, T2 = L2diag
{
Ir; M̃−1

1 ; Iℓ

}

and

A1 = diag
{
Ñ ; M−1

1

}
, A2 = M2, A3 = M3,

we get the required assertion.

Corollary 2.4 Let condition (1.5) be in force. Then, without loss of generality, the matrices

M and N from the data set (1.3) of the aBIP can be assumed to be of the form

M =

(
Ik 0
0 A2

)
, N =

(
A1 0
0 In−k

)
, (2.10)

where A1 and A2 are matrices satisfying (2.8) and can be presumed to be in Jordan form.

Proof: In view of (1.5), the pencil M − zN has no singular points on TT and therefore, the
matrix A3 does not appear in representation (2.9). The rest follows from Lemma 2.2.

3 A fundamental matrix inequality

In this section we establish a number of equivalent conditions for a function S ∈ Sq×p to

be a solution of the aBIP. We recall that in this paper the aBIP is formulated under the
assumption that condition (1.5) is in force. Nevertheless, for future convenience, some results

in this section are derived under the less restrictive condition (1.17). The following notations
will be useful.



Definition 3.1 Let S(M, N, P, C) denote the set of all functions S ∈ Sq×p which satisfy
conditions (1.6) and (1.7). Let Ŝ(M, N, P, C) denote the set of all functions S ∈ Sq×p which

satisfy condition (1.6) and the following inequality:
〈(

Ip −S(ζ)
−S(ζ)∗ Iq

)
CG(ζ)−1x, CG(ζ)−1x

〉

L
p+q
2

(TT)

≤ x∗Px (∀ x ∈ Cn). (3.1)

The set S(M, N, P, C) coincides with the set of all solutions of the aBIP(M, N, P, C) and
S(M, N, P, C) ⊆ Ŝ(M, N, P, C). Sufficient conditions for the equality of these two sets

are known; see e.g., [16, Lemma 6.1], from where the next lemma is adapted.

Lemma 3.2 Let P satisfy the Lyapunov–Stein equation (1.8) and let (1.5) hold. Then

S(M, N, P, C) = Ŝ(M, N, P, C).

Proof: By Corollary 2.4, we may assume without loss of generality that the matrices M and
N are of the form (2.10) for some choice of A1 and A2 satisfying the spectral condition (2.8).

Let S ∈ Ŝ(M, N, P, C). Then PS ≤ P . By Lemma 2.1, PS satisfies the Lyapunov–Stein
equation (2.3). Therefore, the nonnegative matrix

P̂ =

(
P̂11 P̂12

P̂ ∗
12 P̂22

)
:= P − PS ≥ 0 (3.2)

satisfies the homogeneous equation

M∗P̂M − N∗P̂N = 0. (3.3)

The partition of P̂ in (3.2) corresponds to the partitions of M and N in (2.10). Substituting
(2.10) and (3.2) into (3.3) we conclude in particular that the blocks P̂11 and P̂22 satisfy the

homogeneous Stein equations

P̂11 − A∗
1P̂11A1 = 0 and P̂22 − A∗

2P̂22A2 = 0,

and hence, because of the spectral condition (2.8), that P̂11 = 0 and P̂22 = 0. Since the
diagonal blocks of the nonnegative matrix P̂ are zero matrices, we also have P̂12 = 0. Thus

P̂ = 0, i.e., PS = P and S ∈ S(M, N, P, C). This proves the inclusion Ŝ(M, N, P, C) ⊆
S(M, N, P, C). Since the converse inclusion is clear, this finishes the proof of lemma.

The next lemma is the first step in characterizing all solutions of the aBIP in terms of the
so called fundamental matrix inequality (FMI).

Lemma 3.3 Let S belong to Ŝ(M, N, P, C). Then the inequality



G(z)∗PG(z) C∗
(

Ip

−S(z)∗

)

(Ip, −S(z)) C
Ip − S(z)S(z)∗

ρz(z)




≥ 0 (3.4)

holds for every z ∈ ID.



Proof: Let S belong to Ŝ(M, N, P, C) (this means in particular, that S ∈ Sp×q) and let
[ , ]S be the nonnegative Hermitian form defined via (2.1). Then,

(
[f1, f1]S [f2, f1]S
[f1, f2]S [f2, f2]S

)
≥ 0 (∀f1, f2 ∈ Lp+q

2 (TT)). (3.5)

Fixing x ∈ Cn, y ∈ Cp and a point z ∈ ID at which G(z) is invertible, set

f1(ζ) = CG(ζ)−1x, and f2(ζ) =

(
Ip

S(z)∗

)
y

ρz(ζ)
.

in (3.5). Since f2 ∈ H
p+q
2 ,

[f2, f2]S =

〈(
Ip −S(ζ)

−S(ζ)∗ Iq

)(
Ip

S(z)∗

)
y

ρz(ζ)
,

(
Ip

S(z)∗

)
y

ρz(ζ)

〉

L
p+q
2

(TT)

=

〈
Ip − S(ζ)S(z)∗

ρz(ζ)
y,

y

ρz(ζ)

〉

L
p
2
(TT)

+

〈
S(z)∗ − S(ζ)∗

ρz(ζ)
y,

S(z)∗y

ρz(ζ)

〉

L
q
2
(TT)

= y∗ Ip − S(z)S(z)∗

ρz(z)
y +

〈
S(z)∗y

ρz(ζ)
,

S(z)∗y

ρz(ζ)

〉

L
q
2
(TT)

−
〈

y

ρz(ζ)
,

S(ζ)S(z)∗y

ρz(ζ)

〉

L
p
2
(TT)

= y∗ Ip − S(z)S(z)∗

ρz(z)
y

and, in view of (1.6),

[f1, f2]S =

〈(
Ip −S(ζ)

−S(ζ)∗ Iq

)
CG(ζ)−1x,

(
Ip

S(z)∗

)
y

ρz(ζ)

〉

L
p+q
2

(TT)

=

〈
(Ip, −S(ζ))CG(ζ)−1x,

y

ρz(ζ)

〉

L
p
2
(TT)

= y∗ (Ip, −S(z)) CG(z)−1x.

Finally, in view of (3.1),
[f1, f1]S ≤ x∗Px.

Substituting these three relations into (3.5) we get




x∗Px x∗G(z)−∗C∗
(

Ip

−S(z)∗

)
y

y∗ (Ip, −S(z)) CG(z)−1x y∗ Ip − S(z)S(z)∗

ρz(z)
y




≥ 0

which is equivalent to (3.4) (since x and y are arbitrary).

The next step is to prove that in fact, the FMI (3.4) characterizes the set Ŝ(M, N, P, C)
when (1.8) is in force. This will be done using the so called transformed matrix inequality

which was introduced and applied to continuous interpolation problems by V. Katsnelson in
[20] and [21]. See also [22], [23] and [25] for various applications of this idea.



Lemma 3.4 Let the Lyapunov–Stein identity (1.8) be in force and let the FMI (3.4) hold
for some S ∈ Sp×q. Then

1. The mvf
W (z) = −H(z)−1M∗P + H(z)−1C∗

1 (Ip, −S(z)) CG(z)−1 (3.6)

is analytic in ID.

2. The mvf

D(z) = H(z)−1C∗

(
−S(z)

Iq

)
(3.7)

belongs H
n×q
2 .

3. The transformed fundamental matrix inequality



P W (z)∗

W (z)
P + zW (z) + z̄W (z)∗ − D(z)D(z)∗

ρz(z)


 ≥ 0 (3.8)

holds for every z ∈ ID.

4. If, in addition, (1.5) is valid, then W ∈ Hn×n
2 .

5. If rank C1 = p, then the inequalities (3.4) and (3.8) are equivalent.

Proof: Choose a point z ∈ ID at which G(z) and H(z) are invertible and set

E(z) =

(
G(z)−∗ 0

−H(z)−1M∗G(z)−∗ H(z)−1C∗
1

)
.

Then, upon multiplying (3.4) by E(z) on the left and by E(z)∗ on the right we get
(

P W (z)∗

W (z) T (z)

)
≥ 0, (3.9)

where W (z) is the function defined by (3.6) and

T (z) = H(z)−1
{
M∗PM − M∗G(z)−∗C∗

(
Ip

−S(z)∗

)
C1

−C∗
1 (Ip, −S(z)) CG(z)−1M + C∗

1
Ip−S(z)S(z)∗

ρz(z)
C1

}
H(z)−∗.

(3.10)

To simplify the last expression we use the resolventlike identity

ρz(z)G(z)−1MH(z)−∗ = H(z)−∗ − zG(z)−1 (3.11)

and the identity

ρz(z)H(z)−1M∗PMH(z)−∗ = P − zH(z)−1M∗P − z̄PMH(z)−∗

+H(z)−1 {C∗
1C1 − C∗

2C2}H(z)−∗, (3.12)



which follows easily from (1.8). Substituting (3.11) and (3.12) into (3.10) and using (3.6)
and (3.7) we obtain

ρz(z)T (z) = P − zH(z)−1M∗P − z̄PMH(z)−∗ + H(z)−1 {C∗
1C1 − C∗

2C2}H(z)−∗

+H(z)−1C∗
1 {Ip − S(z)S(z)∗}C1H(z)−∗

+H(z)−1C∗
1 (Ip, −S(z)) C

(
zG(z)−1 − H(z)−∗

)

+
(
z̄G(z)−∗ − H(z)−1

)
C∗
(

Ip

−S(z)∗

)
C1H(z)−∗

= P + zW (z) + z̄W (z)∗ − D(z)D(z)∗ (3.13)

and hence, by (3.9), the inequality (3.8) holds for every z ∈ ID at which G(z) and H(z)

are invertible. It follows from (3.8) that T (z) is nonnegative inside ID and therefore, (3.13)
implies that

P + zW (z) + z̄W (z)∗ ≥ D(z)D(z)∗ ≥ 0 (z ∈ ID). (3.14)

Therefore the meromorphic function zW (z)+ 1
2
P has a nonnegative real part inside the unit

disc and hence, is analytic there. Then we conclude from (3.13) that T (z) is bounded on

compact subsets of ID. Since both of the diagonal blocks P and T (z) in the nonnegative
matrix (3.9) are bounded, the off-diagonal block W (z) has to be bounded on compact sub-

sets of ID also and thus must be analytic in ID. Moreover, it follows from (3.14) that the
meromorphic (by definition (3.7)) function D(z) is bounded on compact subsets of ID and

is therefore analytic in ID. To show that D belongs to H
n×q
2 we note that the expression on

the left hand side of (3.14) is a nonnegative harmonic mvf which takes the value P at the

origin. Therefore,

1

2π

∫ 2π

0
D(reit)D(reit)∗dt ≤ 1

2π

∫ 2π

0
(P + reitW (reit) + re−itW (reit)∗)dt = P.

This implies the uniform estimate

sup
0<r<1

∫ 2π

0
D(reit)D(reit)∗dt ≤ P,

which means that D ∈ H
n×q
2 . Let us recall that the point z ∈ ID was chosen so that G(z)

and H(z) are invertible. Thus the inequality (3.8) is valid for all such points. Since all the
entries in (3.8) are continuous in ID, the inequality extends by continuity to all z ∈ ID. This

completes the proof of the first three assertions of the lemma.

Next, under assumption (1.5),

‖W (ζ)‖ ≤ γ for some γ > 0 and a.e. ζ ∈ TT,

and therefore, W ∈ Hn×n
2 .

To prove the last assertion of lemma we multiply the inequality (3.8) by
(

G(z)∗ 0
M∗ H(z)

)
from

the left and by its adjoint from the right. Since
(

G(z)∗ 0
M∗ H(z)

)
E(z) =

(
In 0
0 C∗

1

)
,



the preceding analysis leads to the inequality



G(z)∗PG(z) C∗
(

Ip

−S(z)∗

)
C1

C∗
1 (Ip, −S(z)) C C∗

1

Ip − S(z)S(z)∗

ρz(z)
C1


 ≥ 0.

But this is equivalent to (3.4) when rankC1 = p.

Lemma 3.5 Let the Lyapunov–Stein identity (1.8) be in force and let S be analytic in ID

and satisfy the FMI (3.4) at every point z ∈ ID. Then S belongs to Ŝ(M, N, P, C).

Proof: By Lemma 3.4, the function D given by (3.7) belongs to H
n×q
2 . Therefore,

ζD(ζ) = ζH(ζ)−1C∗

(
−S(ζ)

Iq

)
belongs to ζHn×q

2 .

Taking adjoints in the latter relation and taking advantage of the fact that

G(ζ) = ζH(ζ)∗ (for ζ ∈ TT), (3.15)

we get

(−S(ζ)∗, Iq) CG(ζ)−1 ∈ (Hq×n
2 )⊥.

We turn next to (3.1). By Lemma 3.4, the function W given by (3.6) is analytic in ID.
Hence, since G(z)−1 and H(z)−1 are rational mvf’s and S(z) is a Schur function, W has

nontangential limits W (ζ) for almost every point ζ ∈ TT. Using (3.15) we represent W (ζ) as

W (ζ) = −ζ̄G(ζ)−∗M∗P + ζ̄G(ζ)−∗C∗
1 (Ip, −S(ζ))CG(ζ)−1. (3.16)

The identity
P − G(ζ)−∗M∗P − PMG(ζ)−1 = −G(ζ)−∗CJCG(ζ)−1

is a consequence of (1.8) and implies together with (3.16), (1.9) and (1.2) that

Φ(ζ) := P + ζW (ζ) + ζ̄W (ζ)∗

= G(ζ)−∗

(
C∗

1 (Ip, −S(ζ))C + C∗

(
Ip

−S(ζ)∗

)
C1 − CJC

)
G(ζ)−1

= G(ζ)−∗ (C∗
1C1 − C∗

1S(ζ)C2 − C∗
2S(ζ)C1 + C∗

2C2) G(ζ)−1

= G(ζ)−∗C∗

(
Ip −S(ζ)

−S(ζ)∗ Iq

)
CG(ζ)−1. (3.17)

Let ζ1 = eit1 , · · · , ζℓ = eitℓ be all the points on the unit circle at which G(ζ) is not invertible.

Let ∆ε be the set which consists of all points of TT except for the ℓ arcs [ei(tj−ε); ei(tj+ε)] (j =

1, . . . , ℓ). It was mentioned in the proof of Lemma 3.4 that Φ is a nonnegative harmonic
function which takes the value P at the origin. By Fatou’s lemma we get

∫

∆ε

Φ(eit)dt =
∫

∆ε

(
lim
r→1

Φ(reit)
)

dt ≤ lim
r→1

inf
∫

∆ε

Φ(reit)dt

≤ lim
r→1

inf
∫ 2π

0
Φ(reit)dt = 2πΦ(0) = 2πP.



This yields the following estimate:

1

2π

∫

∆ε

G(eit)−∗C∗

(
Ip −S(eit)

−S(eit)∗ Iq

)
CG(eit)−1dt =

1

2π

∫

∆ε

Φ(eit)dt ≤ P,

which is uniform with respect to ε. Letting ε → 0 we obtain

1

2π

∫ 2π

0
G(eit)−∗C∗

(
Ip −S(eit)

−S(eit)∗ Iq

)
CG(eit)−1dt ≤ P,

which is equivalent to (3.1).

We now complete the proof of (1.6) with the help of the last inequality which can be written

as

1

2π

∫ 2π

0
G(eit)−∗C∗

(
Ip

−S(eit)∗

)(
Ip, −S(eit)

)
CG(eit)−1dt

≤ P − 1

2π

∫ 2π

0
G(eit)−∗C∗

2

(
Iq − S(eit)∗S(eit)

)
C2G(eit)−1dt.

This implies in particular, that the function

(Ip, −S(ζ))CG(ζ)−1 belongs to Lp×n
2 (TT). (3.18)

We recall that a mvf B(z) which is analytic in ID is said to belong to the Smirnov class

N p×q
+ if it can be represented as a ratio of a Hp×q

∞ –function and a scalar H∞(ID)–function
which is outer. The following maximum principle holds for functions of the Smirnov class:

if B ∈ N p×q
+ belongs to Lp×q

2 (TT), then B also belongs to H
p×q
2 (ID); for more information on

matrix valued Smirnov classes see [6] and [24]. Let us show that the mvf

B(z) = (Ip, −S(z)) CG(z)−1 (3.19)

belongs to the Smirnov class N p×n
+ . Multiplying the matrix on the left hand side of (3.4)

by
(

G(z)−1 0
0 Ip

)
from the right, by its adjoint from the left and making use of the notation

(3.19) we get the following inequality

(
P B(z)∗

B(z) Ip−S(z)S(z)∗

ρz(z)

)
≥ 0,

which holds for all points z ∈ ID at which G(z) is invertible. The diagonal blocks P and
Ip−S(z)S(z)∗

ρz(z)
in the latter inequality are bounded on every compact subset of ID. Thus the off–

diagonal block B(z) (which is meromorphic by construction) is bounded on every compact

subset of ID and therefore, it is analytic in ID. Furthermore, the rational mvf G−1 can be
represented as

G−1(z) =
G1(z)

g1(z)g2(z)
, g1(z)g2(z) = det G(z),



where G1 is a Cn×n–valued polynomial and g1 and g2 are scalar polynomials with their roots
inside ID and in C\ID, respectively. In particular, g2 belongs to H∞(ID) and is outer in ID.

Substituting the latter representation for G−1 into (3.19) we see that

B(z) =
(Ip, −S(z)) CG1(z)

g1(z)

1

g2(z)
(3.20)

and, since B is analytic inside ID it follows that all the zeroes of g1 are compensated by the
zeroes of the mvf (Ip, −S(z)) CG1(z). Therefore, the mvf

(Ip, −S(z)) CG1(z)

g1(z)
belongs to Hn×n

∞ ,

and so by (3.20), B belongs to the matrix Smirnov class N p×n
+ . By (3.18), B ∈ Lp×n

2 (TT)

and thus by the maximum principle for Smirnov class functions,

(
Ip, −S(eit)

)
CG(eit)−1 belongs to H

p×n
2 (TT).

This completes the proof that the function S satisfies conditions (1.6) and (3.1) and therefore,

belongs to Ŝ(M, N, P, C).

Remark 3.6 If in Lemma 3.5 it is also assumed that G(ζ) is invertible on the unit circle,

then every solution S of the FMI (3.4) belongs to the set S(M, N, P, C).

The stated conclusion is immediate from Lemmas 3.2 and 3.5. However, it is instructive

to prove this fact independently of Lemma 3.5. This may be done by calculating the left

hand side of (3.1) via formula (3.17). Because of (1.5), the function W belongs to Hn×n
2 by

Lemma 3.4. Therefore,

ζW (ζ) ∈ ζHn×n
2 and ζ̄W (ζ)∗ ∈

(
Hn×n

2

)⊥
.

Thus,
〈ζW (ζ)y, x〉Ln

2
(TT) =

〈
ζ̄W (ζ)∗y, x

〉
Ln

2
(TT)

= 0 (∀ x, y ∈ Cn),

and now it follows from (3.17), that for every choice of vectors x and y in Cn,

〈Φ(ζ)y, x〉Ln
2
(TT) = x∗Py =

〈
G(ζ)−∗C∗

(
Ip −S(ζ)

−S(ζ)∗ Iq

)
CG(ζ)−1y, x

〉

Ln
2
(TT)

which is equivalent to (1.7).

As a consequence of the previous analysis we obtain the main result of this section:

Theorem 3.7 Let (1.17) be in force, let P be a solution of the Lyapunov–Stein equation
(1.8) and let S be a p × q mvf which is analytic in ID. Then:

1. S belongs to the set Ŝ(M, N, P, C) if and only if it is a solution of the FMI (3.4) at
every point z ∈ ID.



2. If (1.5) is in force, then S is a solution of the aBIP(M, N, P, C) if and only if it
satisfies the FMI (3.4) at every point z ∈ ID.

Proof: The first assertion of the theorem is immediate from Lemmas 3.3 and 3.5. Let

now (1.5) be in force. By Lemma 3.2, relations (1.5) and (1.8) imply that Ŝ(M, N, P, C)
coincides with S(M, N, P, C), which is, by Definition 3.1, the set of all solutions of the

aBIP(M, N, P, C).

In Section 5 we will take advantage of the following simple but useful observation.

Corollary 3.8 Let M1 and N1 be n × n matrices such that the matrix pencil G1(z) =

M1 − zN1 is nondegenerate:
det (M1 − zN1) 6≡ 0, (3.21)

and let

PM = PM1 and PN = PN1. (3.22)

Then Ŝ(M, N, P, C) = Ŝ(M1, N1, P, C).

Proof: First we note that the conditions (3.22) imply that P is a solution of the Lyapunov–
Stein equation (1.8) if and only if it is a solution of the equation

M∗
1 PM1 − N∗

1 PN1 = C∗JC.

Therefore, by Theorem 3.7, S belongs to Ŝ(M, N, P, C) if and only if it satisfies the in-
equality (3.4), and it belongs to Ŝ(M1, N1, P, C) if and only if it satisfies the inequality




G1(z)∗PG1(z) C∗
(

Ip

−S(z)∗

)

(Ip, −S(z)) C
Ip − S(z)S(z)∗

ρz(z)


 ≥ 0. (3.23)

However, in view of (3.22),

G1(z)∗PG1(z) = (M1 − zN1)
∗ P (M1 − zN1) = (M − zN)∗ P (M − zN) = G(z)∗PG(z)

and the conditions (3.4) and (3.23) coincide.

4 Some supplementary remarks

In this section we explain briefly how to obtain a second Fundamental Matrix Inequality

which characterizes the solutions of the aBIP. Let S̃ be the dual function associated with
S by the rule

S̃(z) = S(z̄)∗. (4.1)

It is easily seen that S belongs to the Schur class Sp×q if and only if S̃ belongs to Sq×p. The

permutation matrix defined by the formula

Π =

(
0 Iq

Ip 0

)
(4.2)



will be used to interchange the block rows C1 and C2 in the decomposition (1.9) of C:

ΠC = Π

(
C1

C2

)
=

(
C2

C1

)
.

Lemma 4.1 A function S belongs to S(M, N, P, C) if and only if the dual function S̃

belongs to S(N, M, P, ΠC), i.e., if and only if

(
Iq −S̃(ζ)

−S̃(ζ)∗ Ip

)
ΠCH(ζ̄)−∗ ∈

(
H

q×n
2

(Hp×n
2 )⊥

)
(4.3)

and for every choice of x, y ∈ Cn,

〈(
Iq −S̃(ζ)

−S̃(ζ)∗ Ip

)
ΠCH(ζ̄)−∗y, ΠCH(ζ̄)−∗x

〉

L
p+q
2

(TT)

= x∗Py. (4.4)

Proof: Using (4.1), (4.2) and (3.15), we get

(
Ip −S(ζ)

−S(ζ)∗ Iq

)
CG(ζ)−1 = ζ̄Π∗

(
Iq −S̃(ζ̄)

−S̃(ζ̄)∗ Ip

)
ΠCH(ζ)−∗. (4.5)

Therefore, condition (1.6) is equivalent to

ζ̄

(
Iq −S̃(ζ̄)

−S̃(ζ̄)∗ Ip

)
ΠCH(ζ)−∗ ∈

(
(Hq×n

2 )⊥

H
p×n
2

)
. (4.6)

It is easily seen that a function f(ζ) belongs to H2 (respectively (H2)
⊥) if and only if the

function ζ̄f(ζ̄) belongs to (H2)
⊥ (respectively H2) and hence that (4.6) is equivalent to

(4.3). Next, upon substituting (3.15) and (4.5) into (1.7) and taking into account that Π is
unitary, we conclude that the expressions on the left hand sides of (1.7) and (4.4) coincide

and therefore that these two conditions are equivalent.

Remark 4.2 It follows immediately from the proof of the last lemma that a function S

belongs to Ŝ(M, N, P, C) if and only if the dual function S̃ belongs to Ŝ(N, M, P, ΠC).
Moreover, by Lemmas 3.3 and 3.5, S̃ belongs to Ŝ(N, M, P, ΠC) if and only if the inequal-

ity (3.4) holds, with M and N interchanged and with C and S replaced by ΠC and S̃,
respectively. That is if and only if




H(z̄)PH(z̄)∗ C∗Π∗

(
Iq,

−S̃(z)∗

)

(
Iq, −S̃(z)

)
ΠC

Iq − S̃(z)S̃(z)∗

ρz(z)


 ≥ 0 (∀ z ∈ ID).

Upon replacing z by z̄ and expressing S̃ in terms of S we obtain we obtain the dual funda-
mental matrix inequality, which also characterizes the set Ŝ(M, N, P, C):



Theorem 4.3 Let P ≥ 0 be a solution of the Lyapunov–Stein equation (1.8). Then a p × q
mvf S which is analytic in ID belongs to Ŝ(M, N, P, C) if and only if the inequality




H(z)PH(z)∗ C∗
(

−S(z)
Iq

)

(−S(z)∗, Iq)C
Iq − S(z)∗S(z)

ρz(z)




≥ 0 (4.7)

holds for every z ∈ ID.

The same strategy can be used to obtain the dual analogue of Lemma 3.4. It suffices to
interchange M and N , C1 and C2 and to replace S by the dual function S̃ in formulas

(3.6)–(3.8) and then to make use of (4.1). The details are left to the reader.

Lemma 4.4 Let the Lyapunov–Stein identity (1.8) be in force and let the fundamental ma-

trix inequality (4.7) hold for some S ∈ Sp×q. Then

1. The mvf

W̃ (z) = PNG(z)−1 + H(z)−1C∗

(
−S(z)

Iq

)
C2G(z)−1

is analytic in ID whereas the mvf

D̃(z) = (Ip, −S(z)) CG(z)−1

belongs H
p×n
2 , and the transformed fundamental matrix inequality




P W̃ (z)

W̃ (z)∗
P + zW̃ (z) + z̄W̃ (z)∗ − D̃(z)∗D̃(z)

ρz(z)


 ≥ 0 (4.8)

holds for every z ∈ ID.

2. If in addition, (1.5) is valid, then W̃ ∈ Hn×n
2 .

3. If rank C2 = q, then the inequalities (4.7) and (4.8) are equivalent.

In the last two sections we obtained two characterizations of the set Ŝ(M, N, P, C): as the
set of all solutions of the FMI (3.4) and as the set of all solutions of the dual FMI (4.7). As

a corollary we get the following result.

Lemma 4.5 Let the Lyapunov–Stein identity (1.8) be in force. Then a p × q mvf S which

is analytic in ID satisfies (3.4) for every point z ∈ ID if and only if it satisfies (4.7) for every
point z ∈ ID.

A direct proof of this fact for the more general Abstract Interpolation Problem can be found
in [23]. Although the inequalities (3.4) and (4.7) are equivalent, their simultaneous use seems

to be convenient and fruitful; for applications to concrete interpolation problems see [12] and
[26].



5 Some nonrestrictive assumptions

The objective of this section is to formulate a new aBIP which is equivalent to the original

problem but with extra invariance properties. In what follows UCn×n denotes the set of
upper triangular n × n matrices and for each square matrix R, DR denotes the diagonal

matrix which has the same main diagonal as R.

Lemma 5.1 Let T ∈ UCn×n be a matrix with DT = In and let Φ ∈ UCn×n. Then TΦT−1

and T−1ΦT belong to UCn×n and have the same main diagonals as Φ.

Proof: Clearly,
Φ = DΦ + Φ̃, T = In + T̃ and T−1 = In + T̂ ,

where Φ̃, T̃ and T̂ are strictly upper triangular matrices. Thus

TΦT−1 = DΦ + Ψ and T−1ΦT = DΦ + Ψ̃,

where Ψ and Ψ̃ are the sums of matrix products each of which has at least one strictly upper
triangular factor and is therefore, strictly upper triangular. Therefore the main diagonals of

TΦT−1 and T−1ΦT coincide with the main diagonal of Φ.

Lemma 5.2 Let P ∈ Cn×n be positive semidefinite with rank P = r ≤ n. Then there
exists a matrix Q ∈ Cn×r and linear transformations τ̂ : R → R̂ of UCn×n into itself and

τ♦ : R → R♦ of UCn×n into UCr×r such that:

(1) Q∗PQ > 0. (5.1)

(2) DR = D
R̂
. (5.2)

(3) PR = PR̂. (5.3)

(4) R̂Q = QR♦. (5.4)

(5) spec R♦ ⊆ spec R.

Proof: We first show that there exists a matrix T ∈ UCn×n with DT = In such that

P = T∗PdT, where Pd := diag (k1, k2, · · · , kn) ≥ 0. (5.5)

The matrix T is constructed by successive application of Schur complements: setting

P (1) := P, k1 = P
(1)
11 = (1, 0, . . . , 0)P (1)(1, 0, . . . , 0)∗

and using the partition

P (ℓ) =

(
kℓ Fℓ

F ∗
ℓ P̂ℓ

)
:

(
C
Cn−ℓ

)
→
(

C
Cn−ℓ

)
,

let

P (ℓ+1) =

{
P̂ℓ − F ∗

ℓ k−1
ℓ Fℓ if kℓ > 0,

P̂ℓ if kℓ = 0



and

Tℓ =








Iℓ−1 0 0
0 1 k−1

ℓ Fℓ

0 0 In−ℓ


 if kℓ > 0,

In if kℓ = 0,

for ℓ = 1, . . . , n. The matrix T := TnTn−1 · · ·T1 clearly does the trick by standard

manipulations with Schur complements.

Since detT 6= 0, it follows from (5.5) that the diagonal matrix Pd has the same rank as
P . Thus, there are exactly r strictly positive elements in the set K = {k1, . . . , kn}. Let N
denote the set of indices of these strictly positive elements:

kℓ > 0 for ℓ ∈ {i1, i2, . . . , ir} =: N , i1 < i2 < . . . < ir;
kℓ = 0 for ℓ ∈ {1, . . . , n}\N (5.6)

and let

EN = (ei1 , ei2 , . . . , eir) , (5.7)

where ej denotes the j-th column of the matrix In. Then EN ∈ Cn×r is isometric and by

the definition (5.6) of the set N , it follows from (5.5) that

E∗
NPdEN = diag {ki1, ki2, . . . , kir} > 0 and PdENE∗

N = Pd. (5.8)

Next, let
Q = T−1EN ∈ Cn×r (5.9)

and let us define the mappings τ̂ : UCn×n → UCn×n and τ♦ : UCn×n → UCr×r by the
rules

τ̂R = R̂ := T−1
{
ENE∗

NTRT−1 + (In − ENE∗
N ) DR

}
T (5.10)

and

τ♦R = R♦ := E∗
NTRT−1EN , (5.11)

respectively. These mappings are obviously linear and the matrices R̂ and R♦ are upper
triangular by Lemma 5.1. Now we show that the requirements (5.1)–(5.4) of the lemma are

satisfied for this choice of Q, R̂ and R♦.

Relations (5.1) and (5.3) follow from (5.5) and (5.8)–(5.10):

Q∗PQ = E∗
NT−∗PT−1EN = E∗

NPdEN > 0

and

PR̂ = T∗Pd

{
ENE∗

NTRT−1 + (In − ENE∗
N )DR

}
T

= T∗PdTR = PR.

Next, by Lemma 5.1 and the definition of DR, all the diagonal entries of the matrix TRT−1−
DR are zero. Since the matrix ENE∗

N is diagonal, all the diagonal elements in the matrix



ENE∗
N (TRT−1 − DR) are zero also. Therefore, upon representing the expression inside the

brackets in (5.10) as

DR + ENE∗
N (TRT−1 − DR)

and applying Lemma 5.1 again, we get (5.2).

To prove (5.4), we express DR as DR = diag {Rjj}n

j=1 and note that

DREN = ENdiag {Rikik}r

k=1 .

Therefore, since EN is an isometric matrix, (In − ENE∗
N ) DREN = 0 and hence

R̂Q = T−1
{
ENE∗

NTRT−1 + (In − ENE∗
N ) DR

}
EN

= T−1ENE∗
NTRT−1EN = QR♦.

The last assertion of lemma follows easily from (5.11) by Lemma 5.1.

Combining Corollary 3.8 and Lemma 5.1 we deduce the main result of this section. We recall
that Ŝ(M, N, P, C) is the set given in Definition 3.1.

Theorem 5.3 Let M, N ∈ Cn×n be upper triangular matrices satisfying (1.17) and let P be

a positive semidefinite solution of the Lyapunov–Stein equation (1.8) with rank P = r ≤ n.
Then there exists a matrix Q ∈ Cn×r satisfying (5.1) and upper triangular matrices M1, N1 ∈
UCn×n and M♦, N♦ ∈ UCr×r such that:

(1) Ŝ(M, N, P, C) = Ŝ(M1, N1, P, C).

(2) M1Q = QM♦ and N1Q = QN♦. (5.12)

(3) spec M♦ ⊆ spec M = spec M1 and spec N♦ ⊆ spec N = spec N1. (5.13)

Proof: Let the matrix Q and mappings τ̂ and τ♦ be as in Lemma 5.2 and let

M1 = τ̂M, N1 = τ̂N, M♦ = τ♦M, N♦ = τ♦N.

Then, relations (5.1), (5.12), (5.13) and (3.22) hold by Lemma 5.1. Since the functions
M −zN and M1−zN1 are upper triangular and have the same main diagonal for each z, the

condition (3.21) is an immediate consequence of (1.17). Applying Corollary 3.8, we conclude
that Ŝ(M, N, P, C) = Ŝ(M1, N1, P, C).

Remark 5.4 Let P ∈ Cn×n be a positive semidefinite solution of the Lyapunov–Stein equa-

tion (1.8) and let rank P = r ≤ n. In view of Theorem 5.3, it can be assumed without loss
of generality that M and N satisfy the invariance conditions

MQ = QM♦ and NQ = QN♦ (5.14)

for some matrices M♦, N♦ ∈ Cr×r satisfying the spectral conditions (5.13) and a matrix
Q ∈ Cn×r satisfying the condition (5.1).



Remark 5.5 It follows from (5.14) that det(M♦ − zN♦) 6= 0 whenever det(M − zN) 6= 0.

Proof: In view of (5.14),

(M − zN)Q = Q(M♦ − zN♦),

and hence, if det(M − zN) 6= 0, then

rank Q(M♦ − zN♦) = rank (M − zN)Q = rankQ = r.

Therefore, rank (M♦ − zN♦) = r, which means that M♦ − zN♦ is invertible.

The next example shows that in general one cannot achieve the invariance exhibited in (5.14)

without modifying M and N .

Example 5.6 Let p = 2, q = 1, and let

P =

(
0 0
0 1

)
, M =

(
1 1
0 1

)
, N =

(
0 1
0 0

)
, C1 =

(
1 0
0 1

)
, C2 = (1, 0).

Then (1.8) holds and rankP = 1. Let us assume that there exist matrices

Q =

(
α
β

)
∈ C2×1 and D ∈ C1×1

such that

Q∗PQ = |β|2 > 0 and

(
β
0

)
= NQ = QD =

(
αD
βD

)
. (5.15)

The second relation in (5.15) implies that βD = 0 and β = αD and therefore β = 0, which
contradicts the first relation in (5.15).

To conclude the section, we wish to clarify the geometrical meaning of conditions (5.1) and
(5.14). Since Q ∈ Cn×r and rankP = r, it follows from the first of these two conditions that

the space Cn can be decomposed as

Cn = Ker P
·
+ Q (5.16)

where the sum is direct and Q is the subspace given by

Q = Ran Q := {Qx, x ∈ Cr} ⊂ Cn.

Indeed, in view of (5.1), Qx 6= 0 for any nonzero x ∈ Cr and therefore, rankQ = r. Thus

dimQ = rankQ = rankP = r.

On the other hand, if y ∈ KerP ∩Q, then

Py = 0 and y = Qx for some x ∈ Cr.



Therefore,
Q∗Py = Q∗PQx = 0,

which, on account of (5.1), implies that x = 0 and hence, that y = 0. Thus, Ker P ∩Q = {0}
and therefore,

dim
(
Ker P

·
+ Q

)
= dimQ + dim Ker P = n,

which implies (5.16). Next, the relations (5.14) mean that Q is an invariant subspace of M

and N , i.e.,
MQ ⊆ Q and NQ ⊆ Q.

A decomposition of the form (5.16) was used by V. Dubovoj in [11] to study the degenerate
matrix Schur problem. This corresponds to the choice M = In and N equal to the block

shift matrix. It turns out that in this case the modification introduced in Theorem 5.3 is
not needed.

The invariance properties of the subspace Q will enable us to construct a linear fractional

transformation describing all the solutions of the degenerate aBIP(M, N, P, C). This will
be done in the next section.

6 The matrix valued function ∆ω(z)

In this section we consider the n × n matrix valued function

∆ω(z) = G(ω)∗PG(z) + ρω(z)C∗
2C2. (6.1)

which was introduced in [15] and used extensively in [15] and [16] (in a more general setting)

and which will play an important role in this paper too. We begin with a list of formulas
which are taken from [15] and [16]. They can be verified by straightforward computation,

especially if they are tackled in the order in which they are stated.

Lemma 6.1 If P ≥ 0 is a solution of the Lyapunov–Stein equation (1.10), then the following

formulas are valid for every choice of z and ω in C:

(1) ∆ω(z) = H(z)PH(ω)∗ + ρω(z)C∗
1C1, (6.2)

(2) ∆ω(z) = ∆z(ω)∗, (6.3)

(3) ρω(z)G(z)∗PG(ω) + ρω(z)∗H(z)PH(ω)∗

= ρz(z)G(ω)∗PG(ω) + ρω(ω)H(z)PH(z)∗,

(4) ρω(z)∗∆ω(z) + ρω(z)∆ω(z)∗ = ρz(z)G(ω)∗PG(ω) + ρω(ω)H(z)PH(z)∗

+|ρω(z)|2 (C∗
1C1 + C∗

2C2) . (6.4)



There are two cases of interest in this paper: the case when ω ∈ ID and the case when ω ∈ TT
and G(ω) is invertible. For both the cases the subspace

K = Ker




PM
PN
C


 (6.5)

of Cn plays a significant role. First we note the inclusion

Ker ∆ω(z) ∩ Ker ∆ω(z)∗ ⊇ K for all z, ω ∈ C, (6.6)

which is selfevident by definitions (6.1) and (6.5). We are interested in the cases when
equality prevails in (6.6).

Lemma 6.2 Let P ≥ 0 be a solution of the Lyapunov–Stein equation (1.10) and let ω ∈ ID.
Then

Ker ∆ω(z) = Ker ∆ω(z)∗ = K (6.7)

for every point z ∈ ID and for every point z ∈ TT at which G(z) is invertible.

Proof: Fix ω ∈ ID and let u ∈ Ker∆ω(z) ∪ Ker ∆ω(z)∗. Then

u∗ {ρω(z)∗∆ω(z) + ρω(z)∆ω(z)∗}u = 0 (6.8)

and hence, as ρω(ω) > 0 for ω ∈ ID it follows from (6.4) that

PH(z)∗u = 0, C1u = 0, C2u = 0 (6.9)

and
ρz(z)PG(ω)u = 0. (6.10)

Now, if z ∈ ID, then ρz(z) > 0 and so formula (6.10) implies that PG(ω)u = 0. Therefore,

(1 − z̄ω)PNu = z̄PG(ω)u− PH(z)∗u = 0, (6.11)

which implies that PNu = 0 and hence by (6.9) that PMu = 0 also. This proves the

inclusion

Ker ∆ω(z) ∪ Ker ∆ω(z)∗ ⊆ K if z ∈ ID

and so, in view of (6.6), the equalities (6.7) for z ∈ ID.

Next, if z ∈ TT, then there is no information in formula (6.10). However, if G(z) is invertible
(or equivalently, if H(z) is invertible; see (2.5)), then (6.1), (6.2) and (6.9) imply that

1) PH(ω)∗u = 0 if u ∈ Ker ∆ω(z) and 2) PG(ω)u = 0 if u ∈ Ker ∆ω(z)∗.

In the first case we have

(z̄ − ω̄)PNu = ω̄PH(z)∗u − z̄PH(ω)∗u = 0,

which implies that PNu = 0 and hence by the first equality in (6.9) that PMu = 0 also. In
the second case the same conclusions follow from (6.11). Thus, u ∈ K, which on account of

(6.6), completes the proof.

The situation in the case when ω ∈ TT is almost the same.



Lemma 6.3 Let P ≥ 0 be a solution of the Lyapunov–Stein equation (1.10), let ω ∈ TT and
let G(ω) be invertible. Then the qualities (6.7) hold for every point z ∈ ID and for every

point z ∈ TT\{ω} at which G(z) is invertible.

Proof: The assertion of the lemma for z ∈ ID follows by property (6.3) from Lemma 6.2
after interchanging z and ω in (6.7).

Next, if z is any point on TT different from ω and u ∈ Ker ∆ω(z) or u ∈ Ker ∆ω(z)∗, then
ρω(z) 6= 0 and (6.8) implies only that C1u = 0 and C2u = 0. However, since G and H are

invertible at z and at ω, it follows from (6.1) and (6.2) that

PH(ω)∗u = PG(z)u = PG(ω)u = PH(z)∗u = 0.

The proof is now readily completed as before.

The case when z = ω ∈ TT, is exceptional: then ∆ω(ω) = G(ω)∗PG(ω) and therefore, the

kernel of ∆ω(ω) can be strictly included in K.

Lemma 6.4 Let P be a nonnegative solution of the Lyapunov–Stein equation (1.8), let µ ∈
TT be a point at which G(µ) is invertible and let

R := RanCG(µ)−1PKerP =
{
CG(µ)−1 g : g ∈ KerP

}
⊆ Cp+q, (6.12)

where PKerP denotes the orthogonal projection of Cn onto KerP . Then

rank ∆ω(ω) =





rank P + dimR if ω ∈ ID

rank P
1

2 G(ω) if ω ∈ TT.

(6.13)

Proof: The case of |ω| = 1 is selfevident, since according to (6.1), ∆ω(ω) = G(ω)∗PG(ω).

Let ω ∈ ID. Then by Lemma 6.2,

Ker ∆ω(ω) = K. (6.14)

The rest of the proof is broken into steps.

Step 1. Let ω ∈ ID, µ ∈ TT, f ∈ Ker P
1

2 G(µ) and let G(µ) be invertible. Then

Cf = 0 ⇐⇒ ∆ω(ω)f = 0.

Proof of Step 1: Since ρω(ω) > 0, ∆ω(ω)f = 0 implies C1f = 0 and C2f = 0 by (6.1) and

(6.2). To prove the opposite implication, let Cf = 0. Then, by (1.10),

M∗PMf − N∗PNf = 0. (6.15)

By assumption, f ∈ KerP
1

2 G(µ), i.e.,

P
1

2 Mf = µP
1

2 Nf, (6.16)



which enables us to rewrite (6.15) as G(µ)∗PMf = 0. Since G(µ) is assumed to be invertible,
this implies that P

1

2 Mf = 0 and hence from (6.16) that also P
1

2 Nf = 0. Thus, by (6.1),

∆ω(ω)f = 0.

Step 2. Let ω ∈ ID, µ ∈ TT and let G(µ) be invertible. Then

dim KerP
1

2 G(µ) = dim K + dim R, (6.17)

where R and K are the subspaces of Cp+q and Cn that are defined in (6.12) and (6.5),

respectively.

Proof of Step 2: By definition (6.5), K ⊆ Ker P
1

2 G(µ). Let

Ker P
1

2 G(µ) = K ·
+ V (6.18)

be any direct sum decomposition of Ker P
1

2 G(µ). Let {f1, . . . , fk} and {g1, . . . , gm} be bases
of K and V, respectively. Since G(µ) is invertible, the vectors

{G(µ)fj}k
j=1 and {G(µ)gℓ}m

ℓ=1

form a basis of Ker P and therefore, k + m = n − rank P . By definition (6.12),

R = span
{
CG−1(µ)G(µ)fj, CG−1(µ)G(µ)gℓ

}
.

Since fj ∈ K, Cfj = 0 and therefore,

R = span {Cgℓ}m

ℓ=1 .

Moreover, the vectors Cg1, . . . .Cgm are linearly independent because if

0 =
m∑

ℓ=1

αℓCgℓ = C

(
m∑

ℓ=1

αℓgℓ

)
,

then the vector g =
m∑

ℓ=1

αℓgℓ belongs to K ∩ V = {0}. Since the gℓ are linearly independent,

this implies that αℓ = 0 for all ℓ. Therefore, dim V = dim R, which together with (6.18)
implies (6.17).

Finally, rewriting (6.17) as

n − rank P = n − rank∆ω(ω) + dim R

we get (6.13) for the case ω ∈ ID, which completes the proof of lemma.

Now we summarize some implications of the last three lemmas for the particular case when
P is strictly positive.

Lemma 6.5 Let P be a strictly positive solution of the Lyapunov–Stein equation (1.10) and

suppose that either ω ∈ ID or ω ∈ TT and G(ω) is invertible. Then ∆ω(z) is invertible for all
z ∈ ID and for all z ∈ TT at which G(z) is invertible.



Proof: Since P is invertible and det G(z) 6≡ 0, it follows from (6.5) that K = {0}. Therefore
the asserted invertibility follows from Lemma 6.2 (if ω ∈ ID)and from Lemma 6.3 (if z 6=
ω ∈ TT and G(ω) is invertible). It remains to show that ∆ω(ω) is also invertible for ω ∈ TT
when G(ω) is invertible. But this follows immediately from (6.13).

¿From now on, let dim K = k and let Q ∈ Cn×(n−k) be an isometric matrix whose columns
span K⊥, the orthogonal complement of K in Cn with respect to the standard inner product.

Lemma 6.6 If P ≥ 0 is a solution of the Lyapunov–Stein equation (1.10) and ω ∈ ID, then
Q∗∆ω(z)Q is invertible for every point z ∈ ID and for every point z ∈ TT at which G(z) is

invertible.

Proof: Let Q∗∆ω(z)Qu = 0 for some u ∈ Cn−k. Then

u∗Q∗ {ρω(z)∗∆ω(z) + ρω(z)∆ω(z)∗}Qu = 0

and hence, upon invoking formula (6.4), it follows just as in the proof of Lemma 6.2 that
Qu ∈ K. Therefore, since Qu ∈ K⊥ by definition, we see that Qu = 0 and

u = Q∗Qu = 0.

This completes the proof, since Q∗∆ω(z)Q is a square matrix.

We now define

∆[−1]
ω (z) := Q (Q∗∆ω(z)Q)−1

Q∗, (6.19)

for all points z ∈ C at which the indicated inverse exists. Since det {Q∗∆ω(z)Q} is a

polynomial in z of degree at most n − k, which has no zeros in ID by the preceding lemma,
the inverse can fail to exist at most at n − k points, all of which fall outside ID. The next

conclusion now follows immediately from Lemma 6.6.

Remark 6.7 If P ≥ 0 is a solution of the Lyapunov–Stein equation (1.10) and ω ∈ ID, then

the function ∆[−1]
ω (z) is rational and has at most n − k poles all of which fall outside ID.

Moreover, it is analytic at every point z ∈ TT at which G(z) is invertible.

Lemma 6.8 If P ≥ 0 is a solution of the Lyapunov–Stein equation (1.10) and ω ∈ ID, then
the resolventlike identities

ρω(ω)∆[−1]
ω (ω) − ρω(z)∆[−1]

ω (z) = δω(z)∆[−1]
ω (ω)G(ω)∗PH(ω)∗∆[−1]

ω (z)
= δω(z)∆[−1]

ω (z)G(ω)∗PH(ω)∗∆[−1]
ω (ω)

(6.20)

hold for every point z at which ∆[−1]
ω (z) is analytic.

Proof: In view of (6.1), (1.4) and (1.15),

ρω(ω)∆ω(z) − ρω(z)∆ω(ω) = δω(z)G(ω)∗PH(ω)∗, (6.21)



which together with (6.19) implies the first equality in (6.20):

ρω(ω)∆[−1]
ω (ω) − ρω(z)∆[−1]

ω (z)

= ρω(ω)Q (Q∗∆ω(ω)Q)−1
Q∗ − ρω(z)Q (Q∗∆ω(z)Q)−1

Q∗

= Q (Q∗∆ω(ω)Q)−1
Q∗ (ρω(ω)∆ω(z) − ρω(z)∆ω(ω))Q (Q∗∆ω(z)Q)−1

Q∗

= δω(z)∆[−1]
ω (ω)G(ω)∗PH(ω)∗∆[−1]

ω (z).

The second equality is checked in much the same way.

Lemma 6.9 If P ≥ 0 is a solution of the Lyapunov–Stein equation (1.10) and ω ∈ ID, then
the following formulas hold at every point z ∈ ID at which ∆[−1]

ω (z) is analytic:

(1) ∆[−1]
ω (z)∆ω(z)∆[−1]

ω (z) = ∆[−1]
ω (z), (6.22)

(2) ∆ω(z)∆[−1]
ω (z)∆ω(z) = ∆ω(z), (6.23)

(3) ∆ω(z)∆[−1]
ω (z) = ∆[−1]

ω (z)∆ω(z) = In − PK, (6.24)

where PK denotes the orthogonal projection of Cn onto K.

Proof: The first assertion is an immediate consequence of (6.19), whereas the second is

easily verified upon representing an arbitrary vector u ∈ Cn as

u = y + Qx with x ∈ Cn−k and y ∈ K. (6.25)

Indeed, using (6.25) and taking advantage of (6.7) we get

∆ω(z)
(
In − ∆[−1]

ω (z)∆ω(z)
)

u = ∆ω(z)
(
In − ∆[−1]

ω (z)∆ω(z)
)

(y + Qx)

= ∆ω(z)
(
In − ∆[−1]

ω (z)∆ω(z)
)
y = 0,

which is equivalent to (6.23). It follows from (6.22) and (6.23) that

(
∆[−1]

ω (z)∆ω(z)
)2

= ∆[−1]
ω (z)∆ω(z) and

(
∆ω(z)∆[−1]

ω (z)
)2

= ∆ω(z)∆[−1]
ω (z),

which means that the operators ∆[−1]
ω (z)∆ω(z) and ∆ω(z)∆[−1]

ω (z) are projections. Since

the matrix Q is isometric, the representation (6.25) of u ∈ Cn is orthogonal and thus, the
equality

∆[−1]
ω (z)∆ω(z)(y + Qx) = Qx

implies that ∆[−1]
ω (z)∆ω(z) is the orthogonal projection of Cn onto RanQ = K⊥, which

proves the second equality in (6.24). Similarly, the equality

∆[−1]
ω (z)∗∆ω(z)∗(y + Qx) = Qx

implies that ∆[−1]
ω (z)∆ω(z) is also the orthogonal projection of Cn onto K⊥. Thus,

∆[−1]
ω (z)∗∆ω(z)∗ = In −PK

and the proof of lemma is completed upon taking adjoints in the last equality.



In view of the identities

∆ω(z)∆[−1]
ω (z) =

(
∆ω(z)∆[−1]

ω (z)
)∗

and ∆[−1]
ω (z)∆ω(z) =

(
∆[−1]

ω (z)∆ω(z)
)∗

,

which are immediate from (6.24), and the identities (6.22) and (6.23), ∆[−1]
ω (z) is the Moore–

Penrose pseudoinverse (see e.g. [?, Section 12.8]) of ∆ω(z) for every point z ∈ ID at which

∆[−1]
ω (z) is analytic.

The function ∆[−1]
ω (z) is also meaningful if ω ∈ TT and G(ω) is invertible. Moreover, it is

analytic inside the unit disc. However, we cannot guarantee that it has no poles on the unit
circle and this motivates the introduction of a different pseudoinverse of ∆ω.

Lemma 6.10 Let P ≥ 0 be a solution of the Lyapunov–Stein equation (1.10), let r = rankP

and let Q ∈ Cn×r, M♦ ∈ Cr×r and N♦ ∈ Cr×r be matrices satisfying (5.1) and (5.14).
Furthermore, let µ ∈ TT be such that G(µ) is invertible. Then the n × n matrix valued

rational function
∆†

µ(z) := Q (Q∗∆µ(z)Q)−1 Q∗ (6.26)

has at most r poles but is analytic in ID and at every point on TT at which G is invertible.

Proof: Let

C̃ =

(
C̃1

C̃2

)
= CQ and P̃ = Q∗PQ. (6.27)

By (5.1) and (5.14), P̃ is strictly positive and satisfies the Lyapunov–Stein equation

M∗
♦P̃M♦ − N∗

♦P̃N♦ = C̃JC̃. (6.28)

Furthermore, (5.14) implies that

Q∗∆µ(z)Q = Q∗ {G(µ)∗PG(z) + ρµ(z)C∗
2C2}Q

= (M♦ − µN♦)∗P̃ (M♦ − µN♦) + ρµ(z)C̃∗
2 C̃2. (6.29)

Since G(µ) is invertible, M♦−µN♦ is also invertible (by Remark 5.5). Therefore, Lemma 6.5
is applicable to the r×r matrix valued function Q∗∆µ(z)Q and guarantees that det (Q∗∆µ(z)Q) 6=
0 for all z ∈ ID and for all z ∈ TT at which G(z) is invertible. Finally, ∆†

µ(z) has at most r

poles, since det (Q∗∆µ(z)Q) is a polynomial of degree at most r.

We remark that in general, ∆†
µ(z) is only a “semipseudoinverse” of ∆µ(z): the equality

∆†
µ(z)∆µ(z)∆†

µ(z) = ∆†
µ(z),

holds for every point z ∈ ID at which ∆†
µ exists, whereas

∆µ(z)∆†
µ(z)∆µ(z)x = ∆µ(z)x

holds only for x ∈ RanQ
·
+ Ker∆µ(z). This subspace is not equal to Cn when z ∈ ID.

However, if z = µ, then RanQ
·
+ Ker∆µ(µ) = Cn and ∆†

µ(µ) is a pseudoinverse of ∆µ(µ).



7 Description of all solutions

In this section we describe the set of all solutions S of the FMI (3.4) when P ∈ Cn×n is a

positive semidefinite solution of the Lyapunov–Stein equation (1.8) with rankP = r ≤ n.

In view of the analysis in Section 5 (which is summarized in Remark 5.4) we can assume

without loss of generality that there exists a matrix Q ∈ Cn×r such that

Q∗PQ > 0, rank Q∗PQ = rankP = r (7.1)

and

MQ = QM♦ and NQ = QN♦ (7.2)

for some matrices M♦, N♦ ∈ Cr×r satisfying the spectral conditions (5.13). Let

P [−1] = Q (Q∗PQ)−1 Q∗. (7.3)

The next lemma serves to identify P [−1] as a pseudoinverse of P .

Lemma 7.1 For any Q ∈ Cn×r satisfying the condition (7.1), the matrix P [−1] defined via
(7.3) satisfies the identities

P [−1]PP [−1] = P [−1] and PP [−1]P = P, (7.4)

whereas In − P [−1]P is the projection of Cn onto Ker P along the subspace Q = RanQ.

Proof: The proof is similar to the proof of Lemma 6.9. The first equality in (7.4) follows

easily from the definition (7.3) of P [−1]. Next, in view of (5.16), every vector u ∈ Cn can be
decomposed as

f = y + Qx for some y ∈ KerP and x ∈ Cr. (7.5)

Therefore,

P
(
In − P [−1]P

)
u = P

(
In − P [−1]P

)
(y + Qx) = P

(
In − P [−1]P

)
y = 0,

which is equivalent to the second equality in (7.4). Finally, (7.4) and (7.5) imply that
(
In − P [−1]P

)
(y + Qx) = y and

(
In − P [−1]P

)2
= In − P [−1]P,

and thus, In − P [−1]P is the projection onto Ker P parallel to the range of Q.

Note that in general, the matrix P [−1] defined via (7.4) is not the Moore–Penrose pseudoin-
verse, since the matrices P [−1]P and PP [−1] are not necessarily Hermitian.

Lemma 7.2 Let assumptions (7.1) and (7.2) be in force and let µ ∈ TT be such that G(µ) is
invertible. Then the C(p+q)×(p+q)–valued function Θ given by

Θ(z) = Ip+q − ρµ(z)CG−1(z)P [−1]G(µ)−∗C∗J (7.6)

is J–inner in the unit disc and, moreover,

J − Θ(z)JΘ(w)∗ = ρw(z)CG−1(z)P [−1]G(w)−∗C∗ (7.7)

for every pair of points z and w in AΘ, the domain of analyticity of Θ.



Proof: The assumptions (7.1) and (7.2) enable us to reduce the case of positive semidefinite
P to the strictly positive case: in view of (7.2),

G−1(z)Q = Q (M♦ − zN♦)−1 , (7.8)

which, on account of (7.3), allows us to reexpress formula (7.6) as

Θ(z) = Ip+q − ρµ(z)C̃ (M♦ − zN♦)−1 P̃−1 (M♦ − µN♦)−∗ C̃∗J, (7.9)

where C̃ and P̃ are the matrices defined by (6.27). By (7.1) and (7.2), P̃ is strictly positive

and satisfies the Lyapunov–Stein equation (6.28) But, as is well known (see e.g., [16, Section
9]), a function Θ of the form (7.9) is J–inner in the unit disc and

J − Θ(z)JΘ(w)∗ = ρw(z)C̃ (M♦ − zN♦)−1 P̃−1 (M♦ − wN♦)−∗ C̃∗. (7.10)

It remains only to note that the expressions on the right hand sides of (7.7) and (7.10)

coincide, in view of (7.3) and (7.8).

Corollary 7.3 Let Θ be the function given by (7.6) and let

Θ =

(
θ11 θ12

θ21 θ22

)
:

(
Cp

Cq

)
→
(

Cp

Cq

)
(7.11)

be its partition into four blocks of the indicated sizes. Then the rational function θ−1
22 θ21

belongs to Sp×q. Moreover, θ−1
22 (z)θ21(z) is strictly contractive for all z ∈ ID and for every

z ∈ TT at which G(z) is invertible.

Proof: By (7.6), the mvf Θ is rational and analytic at every point z at which G(z) is
invertible. Next, Θ(µ) = Ip+q and in particular, θ21(µ) = 0 and θ22(µ) = Iq. It follows from

(7.7) that for every point z ∈ AΘ ∩ ID,

θ22(z)θ22(z)∗ ≥ Iq + θ21(z)θ21(z)∗, (7.12)

and thus, as det θ22 6≡ 0, the function θ̃ := θ−1
22 θ21 is well defined and

θ̃(z)θ̃(z)∗ ≤ Ip − θ−1
22 (z)θ22(z)−∗ for every point z ∈ AΘ ∩ ID.

Therefore, the singularities of θ̃ in ID are removable, θ̃ ∈ Sp×q and θ̃(z) is strictly contractive
at every point z ∈ AΘ∩ID and in particular, at every point z ∈ TT at which G(z) is invertible.

To show this, suppose that θ̃(z0) is not strictly contractive for some z0 ∈ ID, i.e., that

θ̃(z0)x = y for x ∈ Cp and y ∈ Cq such that x∗x = y∗y 6= 0.

By the maximum principle, θ̃(z)x = y for all z ∈ ID and so too, by continuity, θ̃(µ)x = y,

which is impossible, since θ̃(µ) = 0.

Now we pass to the main result of this section.



Theorem 7.4 Let (1.5) and (7.2) be in force and let P ∈ Cn×n be a positive semidefinite
solution of the Lyapunov–Stein equation (1.8) with rank P = r. Let θjk be the block entries

from the decomposition (7.11) of the mvf Θ defined in (7.6). Then all the solutions S of the
aBIP(M, N, P, C) are parametrized by the linear fractional transformation

S(z) = (θ11(z)E(z) + θ12(z)) (θ21(z)E(z) + θ22(z))−1 , (7.13)

in which the parameter E ∈ Sp×q is of the form

E(z) = U

(
Ê(z) 0

0 Iν

)
V (7.14)

where U ∈ Cp×p and V ∈ Cq×q are fixed unitary matrices which depend only on the inter-
polation data, ν is the integer given by (1.11) and Ê(z) is an arbitrary C(p−ν)×(q−ν)–valued

analytic contraction in ID (i.e., Ê ∈ S(p−ν)×(q−ν)).

Proof: In view of Theorem 3.7, it suffices to show that the transformation (7.13) with E
as in (7.14) parametrizes all the solutions of the FMI (3.4). By Corollary 7.3, the function

θ−1
22 θ21 is strictly contractive in ID. Therefore for every E ∈ Sp×q,

det (θ21E + θ22) = det θ−1
22 (z) det

(
θ−1
22 θ21E + Iq

)
6≡ 0

and therefore, the transformation (7.13) is well defined.

In view of (5.16), the FMI (3.4) is equivalent to the inequality




Q∗PQ Q∗G(z)−∗C∗
(

Ip

−S(z)∗

)

(Ip, −S(z)) CG(z)−1Q
Ip − S(z)S(z)∗

ρz(z)




≥ 0 (7.15)

together with the condition

(Ip, −S(z)) CG(z)−1PKerP ≡ 0, (7.16)

where PKerP is the orthogonal projection of Cn onto Ker P . The rest of the proof is divided

into the following three steps:

Step 1. All solutions S of the inequality (7.15) are parametrized by (7.13), where the pa-

rameter E varies over Sp×q.

Step 2. A mvf S ∈ Sp×q of the form (7.13) satisfies (7.16) if and only if the corresponding
parameter E is subject to

(Ip, −E(z)) CG(µ)−1PKerP ≡ 0. (7.17)

Step 3. A function E satisfies (7.17) if and only if it is of the form (7.14).

Proof of Step 1. Since Q∗PQ > 0, the inequality (7.15) is equivalent to

(Ip, −S(z))

{
J

ρz(z)
− CG(z)−1P [−1]G(z)−∗C∗

}(
Ip

−S(z)∗

)
≥ 0.



On account of (7.7), the last inequality can be written as

(Ip, −S(z))
Θ(z)JΘ(z)∗

ρz(z)

(
Ip

−S(z)∗

)
≥ 0.

But it is well known that this is equivalent to the assertion of Step 1 (see e.g., [13, Theorem
3.8]).

Proof of Step 2. Let S be of the form (7.13). Then

(Ip, −S(z)) Θ(z) = (θ11(z) − S(z)θ21(z)) (Ip, −E(z)) .

Substituting the latter relation into (7.16) we obtain

(Ip, −E(z)) Θ−1(z)CG(z)−1PKerP ≡ 0. (7.18)

It follows from (7.7) that Θ is J–unitary on the unit circle and in particular, that it satisfies

the symmetry relation
Θ(z)−1 = JΘ(1/z̄)∗J,

which together with (7.6) and the identities

zG(1/z̄)∗ = H(z), zρµ(1/z̄)∗ = δµ(z) (z 6= 0),

leads to

Θ−1(z) = Ip+q − δµ(z)CG(µ)−1P [−1]H(z)−1C∗J.

Using the identity

H(z)−1C∗JCG(z)−1 = H(z)−1M∗P + PNG(z)−1,

which follows immediately from (1.8), we obtain

Θ−1(z)CG(z)−1 =
(
Ip+q − δµ(z)CG(µ)−1P [−1]H(z)−1C∗J

)
CG(z)−1

= CG(z)−1 − δµ(z)CG(µ)−1P [−1]
(
H(z)−1M∗P + PNG(z)−1

)
.

Substituting the latter equality into (7.18) we get

(Ip, −E(z)) C
(
Ip+q − δµ(z)G(µ)−1P [−1]PN

)
G(z)−1PKerP ≡ 0. (7.19)

Since
G(µ) − δµ(z)P [−1]PN = G(z) + δµ(z)

(
I − P [−1]P

)
N,

one can rewrite (7.19) as

(Ip, −E(z)) CG(µ)−1
{
Ip+q + δµ(z)

(
I − P [−1]P

)
NG(z)−1

}
PKerP ≡ 0. (7.20)

It was mentioned in the proof of Lemma 7.1 that I−P [−1]P is a projection (not orthogonal,
in general) onto KerP . Therefore

(
I − P [−1]P

)
= PKerP

(
I − P [−1]P

)



and the condition (7.20) is equivalent to

(Ip, −E(z)) CG(µ)−1PKerP

(
Ip+q + δµ(z)

(
I − P [−1]P

)
NG(z)−1PKerP

)
≡ 0. (7.21)

Since the mvf

Ip+q + δµ(z)
(
I − P [−1]P

)
NG(z)−1PKerP

is invertible everywhere except for at most finitely many points z (it is a rational function

taking the value Ip+q at the point µ), conditions (7.21) and (7.17) are equivalent.

Proof of Step 3. It follows from (1.8) that

G(µ)−∗C∗JCG(µ)−1 = G(µ)−∗M∗PMG(µ)−1 − G(µ)−∗N∗PNG(µ)−1

=
(
In + µ̄G(µ)−∗N∗

)
P
(
In + µNG(µ)−1

)
− G(µ)−∗N∗PNG(µ)−1

= P + µ̄G(µ)−∗N∗P + µPNG(µ)−1.

Multiplying both sides of the latter equality by PKerP from the right and from the left we

get
PKerPG(µ)−∗C∗JCG(µ)−1PKerP = 0. (7.22)

and hence that the subspace R of Cp+q which was defined in (6.12) is J–neutral. It is readily

checked by standard arguments that the subspaces

R1 := RanC1G(µ)−1PKerP =
{
C1G(µ)−1 g, g ∈ KerP

}
⊆ Cp

and
R2 := Ran C2G(µ)−1PKerP =

{
C2G(µ)−1 g, g ∈ KerP

}
⊆ Cq

have the same dimensions as R. Indeed, in view of (7.22), every vector x ∈ R can be

represented as x =

(
ξ
η

)
for some ξ ∈ R1 and η ∈ R2 such that ‖ξ‖ = ‖η‖. Let the vectors

xj =

(
ξj

ηj

)
∈ R (j = 1, . . . , k)

be linearly independent, let η :=
k∑

j=1

αjηj = 0 for some choice of αj ∈ C and let

x =
k∑

j=1

αjxj =

(
ξ
0

)
.

Then, as x ∈ R, ‖ξ‖ = ‖η‖ = 0. Thus, x = 0 and αj = 0 for all j = 1, . . . , k. This shows

that the vectors ηj are linearly independent and therefore, that dim R ≤ dim R2. Thus, as

the opposite inequality is selfevident, dim R = dim R2 and, similarly, dim R = dim R1.

The condition (7.17), rewritten with help of (1.9) as

E(z)C2G(µ)−1PKerP ≡ C1G(µ)−1PKerP ,



displays the fact that the Schur function E ∈ Sp×q maps R2 isometrically onto R1 for every
z ∈ ID. Therefore (see e.g., [13, Lemma 0.13]), E admits a representation of the form (7.14)

in terms of a pair of unitary matrices U ∈ Cp×p and V ∈ Cq×q which depend only on R (i.e.,
only on the interpolation data) and a Schur function Ê ∈ S(p−ν)×(q−ν), where

ν = dim R1 = dim R2 = dim R. (7.23)

It follows from (6.13) that

dim R = rank ∆ω(ω) − rank P.

By (6.14), rank ∆ω(ω) does not depend on the choice of the point ω ∈ ID. Setting ω = 0 in
the latter equality and making use of (6.1) we get

dim R = rank ∆0(0) − rank P = rank (M∗PM + C∗
2C2) − rank P,

which together with (7.23) implies (1.11) and completes the proof of theorem.

Note that the inequalities (1.12) are immediate from (7.23) since R1 and R2 are subspaces

of Cp and of Cq, respectively.

Note also that the description of the set of all solutions of the nondegenerate aBIP (see [16,

Theorem 10.1]) can be obtained as a particular case of Theorem 7.4. Indeed, for invertible
P , ν = 0; therefore, there is no constant block in (7.14) and the parameter E in (7.13) varies

over all of Sp×q. Moreover, the function Θ is now given by formula (7.6) with P [−1] replaced
by P−1, which coincides with formula (8.14) from [16].

Proof of Theorem 1.2: Let (1.5) be in force and let P be a nonnegative solution of
the Lyapunov–Stein equation (1.8). By Theorem 5.3, there exist matrices Q, M1 and

N1 satisfying conditions (3.22), (5.1), (5.12) and (5.13) and such that S(M, N, P, C) =
S(M1, N1, P, C). By Theorem 7.4, the set S(M1, N1, P, C) is parametrized by the linear

fractional transformation (7.13) based on the J–inner function Θ given by (7.6) with M and

N replaced by M1 and N1, respectively. The parameter E in (7.13) is of the form

E(z) = U

(
Ê(z) 0

0 Iν1

)
V, Ê ∈ S(p−ν1)×(q−ν1),

where U and V are unitary matrices and

ν1 = rank (M∗
1 PM1 + C∗

2C2) − rank P.

In view of (3.22), ν1 is equal to the integer ν defined via (1.11). Moreover, setting

Θ(z) = Θ(z)

(
U 0
0 V ∗

)
,

it is easily seen that the formulas (7.13) and (1.13) with parameters of the form (7.14) and

(1.14), respectively, are equivalent. It remains to note that Θ is J–inner since Θ is J–inner
and the matrices U and V are unitary.



8 The Redheffer transform

In the previous section the set S(M, N, P, C) of all solutions of the aBIP(M, N, P, C)

was parametrized by the linear fractional transformation (7.13) of those E ∈ Sp×q which
have the special structure (7.14). It is easily seen from (7.14) that in fact, the independent

parameter in (7.13) is the function Ê ∈ S(p−ν)×(q−ν). In this section we shall parametrize the
set S(M, N, P, C) directly in terms of Ê ∈ S(p−ν)×(q−ν) via a special Redheffer linear frac-

tional transformation which was already mentioned in Section 1 and which will be explicitly
constructed below.

Let Θ be the J–inner mvf given by (7.6). By Corollary 7.3, det θ22 6≡ 0 and hence, the
C(p+q)×(p+q)–valued function

Σ(z) =

(
Ip −θ12(z)
0 −θ22(z)

)−1 (
θ11(z) 0
θ21(z) −Iq

)
(8.1)

is well defined. By (8.1), the entries of Σ in the block decomposition

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
:

(
Cp

Cq

)
→
(

Cp

Cq

)
(8.2)

are given by the formulas

Σ11 = θ11 − θ12θ
−1
22 θ21, Σ12 = θ12θ

−1
22 , Σ21 = −θ−1

22 θ21, Σ22 = θ−1
22 . (8.3)

To obtain the explicit formula for Σ in terms of the interpolation data (1.3) we use the

function ∆†
µ(z) defined in (6.26).

Lemma 8.1 Under the assumptions of Theorem 7.4, let Θ and Σ be functions defined by
(7.6) and (8.1) respectively. Then

Σ(z) = Ip+q − ρµ(z)JC∆†
µ(z)C∗J (8.4)

and
Ip+q − Σ(z)Σ(w)∗ = ρw(z)JC∆†

µ(z)P∆†
µ(w)

∗
C∗J. (8.5)

Moreover, Σ is inner in ID and its block entry Σ21 is strictly contractive in ID.

Proof: Using (7.3) and the invariance relations (5.14) we represent Θ in the form (7.9),
where the matrices M♦, N♦, C̃ and P̃ > 0 are subject to the Lyapunov–Stein equation

(6.28). It was shown in [16, Theorem 11.2] that for Θ of the form (7.9) (i.e., with a strictly
positive Pick matrix P̃ ) the associated function Σ can be represented as

Σ(z) = Ip+q − ρµ(z)JC̃∆̃−1
µ (z)C̃∗J (8.6)

and

Ip+q − Σ(z)Σ(w)∗ = ρw(z)JC̃∆̃−1
µ (z)P̃ ∆̃µ(w)−∗C̃∗J, (8.7)

where
∆̃µ(z) := (M♦ − µN♦)∗P̃ (M♦ − zN♦) + ρµ(z)C̃∗

2 C̃2.



Comparing the latter definition with (6.29) we get

∆̃µ(z) = Q∗∆µ(z)Q,

which, with the help of (6.27) and (6.26), implies (8.4):

Σ(z) = Ip+q − ρµ(z)JCQ∗ (Q∆µ(z)Q)−1 Q∗C∗J

= Ip+q − ρµ(z)JC∆†
µ(z)C∗J.

In much the same way, (8.7) implies (8.5).

By Lemma 6.10, ∆†
µ(z) is analytic in ID and then, (8.5) implies that Σ is inner in ID. Finally,

since Σ21 = −θ−1
22 θ21, the last assertion of the lemma is immediate from Corollary 7.3.

The next theorem expresses the set of all solutions of the aBIP in terms of the Redheffer

transform of a parameter which is still of special structure.

Theorem 8.2 Under assumptions of Theorem 7.4, let Σjk be the block entries in the decom-

position (8.2) of the mvf Θ defined in (8.4). Then all the solutions S of the aBIP(M, N, P, C)
are parametrized by the transformation

S(z) = Σ12(z) + Σ11(z)E(z) (Iq − Σ21(z)E(z))−1 Σ22(z), (8.8)

in which the parameter E ∈ Sp×q is of the form (7.14).

Proof: It suffices to note that (7.13) can be written in the form (8.8) for the Σjk expressed

in terms of the θjk by (8.3). The latter equalities display the link (8.1) between Σ and Θ
and thus, Σ is of the form (8.4), by Lemma 8.1.

The transformation (8.8) is called the Redheffer transform based on the transfer function
Σ of the parameter E . For future purposes it is convenient to recall some well known facts

for Redheffer transforms based on general mvf’s Σ in the Schur class S(p+q)×(p+q) which are
partitioned conformally with J (see e.g., [25]).

Lemma 8.3 Let Σ be partitioned as in (8.2) and let S be of the form (8.8). Then

I − SS∗ = Σ11 (I − EΣ21)
−1 (I − EE∗) (I − EΣ21)

−∗ Σ∗
11

+
(
I, Σ11E (I − Σ21E)−1

)
(I − ΣΣ∗)

(
I

(I − E∗Σ∗
21)

−1 E∗Σ∗
11

)
, (8.9)

whenever (I − EΣ21)
−1 exists.

Proof: Using (8.3), (8.8) and the identity

I + E (I − Σ21E)−1 Σ21 = (I − EΣ21)
−1 ,

we obtain the formula
(
I, Σ11E (I − Σ21E)−1

)
Σ =

(
Σ11 (I − EΣ21)

−1 , S
)
.



Therefore, since E (I − Σ21E)−1 = (I − EΣ21)
−1 E , it follows that

(
I, Σ11E (I − Σ21E)−1

)
(I − ΣΣ∗)

(
I

(I − E∗Σ∗
21)

−1 E∗Σ∗
11

)

= I + Σ11E (I − Σ21E)−1 (I − E∗Σ∗
21)

−1 E∗Σ∗
11

−Σ11 (I − EΣ21)
−1 (I − Σ∗

21E∗)−1 Σ∗
11 − SS∗

= I − SS∗ − Σ11 (I − EΣ21)
−1 (I − EE∗) (I − EΣ21)

−∗ Σ∗
11,

which is equivalent to (8.9).

Corollary 8.4 If Σ and E are inner in ID, then S is inner too. If Σ is strictly contractive
in ID, then S is also strictly contractive in ID.

Proof: If Σ and E are inner in ID, then both of the terms on the right hand side of (8.9)
are nonnegative inside ID and are equal to zero almost everywhere on the unit circle. This

proves the first assertion. If Σ is strictly contractive in ID, then the second term on the right
hand side of (8.9) is strictly positive in ID which means that S is strictly contractive in ID.

The next theorem gives a new description of the set of solutions of the aBIP in terms of a

new Redheffer transformation which is based on a (p + q − ν) × (p + q − ν) matrix valued
inner function and in which the parameter is now an arbitrary element of S(p−ν)×(q−ν).

It is included primarily for the sake of comparison with the representation which will be
established in Theorem 9.4 below, by other methods.

Theorem 8.5 Let U ∈ Cp×p and V ∈ Cq×q be unitary matrices from the representation

(7.14) depending only on the data (1.3), let Σjk be the block entries in the block decomposition
(8.2) of the function Σ given by (8.1), let ν be the integer defined via (1.11) and let γ11 ∈
S(q−ν)×(p−ν), γ12 ∈ S(q−ν)×ν , γ21 ∈ Sν×(p−ν), γ22 ∈ Sν×ν be the functions defined as

(
γ11(z) γ12(z)
γ21(z) γ22(z)

)
= V Σ21(z)U = ρµ(z)V C2∆

†
µ(z)C∗

1U. (8.10)

Then all the solutions S of the aBIP(M, N, P, C) are parametrized by the Redheffer trans-
form

S(z) = Ψ12(z) + Ψ11(z)Ê(z)
(
Iq−ν − Ψ21(z)Ê(z)

)−1
Ψ22(z), (8.11)

where

Ψ11(z) = Σ11(z)U

(
Ip−ν

(Iν − γ22(z))−1 γ21(z)

)
, (8.12)

Ψ12(z) = Σ12(z) + Σ11(z)U

(
0 0

0 (Iν − γ22(z))−1

)
V Σ22(z), (8.13)

Ψ21(z) = γ11(z) + γ12(z) (Iν − γ22(z))−1 γ21(z), (8.14)

Ψ22(z) =
(
Iq−ν , γ12(z) (Iν − γ22(z))−1

)
V Σ22(z) (8.15)



and Ê is an independent free parameter from S(p−ν)×(q−ν). The function

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
(8.16)

is inner in ID and the block Ψ21 is strictly contractive in ID.

Proof: By Theorem 7.4, all the solutions S of the aBIP(M, N, P, C) are parametrized by
the formula (8.8) (which is equivalent to (7.13)) when E varies over Sp×q and is of the form

(7.14). We rewrite (8.8) as

S(z) = Σ12(z) + Σ11(z)U
(

Ê(z) 0
0 Iν

)(
Iq − V Σ21(z)U

(
Ê(z) 0

0 Iν

))−1

V Σ22(z). (8.17)

Using the block decomposition (8.10) of V Σ21U and an inversion formula based on Schur
complements (see e.g., [13, Section 0]), we get

(
Iq − V Σ21U

(
Ê 0
0 Iν

))−1

=

(
Iq−ν − γ11Ê −γ12

−γ21Ê Iν − γ22

)−1

=
(

0 0

0 (Iν − γ22)−1

)
+

(
Iq−ν

(Iν − γ22)
−1 γ21Ê

)(
Iq−ν −

(
γ11 + γ12 (Iν − γ22)

−1 γ21

)
Ê
)−1

×
(
Iq−ν , γ12 (Iν − γ22)

−1
)
.

Therefore, in view of (8.14),

(
Ê 0
0 Iν

)(
Iq − V Σ21U

(
Ê 0
0 Iν

))−1

=
(

0 0

0 (Iν − γ22)−1

)
+

(
Ip−ν

(Iν − γ22)
−1 γ21

)
Ê
(
Iq−ν − Ψ21Ê

)−1 (
Iq−ν , γ12 (Iν − γ22)

−1
)
.

Substituting the last equality into (8.17) and taking into account (8.12), (8.13) and (8.15),
we obtain (8.11).

By (8.10) and (8.14), Ψ21 is the Redheffer transformation based on the transfer function

UΣ21(z)V , of the inner parameter Ê = Iν . By Corollary 7.3, V Σ21(z)U is strictly contractive
in ID and therefore, Ψ21 is strictly contractive in ID by Corollary 8.4.

Using the block decompositions

Σ11U = (α1, α2) and V Σ22 =

(
δ1

δ2

)
(α2 ∈ Sp×ν , δ2 ∈ Sν×q), (8.18)

we rewrite formulas (8.12), (8.13) and (8.15) as

Ψ11 = α1 + α2 (Iν − γ22)
−1 γ21

Ψ12 = Σ12 + α2 (Iν − γ22)
−1 δ2

Ψ22 = δ1 + γ12 (Iν − γ22)
−1 δ2



and substitute them together with (8.14) into (8.16):

Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
=

(
α1 Σ12

γ11 δ1

)
+

(
α2

γ12

)
(Iν − γ22)

−1 (γ21, δ2) .

Thus, Ψ is the Redheffer transformation based on the transfer function

Σ =




α2 | α1 Σ12

γ12 | γ11 δ1

− − | − − − −
γ22 | γ21 δ2




of the inner parameter Ê ≡ Iν . Comparing the latter decomposition of Σ with (8.2) and
taking into account (8.10) and (8.18), we conclude that

Σ(z) =

(
Ip 0
0 V

)
Σ(z)

(
U 0
0 Iq

)(
0 Iν 0

Ip−ν 0 0
0 0 Iq

)
.

By Corollary 7.3, Σ is inner in ID and therefore, Σ is also inner. Thus, by Corollary 8.4, Ψ
is inner in ID.

We remark that all three of the representations (7.13), (8.8) and (8.11) are based on nor-

malizations which are imposed at a point µ ∈ TT: by (7.6) and (8.6), Θ(µ) = Σ(µ) = Ip+q

and, as follows from (8.12)–(8.15),

Ψ(µ) =

(
U 0
0 Iq−ν

)(
Ip−ν 0 0

0 0 Iν

0 Iq−ν 0

)(
Ip−ν 0
0 V

)
.

In the next section we shall present a parametrization of the set of all solutions to the aBIP

in terms of a Redheffer transform which is based on a (p+ q− ν)× (p+ q − ν) matrix valued

inner function which is normalized at a point ω ∈ ID.

9 Another approach

In this section we establish a Redheffer type representation for the set of solutions to the
aBIP based on the methods of [23]. The explicit formulas for the transfer function Ψ will be

given in Section 10. This extends the analysis which was carried out in [16] which allowed
singular P but required ∆ω(ω) to be invertible. Here we relax this requirement and assume

that rank ∆ω(ω) = n − k.
As in [16], the function ∆ω(z) (ω ∈ ID) plays a central role in the present analysis. Let

W1 =

(
P

1

2 G(ω)

ρω(ω)
1

2 C2

)
and W2 =

(
−P

1

2 H(ω)∗

ρω(ω)
1

2 C1

)
. (9.1)

Evaluating (6.1) and (6.2) at the point ω we get

∆ω(ω) = G(ω)∗PG(ω) + ρω(ω)C∗
2C2 = H(ω)PH(ω)∗ + ρω(ω)C∗

1C1, (9.2)



which can be written as
∆ω(ω) = W ∗

1 W1 = W ∗
2 W2 (9.3)

and guarantees that the linear map

V : W1x −→ W2x (9.4)

is an isometry from DV = RanW1 ⊂ Cn+q onto RV = RanW2 ⊂ Cn+p. By (9.3),

dimDV = dimRV = rank ∆ω(ω) = n − k.

Thus, the dimensions of the orthogonal complements

D⊥
V

= Cn+q ⊖DV and R⊥
V

= Cn+p ⊖RV

are equal to
q′ := dimD⊥

V
= k + q and p′ := dimR⊥

V
= k + p,

respectively.

Remark 9.1 The orthogonal projection PD⊥

V

of Cn+q onto D⊥
V

is given by the formula

PD⊥

V

= In+q − W1 (W ∗
1 W1)

[−1] W ∗
1 = In+q − W1∆

[−1]
ω (ω)W ∗

1 , (9.5)

whereas the orthogonal projection PR⊥

V

of Cn+p onto R⊥
V

is given by the formula

PR⊥

V

= In+p − W2 (W ∗
2 W2)

[−1] W ∗
2 = In+p − W2∆

[−1]
ω (ω)W ∗

2 .

Let W⊥
1 ∈ C(n+q)×q′ and W⊥

2 ∈ C(n+p)×p′ be isometric matrices whose columns span D⊥
V

and

R⊥
V

respectively. Then the projections PD⊥

V

and PR⊥

V

can also be expressed as

PD⊥

V

= W⊥
1 (W⊥

1 )∗ and PR⊥

V

= W⊥
2 (W⊥

2 )∗, (9.6)

respectively. Moreover, the formulas

(W⊥
1 )∗W⊥

1 = Iq′ , (W⊥
2 )∗W⊥

2 = Ip′, (W⊥
1 )∗W1 = 0 and (W⊥

2 )∗W2 = 0 (9.7)

hold by definition.

Lemma 9.2 The operator

U =




U11 U12 U13

U21 U22 U23

U31 U32 0


 :




Cn

Cq

Cp′


→




Cn

Cp

Cq′




with entries specified by the rules
(

U11 U12

U21 U22

)
=

(
−P

1

2 H(ω)∗

ρω(ω)
1

2 C1

)
∆[−1]

ω (ω)
(
G(ω)∗P

1

2 , ρω(ω)
1

2 C∗
2

)

= W2∆
[−1]
ω (ω)W ∗

1 (9.8)

(U31, U32) =
(
W⊥

1

)∗
and

(
U13

U23

)
= W⊥

2 (9.9)

is a unitary extension of the isometry V defined by (9.4).



Proof: It follows from (9.3) and (9.8) that

(
U11 U12

U21 U22

)∗( U11 U12

U21 U22

)
= W1∆

[−1]
ω (ω)W ∗

2 W2∆
[−1]
ω (ω)W ∗

2

= W1∆
[−1]
ω (ω)W ∗

1 ,

which together with (9.5), (9.6) and (9.9) implies that

(
U11 U12

U21 U22

)∗( U11 U12

U21 U22

)
+
(

U∗

31

U∗

32

)
(U31, U32) = In+q.

Continuing in the same vein, it is readily checked that U is an isometry. Since U acts from
the finite dimensional space Cn+p+q′ into itself, it is unitary.

To show that U is an extension of V, it suffices to check that

(
U11 U12

U21 U22

)
W1u = W2u (∀u ∈ Cn).

Let Q ∈ Cn×(n−k) be the isometric matrix from (6.19). Then every vector u ∈ Cn can be
represented in the form u = y + Qx as in (6.25). By (9.3),

W1y = 0 and W2y = 0 (∀y ∈ K).

Therefore,

(
U11 U12

U21 U22

)
W1u = W2∆

[−1]
ω (ω)W ∗

1 W1u

= W2Q (Q∗∆ω(ω)Q)−1
Q∗∆ω(ω) (Qx + y)

= W2Qx = W2 (Qx + y) = W2u,

which ends the proof of lemma.

The next step is to define the function

Σ̃(z) =

(
Σ̃11(z) Σ̃12(z)

Σ̃21(z) Σ̃22(z)

)

=

(
U23 U22

0 U32

)
+ z

(
U21

U31

)
(I − zU11)

−1 (U13, U12) .

(9.10)

Let us consider the auxiliary aBIP(G(ω), H(ω)∗, P, ρω(ω)
1

2 C): find all the functions S̃ ∈
Sp×q such that (

Ip −S̃(ζ)

−S̃(ζ)∗ Iq

)
C̃G̃(ζ)−1 ∈

(
H

p×n
2

(Hq×n
2 )⊥

)

and
〈(

Ip −S̃(ζ)

−S̃(ζ)∗ Iq

)
C̃G̃(ζ)−1y, C̃G̃(ζ)−1x

〉

L
p+q
2

(TT)

= x∗Py (∀ x, y ∈ Cn). (9.11)



where

G̃(ζ) = G(ω) + ζH(ω)∗ = M − ωN + ζ(ω̄M − N) and C̃ = ρω(ω)
1

2 C. (9.12)

This problem is well posed because G̃(ζ) is invertible on TT. Moreover, it admits a solution,

since P is a nonnegative solution of the requisite Lyapunov–Stein equation, as follows easily
from (9.2). By the general result from [23], all solutions S of the aBIP(G(ω), H(ω)∗, P, ρω(ω)

1

2 C)

are parametrized by the formula

S̃(z) = Σ̃12(z) + Σ̃11(z)Ẽ(z)
(
Iq − Σ̃21(z)Ẽ(z)

)−1
Σ̃22(z) (9.13)

when Ẽ is the parameter varying over the set Sq′×p′ of Cq′×p′–valued Schur functions.

Lemma 9.3 A function S̃ is a solution of the aBIP(G(ω), H(ω)∗, P, ρω(ω)
1

2 C) if and only

if the function

S(z) := S̃

(
δω(z)

ρω(z)

)
(9.14)

is a solution of the initial aBIP(M, N, P, C).

Proof: It follows from (9.12) that

C̃G̃−1

(
δω(z)

ρω(z)

)
=

ρω(z)

ρω(ω)
1

2

C(M − zN)−1 =
ρω(z)

ρω(ω)
1

2

CG(z)−1. (9.15)

Note also that for every X and Y ,

X(ζ) ∈ H2 ⇔
1

ρω(z)
X

(
δω(z)

ρω(z)

)
∈ H2

and

Y (ζ) ∈ (H2)
⊥ ⇔ 1

ρω(z)
Y

(
δω(z)

ρω(z)

)
∈ (H2)

⊥ .

Applying this latter remark to

X(ζ) =
(

Ip −S̃(ζ)
)

C̃G̃(ζ)−1, Y (ζ) =
(
−S̃(ζ)∗ Iq

)
C̃G̃(ζ)−1

and taking into account (9.14) and (9.15), we get

1

ρω(ω)
1

2

(
Ip −S(ζ)

)
CG(ζ)−1 ∈ H

p×n
2 ,

1

ρω(ω)
1

2

(
−S(ζ)∗ Iq

)
CG(ζ)−1 ∈ (Hq×n

2 )⊥

which are equivalent to (1.6). Finally, upon representing the expression on the left hand side
of (9.11) as an integral, changing variables

ζ = eit =
eiτ − ω

1 − eiτ ω̄
, dt =

ρω(ω)

|ρω(eiτ )|2dτ



and using (9.14) and (9.15) we obtain

〈(
Ip −S̃(ζ)

−S̃(ζ)∗ Iq

)
C̃G̃(ζ)−1y, C̃G̃(ζ)−1x

〉

L
p+q
2

(TT)

=
1

2π

∫ 2π

0
x∗G̃(eit)−∗C̃∗

(
Ip −S̃(eit)

−S̃(eit)∗ Iq

)
C̃G̃(eit)−1ydt

=
1

2π

∫ 2π

0
x∗G(eiτ )−∗C∗

(
Ip −S(eiτ )

−S(eiτ )∗ Iq

)
CG(eiτ )−1ydτ

=

〈(
Ip −S(ζ)

−S(ζ)∗ Iq

)
CG(ζ)−1y, CG(ζ)−1x

〉

L
p+q
2

(TT)

,

which ends the proof of lemma.

As a corollary we obtain the following result:

Theorem 9.4 Let Σ̃ be the function defined in (9.10) and let

Σ(z) =

(
Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

)
:= Σ̃

(
δω(z)

ρω(z)

)
. (9.16)

Then all the solutions S of the aBIP(M, N, P, C) are parametrized by the formula

S(z) = Σ12(z) + Σ11(z)E(z) (Iq − Σ21(z)E(z))−1 Σ22(z) (9.17)

when the parameter E varies over the Schur class Sq′×p′.

Proof: By Lemma 9.3, S is a solution of the aBIP(M, N, P, C) if and only if it is of the
form (9.14) for some solution S̃ of the auxiliary aBIP(G(ω), H(ω)∗, P, ρω(ω)

1

2 C). But each

such solution admits a representation of the form (9.13) for some choice of the parameter
Ẽ ∈ Sq′×p′. Replacing z by δω(z)

ρω(z)
in (9.13) and taking (9.14) and (9.16) into account, we

conclude that S admits a representation of the form (9.17) with E(z) = Ẽ
(

δω(z)
ρω(z)

)
. It remains

to note that E runs over all of Sq′×p′ when Ẽ does.

10 Explicit formulas

In this section we calculate the entries in the inner mvf
(

Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

)
=

(
U23 U22

0 U32

)
+ δω(z)

(
U21

U31

)
(ρω(z)I − δω(z)U11)

−1 (U13, U12) ,

(10.1)

which is based on the unitary operator U described in Lemma 9.2. The formulas and
calculations are much the same as those which are given in Section 12.5 of [16] except that



here we have dropped the assumption that ∆ω(ω) > 0. Consequently, the term ∆[−1]
ω (z) now

appears in place of ∆−1
ω (z) in the corresponding formulas in [16]. The following identities

Ip+q′ − Σ(z)Σ(λ)∗

ρλ(z)ρω(ω)
=

(
U21

U31

)
(ρω(z)I − δω(z)U11)

−1 (ρω(λ)I − δω(λ)U11)
−∗ (U∗

21, U∗
31)

Iq+p′ − Σ(λ)∗Σ(z)

ρλ(z)ρω(ω)
=

(
U∗

13

U∗
12

)
(ρω(λ)I − δω(λ)U11)

−∗ (ρω(z)I − δω(z)U11)
−1 (U13, U12)

are immediate consequences of the unitarity of the operator U and imply in particular that
the function Σ is inner in ID. Applying the matrix identity

(
I + Y X−1Z

)−1
= I − Y (X + ZY )−1 Z

to the matrices

X = Q∗∆ω(ω)Q, Y =
δω(z)

ρω(z)
P

1

2 H(ω)∗Q, Z = Q∗G(ω)∗P
1

2

and taking (9.8), (6.1), (6.19) and (6.21) into account, we get

(
I − δω(z)

ρω(z)
U11

)−1

=

(
I +

δω(z)

ρω(z)
P

1

2 H(ω)∗Q (Q∗∆ω(ω)Q)−1
Q∗G(ω)∗P

1

2

)−1

= I − δω(z)P
1

2 H(ω)∗Q {ρω(z)Q∗∆ω(ω)Q

+ δω(z)Q∗G(ω)∗PH(ω)∗Q}−1
Q∗G(ω)∗P

1

2

= I − δω(z)P
1

2 H(ω)∗Q (ρω(ω)Q∗∆ω(z)Q)−1
Q∗G(ω)∗P

1

2

= I − δω(z)

ρω(ω)
P

1

2 H(ω)∗∆ω(z)[−1]G(ω)∗P
1

2 . (10.2)

Using (6.20), (9.8) and (10.2) we obtain

U21

(
I − δω(z)

ρω(z)
U11

)−1

= ρω(ω)
1

2 C1∆
[−1]
ω (ω)G(ω)∗P

1

2

×
(
I − δω(z)

ρω(ω)
P

1

2 H(ω)∗∆[−1]
ω (z)G(ω)∗P

1

2

)

=
ρω(z)

ρω(ω)
1

2

C1∆
[−1]
ω (z)G(ω)∗P

1

2

and

(
I − δω(z)

ρω(z)
U11

)−1

U12 = −ρω(ω)
1

2

(
I − δω(z)

ρω(ω)
P

1

2 H(ω)∗∆[−1]
ω (z)G(ω)∗P

1

2

)

×P
1

2 H(ω)∗∆[−1]
ω (ω)C∗

2

= − ρω(z)

ρω(ω)
1

2

P
1

2 H(ω)∗∆[−1]
ω (z)C∗

2 .



The direct substitution of (9.9) and the last three formulas into the entries of formula (10.1)
leads to

Σ11(z) = U23 +
δω(z)

ρω(z)
U21

(
I − δω(z)

ρω(z)
U11

)−1

U13

=


 δω(z)

ρω(z)
U21

(
I − δω(z)

ρω(z)
U11

)−1

, Ip



(

U13

U23

)

=

(
δω(z)

ρω(ω)
1

2

C1∆
[−1]
ω (z)G(ω)∗P

1

2 , Ip

)
W⊥

2 (10.3)

Σ12(z) = U22 +
δω(z)

ρω(z)
U21

(
I − δω(z)

ρω(z)
U11

)−1

U12

= ρω(ω)C1∆
[−1]
ω (ω)C∗

2 − δω(z)C1∆
[−1]
ω (z)G(ω)∗PH(ω)∗∆[−1]

ω (ω)C∗
2

= ρω(z)C1∆
[−1]
ω (z)C∗

2 (10.4)

Σ21(z) =
δω(z)

ρω(z)
U31

(
I − δω(z)

ρω(z)
U11

)−1

U13 (10.5)

=
δω(z)

ρω(z)

(
W⊥

1

)∗
(

In

0

)(
I − δω(z)

ρω(ω)
P

1

2 H(ω)∗∆[−1]
ω (z)G(ω)∗P

1

2

)
(In, 0)W⊥

2

and
Σ22(z) = U32 + δω(z)

ρω(z)
U31

(
I − δω(z)

ρω(z)
U11

)−1
U12

= (U31, U32)




δω(z)
ρω(z)

(
I − δω(z)

ρω(z)
U11

)−1
U12

Iq




=
(
W⊥

1

)∗

 − δω(z)

ρω(ω)
1
2

P
1

2 H(ω)∗∆[−1]
ω (z)C∗

2

Iq


 .

(10.6)

Since rank P = r, it follows from (9.1) that the isometric matrices W⊥
1 and W⊥

2 can be

chosen in the form

W⊥
1 =

(
X Y1

0 Z1

)
and W⊥

2 =

(
X Y2

0 Z2

)
, (10.7)

where X ∈ Cn×(n−r) is an isometric matrix whose columns are an orthonormal basis for
Ker P . Substituting (10.7) into (10.3), (10.5) and (10.6) we get

Σ11(z) = (0, Ψ11(z)) , Σ21(z) =

(
δω(z)
ρω(z)

In−r 0

0 Ψ21(z)

)
, Σ22(z) =

(
0

Ψ22(z)

)
, (10.8)

where

Ψ11(z) = Z2 + ρω(ω)−
1

2 δω(z)C1∆
[−1]
ω (z)G(ω)∗P

1

2 Y2 (10.9)

Ψ21(z) =
δω(z)

ρω(z)
Y ∗

1

(
I − δω(z)

ρω(ω)
P

1

2 H(ω)∗∆[−1]
ω (z)G(ω)∗P

1

2

)
Y2 (10.10)

Ψ22(z) = Z∗
1 − ρω(ω)−

1

2 δω(z)Y ∗
1 P

1

2 H(ω)∗∆[−1]
ω (z)C∗

2 . (10.11)



Upon writing the parameter E(z) ∈ Sp′×q′ in (9.17) in the block form

E(z) =

(
E11(z) E12(z)
E21(z) E22(z)

)
:

(
Cn−r

Cq−ν

)
→
(

Cn−r

Cp−ν

)
, (10.12)

and using the block decompositions (10.8) of Σjk and an inversion formula based on Schur
complements, one can check that

Σ11(z)E(z) (Iq − Σ21(z)E(z))−1 Σ22(z) = Ψ11(z)Ê(z)
(
Iq − Ψ21(z)Ê(z)

)−1
Ψ22(z), (10.13)

where

Ê(z) = E22(z) +
δω(z)

ρω(z)
E21(z)

(
I − δω(z)

ρω(z)
E11(z)

)−1

E12(z). (10.14)

The function Ê is the Redheffer transform based the transfer function

(
E21(z) E22(z)
E11(z) E12(z)

)
∈

Sq′×p′ of the parameter δω(z)
ρω(z)

In−r ∈ S(n−r)×(n−r). Therefore, Ê ∈ S(p−ν)×(q−ν). On the other

hand, the set of all functions Ê of the form (10.14) (where E partitioned as in (10.12) varies

over Sq′×p′) covers all Ê ∈ S(p−ν)×(q−ν). Therefore, upon setting

Ψ12(z) := Σ12(z) = ρω(z)C1∆
[−1]
ω (z)C∗

2 , (10.15)

and substituting (10.13) into (9.17) we obtain

Theorem 10.1 All the solutions S of the aBIP are parametrized by the Redheffer transfor-

mation
S(z) = Ψ12(z) + Ψ11(z)Ê(z)

(
Iq − Ψ21(z)Ê(z)

)−1
Ψ22(z), (10.16)

where Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
is the inner function defined by (10.9)–(10.11) and (10.15) and Ê

is a free independent parameter varying over S(p−ν)×(q−ν).

To show that the function Ψ is inner it suffices to note that in view of (10.8),

Σ(z) =

(
Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

)
=




0 Ψ11(z) Ψ12(z)
δω(z)
ρω(z)

In−r 0 0

0 Ψ21(z) Ψ22(z)




and to use the fact that Σ(z) is inner.

It turns out that the function Ψ12 is a very special solution of the aBIP with important

extremal properties. The next lemma establishes some relations which will be used in Section
11.

Lemma 10.2 Let ω ∈ ID and let Ψ12 be the function given by (10.4). Then

(Ip, −Ψ12(z)) CG−1(z) = C1∆
[−1]
ω (z)G(ω)∗P, (10.17)

(−Ψ12(z)∗, Iq)CH(z)−∗ = C2∆
[−1]
ω (z)∗H(ω)P (10.18)



and for every choice of ζ ∈ TT,

G(ζ)−∗C∗

(
Ip −Ψ12(ζ)

−Ψ12(ζ)∗ Iq

)
CG−1(ζ) (10.19)

=
ρω(ω)

|ρω(ζ)|2P − ζ̄

ρω(ζ)∗
PG(ω)∆[−1]

ω (ζ)∗H(ω)P − 1

δω(ζ)∗
PH(ω)∗∆[−1]

ω (ζ)G(ω)∗P.

Proof: First we note that in view of (9.2),

PG(ω)PK = PH(ω)∗PK = 0, C1PK = 0 and C2PK = 0, (10.20)

where PK denotes the orthogonal projection of Cn onto K = Ker∆ω(ω). Using (6.1) and

(6.24) we get
ρω(z)∆[−1]

ω (z)C∗
2C2 = In − PK − ∆[−1]

ω (z)G(ω)∗PG(z). (10.21)

Multiplying both sides of the latter equality by C1 from the left and taking (10.15) into
account, we obtain

Ψ12(z)C2 = C1 − C1∆
[−1]
ω (z)G(ω)∗PG(z),

which is equivalent to (10.17). The equality (10.18) is proved in much the same way with
the help of the relation

ρω(z)C∗
1C1∆

[−1]
ω (z) = In − PK − H(z)PH(ω)∗∆[−1]

ω (z). (10.22)

Next, by (10.17), (10.18) and (3.15),

G(ζ)−∗C∗

(
Ip −Ψ12(ζ)

−Ψ12(ζ)∗ Iq

)
CG−1(ζ)

= G(ζ)−∗C∗
1C1∆

[−1]
ω (ζ)G(ω)∗P + ζ̄G(ζ)−∗C∗

2C2∆
[−1]
ω (ζ)∗H(ω)P. (10.23)

In view of (10.20) and (10.21),

ζ̄G(ζ)−∗C∗
2C2∆

[−1]
ω (ζ)∗H(ω)P =

ζ̄

ρω(ζ)∗

{
G(ζ)−∗ − PG(ω)∆[−1]

ω (ζ)∗
}

H(ω)P, (10.24)

whereas (10.22) implies that

G(ζ)−∗C∗
1C1∆

[−1]
ω (ζ)G(ω)∗P =

1

ρω(ζ)

{
G(ζ)−∗ − ζPH(ω)∗∆[−1]

ω (ζ)
}

G(ω)∗P. (10.25)

Finally, we get (10.19) by substituting (10.24) and (10.25) into the right hand side of (10.23)
and making use of the identity

1

ρω(ζ)
G(ω)∗ +

ζ̄

ρω(ζ)∗
H(ω) =

ρω(ω)

|ρω(ζ)|2G(ζ)∗.



Lemma 10.3 Let Ψ11 and Ψ22 be the functions defined by (10.9) and (10.11), respectively.
Then

C∗
1Ψ11(z) = H(z)P

1

2 Υω(z)Y2 and Ψ22(z)C2 = −Y ∗
1 Υω(z)P

1

2 G(z), (10.26)

where

Υω(z) =
ρω(ω)

1

2

ρω(z)

{
I − δω(z)

ρω(ω)
P

1

2 H(ω)∗∆[−1]
ω (z)G(ω)∗P

1

2

}
. (10.27)

Proof: Substituting the block decompositions (9.1) and (10.7) of Wj and W⊥
j (j = 1, 2)

into the two last relations in (9.7), we get in particular,

ρω(ω)
1

2 C∗
1Z2 − H(ω)P

1

2 Y2 = 0 and ρω(ω)
1

2 Z∗
1C2 + Y ∗

1 P
1

2 G(ω) = 0. (10.28)

Using (10.9) and the first relation in (10.28) we obtain

C∗
1Ψ11(z) = ρω(ω)−

1

2

{
H(ω) + δω(z)C∗

1C1∆
[−1]
ω (z)G(ω)∗

}
P

1

2 Y2. (10.29)

However, by (10.22) and (10.20),

C∗
1C1∆

[−1]
ω (z)G(ω)∗P

1

2 =
1

ρω(z)

{
G(ω)∗ − H(z)PH(ω)∗∆[−1]

ω (z)G(ω)∗
}

P
1

2 , (10.30)

whereas
δω(z)

ρω(z)
G(ω)∗ + H(ω) =

ρω(ω)

ρω(z)
H(z). (10.31)

Finally, upon substituting (10.30) into (10.29) and taking advantage of (10.31), we get the
first relation in (10.26) with Υω defined by (10.27). The second relation in (10.26) is proved

quite similarly.

11 Maximum entropy

It is well known that for a large class of problems whose solutions can be expressed as a

linear fractional transformation of the Schur class Sp×q based on a J–inner function there is

exactly one solution which maximizes the ω–entropy integral

Eω(S) =
∫ 2π

0
ln det (Ip − S(eit)S(eit)∗)dσω(t), (11.1)

where

ω ∈ ID and dσω(t) =
1

2π

1 − |ω|2
|eit − ω|2dt.

For additional information see e.g., [13, Section 11] and the references cited therein (especially

[7]). In particular, if the Pick matrix P of the aBIP is strictly positive, then the linear
fractional representation (7.13) of the set of all solutions of the aBIP is based on the J–

inner function Θ given in (7.6) and the parameter E is an arbitrary element in the Schur
class Sp×q (i.e., ν = 0 in (7.14)). In this setting we have the following conclusion:



Theorem 11.1 Let (1.5) be in force, let P > 0 and let S be of the form (7.13) for some
E ∈ Sp×q, where the mvf Θ is given by (7.6). Then θ21 is analytic at each point ω ∈ ID in

the domain of analyticity of θ22 and

Eω(S) ≤ ln det (θ22(ω)θ22(ω)∗ − θ21(ω)θ21(ω)∗)−1 (11.2)

with equality if and only if 1

S(z) = Smax(z) = (θ11(z)θ21(ω)∗ − θ12(z)θ22(ω)∗) (θ21(z)θ21(ω)∗ − θ22(z)θ22(ω)∗)−1 ,

i.e., the inequality (11.2) holds for every solution S of the aBIP with equality if and only if
S is the function corresponding via (7.13) to the parameter

Emax(z) ≡ −θ21(ω)∗θ22(ω)−∗. (11.3)

Theorem 11.1 is not directly applicable if P is singular. One reason is that the expression
on the right hand side of (11.3) is a strictly contractive matrix (this follows from (7.12))

and therefore cannot be used as a parameter in the transformation (7.13) if r < n. Another

reason is that
det (Ip − S(z)S(z)∗) ≡ 0

for each solution S of the degenerate problem and therefore the entropy integral (11.1) does
not exist. To overcome these difficulties we shall use a generalized definition of entropy which

was introduced by Y. Inouye in [19] to study regular random processes with degenerate rank.
The idea is to use a sum of principal minors of appropriate order instead of the determinant

in (11.1). To clarify this, let Dr[T ] denote the sum of principal minors of a matrix T ∈ Cm×m

for r ≤ m. The following result is an easy consequence of the Binet–Cauchy formula [18].

Lemma 11.2 If F ∈ Cm×n, G ∈ Cn×m and r ≤ min (m, n), then

Dr[FG] = Dr[GF ]. (11.4)

The number Dr[T ] can be expressed more explicitly for a Hermitian matrix T of rank r.

Lemma 11.3 Let T ∈ Cm×m be a Hermitian matrix with rank T = r ≤ m. Then Dr[T ] is

equal to the product of all the nonzero eigenvalues of T (counting multiplicities).

Proof: Let λ1(T ), . . . , λr(T ) be the nonzero eigenvalues of T and let U ∈ Cm×m be a unitary

matrix such that

UTU∗ =

(
diag (λj(T ))r

j=1 0

0 0

)
.

1The inequality (11.2) corrects the misprinted stars in inequality (11.2) of [13].



Then, by (11.4),

Dr[T ] = Dr[TU∗U ] = Dr[UTU∗] = det diag (λj(T ))r

j=1 =
n∏

j=1

λj(T ).

Following [19], we shall consider entropy integrals of the form

E(j)
ω (S) =

∫ 2π

0
ln Dp−j [Ip − S(eit)S(eit)∗]dσω(t), dσω(t) =

1

2π

1 − |ω|2
|eit − ω|2dt, (11.5)

where ω ∈ ID and j is an integer between 0 and p−1. If j = 0, then formula (11.5) coincides
with (11.1). If P is singular and ν is given by (1.11), then the integral (11.5) diverges to

minus infinity for j ≤ ν − 1 for every solution S of the aBIP. However, if j = ν, then there
exists solutions for which this integral converges and the problem of finding its maximum

value makes sense. In this section we obtain an analogue of Theorem 11.1 for j = ν and
with the integral (11.5) in place of (11.1).

In order to obtain this analogue, it is convenient to express the solutions S of the aBIP

in terms of a Redheffer transform of the form (10.16). We begin with a formulation for a
general inner mvf Ψ and subsequently, in the next theorem, observe that if Ψ is normalized

as in (10.9)–(10.11) and (10.15) at the same point ω as in (11.5), then the main conclusions
simplify.

Theorem 11.4 Let Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
:

(
Cp−ν

Cq

)
→

(
Cp

Cq−ν

)
be an inner mvf in

which the block Ψ21 is strictly contractive in ID and let S be of the form (10.16) for some

Ê ∈ S(p−ν)×(q−ν). Then for each ω ∈ ID,

E(ν)
ω (S) ≤

∫ 2π

0
ln det

[
Ip−ν − Ψ21(e

it)∗Ψ21(e
it)
]
dσω(t) + ln det [Ip−ν − Ψ21(ω)∗Ψ21(ω)]−1

with equality if and only if

S(z) = Smax(z) = Ψ12(z) + Ψ11(z)Ψ21(ω)∗ (Iq − Ψ21(z)Ψ21(ω)∗)−1 Ψ22(z) (11.6)

or, equivalently, if and only if S is the function corresponding via (10.16) to the parameter

Êmax(z) ≡ Ψ21(ω)∗. (11.7)

Proof: Let S be of the form (10.16) for some Ê ∈ S(p−ν)×(q−ν). By Theorem 8.5, the transfer
function Ψ is inner in ID and so, in particular,

Ψ11(e
it)∗Ψ11(e

it) = Ip−ν − Ψ21(e
it)∗Ψ21(e

it).

On the other hand, by Lemma 8.3,

Ip − S(ζ)S(ζ)∗ = Ψ11(ζ)K(ζ)Ψ11(ζ)∗ (11.8)



at almost every point of the unit circle TT, where

K :=
(
I − ÊΨ21

)−1 (
I − ÊÊ∗

) (
I − ÊΨ21

)−∗

for short. Therefore,

Dp−ν [Ip − S(eit)S(eit)∗] = Dp−ν

[
Ψ11(e

it)K(eit)Ψ11(e
it)∗

]

= Dp−ν

[
K(eit)Ψ11(e

it)∗Ψ11(e
it)
]

= Dp−ν

[
K(eit)

(
Ip−ν − Ψ21(e

it)∗Ψ21(e
it)
)]

= det K(eit) × det
(
Ip−ν − Ψ21(e

it)∗Ψ21(e
it)
)
. (11.9)

The rest of the proof amounts to estimating
∫

ln det K(eit)dσω(t). The argument is adapted

from [13, Section 11], which in turn is adapted from [7]. To begin with, since ÊΨ21 is a Schur

function which is strictly contractive in ID, the function
(
Ip−ν − ÊΨ21

)
is outer and

∫ 2π

0
ln det

(
Ip−ν − Ê(eit)Ψ21(e

it)
)
dσω(t) = ln det

(
Ip−ν − Ê(ω)Ψ21(ω)

)

=
∫ 2π

0
ln det

(
Ip−ν − Ê(eit)Ψ21(ω)

)
dσω(t).

Thus,

∫ 2π

0
ln det K(eit)dσω(t)

=
∫ 2π

0
ln det

(
Ip−ν − Ê(eit)Ψ21(ω)

)−1 (
I − Ê(eit)Ê(eit)∗

) (
Ip−ν − Ê(eit)Ψ21(ω)

)−∗
dσω(t).

The following matrix identity

(Ik − FG)(Ik − G∗G)−1(Ik − G∗F ∗) = Ik − FF ∗ + (F − G∗)(Iℓ − GG∗)−1(F ∗ − G)

holds for any contractive F ∈ Ck×ℓ and strictly contractive G ∈ Cℓ×k; it is easily verified by

straightforward calculation. As a consequence we get the inequality

(Ik − FG)−1(Ik − FF ∗)(Ik − G∗F ∗)−1 ≤ (Ik − G∗G)−1 (11.10)

with equality if and only if F = G∗. Applying (11.10) to F = Ê(eit) and G = Ψ21(ω) we

conclude that
∫ 2π

0
ln det K(eit)dσω(t) ≤ ln det (Ip − Ψ21(ω)∗Ψ21(ω))−1 (11.11)

with equality if and only if (11.7) holds. The assertion of the theorem follows immediately

from (11.9) and (11.11).

As a corollary we obtain the following generalization of Theorem 11.1.



Theorem 11.5 Let (1.5) be in effect, let P be a nonnegative solution of the Lyapunov–Stein
equation (1.8) and let ν and Ψ21 be defined by (1.11) and (10.10), respectively. Then for each

solution S of the aBIP(M, N, P, C),

E(ν)
ω (S) ≤

∫ 2π

0
ln det

[
Ip−ν − Ψ21(e

it)∗Ψ21(e
it)
]
dσω(t)

with equality if and only if S is taken equal to

Smax(z) = ρω(z)C1∆
[−1]
ω (z)C∗

2 . (11.12)

For the proof it is enough to note that if Ψ is normalized as in (10.9)–(10.11) and (10.15),

then in particular, Ψ21(ω) = 0. Note also that the extremal function Smax is unique and
therefore, the formula (11.12) can be obtained from (11.6) if Ψ is normalized at a point ω̃

which is different from ω. The direct calculation, however, is rather complicated.

12 On maximum determinant extension problems

In this section we shall study the problem of completing a partially specified structured
matrix in such a way as to maximize its determinant over the set of all positive semidefinite

completions. The structure of the unknown matrix will be defined by a Lyapunov–Stein
equation and thus the problem can be formulated in terms of finding the solution of a par-

tially specified Lyapunov–Stein equation with maximum determinant. Extremal problems of
this sort with strictly positive data were considered in [17] for the classical Nevanlinna–Pick

and Carathéodory-Fejér interpolation problems and in [15] for the general aBIP.

It can happen that the given entries of the partially specified matrix are such that every pos-
itive semidefinite completion will be degenerate (i.e., will have zero determinant). To make

this extension problem meaningful for such cases also we shall maximize a sum of principal
minors of appropriate size (much as in the previous section) instead of the determinant.

Lemma 12.1 Let P ∈ Cn×n be a nonnegative matrix with rank P = r ≤ n and let

P̂ =

(
P q
q∗ d

)
≥ 0 (d ∈ Cκ×κ, q ∈ Cn×κ) (12.1)

be its extension. Then

Dr+κ[P̂ ] = Dr[P ] × det
(
d − q∗P [−1]q

)
, (12.2)

where P [−1] is the Moore–Penrose pseudoinverse of P .

Proof: Let U ∈ Cn×n be a unitary matrix such that

U∗PU =

(
0 0
0 Pr

)
, Pr > 0. (12.3)



By definition, the Moore–Penrose pseudoinverse of P is given by

P [−1] = U

(
0 0
0 P−1

r

)
U∗.

Multiplying (12.1) by the matrix U =
(

U 0
0 Iκ

)
from the right, by its adjoint from the left

and using (12.3) we get

U∗P̂U =




0 0
0 Pr

U∗q

q∗U d


 .

Therefore,

U∗q =

(
0
qr

)
for some qr ∈ Cr×κ

and

Dr+κ[P̂ ] = Dr+κ[U
∗PU]

= det

(
Pr qr

q∗r d

)
= det Pr × det

(
d − q∗rP

−1
r qr

)
.

But this is clearly the same as (12.2), since

q∗rP
−1
r qr = q∗P [−1]q.

Let M, N ∈ Cn×n satisfy the condition (1.5), let P ∈ Cn×n be a positive semidefinite solution
of the Lyapunov–Stein equation (1.10) with rankP = r ≤ n and let

M̂ =

(
M u
0 Iκ

)
, N̂ =

(
N v
0 ω̄Iκ

)
(|ω| < 1),

Ĉ1 = (C1, c1) , Ĉ2 = (C2, x) (c1 ∈ Cp×κ, x ∈ Cq×κ).

(12.4)

Problem 12.2 Find those positive semidefinite solutions P̂ = P̂ (x) of the Lyapunov–Stein

equation
M̂∗P̂ M̂ − N̂∗P̂ N̂ = Ĉ∗

1 Ĉ1 − Ĉ∗
2 Ĉ2 (12.5)

which attain the maximum value of Dr+κ(P̂ ).

By Lemma 12.1, it suffices to maximize the value of det
(
d − q∗P [−1]q

)
. Substituting the

decompositions (12.1) and (12.4) into (12.5) we get

d =
1

ρω(ω)
{v∗Pv − u∗Pu − q∗(u − ωv) − (u∗ − ω̄v∗)q + c∗1c1 − x∗x} (12.6)

and
G(ω)∗q = C∗

1c1 − C∗
2x + N∗Pv − M∗Pu.

Thus, it is easily seen that if G(ω) is invertible, then the entries q and d of the extended
matrix P̂ are uniquely (and explicitly) defined by M̂ , N̂ and Ĉ. In this case, P̂ (x) is the mvf



of the matrix argument x and Problem 12.2 can be successfully solved using purely algebraic
methods, as was done in [15] and [17]. Here we do not require the invertibility of G(ω); an

explicit expression for q will be established by taking advantage of the preceding analysis
of the aBIP. If G(ω) is not invertible, then the Lyapunov–Stein equation (12.5) may have

more than one solution P̂ . In this case, by P̂ (x) we mean any nonnegative solution of (12.5)
corresponding to a fixed x ∈ Cq×κ.

Under assumption (1.5), the matrix pencils

Ĝ(z) = M̂ − zN̂ =

(
G(z) u − zv

0 ρω(z)Iκ

)
(12.7)

and

Ĥ(z) = zM̂∗ − N̂∗ =

(
H(z) 0

zu∗ − v∗ δω(z)Iκ

)

are invertible on the unit circle and therefore, the aBIP(M̂, N̂ , P̂ , Ĉ) has a solution. This
means that there exists a function S ∈ Sp×q such that

(
Ip −S(ζ)

−S(ζ)∗ Iq

)
ĈĜ(ζ)−1 ∈

(
H

p×(n+κ)
2

(H
q×(n+κ)
2 )⊥

)
(12.8)

and [
ĈĜ(ζ)−1, ĈĜ(ζ)−1

]
S

= P̂ , (12.9)

where [ , ]S is the matrix valued form defined via (2.1). Using the decompositions (12.4)

and (12.7) we get

ĈĜ−1(z) =

(
CG−1(z),

1

ρω(z)

{(
c1

x

)
− CG−1(z)(u − zv)

})
, (12.10)

and hence that (12.8) is equivalent to (1.6) together with the condition

1

ρω(ζ)
(−S(ζ)∗, Iq)

{(
c1

x

)
− CG−1(ζ)(u− ζv)

}
∈
(
H

q×κ
2

)⊥
. (12.11)

Next, by Lemma 2.1, every function S ∈ Sp×q satisfying the condition (12.8) (or equivalently,

(1.6) and (12.11)), defines via (12.9) a nonnegative matrix P̂ satisfying the Lyapunov–
Stein equation (12.5). Moreover, if S also satisfies (1.7), then P̂ is an extension of P , i.e.,

P̂ is of the form (12.1). Thus, Problem 12.2 reduces to finding those solutions S of the
aBIP(M, N, P, C) which also satisfy condition (12.11) and for which the value Dr+κ[P̂ ] is

maximal.

Following (6.2), we define the extended function

∆̂ω(z) = Ĥ(z)P̂ Ĥ(ω)∗ + ρω(z)Ĉ∗
1 Ĉ1.



Evaluating this function at the point z = ω and taking into account the decompositions
(12.4) of M̂ , N̂ and Ĉ1 we get the matrix

∆̂ω(ω) =

(
∆ω(ω) R1

R∗
1 R2

)

:=

(
H(ω)

ωu∗ − v∗

)
P (H(ω)∗, ω̄u − v) + ρω(ω)

(
C∗

1

c∗1

)
(C1, c1) , (12.12)

which will play a central role in our considerations.

The next step is to obtain an explicit formula for the entry q of P̂ by taking advantage

of formula (12.9). Upon substituting (12.10) and the block decomposition (12.1) of P̂ into
(12.9) we get [

1

ρω(ζ)

{(
c1

x

)
− CG−1(ζ)(u − ζv)

}
, CG(ζ)−1

]

S

= q. (12.13)

Thus, the entry q of P̂ is uniquely defined by S. An explicit expression for q in terms of the

initial data will be given below. Then, by (12.6), we will also obtain a formula for d and

thus, we shall not need the expression for d in terms of the matrix form [ , ]S (which can be
easily obtained from (12.9), but is not convenient for direct calculations).

As a solution of the aBIP(M, N, P, C), S admits a representation of the form

S(z) = Ψ12(z) + Ψ11(z)E(z) (Iq − Ψ21(z)E(z))−1 Ψ22(z), (12.14)

where the mvf’s Ψjk are given by (10.9)–(10.11) and (10.15) and E is an appropriately
chosen Schur function. For a function S of the form (12.14) to satisfy condition (12.11), the

parameter E has to satisfy certain interpolation conditions, which we now establish.

Lemma 12.3 A function S of the form (12.14) satisfies (12.11) if and only if the parameter

E is subject to the bitangential interpolation condition

TE(ω)Z∗
1 = x∗ − R∗

1∆
[−1]
ω (ω)C∗

2 , (12.15)

where

T = c∗1Z2 − ρω(ω)−
1

2 (ωu∗ − v∗)P
1

2 Y2 (12.16)

and R1 is defined in (12.12).

Proof: Rewrite (12.11) in the following equivalent form

1

δω(ζ)

{
(u − ζv)∗ G(ζ)−∗C∗ − (c∗1, x∗)

}( −S(ζ)
Iq

)
∈ H

k×q
2 . (12.17)

Since S is a solution of the aBIP(M, N, P, C) (because of (12.14)), it is easily seen that

the function

F (ζ) =
{
(u − ζv)∗ G(ζ)−∗C∗ − (c∗1, x∗)

}( −S(ζ)
Iq

)
(12.18)



belongs H
k×q
2 and hence that the condition (12.17) is equivalent to the condition

F (ω) = 0. (12.19)

To evaluate the function F at the point ω we note that in view of (10.18),

(u − ζv)∗ G(ζ)−∗C∗

(
−Ψ12(ζ)

Iq

)
= (ζu∗ − v∗)PH(ω)∗∆[−1]

ω (ζ)C∗
2 , (12.20)

whereas the first relation in (10.26) implies that

(u − ζv)∗ G(ζ)−∗C∗
1Ψ11(ζ) = (ζu∗ − v∗)P

1

2 Υω(ζ)Y2, (12.21)

where Υω is the function defined in (10.27). Substituting (12.14) into (12.18) and using
(12.20) and (12.21), we get

F (ζ) = (ζu∗ − v∗) PH(ω)∗∆[−1]
ω (ζ)C∗

2 (12.22)

− (ζu∗ − v∗) P
1

2 Υω(ζ)Y2E(ζ) (I − Ψ21(ζ)E(ζ))−1 Ψ22(ζ) − x∗ + c∗1S(ζ).

Using (10.9)–(10.11), (10.15) and (10.27), we obtain the evaluations

Ψ11(ω) = Z2, Ψ12(ω) = ρω(ω)C1∆
[−1]
ω (ω)C∗

2 , Ψ21(ω) = 0,

Ψ22(ω) = Z∗
1 and Υω(ω) = ρω(ω)−

1

2 In,

(12.23)

which, upon being substituted into (12.22) and (12.14), lead to

F (ω) = (ωu∗ − v∗) PH(ω)∗∆[−1]
ω (ω)C∗

2

−ρω(ω)−
1

2 (ωu∗ − v∗)P
1

2 Y2E(ω)Z∗
1 − x∗ + c∗1S(ω)

and

S(ω) = ρω(ω)C1∆
[−1]
ω (ω)C∗

2 + Z2E(ω)Z∗
1 , (12.24)

respectively. Substituting the two latter evaluations into (12.19) we get
(
c∗1Z2 − ρω(ω)−

1

2 (ωu∗ − v∗)P
1

2 Y2

)
E(ω)Z∗

1

= x∗ − {(ωu∗ − v∗)PH(ω)∗ + ρω(ω)c∗1C1}∆[−1]
ω (ω)C∗

2 .

It is easily seen from (12.12) and (12.16) that the last equality coincides with (12.15).

Note that the proof of the last lemma is much simpler if H(ω) is invertible, because then

F (ζ) =
{
(ζu∗ − v∗)H(ζ)−1C∗ − (c∗1, x∗)

}( −S(ζ)
Iq

)

and hence, by (12.24),

F (ω) =
(
c∗1 − (ωu∗ − v∗)H(ω)−1C∗

1

) (
ρω(ω)C1∆

[−1]
ω (ω)C∗

2 + Z2E(ω)Z∗
1

)

−x∗ + (ωu∗ − v∗) H(ω)−1C∗
2 .



Thus F (ω) = 0 if and only if

(
c∗1 − (ωu∗ − v∗)H(ω)−1C∗

1

)
Z2E(ω)Z∗

1 = x∗ − ρω(ω)c∗1C1∆
[−1]
ω (ω)C∗

2

− (ωu∗ − v∗)H(ω)−1
{
I − ρω(ω)C∗

1C1∆
[−1]
ω (ω)

}
C∗

2 .

This condition is equivalent to (12.15), since

{
I − ρω(ω)C∗

1C1∆
[−1]
ω (ω)

}
C∗

2 = H(ω)PH(ω)∗∆[−1]
ω (ω)C∗

2

(by (10.22) and (10.20)) and

(
c∗1 − (ωu∗ − v∗)H(ω)−1C∗

1

)
Z2 = c∗1Z2 − ρω(ω)−

1

2 (ωu∗ − v∗)P
1

2 Y2 = T

(by the first relation in (10.28)).

Lemma 12.4 Let S be of the form (12.14) for some choice of the Schur function E , let q be
defined via (12.13) and let R1 and T be given by (12.12) and (12.16), respectively. Then

q =
1

ρω(ω)
PG(ω)∆[−1]

ω (ω)R1 −
1

ρω(ω)
P (u − ωv) + ρω(ω)−

1

2 P
1

2 Y1E(ω)∗T ∗. (12.25)

Proof: By Remark 6.7, the rational function ∆[−1]
ω (z) is analytic in ID and thus, it belongs

to Hn×n
2 . In view of (10.17) and the second relation in (10.26),

(Ip, −S(z)) CG−1(z) = (Ip, −Ψ12(z)) CG−1(z)

−Ψ11(z)E(z) (Iq − Ψ21(z)E(z))−1 Ψ22(z)C2G
−1(z)

= C1∆
[−1]
ω (z)G(ω)∗P

+Ψ11(z)E(z) (Iq − Ψ21(z)E(z))−1 Y ∗
1 Υω(z)P

1

2 .

Thus, by (12.23),

(
(Ip, −S) CG−1

)
(ω) = C1∆

[−1]
ω (ω)G(ω)∗P + ρω(ω)−

1

2 Z2E(ω)Y ∗
1 P

1

2 .

Moreover, since S is a solution of the aBIP(M, N, P, C), condition (1.6) is in force. There-

fore,

©1 =

[
1

ρω(ζ)

(
c1

x

)
, CG(ζ)−1

]

S

=

〈
1

ρω(ζ)

(
c1

x

)
,

(
Ip −S(ζ)

−S(ζ)∗ Iq

)
CG(ζ)−1

〉

=

〈
c1

ρω(ζ)
, (Ip, −S(ζ))CG(ζ)−1

〉

= PG(ω)∆[−1]
ω (ω)C∗

1c1 + ρω(ω)−
1

2 P
1

2 Y1E(ω)∗Z∗
2c1.



Next, upon taking advantage of (10.19), it is readily checked that

©2 =

[
1

ρω(ζ)
CG(ζ)−1(u − ζv), CG(ζ)−1

]

Ψ12

=

〈
1

ρω(ζ)
CG(ζ)−1(u − ζv),

(
Ip −Ψ12(ζ)

−Ψ12(ζ)∗ Iq

)
CG(ζ)−1

〉

= ρω(ω)P

〈
1

ρ2
ω(ζ)

(u − ζv),
In

ρω(ζ)

〉

−PG(ω)

〈
In

ρω(ζ)
,

1

ρω(ζ)
(ζu∗ − v∗)PH(ω)∗∆[−1]

ω (ζ)

〉

−PH(ω)∗
〈

1

ρω(ζ)
∆[−1]

ω (ζ)G(ω)∗P (u − ζv),
In

δω(ζ)

〉

=
1

ρω(ω)
P (u − ωv) − 1

ρω(ω)
PG(ω)∆[−1]

ω (ω)H(ω)P (ω̄u − v),

since ρω(z)−1In is the reproducing kernel for Hn
2 and δω(z)−1u is orthogonal to Hn

2 for every

vector u ∈ Cn.

Now set
Sε(z) = Ψ11(z)E(z) (Iq − Ψ21(z)E(z))−1 Ψ22(z)

so that
S(z) = Ψ12(z) + Sε(z).

It is easily seen that

〈
1

ρω(ζ)
CG(ζ)−1(u − ζv),

(
0 Sε(ζ)

Sε(ζ)∗ 0

)
CG(ζ)−1

〉
= 〈B1, In〉+

〈
In

ρω

, B2

〉
, (12.26)

where

B1(ζ) :=
1

ρω(ζ)
G(ζ)−∗C∗

1Sε(ζ)C2G(ζ)−1(u − ζv)

and

B2(ζ) := (u∗ − ζ̄v∗)G(ζ)−∗C∗
1Sε(ζ)C2G(ζ)−1.

In view of (10.26),

G(ζ)−∗C∗
1Sε(ζ)C2G(ζ)−1 = −ζP

1

2 Υω(ζ)Y2E(ζ) (Iq − Ψ21(ζ)E(ζ))−1 Y ∗
1 Υω(ζ)P

1

2 , (12.27)

which implies in particular, that B1 belongs to ζHn×κ
2 whereas B2 belongs to Hn×κ

2 . There-

fore, the first scalar product on the right hand side of (12.26) is equal to zero, whereas the
second is equal to

B2(ω)∗ =
1

ρω(ω)
P

1

2 Y1E(ω)∗Y ∗
2 P

1

2 (v − ω̄u).



Finally, upon substituting these evaluations into the definition (12.13) of q, we obtain

q = ©1 −©2 + B2(ω)∗

= PG(ω)∆[−1]
ω (ω)

{
C∗

1c1 +
1

ρω(ω)
H(ω)P (ω̄u − v)

}

+ρω(ω)−
1

2 P
1

2 Y1E(ω)∗
{
Z∗

2c1 + ρω(ω)−
1

2 Y ∗
2 P

1

2 (v − ω̄u)
}
− 1

ρω(ω)
P (u − ωv).

The last formula coincides with (12.25) in view of the definitions (12.12) and (12.16) of R1

and T .

It was mentioned above that q is not uniquely defined by x. This fact follows from the last
lemma. Indeed, by (12.15), x defines the matrix TE(ω)Z∗

1 , but not TE(ω)Y ∗
1 , which appears

in the expression (12.25) for q. However, if PG(ω) is invertible, then the matrix Z1 is square
and invertible. In this case (which was considered in [15]), x defines the matrix TE(ω) by

(12.15) and thus, also q, via formula (12.25).

Now we shall establish the extremal value of d− q∗P [−1]q, the Schur complement of P in P̂ .

Using (12.6) together with (12.25) we get by straightforward calculation

d − q∗P [−1]q = ρω(ω)−2 {R2 − ρω(ω)x∗x −Y∗Y} ,

where

Y = ρω(ω)
1

2 Y1E(ω)∗T ∗ + P
1

2 G(ω)∆[−1]
ω (ω)R1

and R1 and R2 are defined in (12.12). By (12.15),

x = Z1E(ω)∗T ∗ + C2∆
[−1]
ω (ω)R1

and therefore,

(
Y

ρω(ω)
1

2 x

)
= ρω(ω)

1

2

(
Y1

Z1

)
E(ω)∗T ∗ +

(
P

1

2 G(ω)

ρω(ω)
1

2 C2

)
∆[−1]

ω (ω)R1

= ρω(ω)
1

2

(
Y1

Z1

)
E(ω)∗T ∗ + W1∆

[−1]
ω (ω)R1.

Therefore, since

(
Y1

Z1

)
is an isometric column of W⊥

1 and W ∗
1 W⊥

1 = 0,

ρω(ω)x∗x + Y∗Y = ρω(ω)TE(ω)E(ω)∗T ∗ + R∗
1∆

[−1]
ω (ω)R1.

Consequently,

d − q∗P [−1]q = ρω(ω)−2
{
R2 − R∗

1∆
[−1]
ω (ω)R1 − ρω(ω)TE(ω)E(ω)∗T ∗

}
,

and thus,

d − q∗P [−1]q ≤ ρω(ω)−2
{
R2 − R∗

1∆
[−1]
ω (ω)R1

}
,



with equality if and only if
TE(ω) = 0. (12.28)

It follows from (12.15) that for every such parameter, the corresponding extremal matrix x
is uniquely defined and is equal to

x = C2∆
[−1]
ω (ω)R1. (12.29)

Upon substituting (12.28) and (12.29) into (12.25) and (12.6) we obtain explicit formulas
for the block entries q and d of the extremal matrix P̂ (x):

q = ρω(ω)−1P
{
G(ω)∆[−1]

ω (ω)R1 − (u − ωv)
}

, (12.30)

d = ρω(ω)−2
{
R2 + (u − ωv)∗P (u − ωv) − ρω(ω)R∗

1∆
[−1]
ω (ω)G(ω)∗P (u − ωv)

−ρω(ω)(u − ωv)∗PG(ω)∆[−1]
ω (ω)R1

−ρω(ω)R∗
1∆

[−1]
ω (ω)C∗

2C2∆
[−1]
ω (ω)R1

}
. (12.31)

We summarize the results obtained above in the following theorem.

Theorem 12.5 Let M̂ , N̂ , Ĉ1 and Ĉ2 be defined as in (12.4), where all entries except for
the entry x of Ĉ2 are given. Let Yj, Zj, Rj and T be given by (10.7), (12.12) and (12.16),

respectively. Then:

1. There exists a nonnegative solution P̂ = P̂ (x) of the form (12.1) to the Lyapunov–Stein

equation (12.5) if and only if

x = Z1ST ∗ + C2∆
[−1]
ω (ω)R1

for some contractive matrix S, i.e., if and only if x belongs to the matrix ball with

center C2∆
[−1]
ω (ω)R1, left semi–radius (Z1Z

∗
1)

1

2 and right semi–radius (TT ∗)
1

2 .

2. The Schur complement of P in P̂ (x) is equal to

d − q∗P [−1]q = E − ρω(ω)−2TS∗ST ∗,

where

E = ρω(ω)−2
{
R2 − R∗

1∆
[−1]
ω (ω)R1

}

is proportional to the Schur complement of ∆ω(ω) in the matrix ∆̂ω(ω) given by (12.12).

3. E ≥ 0 for every choice of κ ≥ 1. If det E = 0, then Dr+κ[P̂ (x)] = 0 for every choice
of the matrix x.

4. If E > 0, then Dr+κ[P̂ (x)] ≤ Dr[P ] × det E with equality if and only if formulas

(12.29)–(12.31) prevail.



If P > 0 and G(ω) is invertible, then Theorem 12.5 reduces to Theorem 2.1 of [15]. In this
case r = n, all the pseudoinverses in the statement of Theorem 12.5 are ordinary inverses

and the formulas furnished for E and x are the same in both theorems. Moreover, Dr(P )
and Dr+κ(P̂ ) in item 4 are both ordinary determinants.

Finally, we complete this section with a short discussion of another variant of the extension

problem 12.2: let M, N ∈ Cn×n satisfy the condition (1.5), let P ∈ Cn×n be a positive
semidefinite solution of the Lyapunov–Stein equation (1.10) with rankP = r ≤ n as above,

but now let

M̂ =

(
M u
0 ω̄Iκ

)
, N̂ =

(
N v
0 Iκ

)
(|ω| < 1),

Ĉ1 = (C1, y) and Ĉ1 = (C2, c2) (c1 ∈ Cp×κ, x ∈ Cq×κ).

(12.32)

Problem 12.6 Find those positive semidefinite solutions P̂ = P̂ (y) of the Lyapunov–Stein
equation (12.5) which attain the maximum value of Dr+κ(P̂ ).

This problem can be solved by using the same methods which were applied to solve Problem

12.2. The main role now is played by the matrix

∆̂ω(ω) =

(
∆ω(ω) R̃1

R̃∗
1 R̃2

)

:=

(
G(ω)∗

u∗ − ω̄v∗

)
P (G(ω), u − ωv) + ρω(ω)

(
C∗

2

c∗2

)
(C2, c2) , (12.33)

which is the value of the function

∆̂ω(z) = (M̂∗ − ω̄N̂∗)P̂ (M̂ − zN̂ ) + ρω(z)Ĉ∗
2 Ĉ2

at the point z = ω.

Theorem 12.7 Let M̂ , N̂ , Ĉ1 and Ĉ2 be defined as in (12.32), where all entries except for
the entry y of Ĉ1 are given. Let Yj, Zj and R̃j be given by (10.7) and (12.33), respectively.

Then:

1. There exists a nonnegative solution P̂ = P̂ (y) of the form (12.1) to the Lyapunov–Stein
equation (12.5) if and only if

y = Z2ST̃ ∗ + C1∆
[−1]
ω (ω)R̃1 (12.34)

for some contractive matrix S, where

T̃ = c∗2Z1 + ρω(ω)−
1

2 (u − ωv)∗P
1

2 Y1.

2. The Schur complement of P in P̂ (y),

d − q∗P [−1]q = Ẽ − ρω(ω)−2T̃S∗ST̃ ∗,

where
Ẽ = ρω(ω)−2

{
R̃2 − R̃∗

1∆
[−1]
ω (ω)R̃1

}

is proportional to the Schur complement of ∆ω(ω) in the matrix ∆̂ω(ω) given by (12.33).



3. Ẽ ≥ 0 for every choice κ ≥ 1. If det Ẽ = 0, then Dr+κ[P̂ (y)] = 0 for every choice of
the matrix y.

4. If Ẽ > 0, then Dr+κ[P̂ (y)] ≤ Dr[P ] × det Ẽ with equality if and only if

y = C1∆
[−1]
ω (ω)R̃1, (12.35)

q = −ρω(ω)−1P
{
H(ω)∗∆[−1]

ω (ω)R̃1 + (v − ω̄u)
}

(12.36)

and

d = ρω(ω)−2
{
R̃2 + (v − ω̄u)∗P (v − ω̄u) + ρω(ω)R̃∗

1∆
[−1]
ω (ω)H(ω)P (v − ω̄u)

+ρω(ω)(v − ω̄u)∗PH(ω)∗∆[−1]
ω (ω)R̃1

−ρω(ω)R̃∗
1∆

[−1]
ω (ω)C∗

1C1∆
[−1]
ω (ω)R̃1

}
. (12.37)

If H(ω) is invertible, then the entries q and d of P̂ are uniquely defined by y. In this case,

the matrix P̂ (y) which maximizes the value of Dr+κ[P̂ (y)] corresponds to the choice (12.35)
of y. Under the additional assumption P > 0, this situation is described in [15, Theorem

2.2]. Note also that in this case (in contrast to the degenerate situation), the set (12.34) of
all admissible matrices y is the full rank matrix ball (i.e., with strictly positive semi-radii). If

H(ω) is not invertible, there are, in general, many matrices P̂ (y) corresponding via (12.5) to
the same y. There is, however, only one (with entries q and d given by (12.36) and (12.37),

respectively), which maximizes Dr+κ[P̂ (y)] and this matrix corresponds to the y defined in
(12.35).

13 Other domains

For ease of exposition we have focused in this paper on interpolation problems in the unit

disc. However, the notation has been chosen so that most of the results discussed above
can easily be transferred to the open right half plane, or the open upper half plane or even

more general regions by introducing a few auxiliary symbols, much as in [3]–[?]. To illustrate
this, let a, b be a pair of functions which are analytic and have no common zeros in an open

connected subset Ω ⊆ C, let

ρω(z) = a(z)a(ω)∗ − b(z)b(ω)∗ and δω(z) = b(z)a(ω) − a(z)b(ω) (13.1)

and let the subsets

Ω+ = {z ∈ Ω : ρz(z) > 0} and Ω− = {z ∈ Ω : ρz(z) < 0} (13.2)

be nonempty. Then there exists a point µ such that |a(µ)| = |b(µ)| 6= 0 (see e.g., [4]) and

hence, the subset
Ω0 = {z ∈ Ω : ρz(z) = 0} (13.3)

is non-empty.

The kernel ρω(z)−1 is nonnegative in Ω+. This means that for every choice of integer κ ∈



IN and of points ω1, . . . , ωκ in Ω+, the κ × κ Hermitian matrix with ij-entry ρωi
(ωj)

−1 is
nonnegative. Therefore, there exists a reproducing kernel Hilbert space Hρ with reproducing

kernel ρω(z)−1. The following direct characterization of the space Hρ is given in [4, p. 127].

Theorem 13.1 The space Hρ consists of functions f̃ which are analytic on Ω+ and admit

a representation of the form

f̃(z) =
1

a(z)

∞∑

j=0

f̃jσ(z)j , where σ(z) =
b(z)

a(z)
, (13.4)

and with

‖f̃‖2
Hρ

=
∞∑

j=0

|f̃j |2 < ∞.

We refer to the papers [3], [4] and [?] for further properties of the spaces Hρ and for various
examples of ρ. The case of the unit disc considered above, corresponds to the choice a(z) = 1

and b(z) = z. Then Ω+ = ID, Ω0 = TT, ρω(z) and δω(z) are given in (1.16) and Hρ is the
Hardy space H2 of the unit disc. The following three cases are of interest:

(1)

{
a(z) =

√
π(1 − iz)

b(z) =
√

π(1 + iz),
(2)

{
a(z) =

√
π(1 + z)

b(z) =
√

π(1 − z),
(3)

{
a(z) =

√
π {z + i(z2 + 1)}

b(z) =
√

π {z − i(z2 + 1)} .

In the first case, ρω(z) = −2πi(z− ω̄), Ω+ = C+ (the open upper half plane) and Ω0 = IR. In
the second case, ρω(z) = 2π(z + ω̄), Ω+ is the right half plane and Ω0 is the imaginary axis.

In the third case, ρω(z) = −2πi(z− ω̄)(1− zω̄), Ω0 = IR∪TT and Ω+ = (ID∩C+)∪ (IE∩C−)
(where IE = C\ID and C− denotes the open lower half plane). Note that, in this case, Ω+ is

not connected.

We define Sp×q
ρ to be the set of all Cp×q–valued functions S̃ analytic on Ω+ for which the

kernel

k(z, ω) =
Ip − S̃(z)S̃(ω)∗

ρω(z)

is nonnegative on Ω+. This is the same as to say that the operator of multiplication by S̃ is a

contraction from Hq
ρ into Hp

ρ (see [3]). It follows from the nonnegativity of the kernel k that

S̃ of the class Sp×q
ρ takes contractive values. However, although the opposite implication

is valid in the classical settings (when a(z) and b(z) are polynomials of degree less than or

equal to one), it is not always in force. For example, if a(z) = 1 and b(z) = z2, then Ω+ = ID,

but not every analytic contraction S̃ in ID induces a nonnegative kernel Ip−S̃(z)S̃(ω)∗

1−z2ω̄2 .

The following lemma (for a proof see [2, Theorem 2.4]) is an analogue of Theorem 13.1 for

Schur functions.

Lemma 13.2 A function S̃ belongs to Sp×q
ρ if and only if it is of the form

S̃(z) = S(σ(z)), where σ(z) =
b(z)

a(z)
and S ∈ Sp×q. (13.5)



The classical Nevanlinna–Pick and Carathéodory-Fejér problems for functions S ∈ Sp×q
ρ were

studied in [1] and [3]. To formulate the general aBIP for functions S ∈ Sp×q
ρ we need to

introduce ρ–analogues of the spaces L2 and H⊥
2 .

We shall let Lk
ρ denote the set of k×1 mvf’s which are defined almost everywhere on Ω0 and

can be expressed in the form

f̃(ξ) =
1

a(ξ)

∞∑

j=−∞

f̃j σ(ξ)j (ξ ∈ Ω0) (13.6)

with f̃j ∈ Ck and

‖f̃‖2
Lρ

:=
∞∑

j=−∞

‖f̃j‖2 < ∞.

Following (13.4), we say that a function f̃ ∈ Lk
ρ belongs to Hk

ρ (respectively,
(
Hk

ρ

)⊥
) if f̃j = 0

for all j < 0 (respectively, j ≥ 0) in the expansion (13.6). The following lemma reformulates

the characterization of the above spaces in a form which is more suitable for the present
framework.

Lemma 13.3 A function f̃ belongs to Lk
ρ if and only if it can be represented in the form

f̃(ξ) =
1

a(ξ)
f(σ(ξ)) for f ∈ Lk

2(TT). (13.7)

The function f is uniquely defined and ‖f̃‖Lk
ρ

= ‖f‖Lk
2
(TT). Moreover, f̃ ∈ Hk

ρ (respectively,

f̃ ∈
(
Hk

ρ

)⊥
) if and only f ∈ Hk

2 (respectively, f ∈
(
Hk

2

)⊥
) in the representation (13.7).

Much as in the case of the unit disc, we shall let Hp×q
ρ and

(
Hp×q

ρ

)⊥
denote the spaces of

p × q matrices with entries in Hρ and H⊥
ρ , respectively.

Let a and b be given analytic functions and let Ω0 be the set defined in (13.3). We assume
that

M, N, P ∈ Cn×n and C ∈ C(p+q)×n (13.8)

is a given set of matrices and let aBIP(M, N, P, C, ρ) denote the following interpolation

problem under the assumption that the mvf

G̃(z) = a(z)M − b(z)N (13.9)

is invertible at every point on Ω0:

det G̃(ξ) 6= 0 for ξ ∈ Ω0. (13.10)

Find all the functions S̃ ∈ Sp×q
ρ such that

(
Ip −S̃(ξ)

−S̃(ξ)∗ Iq

)
CG̃−1(ξ) ∈




Hp×n
ρ(

Hq×n
ρ

)⊥


 (13.11)



and
〈(

Ip −S̃(ξ)

−S̃(ξ)∗ Iq

)
CG̃−1(ξ)y, CG̃−1(ξ)x

〉

L
p+q
ρ

= x∗Py (∀ x, y ∈ Cn). (13.12)

The next lemma allows us to reduce the aBIP(M, N, P, C, ρ) to the aBIP(M, N, P, C)
in the unit disc which was considered above.

Lemma 13.4 A function S̃ is a solution of the aBIP(M, N, P, C, ρ) if and only if it is of

the form (13.5) for some function S which is a solution of the aBIP(M, N, P, C).

Proof: Comparing (13.9) and (1.4), we conclude that

G̃(z) =
1

a(z)
G(σ(z)). (13.13)

The rest follows easily by substituting (13.5) and (13.13) into (13.11) and (13.12) and then
using Lemma 13.3.

Making use of Theorem 1.2 we obtain the following description of the set of all solutions of
the aBIP(M, N, P, C, ρ).

Theorem 13.5 Let (13.10) be in force and let P be a nonnegative solution of the Lyapunov–

Stein equation (1.8). Then the aBIP(M, N, P, C, ρ) is solvable and the set of all its solu-
tions is parametrized by the linear fractional transformation

S̃(z) =
(
Θ̃11(z)Ẽ(z) + Θ̃12(z)

) (
Θ̃21(z)Ẽ(z) + Θ̃22(z)

)−1
, (13.14)

based on the meromorphic mvf Θ̃ =
(

Θ̃11 Θ̃12

Θ̃21 Θ̃22

)
, which depends only on the interpolation

data (13.8), is rational in σ = b/a and is such that the kernel

k
Θ̃

(z, ω) =
J − Θ̃(z)JΘ̃(ω)∗

ρω(z)

is nonnegative on Ω+. The parameter Ẽ varies over the set Sp×q
ρ and is of the form

Ẽ(z) =

(
Ê(z) 0

0 Iν

)
, Ê ∈ S(p−ν)×(q−ν)

ρ ,

where ν is the integer defined via (1.11).

Proof: By Theorem 1.2 and in view of Lemma 13.4, all solutions of the aBIP(M, N, P, C, ρ)
are of the form

S̃(z) = S(σ(z)) = (Θ11(σ(z))E(σ(z)) + Θ12(σ(z)))
(
Θ21(σ(z))Ẽ(σ(z)) + Θ22(σ(z))

)−1
,

where E varies on Sp×q and is of the form (1.14). Setting

Θ̃(z) = Θ(σ(z)) and Ê(z) = E(σ(z))

in the preceding formula, we come to (13.14). By Lemma 13.2, Ê ∈ Sp×q
ρ whereas the kernel

k
Θ̃

is nonnegative, since Θ is J–inner.



Remark 13.6 If the set

{λ ∈ Ω : a(λ) = 0 and b(λ) 6= 0} ∪ {λ ∈ Ω : a(λ) 6= 0 and b(λ) = 0}

is not empty and M − ζN is invertible for every point ζ ∈ TT, then the McMillan degree of

the mvf Θ̃ exhibited in Theorem 13.5 is equal to r, the rank of P . A proof may be based
on the analogue of formula (7.9) for the present setting and the corollary to Theorem 3.5 of

[?].

In much the same way one can obtain the ρ–analogue of Theorem 10.1 and describe all the

solutions of the aBIP(M, N, P, C, ρ) in terms of a Redheffer transform.

Theorem 13.7 Let Ψjk be the functions defined via formulas (10.9)–(10.11) and (10.15) by

replacing

G(z) = M−zN by a(z)M−b(z)N, H(z) = zM∗−N∗ by b(z)M∗−a(z)N∗ (13.15)

and by writing ρω(z) and δω(z) as in (13.1). Then

1. The function Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
is inner in Ω+ and belongs to S(p+q−ν)×(p+q−ν)

ρ .

2. All the solutions S of the aBIP are parametrized by the Redheffer transformation

(10.16), where Ê is a free independent parameter varying over S(p−ν)×(q−ν)
ρ and ν is the

integer defined by (1.11).

Theorems 1.2 and 10.1 and their analogues for the open upper half plane C+ and the open
right half plane CR as well as more general regions emerge from Theorems 13.5 and 13.7

by making appropriate choices of a(z) and b(z). All the main results of this paper were
developed in a notation which is applicable to the more general domain Ω+ given in (13.2)

by introducing the replacements described in (13.15) and and by writing ρω(z) and δω(z) as
in (13.1). Some indications of how this may done for the classical settings of Ω+ = C+ and

Ω+ = CR (under more restrictive assumptions on P and ∆ω(ω) than are imposed here) may
be found in [15] and [16], respectively.
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[7] D.Z. Arov and M.G. Krĕın. On computations of entropy functionals and their minimums

in indeterminate continuation problems. Acta Sci. Math., 45:33–50, 1983.

[8] J. Ball, I. Gohberg, and L. Rodman. Interpolation of rational matrix functions.
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