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Abstract. In this paper we consider two related objects: singular positive semidefinite Hankel
block–matrices and associated degenerate truncated matrix Hamburger moment problems. The
description of all solutions of a degenerate matrix Hamburger moment problem is given in terms
of a linear fractional transformation. The case of interest is the Hamburger moment problem
whose Hankel block–matrix admits a positive semidefinite Hankel extension.

This is the corrected version of the original paper [2]. The work was inspired by V. Dubovoj’s
paper [4] containing the first systematic study of degenerate matricial interpolation problems.
Another sourse of inspiration must have been the paper by R. Curto and L. Fialkow [3] but I was
not aware of it then. The original paper contained several erratae and the author is very grateful
to A. Ben-Artzi and H. Woerdeman for indicating them. A short proof in Section 5 fixes these
incorrectnesses. The remaining four sections are mostly the same as in [2].

1. Introduction

The objective of this article is to describe the solutions of a degenerate truncated matrix Ham-
burger moment problem HMP. We start with a set of Hermitian matrices s0, . . . , s2n ∈ Cm×m

and let Kn denote the Hankel block matrix

Kn = (si+j)
n
i,j=0. (1.1)

Let Z(Kn) denote the set of all solutions of the associated truncated Hamburger moment problem,
i.e., the set of nondecreasing right continuous m×m matrix-valued functions σ(λ) such that

∫ ∞

−∞

λkdσ(λ) = sk (k = 0, . . . , 2n− 1) (1.2)

and ∫ ∞

−∞

λ2ndσ(λ) ≤ s2n. (1.3)

As in the scalar case (see [1: §2.1]) Z(Kn) is nonempty if and only if Kn is positive semidefinite
and, moreover, by a theorem of H. Hamburger and R. Nevanlinna [1: §3.1], the formula

w(z) =

∫ ∞

−∞

dσ(λ)

λ− z
(1.4)

establishes a one-to-one correspondence between Z(Kn) and the class R(Kn) of Cm×m–valued
functions w(z) analytic and with positive semidefinite imaginary part in the upper half plane C+

such that uniformly in the angle {z = ρeiθ : ε ≤ θ ≤ π − ε , ε > 0},

lim
z→∞

{
z2n+1w(z) +

2n∑

k=0

skz
2n−k

}
≥ 0. (1.5)

This correspondence reduces the HMP problem to a boundary interpolation problem of finding
all Cm×m–valued Pick functions w (which by definition are analytic and with positive semidefinite
imaginary part in C+) with prescribed asymptotic behavour (1.5) at infinity.
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In this paper we follow the Potapov’s method of the fundamental matrix inequality [9]. The
starting point is the following theorem which describes the set R(Kn) in terms of a matrix inequality
(see [9, §1] for the proof).

Theorem 1.1. Let w be a C
m×m–valued function analytic in C+. Then w belongs to R(Kn) if

and only if it satisfies the inequality



Kn (I − zFm,n)
−1(Uw(z) +M)

(w(z)∗U∗ +M∗)(I − z̄F ∗
m,n)

−1 w(z) − w(z)∗

z − z̄


 ≥ 0 (1.6)

for every z ∈ C+, where

Fm,n =




0m . . . 0

Im
. . .

0 Im
...

...
. . .

. . .
. . .

0 . . . 0 Im 0m




∈ C
m(n+1)×m(n+1) (1.7)

is the matrix of the m-dimensional shift in Cm(n+1) and where U,M ∈ Cm(n+1)×m are given by

U =




Im
0
...
0


 , M = Fm,nKnU =




0
s0
...

sn−1


 . (1.8)

The matrixKn (the so–called Pick matrix of the HMP) satisfies the following Lyapunov identity

Fm,nKn −KnF
∗

m,n = MU∗ − UM∗ (1.9)

which can be easily verified with help of (1.1), (1.7) and (1.8).

The HMP is called nondegenerate if its Pick matrix Kn is strictly positive and it is termed
degenerate if Kn is singular and positive semidefinite. The parametrization of all solutions to
the inequality (1.6) for the case Kn > 0 was obtained in [9] and will be recalled in Theorem 1.3
below. To formulate this theorem we first introduce some needed definitions and notations. We
will denote bt W the class of C2m×2m–valued meromorphic functions Θ which are J–unitary on
R and J–expansive in C+:

Θ(z)JΘ(z)∗ = J (z ∈ R), Θ(z)JΘ(z)∗ ≥ J (z ∈ C+) (1.10)

where

J =

(
0 iIm

−iIm 0

)
. (1.11)

Definition 1.2. A pair {p, q} of Cm×m-valued functions meromorphic in C\R is called a Nevan-
linna pair if

(i) det (p(z)∗p(z) + q(z)∗q(z)) 6≡ 0 (the nondegeneracy of the pair)

(ii)
q(z)∗p(z) − p(z)∗q(z)

z − z̄
= (p(z)∗, q(z)∗)

J

i(z̄ − z)

(
p(z)
q(z)

)
≥ 0 (ℑz 6= 0).

(1.12)

A pair {p, q} is said to be equivalent to the pair {p1, q1} if there exists a C
m×m-valued function

Ω (det Ω(z) 6≡ 0) meromorphic in C\R such that p1 = p Ω and q1 = qΩ. The set of all m×m

matrix valued Nevanlinna pairs will be denoted by Nm.
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Theorem 1.3. Let Kn be a strictly positive matrix given by (1.1) and let Fm,n, U and M be
defined by (1.7), (1.8). Then

(1) The function

Θ(z) =

(
θ11(z) θ12(z)
θ21(z) θ22(z)

)
= I2m + z

(
M∗

−U∗

)
(I − zF ∗

m,n)
−1K−1

n (U,M) (1.13)

belongs to the class W.
(2) The formula

w(z) = (θ11(z)p(z) + θ12(z)q(z))(θ21(z)p(z) + θ22(z)q(z))
−1 (1.14)

gives all the solutions w to the inequality (1.6) when {p, q} varies in Nm.
(3) Two pairs {p(z), q(z)} and {p1(z), q1(z)} lead by (1.14) to the same function w(z) if and

only if these pairs are equivalent.

The degenerate scalar HMP is simple: R(Kn) consists of the unique rational function w(z)
(this follows immediately from (1.6)). In the degenerate matrix case, the description of R(Kn)
depends on the degeneracy of Kn, but we still have a parametrization of all the solutions as a
linear fractional transformation (1.14) with the coefficient matrix Θ from the class W and for a
suitable choice of parameters {p, q} (see Theorem 4.6 below). To construct the coefficient matrix
of the degenerate HMP, we follow the method of V. Dubovoj which was applied in [4] to the
degenerate Schur problem. Note that if det θ22 6≡ 0, the transformation (1.14) can be written as

w(z) = ψ11(z) + ψ12(z)p(z)(ψ22(z)p(z) + q(z))−1ψ21 (1.15)

where

ψ11 = θ11θ
−1
22 , ψ12 = θ11 − θ12θ

−1
22 θ22, ψ21 = θ−1

22 , ψ22 = θ−1
22 θ21 (1.16)

and it turns out that the function Ψ(z) =
(

ψ11(z) ψ12(z)
ψ21(z) ψ22(z)

)
is a Pick function (i.e. analytic and

with positive semidefinite imaginary part in C+). If det θ22 ≡ 0, formulas (1.16) make no sense,
but nevertheless the set R(Kn) can be parametrized by the transformation (1.15) with a coefficient
matrix Ψ from the Pick class. This Ψ can be constructed as a characteristic function of certain
unitary colligation associated with the initial data {sj} of the problem. This approach (see [8]) is
much more stable with respect to a possible degeneracy of the Pick matrix Kn. The degenerate
HMP will be discussed in some more detail in Section 2.

2. Positive semidefinite Hankel extensions of Hankel block matrices

Let Hm,n be the set of all positive semidefinite Hankel block matrices of the form (1.1). We say
that a matrix Kn ∈ Hm,n admits a positive semidefinite Hankel extension if there exist Hermitian

matrices s2n+1, s2n+2 ∈ Cm×m such that the block matrix Kn+1 = (si+j)
n+1
i,j=0 is still positive

semidefinite. The class of such matrices will be denoted by H+
m,n:

H+
m,n =

{
Kn ∈ Hm,n : (si+j)

n+1
i,j=0 ≥ 0 for some s1 = s∗1 and s2 = s∗2

}
. (2.1)

In the scalar case (m = 1) every positive semidefinite Hankel matrix admits a positive semidefinite
Hankel extension and therefore, H+

1,n = H1,n. For n ≥ 2, H+
m,n is a proper subset of Hm,n as can

be seen from the example

K2 =

(
s0 s1
s1 s2

)
, s0 = s1 =

(
1 0
0 0

)
and s2 =

(
1 0
0 1

)
.

We introduce two more subsets of Hm,n:

H̃m,n :=

{
Kn ∈ Hm,n : PKerKn−1

(
sn+1

.

.

.
s2n

)
= 0

}
(2.2)
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and

Ĥm,n :=

{
Kn ∈ Hm,n : s2n =

∫ ∞

−∞

λ2ndσ(λ) for some σ ∈ Z(Kn)

}
. (2.3)

Thus, Ĥm,n consists of all matrices Kn ∈ Hm,n, the associated truncated Hamburger moment
problem admits an “exact” solution σ such that

∫ ∞

−∞

λkdσ(λ) = sk (k = 0, . . . , 2n), (2.4)

that is, with equality for the last assigned moment s2n rather than inequality (1.3). In (2.2) and in
what follows, PKerK denotes the orthogonal projection onto the kernel of K. We will show below
that

H+
m,n = H̃m,n = Ĥm,n (2.5)

which will provide therefore, several equivalent characterizations of Hankel block matrices admit-
ting positive semidefinite Hankel extensions. The following two propositions can be easily verified.

Lemma 2.1. The block matrix T = (tij)
n
i,j=0 (tij ∈ Cr×l) is Hankel if and only if

F ∗

l,n(Fl,nT − TF ∗

r,n)Fr,n = 0 (2.6)

where F is a shift matrix defined via (1.7).

Lemma 2.2. Let K,V ∈ CN×N and A ∈ CN×r be matrices such that K = K∗ and det V 6= 0.
Then, PKerKA = PKerVKV ∗V A.

Given a K ≥ 0, let Q be a matrix such that

QKQ∗ > 0 and rank QKQ∗ = rank K. (2.7)

We define the pseudoinverse matrix K [−1] by

K [−1] = Q∗ (QKQ∗)
−1
Q. (2.8)

Since the pseudoinverse matrix depends on the choice of Q, it is not uniquely defined.

Lemma 2.3. For every choice of K [−1],

I −KK [−1] =
(
I −KK [−1]

)
PKerK . (2.9)

Proof: By (2.7), every vector f can be decomposed as f = g + hQ for some
g ∈ Ker K and h ∈ C

1×rankK . Therefore,

f
(
I −KK [−1]

)
= (g + hQ)

(
I −KQ∗(QKQ∗)−1Q

)
= g

which implies (2.9). �

Lemma 2.4. The block matrix
(

K B
B∗ C

)
is positive semidefinite if and only if

K ≥ 0, PkerKB = 0 and R = C −B∗K [−1]B ≥ 0.

Moreover, if
(

K B
B∗ C

)
≥ 0, then the matrix R does not depend on the choice of K [−1].

Proof: The first assertion of lemma follows from the factorization(
K B

B∗ C

)
=

(
I 0

B∗K [−1] I

)(
K 0
0 R

)(
I K [−1]B

0 I

)

which in view of (2.9), is valid if and only if PkerKB = 0.

Furthermore, let C admit two different representations C = Ri +B∗K
[−1]
i B (i = 1, 2). Then

R1 −R2 = B∗

(
K

[−1]
2 −K

[−1]
1

)
B. (2.10)
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In view of (2.9),

K
(
K

[−1]
2 −K

[−1]
1

)
B =

{(
I −KK

[−1]
1

)
−
(
I −KK

[−1]
2

)}
PKerKB = 0.

Since
(

K B
B∗ C

)
≥ 0, then also B∗

(
K

[−1]
2 −K

[−1]
1

)
B = 0 which both with (2.10) implies R1 =

R2. �

Lemma 2.5. Let Kn ∈ Hm,n and let L be the subspace of C1×m given by

L = {f ∈ C
1×m : (f0, . . . , fn−2, f) ∈ KerKn−1 for some f0, . . . , fn−2 ∈ C

1×m}. (2.11)

Then Kn belongs to H̃m,n, that is

PKerKn−1

(
sn+1

.

.

.

s2n

)
= 0, (2.12)

if and only if the block s2n is of the form

s2n = (sn, . . . , s2n−1)K
[−1]
n−1(sn, . . . , s2n−1)

∗ +R (2.13)

for some positive semidefinite matrix R ∈ Cm×m which vanishes on the subspace L and does not

depend on the choice of K
[−1]
n−1.

Proof: Since Kn ≥ 0, then by Lemma 2.4,

s2n − (sn, . . . , s2n−1)K
[−1]
n−1(sn, . . . , s2n−1)

∗ ≥ 0

and therefore, s2n admits a representation (2.13) for some R ≥ 0. Moreover, since Kn ≥ 0, then
for every vector (f0, . . . , fn−1) from KerKn−1

(f0, . . . , fn−1)




s1 . . . sn
...

...
sn . . . s2n−1


 = 0

and therefore,

fn−1(sn, . . . , s2n−1) = −(f0, . . . , fn−2)




s1 . . . sn
...

...
sn−1 . . . s2n−2




= −(0, f0, . . . , fn−2)Kn−1. (2.14)

Thus,

f0sn+1 + . . .+ fn−2s2n−1 + fn−1(sn, . . . , s2n−1)K
[−1]
n−1(sn, . . . , s2n−1)

∗

= (0, f0, . . . , fn−2)
{
I −Kn−1K

[−1]
n−1

}
(sn, . . . , s2n−1)

∗

= (0, f0, . . . , fn−2)
{
I −Kn−1K

[−1]
n−1

}
PKerKn−1

(sn, . . . , s2n−1)
∗ = 0 (2.15)

where the first equality holds due to (2.14), the second follows by (2.9) and the last one holds since
Kn ≥ 0 and therefore, PKerKn−1

(sn, . . . , s2n−1)
∗ = 0. Comparing (2.15) with (2.13) gives

f0sn+1 + . . .+ fn−1s2n = fn−1R. (2.16)

It remains to show that R vanishes on the subspace L if and only if (2.12) holds. To this end,
let us observe that condition (2.12) means that f0sn+1 + . . . + fn−1s2n = 0 for every vector
(f0, . . . , fn−1) ∈ KerKn−1. The latter is equivalent, in view of (2.16) and (2.11), to fn−1R = 0 for

all fn−1 ∈ L. By Lemma 2.4, the matrix R = s2n − (sn, . . . , s2n−1)K
[−1]
n−1(sn, . . . , s2n−1)

∗ does

not depend on the choice of K
[−1]
n−1. �
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Lemma 2.6. Let H+
m,n, H̃m,n and Ĥm,n be the classes defined in (2.1)–(2.3). Then

H+
m,n ⊆ Ĥm,n ⊆ H̃m,n. (2.17)

Proof: Let Kn+1 be a positive semidefinite Hankel extension of Kn. Since Kn+1 ≥ 0, by the
solvability criterion for the associated Hamburger moment problem, the set Z(Kn+1) is nonempty.
Furthermore, for every σ ∈ Z(Kn+1)∫ ∞

−∞

λkdσ(λ) = sk (k = 0, . . . , 2n+ 1)and

∫ ∞

−∞

λ2n+2dσ(λ) ≤ s2n+2

and therefore, Kn ∈ Ĥm,n which proves the first containment in (2.17).

Now let us assume that Kn belongs to Ĥm,n and let dσ be the measure satisfying conditions
(2.4). Then

Kn =

∫ ∞

−∞

(Im, . . . , λ
nIm)∗ dσ(λ) (Im, . . . , λ

nIm) . (2.18)

Let f = (f0, . . . , fn−1) ∈ C1×mn be a vector from Ker Kn−1. Then
∫∞

−∞
f(λ)dσ(λ)f(λ)∗ = 0,

where
f(λ) = f0 + λf1 + . . .+ λn−1fn−1 = f

(
Im, . . . , λ

n−1Im
)∗
. (2.19)

In particular, for every choice of −∞ < a < b < +∞,
∫ b

a

f(λ)dσ(λ)f(λ)∗ = 0. (2.20)

Let g ∈ C1×m be an arbitrary nonzero vector. By the Cauchy inequality,

∫ b

a

f(λ)dσ(λ)λn+1g∗ ≤

(∫ b

a

f(λ)dσ(λ)f(λ)∗
∫ b

a

λ2n+2gdσ(λ)g∗

) 1
2

which in view of (2.20) implies
∫ b
a
f(λ)dσ(λ)λn+1g∗ = 0. Since a, b ∈ R and g ∈ C1×m are

arbitrary, then ∫ ∞

−∞

f(λ)dσ(λ)λn+1Im = 0

which on account of (2.4)–(2.19) can be rewritten as

f(sn+1, . . . , s2n)∗ = 0. (2.21)

Thus, every vector f ∈ Ker Kn−1 satisfies (2.21) or in other words, PKerKn−1
(sn+1, . . . , s2n)

∗
=

0 and therefore, Kn ∈ H̃m,n, which completes the proof of the second inclusion in (2.17). �

In connection with the last lemma we consider the following question: to describe all matrices
s ∈ Cm×m such that s =

∫∞

−∞
λ2ndσ(λ) for some σ ∈ Z(Kn).

Lemma 2.7. Let Kn ≥ 0 be a block matrix of the form (1.1) with the block s2n of the form

s2n = (sn, . . . , s2n−1)K
[−1]
n−1 (sn, . . . , s2n−1)

∗
+R (2.22)

for some matrix R ≥ 0 (which does not depend on the choice of K
[−1]
n−1) and let s ∈ Cm×m be defined

by

s =

∫ ∞

−∞

λ2ndσ(λ) (2.23)

for some σ ∈ Z(Kn). Then there exists a positive semidefinite matrix R0 ≤ R which vanishes on
the subspace L defined by (2.11) and such that

s = (sn, . . . , s2n−1)K
[−1]
n−1 (sn, . . . , s2n−1)

∗ +R0 (0 ≤ R0 ≤ R and R0|L = 0). (2.24)
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Proof: Let s be of the form (2.23) for some σ ∈ Z(Kn). We introduce the Hankel block matrix

K̃n =




s0 . . . sn−1 sn
...

...
sn−1 s2n−1

sn . . . s2n−1 s


 (2.25)

which differs from Kn only by the block s̃2n = s. Thus, K̃n ∈ Ĥm,n. Therefore, K̃n ∈ H̃m,n,
by Lemma 2.6. By Lemma 2.5, the block s̃2n = s admits representation (2.24) for some R0 ≥ 0
vanishing on L. The inequality R0 ≤ R follows from (1.3) and (2.22)–(2.24). �

Lemma 2.8. Let Kn ∈ Hm,n be of the form (1.1), let L be the subspace given by (2.11), let

s2n, s and K̃n be matrices defined by (2.22), (2.24) and (2.25) respectively, and let the positive
semidefinite R0 : Cm → Cm be defined by

R0h =

{
0 for h ∈ L,
Rh for h ∈ L⊥.

(2.26)

Then the Hamburger moment problems associated with the sets of matrices {s0, . . . , s2n−1, s2n} and

{s0, . . . , s2n−1, s} have the same solutions: Z(Kn) = Z(K̃n).

Proof: Let σ belong to Z(Kn). By Lemma 2.7, the matrix ŝ =
∫∞

−∞
λ2ndσ(λ) admits a

representation (2.24) with a positive semidefinite matrix R̂0 ≤ R vanishing on L. In view of (2.26),

R̂0 ≤ R0. Therefore, ŝ ≤ s and σ ∈ Z(K̃n). So, Z(Kn) ⊆ Z(K̃n). The converse inclusion follows
from the inequality s ≤ s2n. �

Remark 2.9. By Lemmas 2.5 and 2.8, we can assume without loss of generality that the Pick

matrix of the HMP belongs to H̃m,n.

Otherwise we replace the block s2n (which is necessarily of the form (2.22)) by the block s̃2n = s

defined by (2.24), (2.26). By Lemma 2.5, K̃n ∈ H̃m,n and we describe the set Z(K̃n) of solutions
of this new moment problem, which coincides, by Lemma 2.8, with Z(Kn).

3. The coefficient matrix of the problem

The coefficient matrix Θ of the nondegenerate HMP given by the formula (1.13) is the matrix
polynomial of deg Θ = n + 1 and (1.13) is a realization of Θ with state space equal Cm(n+1). In
this section we obtain some special decomposition (see formula (3.13) below) of the state space
which will allow us to construct the analogue of (1.13) for Kn not strictly positive (formula (3.23)).
The idea is simple: to replace in (1.13) the inverse of the matrix Kn (which does not exist for the
degenerate case) by its pseudoinverse. However after this replacement the function Θ may lose
its J–properties (1.10) which are essential for the description (1.14) to be in force. This suggests

the following question: is there exist a pseudoinverse matrix K
[−1]
n of the form (2.8) such that the

function

Θ(z) = I2m + z

(
M∗

−U∗

)
(I − zF ∗

m,n)
−1K [−1]

n (U, M)

still belongs to the class W? We show in Lemmas 3.2 and 3.3 below that such a pseudoinverse

exists if (and in fact, only if) the Pick matrix Kn belongs to the class H̃m,n. Recall that for the
degenerate matricial Schur problem such a pseudoinverse always exists (see [4]).

Lemma 3.1. Let Tn = (ti+j)
n
i,j=0 ∈ H̃l,n (ti ∈ Cl×l), let t0 > 0 and let T̂n−1 be the block matrix

defined as

T̂n−1 = D−1
n

{
S − Tnt

−1
0 T ∗

n

}
D−∗

n (3.1)
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where

Dn =




t0 0 . . . 0
t1
...

. . .
. . . 0

tn−1 . . . t1 t0


 , S = (ti+j)

n
i,j=1, Tn =




t1
...
tn


 . (3.2)

Then T̂n−1 is a Hankel block matrix:

T̂n−1 = (t̂i+j)
n−1
i,j=0 (3.3)

and moreover, T̂n−1 ∈ H̃l,n−1.

Proof: Let Fl,n−1 be the matrix defined via formula (1.7) and let

Ũ := (Il, 0, . . . , 0)∗ ∈ C
ln×l. (3.4)

We begin with the identities

DnFl,n−1 = Fl,n−1Dn, Ũ∗Fl,n−1 = 0, DnŨ − Fl,n−1Tn = Ũ t0 (3.5)

and

Fl,n−1(S − Tnt
−1
0 T ∗

n ) − (S− Tnt
−1
0 T ∗

n )F ∗

l,n−1 = Tnt
−1
0 Ũ∗D∗

n −DnŨt
−1
0 T ∗

n

which follow immediately from (1.7), (3.2) and (3.4). Using these identities we get

F ∗
l,n−1(Fl,n−1T̂n−1 − T̂n−1F

∗
l,n−1)Fl,n−1

= F ∗

l,n−1D
−1
n

{
Fl,n−1

(
S − Tnt

−1
0 T ∗

n

)
−
(
S − Tnt

−1
0 T ∗

n

)
F ∗

l,n−1

}
D−∗
n Fl,n−1

= F ∗
l,n−1D

−1
n

{
Tnt

−1
0 Ũ∗D∗

n −DnŨt
−1
0 T ∗

n

}
D−∗
n Fl,n−1

= F ∗

l,n−1D
−1
n Tnt

−1
0 Ũ∗Fl,n−1 − F ∗

l,n−1Ũt
−1
0 T ∗

n Fl,n−1 = 0

and (3.3) follows by Lemma 2.1. Since Dn is invertible, the factorization formula

Tn =

(
Il 0

Tnt
−1
0 Dn

)(
t0 0

0 T̂n−1

)(
Il t−1

0 T ∗
n

0 D∗
n

)
(3.6)

implies that T̂n−1 ≥ 0 and thus, T̂n−1 ∈ Hl,n−1. It remains to verify that

P
Ker bTn−2




btn

.

.

.
bt2n−2


 = 0. (3.7)

To this end, we first observe that

PKerTn−1
(Tn, S) = 0 (3.8)

since Tn ≥ 0. Using the factorization of Tn−1 similar to (3.6) we obtain
(
s0 0

0 T̂n−2

)
=

(
I 0

−D−1
n−1Tn−1t

−1
0 D−1

n−1

)
Tn−1

(
I −t−1

0 T ∗
n−1D

−∗

n−1

0 D−∗

n−1

)
(3.9)

where Dn−1 and Tn−1 are defined via (3.2). Upon applying Lemma 2.2 to the matrices

K = Tn−1, V =

(
I 0

−D−1
n−1Tn−1t

−1
0 D−1

n−1

)
and A = (Tn, S) ,

and making use of (3.8), (3.9) we obtain

P
Ker bTn−2

D−1
n−1

(
−Tn−1t

−1
0 , Imn

)
(Tn, S) = 0. (3.10)
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From the block decomposition Dn =
(

t0 0
Tn−1 Dn−1

)
we have

D−1
n =

(
t−1
0 0

−D−1
n−1Tn−1t

−1
0 D−1

n−1

)
. (3.11)

Substituting (3.11) into (3.1) we obtain



t̂1 . . . t̂n
...

...

t̂n−1 . . . t̂2n−2


 = (0, Im(n−1))T̂n−1 = D−1

n−1

(
−Tn−1t

−1
0 , Imn

) (
S− Tnt

−1
0 T ∗

n

)
D−∗

n .

The last equality both with (3.10) implies

P
Ker bTn−2




t̂1 . . . t̂n
...

...

t̂n−1 . . . t̂2n−2


 = 0

and, in particular, (3.7), which completes the proof of lemma. �

Lemma 3.2. Let Kn ∈ H̃m,n and let rank Kn = r. Then there exists Q ∈ Cr×(n+1)m such that

QKnQ
∗ > 0, rank QKnQ

∗ = rank Kn, QFm,n = NQ (3.12)

for the shift Fm,n defined by (1.7) and some matrix N ∈ Cr×r. In other words, there exists a

subspace Q = Ran Q
def
= {y ∈ Cm(n+1) : y = fQ for some f ∈ Cr} coinvariant with respect to

Fm,n and such that

C
m(n+1) = Ker K +̇ Q. (3.13)

Proof: We prove this lemma by induction. Let n = 0 and let rank s0 = l ≤ m. Then there
exists a unitary matrix v ∈ C

m×m such that

vs0v
∗ =

(
t0 0
0 0m−l

)
(t0 > 0), (3.14)

and the matrix

g = (Il, 0)v ∈ C
l×m (3.15)

(considered as Q) clearly satisfies (3.12).

Let us suppose that the statement of the lemma holds for all integers up to n− 1. Let as above,

rank s0 = l and let v and g be matrices defined by (3.14), (3.15). Since Kn ∈ H̃m,n, we have
Ker s0 ⊆ Ker si for i = 1, . . . , 2n, and then we have from (3.14),

vsiv
∗ =

(
ti 0
0 0m−l

)
(ti ∈ C

l×l; i = 1, . . . , 2n). (3.16)

In more detail, representations (3.16) for i = 1, . . . , 2n − 1 follow from positivity of Kn along

with its Hankel structure. Since Kn belongs to H̃m,n, equality (2.12) holds. Upon substituting
decompositions (3.14) and (3.16) (for i = 1, . . . , 2n − 1) into (2.12), one can easily see that s2n

is necessarily of the form vs2nv
∗ =

(
t2n γ

0 0

)
for some γ ∈ Cl×(m−l). Since s2n is Hermitian,

γ = 0 and representation (3.16) for s2n follows.

From (3.14)–(3.16) we obtain that gsig
∗ = ti (i = 0, . . . , 2n) and

Tn ≡ (ti+j)
n

i,j=0 = GnKnG
∗

n, rank Tn = rank Kn, (3.17)
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where Gn is the (n+ 1)l × (n+ 1)m matrix defined by

Gn =

(
g 0

. . .

0 g

)
. (3.18)

Since Kn ∈ H̃m,n, then it is readily seen that Tn ∈ H̃l,n. Let T̂n−1, Dn and Tn be matrices
defined by (3.1), (3.2). Multiplying Kn on the left by the matrix

Φ =

(
Il 0

−D−1
n Tnt

−1
0 D−1

n

)
Gn (3.19)

and by Φ∗ on the right we obtain, on account of of (3.18) and (3.6),

ΦKnΦ
∗ =

(
t0 0

0 T̂n−1

)
. (3.20)

By Lemma 3.1, T̂n−1 ∈ H̃l,n−1, and it follows from (3.17), (3.19) and (3.20) that rank T̂n−1 =

rank Kn − rank t0 = r − l. Therefore, by the induction hypothesis, there exist matrices Q̃ ∈

C(r−l)×ln and Ñ ∈ C(r−l)×(r−l) such that

Q̃T̂n−1Q̃
∗ > 0 and Q̃Fl,n = N̂Q̂. (3.21)

We show that the matrices

Q =

(
Il 0

0 Q̃

)
Φ ∈ C

r×(n+1), N =

(
0l 0

Q̃Ũ t−1
0 Ñ

)
∈ C

r×r (3.22)

(where Ũ is the matrix given by (3.4)) satisfy (3.12). Indeed, by (3.20)–(3.22,)

QKnQ
∗ =

(
Il 0

0 Q̃

)(
t0 0

0 T̂n−1

)(
Il 0

0 Q̃∗

)
> 0

and

rank QKnQ
∗ = rank t0 + rank Q̃T̂n−1Q̃

∗ = l + (r − l) = rank Kn.

We next make use of (3.19)–(3.21) and of the block decompositions

Gn =

(
g 0
0 Gn−1

)
and Fm,n =

(
0 0

Ũ Fm,n−1

)

to compute

QFm,n =

(
0 0

Q̃D−1
n Gn−1Ũ Q̃D−1

n Gn−1Fm,n−1

)
=

(
0 0

Q̃D−1
n Ũg Q̃D−1

n Fl,n−1Gn−1

)

and

NQ =

(
0 0

(Q̃Ũ − ÑQ̃D−1
n Tn)t

−1
0 g ÑQ̃D−1

n Gn−1

)

=

(
0 0

Q̃D−1
n (DnŨ − Fl,n−1Tn)t−1

0 g Q̃Fl,n−1D
−1
n Gn−1

)
.

We now invoke equalities (3.5) to verify that the right hand side matrices in the two last formulas
coincide. Thus, QFm,n = NQ = 0, and the matrices Q and N defined by (3.22) satisfy (3.12).
This completes the proof. �

In what follows, the indeces will be omitted and by K and F we mean matrices Kn and Fm,n
given by (1.1) and (1.7) respectively.
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Lemma 3.3. Let K ∈ H̃m,n, let Q be any matrix satisfying (3.12) and let F , U , M , J and K [−1]

be matrices given by (1.7), (1.8), (1.11) and (2.8). Then the C2m×2m–valued function

Θ(z) = I2m + z

(
M∗

−U∗

)
(I − zF ∗)−1K [−1](U, M) (3.23)

is of the class W and moreover,

Θ(z)∗JΘ(z) − J = i(z̄ − z)

(
U∗

M∗

)
K [−1](I − z̄F )−1K(I − zF ∗)−1K [−1](U,M), (3.24)

J − Θ(z)−∗JΘ−1(z) = i(z̄ − z)

(
U∗

M∗

)
(I − z̄F ∗)−1K [−1](I − zF )−1(U,M). (3.25)

Observe that the two first relations in (3.12) enable us to construct the pseudoinverse matrix
K [−1] according to (2.8) and the third equality guarantees (3.24) and (3.25) to be in force.

Proof: Using (3.23), (1.11) and (1.9) we have

Θ(z)∗JΘ(z)− J = i

(
U∗

M∗

)
L(z)(U, M) (3.26)

where

L(z) = |z|2K [−1](I − z̄F )−1 {MU∗ − UM∗} (I − zF ∗)−1K [−1]

+z̄K [−1](I − z̄F )−1 − z(I − zF ∗)−1K [−1]

= (z̄ − z)K [−1](I − z̄F )−1K(I − zF ∗)−1K [−1]

+z̄K [−1](I − z̄F )−1(I −KK [−1]) − z(I −K [−1]K)(I − zF ∗)−1K [−1].

(3.27)

It follows from (3.12) that QF j = N jQ (j = 0, 1, . . .) which both with (2.8) implies

K [−1]F j
(
I −KK [−1]

)
= Q∗(QKQ∗)−1N jQ

(
I −KQ(QKQ∗)−1Q

)
= 0 (3.28)

for j = 0, 1, . . . Since (I − zF ∗)−1 =
∑n

j=0 z
jF ∗j , then also

K [−1](I − zF )−1
(
I −KK [−1]

)
(z ∈ C). (3.29)

Substituting (3.29) into (3.27) and (3.27) into (3.26), we obtain (3.24). Similarly,

Θ(z)JΘ(z)∗ − J = i

(
M∗

−U∗

)
(I − zF ∗)−1L̃(z)(I − z̄F )−1(M, −U) (3.30)

where

L̃(z) = z̄(I − zF ∗)K [−1] − zK [−1](I − z̄F ) − |z|2K [−1] {MU∗ − UM∗}K [−1]

= (z̄ − z)K [−1] + |z|2K [−1]F
(
I −KK [−1]

)
− |z|2

(
I −K [−1]K

)
F ∗K [−1].

(3.31)

Using (3.28) for j = 1 we obtain from (3.31) that L̃(z) = (z̄ − z)K [−1] and by (3.30),

Θ(z)JΘ(z)∗ − J = i(z̄ − z)

(
M∗

−U∗

)
(I − zF ∗)−1K [−1](I − z̄F )−1(M, −U). (3.32)

Relations (1.10) follow from (3.32) and thus, Θ ∈ W. Since it Θ is J–unitary on R, then by the
symmetry principle,
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Θ−1(z) = JΘ(z̄)∗J which both with (3.32) leads to

J − Θ(z)−∗JΘ−1(z) = J(J − Θ(z̄)JΘ(z̄)∗)J

= i(z − z̄)J

(
M∗

−U∗

)
(I − z̄F ∗)−1K [−1](I − zF )−1(M, −U)J

(3.33)

and implies (3.25). �

4. Parametrization of all solutions

In this section we parametrize the set R(Kn) of all solutions of the degenerate HMP in terms
of a linear fractional transformation. The following theorem can be found in [7, 9].

Theorem 4.1. Let Θ =

(
θ11 θ12
θ21 θ22

)
be the block decomposition of a C2m×2m–valued function

Θ ∈ W into four Cm×m–valued blocks. Then all Cm×m–valued analytic in C\R solutions w to the
inequality

(w(z)∗, Im)
Θ(z)−∗JΘ−1(z)

i(z̄ − z)

(
w(z)
Im

)
≥ 0 (4.1)

are parametrized by the formula

w(z) = (θ11(z)p(z) + θ12(z)q(z))(θ21(z)p(z) + θ22(z)q(z))
−1 (4.2)

when the parameter {p, q} varies in the set Nm of all Nevanlinna pairs and satisfies

det (θ21(z)p(z) + θ22(z)q(z)) 6≡ 0; (4.3)

Moreover, two Nevanlinna pairs lead via (4.2) to the same function w if and only if these pairs are
equivalent.

Lemma 4.2. Let {p, q} ∈ Nm be a Nevanlimma pair. Then

det (p(z) + iq(z)) 6≡ 0, (4.4)

the function

S(z) = (p(z) − iq(z))(p(z) + iq(z))−1 (4.5)

is a Cm×m–valued contraction in C+ and moreover, two different pairs lead by (4.5) to the same s
if and only if they are equivalent.

The proof is given in [7]. Observe that by (4.4), every Nevanlinna pair {p, q} satisfies the dual
nondegeneracy property (compare with Definition 1.2)

det (p(z)p(z)∗ + q(z)q(z)∗) 6≡ 0. (4.6)

Lemma 4.3. Let {p, q} ∈ Nm be a Nevanlimma pair such that (Iν , 0) p(z) ≡ 0 (ν ≤ m). Then
{p, q} is equivalent to a pair

{(
0ν 0
0 p̃(z)

)
,

(
Iν 0
0 q̃(z)

)}
for some {p̃, q̃} ∈ Nm−ν . (4.7)

Proof: By the assumption assumption, p and q are of the form

p(z) =

(
0ν 0

p21(z) p22(z)

)
, q(z) =

(
q11(z) q12(z)
q21(z) q22(z)

)
(4.8)

and in view of (4.6), rank (q11(z), q12(z)) = m at almost all z ∈ C+. Multiplying (q11(z), q12(z))
by an appropriate unitary matrix U on the right we obtain

(q11(z), q12(z)) U = (q̃11(z), q̃12(z)), det q̃11(z) 6≡ 0.
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The pair {p, q} is equivalent to the pair {p1, q1} defined as
(
p1(z)
q1(z)

)
=

(
p(z)
q(z)

)
UΦ(z) where Φ(z) =

(
q̃−1
11 (z) −q̃−1

11 (z)q̃12(z)
0 Im−ν

)
.

It follows from (4.8) that the functions p1 and q1 are of the form

p1(z) =

(
0ν 0
p̃1(z) p̃(z)

)
q1(z) =

(
Iν 0
q̃1(z) q̃(z)

)
(4.9)

and it remains to show that {p1, q1} is equivalent to the pair defined in (4.7). Indeed, (4.9) implies
that {p̃, q̃} ∈ Nm−ν and therefore, det (p̃(z) + iq̃(z)) 6≡ 0. Substituting the pair (4.9) into (4.5)
gives

S(z) = (p1(z) − iq1(z))(p1(z) + iq1(z))
−1

=

(
−iI 0

p̃1 − iq̃1 p̃− iq̃

)(
iI 0

p̃1 + iq̃1 p̃+ iq̃

)−1

=

(
−I 0

i(p̃− iq̃)(p̃+ iq̃)−1(p̃1 + iq̃1) − i(p̃1 − iq̃1) (p̃− iq̃)(p̃+ iq̃)−1

)

=

(
−I 0
0 (p̃− iq̃)(p̃+ iq̃)−1

)

(to obtain the last equality we used the following: if the function S =
(

s1 0
s2 −I

)
is contractive

valued, then s2 ≡ 0). It is easily seen that the pair (4.7) being substituted into (4.5), leads to the
same function S. By Lemma 4.2, the pairs (4.5) and (4.9) are equivalent. �

Lemma 4.4. Let R ∈ Cl×2m be a J–neutral matrix (i.e. RJR = 0) and let rank R = ν ≤
min(m, l). Then there exist a J–unitary matrix Ψ and an invertible T such that

TRΨ =

(
Iν 0
0 0

)
. (4.10)

Proof: Since rank R = ν, there exists an invertible matrix T such that

TR =

(
R̂

0(m−ν)×2m

)
(4.11)

where R̂ is a full rank J–neutral matrix. Let us endow the space C1×2m with the indefinite inner
product [x, y] = yJx∗. By (1.11), the subspace

G =
{
g ∈ C

1×2m : g = (ĝ, 0) for some ĝ ∈ C
1×ν
}

is J–neutral. The subspace F =
{
f ∈ C1×2m : f = ĝR̂, ĝ ∈ C1×ν

}
J–neutral as well. Let us

introduce the operator Ψ̂ : F → G by ĝR̂ Ψ̂ = (ĝ, 0). Since F and G are J–neutral and

dim F = dim G, the operator Ψ̂ is J–isometric and has equal defect numbers. Furthermore, Ψ̂ is
invertible and therefore, it admits a J–unitary extension Ψ to all of C1×2m ([6]). The matrix Ψ of

this extended operator in the standard basis is J–unitary and satisfies R̂Ψ = (Iν , 0) which both
with (4.11) implies (4.10). �

Remark 4.5. Let R = (R1, R2) ∈ Cl×2m be a J–neutral matrix: R1R
∗
2 − R2R

∗
1 = 0. Then

rank R = rank (R1 + iR2). Indeed,

rank (R1 + iR2) = rank (R1 + iR2)(R1 + iR2)
∗ = rank (R1R

∗

1 +R2R
∗

2) = rank RR∗ = rank R.
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The following theorem is the degenerate analogue of Theorem 1.3.

Theorem 4.6. Let the Pick matrix Kn of the HMP be in the class H̃m,n and let Θ be the
C2m×2m–valued function defined by (3.23). Then, there exists a J-unitary matrix Ψ ∈ C2m×2m

such that

(1) All the functions w ∈ R(Kn) are obtained by the formula

w(z) = (a11(z)p(z) + a12(z)q(z))(a21(z)p(z) + a22(z)q(z))
−1 (4.12)

with the coefficient matrix A(z) = (aij(z)) = Θ(z)Ψ ∈ W when the parameter {p, q} varies
in the set of all Nevanlinna pairs of the form

{p(z), q(z)} =
{(

0ν 0
0 ep(z)

)
,
(

Iν 0
0 eq(z)

)}
(4.13)

where {p̃, q̃} ∈ Nm−µ and ν is the integer given by

ν = rank {(Im, is0, . . . , isn−1)PKerKn
} .

(2) Two pairs lead to the same function w if and only if they are equivalent.

Proof: According to Theorem 1.1 the set R(Kn) coincides with the set of all solutions to the
inequality (1.6) which is equivalent, by Lemma 2.4, to the following system

w(z) − w(z)∗

z − z̄
− (Uw(z) +M)∗(I − zF )−∗K [−1](I − zF )−1(Uw(z) +M) ≥ 0, (4.14)

PKerK(I − zF )−1{Uw(z) +M} ≡ 0. (4.15)

It is easily seen that (4.14) can be written as

(w(z)∗, I)

{
J

i(z̄ − z)
−

(
U∗

M∗

)
(I − zF ∗)−1K [−1](I − zF )−1(U, M)

}(
w(z)
I

)
≥ 0

and is equivalent, in view of (3.25), to the inequality (4.1) with the function Θ defined by (3.23)
which is of the class W by Lemma 3.3. According to Theorem 4.1, all solutions w to the inequality
(4.14) are parametrized by the linear fractional transformation (4.2) when the parameter {p, q}
varies in the set Nm of all Nevanlinna pairs and satisfies (4.3). It remains to choose among these
solutions all functions w which satisfy also identity (4.15). The rest of the proof is broken into
four steps which we now specify.

Step 1: The function w(z) of the form (4.2) stisfies the identity (4.15) if and only if the corre-
sponding parameter {p, q} satisfies

PKerK{Up(z) +Mq(z)} ≡ 0. (4.16)

Step 2: If a pair {p, q} ∈ Nm satisfies (4.16) then it also satisfies (4.3).

Step 3: If a pair {p, q} ∈ Nm satisfies (4.16) then it is equivalent to some pair {p1, q1} of the
form (

p1(z)
q1(z)

)
= Ψ

(
0ν 0
0 ep(z)
Iν 0
0 eq(z)

)
∼

(
p(z)
q(z)

)
(4.17)

for some J–unitary matrix Ψ ∈ C2m×2m which depends only on Kn and a pair
{p̃, q̃} ∈ Nm−ν , where ν = rank PKerK(U,M) = rank PKerK(U + iM).

Proof of Step 1: Let Θ = (θij) be the function defined by (3.23) and let w be a function of
the form (4.2) for some pair {p, q} ∈ Nm which satisfies (4.3). Then

(
w(z)
I

)
= Θ(z)

(
p(z)
q(z)

)
(θ21(z)p(z) + θ22(z)q(z))

−1



DEGENERATE HAMBURGER MOMENT PROBLEM 15

and therefore, identity (4.15) is equivalent to

PKerK(I − zF )−1(U, M)Θ(z)

(
p(z)
q(z)

)
≡ 0. (4.18)

Using (1.9), (3.23) and the identity

K(I − zF ∗)−1 − (I − zF )−1K = z(I − zF )−1(KF ∗ − FK)(I − zF ∗)−1

we get

(I − zF )−1(U, M)Θ(z) = K(I − zF ∗)−1K [−1](U, M) + (I − zF )−1
{
I −KK [−1]

}
(U, M).

Substituting the latter equality into (4.18) gives

PKerK(I − zF )−1{I −KK [−1]} (Up(z) +Mq(z)) ≡ 0

which on account of (2.9), can be written as

{I + zPKerKF (I − zF )−1(I −KK [−1])}PKerK (Up(z) +Mq(z)) ≡ 0. (4.19)

Since the matrix {I + zPkerKF (I − zF )−1(I −KK [−1])} is nondegenerate, (4.19) implies (4.16).

Proof of Step 2: Let a pair {p, q} ∈ Nm satisfy the condition (4.16). We introduce the pair
(
p0(z)
q0(z)

)
= Θ(z)

(
p(z)
q(z)

)
(4.20)

and show that det q0(z) 6≡ 0. Indeed, suppose that the point λ ∈ C+ and the nonzero vector
h ∈ Cm are such that det Θ(λ) 6= 0 and

q0(λ)h = 0. (4.21)

Since h∗ (p(λ)∗, q(λ)∗) Θ(λ)∗JΘ(λ)

(
p(λ)
q(λ)

)
h = h∗ (p0(λ)

∗, 0)J

(
p0(λ)

0

)
h = 0, then

0 ≤ h∗ (p(λ)∗, q(λ)∗)J

(
p(λ)
q(λ)

)
h = h∗ (p(λ)∗, q(λ)∗) {J − Θ(λ)∗JΘ(λ)}

(
p(λ)
q(λ)

)
h,

due to (1.12). Substituting (3.24) into this last inequality leads us to

K(I − λF ∗)−1K [−1]{Up(λ) +Mq(λ)}h = 0. (4.22)

It follows from (3.23) and (4.20) that

p0(λ) = p(λ) + λM∗(I − λF ∗)−1K [−1]{Up(λ) +Mq(λ)}. (4.23)

Since M = FKU (see (1.8)), then λM∗(I − λF ∗)−1 = U∗K(I − λF ∗)−1 − U∗K. Substituting
this last equality into (4.23) and taking into account (2.9), (4.16), (4.22) and the evident equalities
U∗U = Im and U∗M = 0 we receive

p0(λ)h = p(λ)h − U∗KK [−1]{Up(λ) +Mq(λ)}h + U∗K(I − zF ∗)−1K [−1]{Up(λ) +Mq(λ)}h

= U∗(I −KK [−1]){Up(λ) +Mq(λ)}h + (I − UU∗)p(λ) − U∗Mq(λ)

= U∗(I −KK [−1])PKerK{Up(λ) +Mq(λ)}h = 0.

Since det Θ(λ) 6= 0, the equality p0(λ)h = 0 both with (4.20) and (4.21) implies
(
p(λ)
q(λ)

)
h = Θ(λ)−1

(
p0(λ)
q0(λ)

)
h = 0

and since λ is a arbitrary point, the latter equality contradicts to the nondegeneracy of the pair
{p, q}.

Proof of Step 3: Using (1.9) we obtain that the matrix PKerK(U, M) is J–neutral:

PKerK(U, M)J

(
U∗

M∗

)
PKerK = iPKerK(KF ∗ − FK)PKerK = 0.
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Thus, by Remark 4.5,

µ = rank (PKerK(U, M)) = rank (PKerK(U + iM)) = rank {(Im, is0, . . . , isn−1)PKerKn
} .

According to Lemma 4.4, there exist a J–unitary matrix Ψ and an invertible T such that

TPKerK(U, M)Ψ =

(
Iν 0
0 0

)
. (4.24)

Let {p2, q2} be the pair defined by
(
p(z)
q(z)

)
= Ψ

(
p2(z)
q2(z)

)
. (4.25)

On account of (4.24) and (4.25), condition (4.3) can be rewritten as (Iν , 0) p2(z) ≡ 0 and by
Lemma 4.3, the pair {p2, q2} is equivalent to some pair of the form (4.7), i.e.,

(
p(z)
q(z)

)
= Ψ

(
p2(z)
q2(z)

)
∼ Ψ

(
0ν 0
0 bp(z)
Iν 0
0 bq(z)

)
=

(
p1(z)
q1(z)

)

which completes the proof of Step 3.

Substituting (4.17) into (4.2) and taking into account that the equivalent pairs lead under the
linear fractional transformation to the same function w(z), we finish the proof of theorem. �

By Remark 2.9, the condition Kn ∈ H̃m,n is not restrictive and hence, the received in Theorem
3.3 description is applicable to the general situation Kn ∈ Hm,n.

5. Correction of erratae in [2]

The following result was formulated in [2] (see Lemmas 2.5, 2.10 and 2.11 there).

Lemma 5.1. Let Kn = (si+j)
n
i,j=0 ∈ Hm,n and let L be the subspace of C1×m given in (2.11).

The following are equivalent:

(1) Kn admits a positive semidefinite Hankel extension.

(2) PKerKn−1

(
sn+1

.

.

.

s2n

)
= 0.

(3) The block s2n is of the form

s2n = (sn, . . . , s2n−1)K
[−1]
n−1(sn, . . . , s2n−1)

∗ +R (5.1)

for some positive semidefinite matrix R ∈ Cm×m which vanishes on the subspace L and

does not depend on the choice of K
[−1]
n−1.

(4) The associated truncated Hamburger moment problem admits an “exact” solution σ such
that ∫ ∞

−∞

λkdσ(λ) = sk (k = 0, . . . , 2n).

The proofs of implications (1) ⇒ (4) ⇒ (2) ⇔ (3) presented in [2] are correct; they are repro-
duced in Lemmas 2.10 and 2.11 above. To complete the proof, it suffices to justify (2) ⇒ (1), that
is, in our current terminology, to show that

H̃m,n ⊆ H+
m,n. (5.2)

This inclusion together with (2.17) implies that all three classes introduced in Section 2 coincide.

Proof of (5.2): Let Kn ∈ H̃m,n. Plug in the Nevanlinna pair {p, q} = {0m, Im} (which is

certainly of the form (4.13)) into formula (4.12) to get a solution w(z) = a12(z)a22(z)
−1 from

R(Kn). This Pick function w is rational (since A is) and takes Hermitian values at every real
point at which it is analytic (since A is J-unitary on R). Then the measure σ from the Herglotz
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representation (1.4) of w is finitely atomic and therefore, the integrals
∫∞

−∞
λNdσ(λ) exists for

every N ≥ 0. Since this measure solves the associated HMP, it satisfies (1.2) and 1.3. By virtue
of (2.18), the Hankel block matrix

K̃n =




Kn−1

sn sn+1

...
...

s2n−1 s2n
sn · · · s2n−1

sn+1 · · · s2n

s s2n+1

s2n+1 s2n+2




is positive semidefinite, where we have set

s =

∫ ∞

−∞

λ2ndσ(λ), s2n+1 =

∫ ∞

−∞

λ2n+1dσ(λ), s2n+2 =

∫ ∞

−∞

λ2n+2dσ(λ).

The Hankel block matrix Kn+1 := (si+j)
n+1
i,j=0 extends Kn and is positive semidefinie. Indeed, by

(1.3), we have Kn+1 ≥ K̃n ≥ 0. Thus Kn ∈ H+
m,n which completes the proof. �

Remark 5.2. The proof of implication (2) ⇒ (1) presented in [2] does not rely on interpolation
Theorem 4.6. The extending matrices s2n+1 and s2n+2 were constructed directly in terms of the
given s0, . . . , s2n. Unfortunately, the construction turned out to be wrong. The author was very
glad to learn that correct explicit proofs of the above implication have been recently obtained
[5, 10].
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