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Abstract

We consider positive definite (semidefinite) extension problems for matrices with structure
determined via a Stein equation. Some related extremal problems (maximal and minimal rank
extensions, maximal determinant extension) are also considered. Connections with interpola-
tion problems for a certain class of analytic contractive valued functions on the unit ball of Cd

are discussed.
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1. Introduction

Let (T1, . . . , Td) be a d-tuple of n × n complex matrices which is stable in the
sense that the spectrum of the matrix

∑d
j=1 Tj ⊗ T j sits inside the open unit disk

D. Then in particular,

det

(
In2 −

d∑
j=1

Tj ⊗ T j

)
/= 0 (1.1)
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and therefore, the Stein equation

P − T1PT ∗
1 − · · · − TdPT ∗

d = Q (1.2)

has a unique solution P for every choice of Q ∈ Cn×n [27, Section 8.4]. Thus, if
Q is hermitian, the unique solution P of (1.2) is also hermitian. We shall take Q

in the form Q = EE∗ − MM∗ where E ∈ Cn×p and M ∈ Cn×q , and consider the
generalized Stein equation

P −
d∑

j=1

TjPT ∗
j = EE∗ − MM∗, (1.3)

which, under assumption (1.1), has a unique solution P = P ∗. Equations of the
form (1.2) with Q positive definite were studied in [29,30]. Eqs. (1.2) with Q � 0
and commuting Tj ’s arise in characterization (see [11]) of backward shift invariant
subspaces of the Arveson space that are isometrically included in this space. The
Stein equation of the form (1.2) with a hermitian right-hand side part and commuting
matrices Tj ’s appears in interpolation problems for contractive multipliers of the
Arveson space [6–8].

In the present paper we consider positive definite (semidefinite) extension prob-
lems related to the Stein equation (1.3). Let

T̂j =
[
Tj 0
Vj zj Ik

]
(j = 1, . . . , d) (1.4)

(Ik stands for the k × k identity matrix) be lower triangular extensions of Tj ’s such
that the extended d-tuple (T̂1, . . . , T̂d ) is still stable. Then, in particular,

det

(
I(n+k)2 −

d∑
j=1

T̂j ⊗ T̂ j

)
/= 0, (1.5)

which clearly reduces to three conditions, one of which is (1.1) and the other two of
which are

1 −
d∑

j=1

|zj |2 /= 0 and det

(
In −

d∑
j=1

zjT
∗
j

)
/= 0.

Since the d-tuple (T̂1, . . . , T̂d ) is stable, we have, in fact, 1 −∑d
j=1 |zj |2 > 0. In

other words we assume that the point z = (z1, . . . , zd) belongs to the unit ball

Bd =
{

z = (z1, . . . , zd) :
d∑

j=1

|zj |2 < 1

}

of Cd and that the matrix

G(z) := In −
d∑

j=1

zjT
∗
j (1.6)
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is invertible. Under assumption (1.5), the extended Stein equation

P̂ −
d∑

j=1

T̂j P̂ T̂ ∗
j = ÊÊ∗ − M̂M̂∗ (1.7)

has a unique solution P̂ for every choice of the matrices Ê and M̂ on its right-hand
side. We choose these matrices to be extensions of E and M respectively, i.e., to be
of the form

Ê =
[
E

e

]
and M̂ =

[
M

x

]
, (1.8)

where e ∈ Ck×p is fixed and x ∈ Ck×q is a variable. Then the unique solution P̂ =
P̂x of the extended Stein equation (1.7) depends on x. A comparison of the top

principal blocks in (1.7) leads us to the conclusion that the top principal block of P̂

satisfies (1.3), and therefore equals P , since (1.3) has a unique solution. Therefore,
necessarily P̂ is of the form

P̂x =
[
P β∗
β γ

]
, γ ∈ Ck×k, β ∈ Ck×n, (1.9)

i.e., it extends P , which suggests the following extension problem:

Problem 1.1. Given a stable d-tuple (T̂1, . . . , T̂d ) of (n + k) × (n + k) matrices
of the form (1.4), given Ê ∈ C(n+k)×p and M ∈ Cn×q, find all matrices x ∈ Ck×q

such that the unique solution P̂x of the extended Stein equation (1.7) is positive
semidefinite.

It is well known that many classes of structured matrices can be defined via matrix
equations: if the rank of the matrix EE∗ − MM∗ is small relative to n, the entries of
a unique solution P of the Stein equation (1.3) depend on a relatively small number
of parameters; in other words, P is of a certain structure. The requirement that P̂

satisfies the extended Stein equation (1.7) means that we extend P while preserving
this structure. Thus, for special choices of T̂j ’s, E and M , Problem 1.1 reduces to
various structured positive semidefinite extension problems.

Let us give a somewhat different interpretation of Problem 1.1, starting with P̂

rather than with P . Let P̂ satisfy the extended Stein equation (1.7) and let (1.9)
be its block decomposition conformal with decompositions (1.8) and (1.4). Upon
substituting (1.4), (1.9) and (1.8) into the matrix identity (1.7) and comparing the cor-
responding block entries, we come to the three equalities, the first of which coincides
with (1.3) and the remaining two of which are

β −
d∑

j=1

VjPT ∗
j −

d∑
j=1

zjβT ∗
j = eE∗ − xM∗,
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γ −
d∑

j=1

(VjPV ∗
j + zjβV ∗

j + Vjβ
∗z̄j + |zj |2γ ) = ee∗ − xx∗,

and imply

β =
(

eE∗ − xM∗ +
d∑

j=1

VjPT ∗
j

)
G(z)−1, (1.10)

γ = 1

1 − |z|2
(

ee∗ − xx∗ +
d∑

j=1

(VjPV ∗
j + zjβV ∗

j + Vjβ
∗z̄j )

)
, (1.11)

where G(z) is given by (1.6) and where |z|2 :=∑d
j=1 |zj |2. Now we relax the sta-

bility assumption on (T̂1, . . . , T̂d ) to

d∑
j=1

|zj |2 < 1 and det

(
In −

d∑
j=1

zjT
∗
j

)
/= 0. (1.12)

These two latter conditions do not guarantee that the Stein identity (1.3) defines the
block P in P̂ uniquely. However, if one fixes this block along with T̂j ’s, Ê and M ,
then the block entries β and γ in P̂ will depend on the variable x only, which is easily
seen from formulas (1.10) and (1.11). Thus, if P satisfies the Stein identity (1.3), then
for every x ∈ Ck×q , the extended Stein equation (1.7) has a unique solution P̂x of the
form (1.9). This suggests the following problem which is more general than Problem
1.1 and which reduces to that problem under additional stability conditions on the
matrices Tj ’s.

Problem 1.2. Given matrices T̂1, . . . , T̂d of the form (1.4) and satisfying conditions
(1.12), given matrices P ∈ Cn×n, Ê ∈ C(n+k)×p and M ∈ Cn×q, find all matrices

x ∈ Ck×q such that the unique extension P̂x =
[
P ∗
∗ ∗

]
of P satisfying the extended

Stein equation (1.7) is positive semidefinite.

Strictly speaking, Problem 1.2 is a positive semidefinite completion problem,
since we are asked to complete a partially specified matrix P̂ , subject to the Stein
identity (1.7), to a fully specified positive semidefinite matrix. However, as the spec-
ified pattern P in P̂ is its principal submatrix, we still refer to this problem as to an
extension problem.

It is clear from the preceding analysis that conditions

P � 0 and P −
d∑

j=1

TjPT ∗
j = EE∗ − MM∗ (1.13)
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are necessary for Problem 1.2 to have a solution. In Section 2 we shall show that
these conditions are also sufficient and we shall describe the set of all solutions of
Problem 1.2 when these conditions are met. A problem related to Problem 1.2 is

Problem 1.3. Given the data as in Problem 1.2, find all matrices x ∈ Ck×q such

that the unique extension P̂x =
[
P ∗
∗ ∗

]
of P satisfying the extended Stein equation

(1.7) is positive definite.

Obvious necessary conditions for this problem to have a solution are

P > 0 and P −
d∑

j=1

TjPT ∗
j = EE∗ − MM∗.

The next example shows that these condition are not sufficient.

Example 1.4. Let Tj = 0n×n for j = 1, . . . , d and let E = In and M = 0n×q . Then
P = In > 0 is the unique solution of the Stein equation (1.3). Furthermore, let e =
0k×p and let T̂j = 0(n+k)×(n+k) for j = 1, . . . , d . Then for every choice of x ∈
Ck×q , the unique solution P̂x of the extended Stein equation (1.7) is of the form

P̂x = ÊÊ∗ − M̂M̂∗ ∈ C(n+k)×(n+k)

and cannot be positive definite, since it has not more than n positive eigenvalues.

Necessary and sufficient conditions for Problem 1.3 to have a solution will be
presented in Section 4.

For the case when d = 1, Problems 1.3 and 1.2 were considered in [14] and [9],
respectively. The results presented in Sections 2 and 3 generalize some results from
the referred papers to the case when d > 1. The standard treatment of positive defi-
nite extension problems involves the Schur complement and is based on a simple fact
that.

Remark 1.5. A block matrix P̂ of the form (1.9) is positive definite if and only if
P > 0 and the matrix γ − βP −1β∗ (the Schur complement of P in P̂ ) is positive
definite.

Upon making use of formulas (1.10) and (1.11), one can express the inequality
γ − βP −1β∗ > 0 in terms of x. Straightforward calculations then show that the set
of all x satisfying this inequality form a matrix ball, and the only difficult part is to
show that the semiradii of this ball are positive semidefinite (i.e., that this matrix ball
is not empty). Moreover, it turns out that as in the case when d = 1 (considered in
[14,16]), the center x0 of this matrix ball leads to the extension P̂x0 of P with the
maximal determinant. Using this direct approach, some partial results concerning
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Problem 1.3 were obtained in [28]. Now we explain why this approach does not
work so nicely for Problem 1.2.

A positive semidefinite analogue of Remark 1.5 is the following well known res-
ult, which can be found in many sources (see e.g., [13, Lemma 1.1.8]). Here and
throughout the paper A[−1] stands for the Moore–Penrose generalized inverse of a
square matrix A.

Lemma 1.6. The following are equivalent:

1. The matrix

[
P β∗
β γ

]
is positive semidefinite.

2. It holds that

P � 0, Ker P ⊆ Ker β, γ − βP [−1]β∗ � 0.

3. It holds that

P � 0, γ � 0 and β = γ
1
2 SP

1
2

for some contractive matrix S.

It turns out to be quite difficult to satisfy the two conditions

Ker P ⊆ Ker β and γ − βP [−1]β∗ � 0 (1.14)

simultaneously. This is the main obstruction to applying Lemma 1.6 toward solv-
ing Problem 1.2. For the case when d = 1, however, it was done in [9] upon tak-
ing advantage of an interpolation interpretation of the extension problem and the
extensive use of results on degenerate interpolation for contractive valued analytic
functions (that is, matrix-valued Schur functions). The existing results on degenerate
interpolation in the d-variable setting [4] do not allow us to extend the approach
from [9] to the case when d > 1. In this paper we present a purely algebraic solution
of Problem 1.2 based on a less standard usage of Schur complement arguments. A
similar trick has been used in [8] and originates in [3]. Roughly speaking, the matrix
P̂x will be replaced by another matrix which is positive semidefinite if and only if
P̂x � 0, but for which conditions similar to those in (1.14) can be verified easily. This
will be done in Lemma 2.3, the main technical result of the paper. Using this result,
we shall treat some extremal problems related to Problems 1.2 and 1.3 in Sections 3
and 5.

In Section 6 we shall also consider an extension problem of a different type. In that
new setting e and x will be matrix-valued functions of the variable z = (z1, . . . , zd)

defined on the unit ball Bd , whereas T̂j , Ê and M̂ will be the matrix-valued functions
defined by

T̂j (z) =
[
Tj 0
0 zj Ik

]
(j = 1, . . . , d), (1.15)

Ê(z) =
[

E

e(z)

]
and M̂(z) =

[
M

x(z)

]
. (1.16)
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It turns out (see Section 6), that if P is any solution to the Stein identity (1.3), then
there exists a unique extension P̂ = P̂x(z, w) of P , satisfying the extended func-
tional Stein equation

P̂ −
d∑

j=1

T̂j (z)P̂ T̂j (w)∗ = Ê(z)Ê(w)∗ − M̂(z)M̂(w)∗. (1.17)

Moreover, it turns out that P̂x(z, w) is a matrix-valued function of two variables
z, w ∈ Bd of the form

P̂x(z, w) =
[

P β(w)∗
β(z) γ (z, w)

]
(explicit formulas for β(z) and γ (z, w) will be given in Section 6).

Problem 1.7. Given matrices T1, . . . , Td such that

det

(
In −

d∑
j=1

zjT
∗
j

)
�≡ 0,

given matrices P, E, M, and given a Ck×q -valued function e(z), find all Ck×q -
valued functions x(z) such that the unique extension P̂x(z, w) of P satisfying the
extended Stein identity (1.17) is a positive definite kernel on Bd × Bd .

We call an n × n matrix-valued function K(z, w) defined on the product set � ×
� a positive kernel (although it would be more precise to call it positive semidefi-
nite) if the block matrix [K(zi, zj )]ri,j=1 is positive semidefinite for every choice of
an integer r and of points z1, . . . , zr ∈ �. This property of K will be denoted by
K(z, w) � 0.

Some connections between Problem 1.7 and interpolation problems for a class of
contractive valued analytic functions on the ball Bd will be discussed in Section 7.

2. Positive semidefinite extensions

In this section we shall show that under the assumption that P is a positive semi-
definite solution of the Stein equation (1.3), all the solutions x of Problem 1.2 form a
nonempty matrix ball, which will imply, in particular, that the necessary conditions
(1.13) are also sufficient for Problem 1.2 to have a solution.

We start with some preliminaries. First we introduce the matrices

V = [V1 · · · Vd

]
, T = [T1 · · · Td

]
, (2.1)

Z(z) = [z1In · · · zdIn

]
and P =

P 0
. . .

0 P

 ∈ Cnd×nd, (2.2)
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constructed from the entries of the equation (1.3), which allow us to rewrite formulas
(1.3), (1.6), (1.10) and (1.11) in a more compact form as

P − TPT∗ = EE∗ − MM∗, (2.3)

G(z) = I − Z(z)T∗, (2.4)

β = (eE∗ − xM∗ + V PT∗)G(z)−1, (2.5)

γ = 1

1 − |z|2 (ee∗ − xx∗ + V PV ∗ + βZ(z)V ∗ + V Z(z)∗β∗), (2.6)

respectively. Furthermore, let us introduce the matrix

P̃x = Q(z)P̂xQ(z)∗, where Q(z) =


G(z)∗√
1−|z|2 0

− V Z(z)∗√
1−|z|2

√
1 − |z|2Ik

 . (2.7)

Remark 2.1. Since the matrix Q(z) is invertible, it follows that P̂x � 0 if and only
if P̃x � 0.

By (1.9) and (2.7), P̃x is of the form

P̃x =
[

G(z)∗PG(z)

1−|z|2 β̃∗

β̃ γ̃

]
, (2.8)

where

β̃ = βG(z) − 1

1 − |z|2 V Z(z)∗PG(z),

γ̃ = (1 − |z|2)γ − V Z(z)∗β∗ − βZ(z)V ∗ + V Z(z)∗PZ(z)V ∗

1 − |z|2 .

Substituting explicit formulas (2.5) and (2.6) into the two last relations and taking
into account the equality

Z(z)∗P = PZ(z)∗, (2.9)

we come to

β̃ = −xM∗ + eE∗ + V P

(
T∗ − Z(z)∗G(z)

1 − |z|2
)

, (2.10)

γ̃ = ee∗ − xx∗ + V PV ∗ + 1

1 − |z|2 V Z(z)∗PZ(z)V ∗. (2.11)

The two last formulas suggest introducing the matrices

B =
(

T − G(z)∗Z(z)

1 − |z|2
)

(I − Z(z)∗Z(z))
1
2 (2.12)



V. Bolotnikov, P.A. Smith / Linear Algebra and its Applications 381 (2004) 165–195 173

and

D = V P
1
2

(
I + Z(z)∗Z(z)

1 − |z|2
) 1

2

. (2.13)

The next lemma establishes important relations between these matrices.

Lemma 2.2. Let B and D be given by (2.12) and (2.13). Then

BPB∗ = 1

1 − |z|2 G(z)∗PG(z) − EE∗ + MM∗, (2.14)

DD∗ = V PV ∗ + 1

1 − |z|2 V Z(z)∗PZ(z)V ∗, (2.15)

DP
1
2 B∗ = V P

(
T∗ − Z(z)∗G(z)

1 − |z|2
)

. (2.16)

Proof. Since

(I − Z(z)∗Z(z))
1
2 P(I − Z(z)∗Z(z))

1
2 = (I − Z(z)∗Z(z))P,

it follows from (2.12) that

BPB∗ =
(

T − G(z)∗Z(z)

1 − |z|2
)

(I − Z(z)∗Z(z))P

(
T∗ − Z(z)∗G(z)

1 − |z|2
)

.

Furthermore, in view of (2.9), (2.4) and by

Z(z)Z(z)∗ = |z|2In,

it follows that(
T − G(z)∗Z(z)

1 − |z|2
)

(I − Z(z)∗Z(z)) = T(I − Z(z)∗Z(z)) − G(z)∗

= T − Z(z)

and thus,

BPB∗ = (T − Z(z)) P

(
T∗ − Z(z)∗G(z)

1 − |z|2
)

= TPT∗ − PZ(z)T∗ − TZ(z)∗PG(z)

1 − |z|2 + |z|2
1 − |z|2 PG(z)

= TPT∗ − P(I − G(z)) − (I − G(z)∗)PG(z)

1 − |z|2 + |z|2
1 − |z|2 PG(z)

= TPT∗ − P + 1

1 − |z|2 G(z)∗PG(z),

which implies (2.14), on account of (2.3).



174 V. Bolotnikov, P.A. Smith / Linear Algebra and its Applications 381 (2004) 165–195

Relation (2.15) follows from definition (2.13), by (2.9). Finally, since

(I − Z(z)∗Z(z))−1 = I + Z(z)∗Z(z)

1 − |z|2 ,

it follows that

DP
1
2 B∗=V P

1
2

(
I + Z(z)∗Z(z)

1 − |z|2
) 1

2

P
1
2 (I − Z(z)∗Z(z))

1
2

(
T∗ − Z(z)∗G(z)

1 − |z|2
)

=V P

(
T∗ − Z(z)∗G(z)

1 − |z|2
)

,

which proves (2.16). �

Equality (2.14) suggests introducing the matrix

� = 1

1 − |z|2 G(z)∗PG(z) + MM∗ = BPB∗ + EE∗, (2.17)

while relations (2.15), (2.16) allow us to rewrite formulas (2.10), (2.11) as

β̃ = −xM∗ + eE∗ + DP
1
2 B∗, γ̃ = ee∗ + DD∗ − xx∗

and thus Problem 1.2 reduces to finding all matrices x such that

P̃x =
[

� − MM∗ −Mx∗ + Ee∗ + BP
1
2 D∗

−xM∗ + eE∗ + DP
1
2 B∗ ee∗ + DD∗ − xx∗

]
� 0. (2.18)

Lemma 2.3. The matrix P̂x is positive semidefinite if and only if the following
matrix is positive semidefinite:

Kx =

 Iq − M∗�[−1]M x∗ − M∗�[−1]
[
BP

1
2 E

] [
D∗
e∗
]

x − [D e
] [P

1
2 B∗
E∗

]
�[−1]M

[
D e

]
P

Ker[BP
1
2 E]

[
D∗
e∗
]

 � 0,

(2.19)

where P
Ker[BP

1
2 E] denotes the orthogonal projection of Cdn+p onto the kernel of the

operator
[
BP

1
2 E

]
and where �[−1] stands for the Moore–Penrose generalized

inverse of the positive semidefinite matrix � given by (2.17). Moreover,

rank P̂x = rank � + rank Kx − q (2.20)

and

det P̂x = det � · det Kx

| det G(z)|2 (1 − |z|2)n−k. (2.21)



V. Bolotnikov, P.A. Smith / Linear Algebra and its Applications 381 (2004) 165–195 175

Proof. First, we note that for every matrix S, it holds that

PKer S = I − S∗(SS∗)[−1]S.

By (2.17),

� = [BP
1
2 E

] [P
1
2 B∗
E∗

]
,

and therefore,

P
Ker[BP

1
2 E] = Idn+p −

[
P

1
2 B∗
E∗

]
�[−1][BP

1
2 E

]
. (2.22)

Consider the matrix

Fx =
 � M BP

1
2 D∗ + Ee∗

M∗ Iq x∗

DP
1
2 B∗ + eE∗ x ee∗ + DD∗

 . (2.23)

The Schur complement of the block Iq in this matrix is equal to[
� BP

1
2 D∗ + Ee∗

DP
1
2 B∗ + eE∗ ee∗ + DD∗

]
−
[
M

x

] [
M∗ x∗] ,

which is P̃x , by (2.18). Since Iq is positive definite, it follows that P̃x � 0 if and
only if Fx � 0. On the other hand, since � � 0, it follows from Lemma 1.6 that Fx

is positive semidefinite if and only if

Ker � ⊆ Ker

[
M∗

DP
1
2 B∗ + eE∗

]
(2.24)

and the Schur complement of the block � in Fx is positive semidefinite:[
Iq x∗
x ee∗ + DD∗

]
−
[

M∗

DP
1
2 B∗ + eE∗

]
�[−1][

M Ee∗ + BP
1
2 D∗] � 0.

(2.25)

It follows from representations (2.17) of � that

Ker � = Ker P
1
2 G(z) ∩ Ker M∗ ∩ Ker P

1
2 B∗ ∩ Ker E∗

and thus condition (2.24) is satisfied automatically. On the other hand, by (2.19) and
(2.22), the matrix on the left-hand side of (2.25) coincides with Kx . Thus, taking into
account Remark 2.1, we have

P̂x � 0 ⇐⇒ P̃x � 0 ⇐⇒ Kx � 0,

which completes the proof of the first statement.
Since P̃x is the Schur complement of the block Iq in the matrix Fx ,

rank Fx = q + rank P̃x and det Fx = det Iq · det P̃x = det P̃x .
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Since Kx is the Schur complement of the block � in Fx ,

rank Fx = rank � + rank Kx and det Fx = det � · det Kx.

Thus,

rank P̃x = rank � + rank Kx − q and det P̃x = det � · det Kx. (2.26)

By (2.7), rank P̃x = rankP̂x and

det P̃x = det P̂x · | det Q(z)|2 = det P̂x · | det G(z)|2(1 − |z|2)k−n,

which together with relations (2.26) imply (2.20) and (2.21). �

Remark 2.4. The diagonal blocks

Rr = Iq − M∗�[−1]M and R� = [D e
]

P
Ker[BP

1
2 E]

[
D∗
e∗
]

(2.27)

in the matrix Kx are positive semidefinite.

Indeed, since by (2.17), � � MM∗, it follows that Iq − M∗�[−1]M � 0. Positiv-
ity of R� is selfevident.

Now we can state the main result of this section.

Theorem 2.5. Let conditions (1.13) be in force. Then x is a solution to Problem 1.3
if and only if it is of the form

x = [D e
] [P

1
2 B∗
E∗

]
�[−1]M + R

1
2
� SR

1
2
r (2.28)

for some matrix S ∈ Ck×q with ‖S‖ � 1, where R� and Rr are the matrices given
by (2.27).

Proof. By Lemma 2.3, the unique extension P̂x of P , subject to the extended Stein
equation (1.7), is positive semidefinite if and only if the matrix Kx given by (2.19)
is positive semidefinite. The diagonal blocks in Kx are positive semidefinite (by Re-
mark 2.4) and thus, by the third statement in Lemma 1.6, Kx is positive semidefinite
if and only if

x − [D e
] [P

1
2 B∗
E∗

]
�[−1]M = R

1
2
� SR

1
2
r

for some contractive matrix S ∈ Ck×q . The latter representation is equivalent to
(2.28). �

Thus, the set

X = {x ∈ Ck×q : P̂x � 0, P̂x is subject to the Stein equation (1.7)
}

(2.29)

of all solutions of Problem 1.2 is the matrix ball centered at
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x0 = [D y
] [P

1
2 B∗
E∗

]
�[−1]M (2.30)

and with semiradii R
1
2
� and R

1
2
r .

Note that the parameter S in the parametrization formula (2.28) is not indepen-
dent: different contractive matrices S may lead via (2.28) to the same matrix x. How-
ever, if S varies over the set of contractive matrices such that y∗Sx = 0 for every
y ∈ Ker R� and x ∈ Ker Rr , then formula (2.28) parameterizes the same matrix ball
and different parameters lead to different solutions of Problem 1.2.

Corollary 2.6. Problem 1.2 has a unique solution if and only if conditions (1.13)

are in force and either

rank � = rank P + q or rank � = rank

[
BP

1
2 E

D e

]
. (2.31)

Proof. It follows from the representation (2.28) that the matrix ball X consists of
one matrix if and only if at least one of the two semiradii R� and Rr is the zero
matrix. By the Schur complement arguments,

rank

[
� M

M∗ Iq

]
= rank � + rank (Iq − M∗�[−1]M)

= rank Iq + rank (� − MM∗)

and therefore,

rank Rr = rank (Iq − M∗�[−1]M) = q + rank (� − MM∗) − rank �.

Since the matrix G(z) is invertible, we get from (2.17)

rank (� − MM∗) = rank G(z)∗PG(z) = rank P,

and therefore,

rank Rr = rank P + q − rank �. (2.32)

Thus, the condition Rr = 0 is equivalent to

rank P + q − rank � = 0,

that is, to the first condition in (2.31). On the other hand, it follows from (2.27) that
the condition R� = 0 is equivalent to[

D e
]

P
Ker[BP

1
2 E] = 0,

which, in turn, is equivalent to

rank

[
BP

1
2 E

D e

]
= rank

[
BP

1
2 E

]
.
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The latter equality is equivalent to the second equality in (2.31), since

rank
[
BP

1
2 E

] = rank
[
BP

1
2 E

] [P
1
2 B∗
E∗

]
= rank �. �

3. Maximal and minimal rank extensions

According to (2.29), X stands for the set of all solutions of Problem 1.2. The
question we address in this section is

Problem 3.1. Given T̂j , Ê and M, find the values

rmin = min
x∈X

rank P̂x, rmax = max
x∈X

rank P̂x (3.1)

and describe the sets

Xmin = {x ∈ X : rank P̂x = rmin} and Xmax = {x ∈ X : rank P̂x = rmax}.

Since for any positive semidefinite extension P̂ ∈ C(n+k)×(n+k) of P ∈ Cn×n,

rank P � rank P̂x � rank P + k,

it follows immediately that

rank P � rmin � rmax � rank P + k.

However, these obvious bounds may not be attained under the assumption that P̂

is of a certain structure. The exact values of rmax and of rmin are given in the next
theorem.

Theorem 3.2. Let conditions (1.13) be in force and let R� and Rr be the matrices
given by (2.27). Then

rmin =
{

rank P if rank R� � rank Rr,

rank P + rank R� − rank Rr if rank R� > rank Rr,
(3.2)

and

rmax = rank P + rank R�. (3.3)

The proof is based on the following lemma which is supplementary to Lemma 1.6
(to some extent) and is also well known.

Lemma 3.3. Let the matrix U =
[
A B∗
B C

]
be positive semidefinite, where A ∈

Cn×n and C ∈ Ck×k. Then

max{rank A, rank C} � rank U � rank A + rank C. (3.4)
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Moreover,

1. rank U = rank A + rank C if and only if B admits a representation

B = C
1
2 SA

1
2

for some strictly contractive matrix S.

2. If rank C � rank A, then rank U = rank A if and only if B = C
1
2 SA

1
2 for some

contractive matrix S such that

‖PRan AS∗Cg‖ = ‖Cg‖ for every g ∈ Ck. (3.5)

3. If rank C � rank A, then rank U = rank C if and only if B = C
1
2 SA

1
2 for some

contractive matrix S such that

‖PRan CSAh‖ = ‖Ah‖ for every h ∈ Cn. (3.6)

Conditions (3.5) and (3.6) mean respectively that the operator

S̃ = PRan CS|Ran A : Ran A → Ran C

is coisometric or isometric.

Proof. It follows from factorization formulas

U =
[

In 0
BA[−1] Ik

] [
A 0
0 C − BA[−1]B∗

] [
In A[−1]B∗
0 Ik

]
=
[
In B∗C[−1]
0 Ik

] [
A − B∗C[−1]B 0

0 C

] [
In 0

C[−1]B Ik

]
that

rank U = rank A + rank (C − BA[−1]B∗) = rank C + rank (A − B∗C[−1]B),

which imply inequalities (3.4).

By the third statement in Lemma 1.6, B = C
1
2 SA

1
2 for some contractive matrix

S ∈ Ck×n and thus,

rank U = rank A + rank
(
C

1
2 (Ik − SA

1
2 A[−1]A

1
2 S∗)C

1
2
)

= rank C + rank
(
A

1
2 (In − S∗C

1
2 C[−1]C

1
2 S)A

1
2
)
.

Since, by the definition of the Moore–Penrose generalized inverse,

A
1
2 A[−1]A

1
2 = PRan A and C

1
2 C[−1]C

1
2 = PRan C,

it follows that

rank U = rank A + rank
(
C

1
2 (Ik − SPRan AS∗)C

1
2
)

= rank C + rank
(
A

1
2 (In − S∗PRan CS)A

1
2
)
,

which imply immediately all the statements in the lemma. �
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Proof of Theorem 3.2. Upon applying Lemma 3.3 to the positive semidefinite
matrix

Kx =

 Rr x∗ − M∗�[−1][BP
1
2 E

] [D∗
e∗
]

x − [D e
] [P

1
2 B∗
E∗

]
�[−1]M R�

 ,

(3.7)

we get

max{rank Rr, rank R�} � rank Kx � rank Rr + rank R�. (3.8)

Now we combine (2.20) and (3.8) to obtain

max{rank Rr, rank R�} + rank � − q � rank P̂x � rank Rr + rank R�

+ rank � − q. (3.9)

By (2.32),

rank � − q = rank P − rank Rr,

which being substituted into (3.9), leads to

max{rank R� − rank Rr, 0} + rank P � rank P̂x � rank P + rank R�,

which implies (3.2) and (3.3). �

Applying Statement 1 in Lemma 3.3 to the matrix Kx in (3.7), we arrive at

Theorem 3.4. The set Xmax of all matrices x leading to maximal rank positive semi-
definite extensions P̂x is parametrized by the formula (2.28), where the parameter
S ∈ Ck×q varies on the set of all strictly contractive matrices.

We leave it to the reader to apply Statements 2 and 3 in Lemma 3.3 to the matrix
Kx to get a parametrization of the set Xmin.

4. Positive definite extensions

Using the preceding analysis, we can now treat Problem 1.3, which is a special
case of a maximal rank positive semidefinite extension problem.

Theorem 4.1. Problem 1.3 has a solution if and only if P satisfies the Stein identity
(1.3),

P > 0 and R� > 0, (4.1)
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where R� ∈ Ck×k is the matrix given by (2.27). Moreover, if conditions (1.3) and
(4.1) are in force, Problem 1.3 has infinitely many solutions x, which are parame-
trized by the formula

x = [D e
] [P

1
2 B∗
E∗

]
�−1M + R

1
2
� SR

1
2
r , (4.2)

where � is the positive definite matrix defined as in (2.17), where

Rr = Iq − M∗�−1M

and where S is a free parameter running over the set of all k × n strictly contractive
matrices.

Proof. The necessity of (1.3) and of the first condition in (4.1) is clear. The necessity
of the second condition in (4.1) can be established as follows: if P > 0, then for every
positive definite P̂x subject to (1.7), it holds that

n + k = rank P̂x � rank P + rank R� = n + rank R�. (4.3)

Since R� is a k × k matrix, its rank does not exceed k and thus, it follows from (4.3)
that rank R� = k. Since R� is clearly positive semidefinite, the third inequality in
(4.1) follows.

If conditions (1.3) and (4.1) are in force, it follows from (2.17) that

� � 1

1 − |z|2 G(z)∗PG(z) > 0

and thus, rank � = n. On account of (2.32),

rank Rr = rank P + q − rank � = q

and since Rr is a q × q matrix, it is positive definite. Furthermore, it follows from
Theorem 3.2 that

rmax = rank P + rank R� = n + k

and thus, every maximal rank positive semidefinite extension P̂x is a positive definite
extension of P and vice versa. Thus, the set of all solutions x of Problem 1.3 are
parametrized by formula (4.2), which completes the proof. �

5. Maximal determinant extensions

In this section we consider another extremal problem related to Problem 1.2:

Problem 5.1. Maximize det P̂x over the set of all solutions of Problem 1.2, i.e., find

δ = max
x∈X

det P̂x

and a matrix x0 for which det P̂x = δ.
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We refer to [14,16] where this problem was considered from an interpolation
point of view (connections of structured positive semidefinite extension problems
with interpolation will be discussed in Section 7).

In the case when at least one inequality in (4.1) fails, the maximum determinant
extension problem becomes trivial: any solution x of Problem 1.2 leads to a singu-
lar P̂x and thus, any positive semidefinite extension P̂x has the possibly maximal
determinant, which is zero. The complementary case is covered by the following:

Theorem 5.2. Let conditions (1.3) and (4.1) be in force. Then

δ := max
x∈X

det P̂x = (1 − |z|2)−k det P · det R� (5.1)

and moreover, det P̂x = δ if and only if

x = [D e
] [P

1
2 B∗
E∗

]
�−1M. (5.2)

Proof. The proof is based on relation (2.21) in Lemma 2.3 and the following simple

and well known result: If the matrix U =
[
A B∗
B C

]
is positive definite, then

det U = det A · det(C − BA−1B∗) � det A · det C

with equality if and only if B = 0.
We apply this result to the matrix Kx in (3.7) (note that in the present context,

i.e., under assumption that P > 0, the matrix � defined by (2.17) is positive definite;
thus we use �−1 in (3.7), rather than �[−1]) to conclude that

det Kx � det R� · det Rr, (5.3)

with equality if and only if x is of the form (5.2). Making use of (2.21) and taking
into account (5.3), we arrive at

det P̂x = (1 − |z|2)n−k det � · det Kx

| det G(z)|2
� (1 − |z|2)n−k det � · det R� · det Rr

| det G(z)|2 (5.4)

with equality if and only if x is of the form (5.2). To complete the proof, it remains
to note that in view of (2.27) and (2.17),

det � · det Rr = det � · det(Iq − M∗�−1M)

= det � · det(Iq − �−1MM∗)

= det(� − MM∗) = det

(
G(z)∗PG(z)

1 − |z|2
)

= (1 − |z|2)−n| det G(z)|2 · det P,

which upon being substituted into (5.4), leads to the desired conclusion. �
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We have already mentioned that Problem 5.1 does not make much sense if condi-
tions (4.1) are not in force (although formula (5.1) for δ is true in any case). In conclu-
sion we suggest two different modifications of Problem 5.1, each of which reduces
to Problem 5.1 when conditions (4.1) are in force, and yet remains meaningful when
these conditions are not met.

Given a positive semidefinite matrix A ∈ Cn×n, let D�[A] denote the sum of all
its principal minors of order � � n. It is clear that if A is positive definite, then
Dn[A] = det A. Moreover, if rank P = r , then Dr [A] is equal to the product of all
the positive eigenvalues of A.

Remark 5.3. Note also that if A is positive semidefinite, then D�[A] = 0 if and only
if � > rank A.

Problem 5.4. Maximize Dr+k[P̂x] over the set of all solutions of Problem 1.2,

where r = rank P.

The idea of considering D�[P ] (with an appropriate �) instead of det P goes back
to Inouye [18] who has used it to define an entropy functional for regular random pro-
cesses with degenerate rank. In the context of structured positive semidefinite exten-
sions, this idea was realized in [9, Section 12], where Problem 5.4 was considered
for the case when d = 1.

By (3.3), the possibly maximal rank of P̂x equals rank P + rank R�, and so it
follows, by Remark 5.3, that

δ := max
x∈X

Dr+k[P̂x]
is positive if and only if rank R� = k, that is, if and only if R� > 0. Otherwise, δ = 0
and for every x ∈ X, it holds that Dr+k[P̂x] = 0. Thus, Problem 5.4 is meaningful
for possibly singular P , but only under the assumption that R� is positive definite.

To get rid of this halved situation we arrive at the following:

Problem 5.5. Maximize Drmax[P̂x] over the set of all solutions of Problem 1.2,

where rmax is the integer defined in (3.3).

In this case, the number

δ := max
x∈X

Drmax[P̂x]
is clearly positive and the problem makes sense for any initial data. It is also clear
that the nontrivial case of Problem 5.4 (when R� > 0) is a particular case of Problem
5.5.

We do not know any reasonable analogue of relation (2.21) for variants D�’s
instead of determinants; apparently the approach used above to solve Problem 5.1
cannot be applied to Problems 5.4 and 5.5. For d = 1, Problem 5.4 was treated in
[9] using heavily interpolation theory for analytic contractive valued functions on the
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unit disk (Schur functions). As we have already remarked in Section 1, the existing
results in multivariable interpolation theory do not allow us to apply that approach
in full generality.

6. Positive definite kernel extensions

In this section we describe all the solutions of Problem 1.7 for the case when P

is positive definite. Then, using “structured” regularization in the spirit of [19], we
shall show that if P is positive semidefinite, Problem 1.7 has a solution.

Upon substituting (1.9), (1.15) and (1.16) into (1.17) and comparing the corre-
sponding blocks, we come to the equalities

β −
d∑

j=1

zjβT ∗
j = e(z)E∗ − x(z)M∗,

γ −
d∑

j=1

zj w̄
∗
j γ = e(z)e(w)∗ − x(z)x(w)∗,

which imply (note that in the present context, β and γ turn out to be functions)

β(z) = (e(z)E∗ − x(z)M∗)G(z)−1,

γ (z, w) = e(z)e(w)∗ − x(z)x(w)∗

1 − 〈z, w〉 ,

where G(z) is the function defined in (1.6) and where

〈z, w〉 =
d∑

j=1

zj w̄j

is the standard inner product of Cd . Thus, the unique extension P̂x(z, w) of P , sub-
ject to the Stein identity (1.17), is of the form

P̂x(z, w) =
[

P G(w)−∗ (Ee(w)∗ − Mx(w)∗)
(e(z)E∗ − x(z)M∗) G(z)−1 e(z)e(w)∗−x(z)x(w)∗

1−〈z,w〉

]
(6.1)

and Problem 1.7 can be reformulated as follows (for convenience, we include the
necessary conditions (1.13) into the formulation of the problem).

Problem 6.1. Given matrices Tj , E, M and P � 0 subject to the Stein identity
(1.3), find all Ck×q valued functions x such that the kernel P̂x(z, w) of the form
(6.1) is positive definite on Bd × Bd .
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Note an important particular case of the latter problem, corresponding to the
choice of k = p, e(z) ≡ Ip and x(z) = S(z).

Problem 6.2. Given matrices Tj , E, M and P � 0 subject to the Stein identity
(1.3), find all Ck×q -valued functions x such that the following kernel is positive
definite on Bd × Bd :

P̂S(z, w) =
[

P G(w)−∗ (E − MS(w)∗)
(E∗ − S(z)M∗)G(z)−1 Ip−S(z)S(w)∗

1−〈z,w〉

]
� 0.

(6.2)

For every solution S of Problem 6.2, the kernel

KS(z, w) = Ip − S(z)S(w)∗

1 − 〈z, w〉 (6.3)

is positive definite on Bd × Bd . We shall denote by S
p×q
d the set of all Cp×q -val-

ued functions S defined on Bd and such that the kernel KS is positive definite on
Bd × Bd ; positivity of the kernel KS on Bd × Bd implies that S is necessarily ana-
lytic on Bd . Functions of the class Sp×q

d and their operator-valued analogues have
been studied recently quite intensively (see [1,6,17] and references there). Turning
back to Problem 6.2, note that positivity of the “whole” kernel P̂S(z, w) in (6.2)
imposes certain restriction on S ∈ S

p×q
d , which will be clarified (to some extent)

below.
Problem 6.2 is of particular interest for us, since it turns out to be equivalent to (a

more general) Problem 6.1 in the following sense:

Theorem 6.3. Let P be a positive semidefinite solution of the Stein equation (1.3).

Then the kernel P̂x(z, w) of the form (6.1) is positive definite on Bd × Bd if and only
if x is of the form

x(z) = e(z)S(z) (6.4)

for some Cp×q -valued function S satisfying (6.2).

In other words, x is a solution of Problem 6.1 if and only if it is of the form (6.4)
for some solution S of Problem 6.2.

Proof. The sufficiency part is obvious: let x be of the form (6.4) and let (6.2) be in
force. Due to (6.4), it holds that

P̂x(z, w) =
[
In 0
0 e(z)

]
P̂S(z, w)

[
In 0
0 e(w)∗

]
, (6.5)

which forces P̂x(z, w) � 0, by (6.2).
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The necessity part is less trivial. The proof is partially based on the following
result. �

Theorem 6.4. Let e and x be two matrix-valued functions, defined on Bd . Then the
kernel

e(z)e(w)∗ − x(z)x(w)∗

1 − 〈z, w〉 (6.6)

is positive on Bd × Bd if and only if x admits a representation (6.4) with some
matrix-valued function S (of an appropriate size) of the class Sd (i.e., such that the
kernel KS in (6.3) is positive definite on Bd × Bd).

As in Theorem 6.3, only the necessity part here is nontrivial; we refer to [5,
Section 6.1] for the proof of this result (where it is presented in a more general
operator-valued bitangential setting). Note also that in the one-variable formulation
(d = 1), Theorem 6.4 appeared first in [23]; the complete proof was given in [24]
and reproduced later in [10] (since the source [24] is hardly reachable). Under the
assumption that e and x are analytic, the one-variable result is known as Leech’s
theorem and becomes an easy but elegant consequence of the commutant lifting
theorem [31, p. 107].

Positivity of the kernel P̂x(z, w) of the form (6.1) contains, besides positivity of
the kernel (6.6) some more information about the function x. In fact, the necessity
part in Theorem 6.3 asserts that this additional information is contained completely
in the factor S from the representation (6.4).

Making use of Theorem 6.4, one can prove easily the necessity part in Theorem
6.3 under the additional (and actually, quite restrictive) assumption that

rank e(z) = p (z ∈ Bd).

Indeed, assuming that the kernel P̂x(z, w) is positive definite (and therefore, that
the kernel (6.6) is positive definite), we conclude, by Theorem 6.4 that x admits a
factorization (6.4) for some function S ∈ S

p×q
d . Then relation (6.5) holds and (6.1)

follows. However, if e(z) is not invertible from the left, positivity of P̂S(z, w) does
not follow directly from (6.5). We shall complete the proof in Section 7.

The next remark is a simple “kernel” analogue of Remark 1.5.

Remark 6.5. Let P > 0. Then the kernel

P̂x(z, w) =
[

P β(w)∗
β(z) γ (z, w)

]
is positive definite on � × � if and only if the kernel γ (z, w) − β(z)P −1β(w)∗ is
positive definite on � × �.
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The assertion follows from the factorization formula

P̂x(z, w) =
[

I 0
β(z)P −1 I

] [
P 0
0 γ (z, w) − β(z)P −1β(w)∗

] [
I P −1β(w)∗
0 I

]
.

In the case when P > 0, we use Remark 6.5 to conclude that positivity of the kernel
(6.1) is equivalent to

e(z)e(w)∗ − x(z)x(w)∗

1 − 〈z, w〉
− (e(z)E∗ − x(z)M∗)G(z)−1P −1G(w)−∗(Ee(w)∗ − Mx(w)∗) � 0,

which in turn, can be written as[
e(z) −x(z)

] { J

1 − 〈z, w〉
−
[
E∗
M∗
]

G(z)−1P −1G(w)−∗ [E M
]} [ e(w)∗

−x(w)∗
]

� 0, (6.7)

where

J =
[
Ip 0
0 −Iq

]
. (6.8)

It turns out that the C(p+q)×(nd+p+q)-valued function

�(z) = [0 Ip+q

]+
[
E∗
M∗
]

G(z)−1P −1
[
(Z(z) − T)P

1
2 −E M

]
(6.9)

(which clearly is analytic in Bd ) satisfies the following identity

J − �(z)J�(w)∗

1 − 〈z, w〉 =
[
E∗
M∗
]

G(z)−1P −1G(w)−∗ [E M
]

(z, w ∈ Bd),

(6.10)

where

J =
[
Ind 0
0 J

]
=
[
Ind+p 0

0 −Iq

]
. (6.11)

The proof of (6.10) (based on the identity (1.3) only) is straightforward and can be
found in [8, p. 1381].

Taking advantage of (6.10), we rewrite the last inequality (6.7) as[
e(z) −x(z)

] �(z)J�(w)∗

1 − 〈z, w〉
[

e(w)∗
−x(w)∗

]
� 0 (z, w ∈ Bd). (6.12)

Theorem 6.6. Let P be positive definite and let

� =
[
�11 �12
�21 �22

]
:
[

Cnd+p

Cq

]
→
[

Cp

Cq

]
(6.13)
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be the partition of the function � given by (6.9) into four blocks of the indicated
sizes. Then the set of all solutions x of Problem 1.7 is parametrized by the linear
fractional transformation

x(z) = e(z) (�11(z)E(z) + �12(z)) (�21(z)E(z) + �22(z))
−1 , (6.14)

when the parameter E varies on the set S(nd+p)×q
d .

Proof. It follows from (6.10), (6.8), (6.11) and (6.13) that

−Iq − �21(z)�21(z)
∗ + �22(z)�22(z)

∗ � 0 (z ∈ Bd).

Therefore, �22(z) is invertible at every point z ∈ Bd and ‖�22(z)
−1�21(z)‖ < 1.

Then the function

�21(z)E(z) + �22(z) = �22(z)(�22(z)
−1�21(z)E(z) + Iq)

is invertible in Bd for every E ∈ S(nd+p)×q , which means that the transformation
(6.14) is well defined on the set S(nd+p)×q

d .
According to the preceding analysis, x is a solution of Problem 1.7 if and only if

it satisfies the inequality (6.12). Setting[
u(z) −v(z)

] = [e(z) −x(z)
]
�(z), (6.15)

where u and v are, respectively, Cp×(nd+p)- and Cp×q -valued, one can rewrite (6.12)
as

u(z)u(w)∗ − v(z)v(w)∗

1 − 〈z, w〉 � 0 (z, w ∈ Bd),

which is equivalent (by Theorem 6.4) to the existence of a function E ∈ S
(nd+p)×q
d

such that

u(z)E(z) = v(z) (z ∈ Bd).

By (6.15), we conclude that x is a solution of Problem 1.7 if and only if[
e(z) −x(z)

]
�(z) = u(z)

[
Ind+p −E(z)

]
for some function u defined on Bd and a function E ∈ S

(nd+p)×q
d . The latter is

equivalent to[
e(z) −x(z)

]
�(z)

[
E(z)

Iq

]
= 0,

which, being rewritten as

e(z) (�11(z)E(z) + �12(z)) − x(z) (�21(z)E(z) + �22(z)) = 0

is evidently equivalent to (6.14). �
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As a consequence of the last theorem we get that under the assumption P > 0,
Problem 1.7 has infinitely many solutions. Using a suitable regularization, we shall
show in the next theorem that

Theorem 6.7. Problem 6.1 always has a solution.

Proof. Let {εi} be any decreasing positive sequence tending to zero and let

Eεi
= [E εiIn

]
, Mεi

= [M εiT
]
, Pεi

= P + ε2
i In. (6.16)

Furthermore, let us introduce the extended matrices Êεi
(z) and M̂εi

(z) by

Ẽεi
(z) =

[
E εiIn

e(z) 0

]
, M̃εi

(z) =
[

M εiT
x1,εi

(z) x2,εi
(z)

]
.

Then the matrix Pεi
is positive definite and satisfies the Stein identity

Pεi
−

d∑
j=1

TjPεi
T ∗

j = Eεi
E∗

εi
− Mεi

M∗
εi
. (6.17)

Then, by Theorem 6.6, for every i, there exists a function

xεi
(z) = [x1,εi

(z) x2,εi
(z)
]

(6.18)

such that the unique extension P̂εi ,x(z, w) of Pεi
, subject to extended Stein identity

P̂ −
d∑

j=1

T̂j (z)P̂ T̂j (w)∗ = Êεi
(z)Êεi

(w)∗ − M̂εi
(z)M̂εi

(w)∗ (6.19)

is a positive kernel on Bd . The explicit formula for P̂εi ,x(z, w) is derived from (6.19)
and is similar to (6.1):

P̂εi ,x(z, w) =
[

Pεi
Wεi

(w)∗

Wεi
(z)

e(z)e(w)∗−xεi
(z)xεi

(w)∗
1−〈z,w〉

]
� 0, (6.20)

where

Wεi
(z) = ([e(z) 0

]
E∗

εi
− xεi

(z)M∗
εi

)
G(z)−1. (6.21)

It follows from (6.19) that, in particular,

e(z)e(w)∗ − xεi
(z)xεi

(w)∗

1 − 〈z, w〉 � 0 (z, w ∈ Bd)

and then, by Theorem 6.4, there exists a function Sεi
∈ S

p×(q+nd)
d such that

xεi
(z) = e(z)Sεi

(z). (6.22)

Since the functions Sεi
’s are analytic and contractive valued on Bd , there exists (by

Montel’s theorem) a subsequence of {εi} (for which we shall keep the same notation)
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such that {Sεi
} converges to an analytic function S(z) uniformly on compact subsets

of Bd . Since Sεi
∈ S

p×(q+nd)
d , the kernels KSi

(z, w) = Ip−Sεi
(z)Sεi

(w)∗
1−〈z,w〉 are positive

definite on Bd . By approximation arguments, the limit kernel KS(z, w) is positive
definite on Bd × Bd and thus, the limit function S is of the class Sp×(q+nd)

d . Passing
to limits in (6.22) we come to the function

x̂(z) = lim
i→∞ xεi

(z) = e(z)S(z). (6.23)

Let

x̂(z) = [x̂1(z) x̂2(z)
]

(6.24)

be the partitioning of x̂ conformal with (6.18). Then it follows from (6.21) that

lim
i→∞ Wεi

(z) = (e(z)E∗ − x̂1(z)M
∗)G(z)−1.

Now we pass to limits in (6.20) (as i → ∞) to get the positive kernel

P̂x̂ (z, w) =
[

P G(w)−∗(Ee(w)∗ − Mx̂1(w)∗)
(e(z)E∗ − x̂1(z)M

∗)G(z)−1 e(z)e(w)∗−x̂(z)x̂(w)∗
1−〈z,w〉

]
� 0.

Adding to the latter kernel the positive kernel

[
0 0
0 x̂2(z)x̂2(w)∗

]
and taking into

account that

x̂(z)x̂(w)∗ = x̂1(z)x̂1(w)∗ + x̂2(z)x̂2(w)∗,
due to (6.24), we get

P̂x̂1(z, w) =
[

P G(w)−∗(Ee(w)∗ − Mx̂1(w)∗)
(e(z)E∗ − x̂1(z)M

∗)G(z)−1 e(z)e(w)∗−x̂1(z)x̂1(w)∗
1−〈z,w〉

]
� 0.

The latter kernel is a unique extension of P , subject to extended Stein equation

P̂ −
d∑

j=1

T̂j (z)P̂ T̂j (w)∗ =
[

E

e(z)

] [
E∗ e(w)∗

]−
[

E

x̂1(z)

] [
E∗ x̂1(w)∗

]
,

which means that x̂1 is a solution of Problem 1.7. �

Note that regularization (6.16) is quite special: to apply Theorem 6.6 (i.e., the
nonsingular case) we had to regularize P to make its regularization Pε not only
positive definite, but also satisfy certain Stein identity. To our best knowledge such
structured regularization was first suggested in [19] (see also [20]).

We mention another consequence of Theorem 6.6. In the case when k = p, e(z) ≡
Ip and x(z) = S(z), Theorem 6.6 reads:

Theorem 6.8. Let P be positive definite solution of the Stein equation (1.3) and
let � be the function defined in (6.9) and partitioned into four blocks as in (6.13).
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Then the set of all solutions S of Problem 6.2 is parametrized by the linear fractional
transformation

S(z) = (�11(z)E(z) + �12(z)) (�21(z)E(z) + �22(z))
−1 , (6.25)

when the parameter E varies on the set S(nd+p)×q
d .

7. Positive kernel extensions and interpolation

We start this section with the proof of the necessity part in Theorem 6.3.

Proof of Theorem 6.3 (necessity part). Let x(z) be such that the kernel P̂x(z, w) of
the form (6.1) is positive definite. We consider separately two cases.

Case 1: P > 0. In this case one can define the function � by formula (6.9) and
conclude, by Theorem 6.6, that x admits a representation (6.14):

x(z) = e(z) (�11(z)E(z) + �12(z)) (�21(z)E(z) + �22(z))
−1 ,

with some function E ∈ S
(nd+p)×q
d . Thus,

x(z) = e(z)S(z),

where

S(z) := (�11(z)E(z) + �12(z)) (�21(z)E(z) + �22(z))
−1 . (7.1)

But by Theorem 6.8, the function S of the form (7.1) is a solution of Problem 6.2,
i.e., it satisfies (6.2).

Case 2: P � 0. In this case we use regularization arguments, similar to those in
the proof of Theorem 6.7 (note that in the contrast to Theorem 6.7, now we start
with certain x(z) such that the kernel P̂x(z, w) is positive definite). Let {εi} be any
decreasing positive sequence tending to zero and let (as in (6.16))

Eεi
= [E εiIn

]
, Mεi

= [M εiT
]
, Pεi

= P + ε2
i In. (7.2)

Furthermore, we let

ê(z) = [e(z) 0
]
, x̂(z) = [x(z) 0

]
(7.3)

and

Êεi
(z) =

[
Eεi

ê(z)

]
, M̂εi

(z) =
[
Mεi

x̂(z)

]
.

It is easily seen that a unique extension P̂x̂,εi
of Pεi

, subject to extended Stein equa-
tion (6.19), takes the form

P̂x̂,εi
(z, w) =

[
Pεi

G(w)−∗ (Eεi
ê(w)∗ − Mεi

x̂(w)∗
)(

ê(z)E∗
εi

− x̂(z)M∗
εi

)
G(z)−1 ê(z)ê(w)∗−x̂(z)x̂(w)∗

1−〈z,w〉

]
,

(7.4)
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which is the same (due to (7.2) and (7.3)) as

P̂x̂,εi
(z, w) =

[
Pεi

G(w)−∗ (Ee(w)∗ − Mx(w)∗)
(e(z)E∗ − x(z)M∗) G(z)−1 e(z)e(w)∗−x(z)x(w)∗

1−〈z,w〉

]
.

Comparing the last formula with (6.1) we see that

P̂x̂,εi
(z, w) = P̂x(z, w) +

[
ε2
i In 0
0 0

]
and thus, the assumption P̂x(z, w) � 0 implies that P̂x̂,εi

(z, w) � 0. Since Pεi
is

positive definite and satisfies the Stein identity (6.17), we can apply Case 1 to the
kernel (7.4) to conclude that

x̂(z) = ê(z)Sεi
(z)

or equivalently, that[
x(z) 0

] = [e(z) 0
]
Sεi

(z) (7.5)

for some function Sεi
such that[

Pεi
G(w)−∗ (Eεi

− Mεi
Sεi

(w)∗
)(

E∗
εi

− Sεi
(z)M∗

εi

)
G(z)−1 Ip+dn−Sεi

(z)Sεi
(w)∗

1−〈z,w〉

]
� 0. (7.6)

All the functions Sεi
are of the class S

(p+dn)×(q+n)
d (since the kernels

Ip+dn−Sεi
(z)Sεi

(w)∗
1−〈z,w〉 are positive definite on Bd × Bd ) and thus, using the arguments

from the proof of Theorem 6.7, one can find a function S0 ∈ S
(p+dn)×(q+n)
d and a

subsequence of {εi} (which still will be denoted by {εi}) such that

lim
i→∞ Sεi

(z) = S0(z)

and convergence is uniform on compact subsets of Bd . Let

S0 =
[

S S1
S2 S3

]
:
[

Cq

Cn

]
→
[

Cp

Cdn

]
(7.7)

be the partition of the function S0 into four blocks of the indicated sizes. Upon taking
the limit in (7.5) as i → ∞ and taking into account (7.7), we get

x(z) = e(z)S(z). (7.8)

Now we multiply the kernel in (7.6) by [In+p 0] on the left, by [In+p 0]∗ on
the right (in other words we delete the dn bottom rows and the dn right columns in
(7.6)) and pass to the limit as i → ∞ in the resulting inequality. On account of (7.7),
we get[

P G(w)−∗ (E − MS(w)∗)
(E∗ − S(z)M∗)G(z)−1 Ip−S(z)S(w)∗−S1(z)S1(w)∗

1−〈z,w〉

]
� 0.
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But the last inequality clearly implies

P̂S(z, w) =
[

P G(w)−∗ (E − MS(w)∗)
(E∗ − S(z)M∗)G(z)−1 Ip−S(z)S(w)∗

1−〈z,w〉

]
� 0.

(7.9)

Thus, x admits a factorization (7.8) with a function S subject to (7.9). This completes
the proof. �

Remark 7.1. Note that Theorem 6.6 is a consequence of Theorems 6.8 and 6.3; it
looks much more reasonable to derive a more general Theorem 6.6 from a particular
case covered by Theorem 6.3. In the current situation, we cannot do that, since the
proof of Theorem 6.3 relies on Theorem 6.6.

In any event, Theorem 6.3 shows that Problem 1.7 reduces to Problem 6.2 which,
in fact, is an interpolation problem for functions in the class Sp×q

d . It can be refor-
mulated in a slightly different form in terms of reproducing kernel Hilbert spaces (we
refer to [15] for main definitions and especially, for reproducing kernel approach to
interpolation). Here we recall the fundamental result of Aronszajn [2] which states
that for every positive kernel K there is a unique reproducing kernel Hilbert space
H(K) with K as its reproducing kernel, and the following result which goes back
to [7].

Lemma 7.2. Let K(z, w) be a Cp×p-valued kernel on � × �, let F(z) be a Cp×n-

valued function on � and let P ∈ Cn×n. Then the kernel

[
P F(w)∗

F(z) K(z, w)

]
is posi-

tive definite on � if and only if

P � 0, K(z, w) � 0 (z, w ∈ �)

and for every x ∈ Cp, the vector function F(z)x belongs to the reproducing kernel
Hilbert space H(K) and satisfies

‖Fx‖2
H(K) � x∗Px.

The latter result is equivalent to that in [7, Theorem 2.2] in case when p = n = 1.
The general (even operator-valued case) can be proved using much the same argu-
ments (see e.g., [12, Lemma 2.1]).

For a function S ∈ S
p×q
d , the kernel KS(z, w) = Ip−S(z)S(w)∗

1−〈z,w〉 is positive on Bd

(by definition) and then, there is a unique reproducing kernel Hilbert space (which
will be referred below as to H(S)) with KS as its reproducing kernel. Making use
of Lemma 7.2, we can reformulate Problem 6.2 in the following way:
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Problem 7.3. Given matrices P, T1, . . . , Td ∈ Cn×n, E ∈ Cn×p and M ∈ Cn×q,

subject to the Stein identity (1.3), find all the functions S ∈ S
p×q
d such that for

every x ∈ Cn, the function

Bx(z) := (E∗ − S(z)M∗)

In −
d∑

j=1

ziT
∗
i

−1

x belongs to the space H(S)

and satisfies

‖Bx‖2
H(S) � x∗Px.

The latter problem can be considered as a multivariable matricial analogue of the
Abstract Interpolation Problem introduced in [21] (see also [22,25]) for Schur func-
tions (i.e., for the case when d = 1). Note that inequality (6.2) is, in fact, Potapov’s
fundamental matrix inequality corresponding to Problem 7.3 (see [26] for the origins
and [25] for general overview of the Potapov’s approach to interpolation problems).

All the solutions S of Problem 7.3 (in case when P is positive definite) are param-
etrized by the linear transformation (6.25). It remains to clarify what interpolation
conditions in Problem 7.3 mean in terms of values of S and or of its partial deriva-
tives. This question turns out to be quite difficult (especially in case when the matri-
ces T1, . . . , Td do not commute); it lies far beyond the framework of the present
paper and will be treated elsewhere.
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