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A general interpolation problem for operator–valued Stieltjes functions is studied
using V. P. Potapov’s method of fundamental matrix inequalities and the method
of operator identities. The solvability criterion is established and under certain
restrictions the set of all solutions is parametrized in terms of a linear fractional
transformation. As applications of a general theory, a number of classical and
new interpolation problems are considered.

1 Introduction

Classical interpolation problems (Schur, Nevanlinna–Pick, Carathéodory–Féjer problems,
the moment problem et.c.) and their various generalizations were studied using several

different approaches and methods (see e.g., [8] for short historical survey). It turns out
that the interpolation data of each such problem satisfies a certain operator identity. The

structure of this identity turns to be similar (and often, the same) for quite different problems.
This allows one to consider a whole circle of problems in a unified way [19], [23]. On the

other hand, the operator identities themselves are useful for applications [23], [24].

In [13] a general interpolation problem generated by an operator identity has been
considered in the Nevanlinna class of matrix valued functions analytic and with the nonnega-

tive imaginary part in the upper half–plane C+. It was shown that the classical Nevanlinna–
Pick and Carathéodory–Féjer interpolation problems are particular cases of this problem as

well as the Hamburger moment problem, the Krein extension problem for positive functions
on the interval and so on. In this paper we consider a similar problem for the Stieltjes func-

tions (see Definition 2.1) which form an important subclass of the Nevanlinna class. The
Stieltjes functions and their role in applications have been studied in [14]. The interpolation

problems for Stieltjes functions has been considered in [21] (the scalar case), [11], [2], [5]
(the matrix–valued case). We refer also to [5], [10] where interpolation problems for Stielt-

jes functions are interpreted in terms of integral representations of a pair of nonnegative
operators.

Throughout the paper H and H̃ are the separable Hilbert spaces with the inner



products 〈 , 〉H and 〈 , 〉H̃ respectively and {H; H̃} stands for the set of bounded linear

operators acting from H to H̃.

Let A ∈ {H; H}, B ∈ {H; H̃} and C ∈ {H̃; H} be operators such that the
spectrum of the pencil A − zCB, is an at most countable closed set,

Z = spec (A − zCB) :=
{
zi ∈ C : (A − ziCB)−1 6∈ {H; H}

}
(1.1)

and has no accumulation points on the positive semi–axis IR+. Then the function

Γ(z) = (A − zCB)−1 (1.2)

is {H; H}–valued and analytic for all z ∈ C\Z and in particular, it is analytic on IR+ except
at an at most countable set Λ of isolated points

Λ = Z ∩ IR+ =
{
λi ≥ 0 : (A − λiCB)−1 6∈ {H; H}

}
. (1.3)

Let Π2 be arbitrary operator from {G; H} and let E denote the set of all nondecreasing

{G; G}–valued functions σ(λ) on IR+\Λ such that the integrals

Kσ :=
∫

IR+\Λ
Γ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗, K̃σ :=
∫

IR+\Λ
λ BΓ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗B∗ (1.4)

and

J =
∫

IR+\Λ

dσ(λ)

λ + 1
(1.5)

converge in the weak sense. For σ ∈ E , the integral

Π1,σ :=
∫

IR+\Λ
BΓ(λ)Π2 dσ(λ) (1.6)

converges in the weak sense for every σ(λ) ∈ E . To show this, consider the space L consisting
of G–valued functions g(λ) with the following inner product

〈g, g〉L :=
∫

IR+\Λ
(dσ(λ)g(λ), g(λ))G .

Since integrals (1.4), (1.5) converge, it follows that for every f ∈ H̃ and h ∈ G,

√
λ + 1Π∗

2Γ(λ)∗B∗f ∈ L and
h√

λ + 1
∈ L

which in turn implies the convergence of

∫

IR+\Λ

〈
dσ(λ)

h√
λ + 1

,
√

λ + 1 Π∗
2Γ(λ)∗B∗f

〉

G

and therefore, the weak convergence of (1.6). The following identity

AKσB∗ − CK̃σ = Π2Π
∗
1,σ (1.7)



is an immediate consequence of (1.4) and (1.6):

AKσB∗ − CK̃σ =
∫

IR+\Λ
(A − λCB)Γ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗B∗

= Π2

∫

IR+\Λ
dσ(λ) Π∗

2Γ(λ)∗B∗ = Π2Π
∗
1,σ.

Let us introduce the operators K ∈ {H; H}, K̃ ∈ {H̃; H̃} and Π1 ∈ {H̃; G} by

K = Kσ + P∞ +
∑

i

(Pi + FiF
∗
i ) (1.8)

K̃ = K̃σ + F̃ F̃ ∗ + P̃∞ +
∑

i

λiB(Pi + FiF
∗
i )B∗ (1.9)

Π1 = Π1,σ − F̃ γ
1

2 +
∑

i

BFix
1

2

i (1.10)

where λi are points from Λ; where nonnegative operators P∞ ∈ {H; H}, P̃∞ ∈ {H̃; H̃},
γ ∈ {G; G} and the operator F̃ ∈ {G; H̃} are such that

BP∞ = 0, CP̃∞ = 0, CF̃ = Π2γ
1

2 (1.11)

and where nonnegative operators Pi ∈ {H; H}, xi ∈ {G; G} and operators Fi ∈ {G; H} are
subject to

(A − λiCB)Pi = 0, (A − λiCB)Fi = Π2x
1

2

i . (1.12)

It turns out that every triple
{
K, K̃, Π1

}
of the form (1.8)–(1.12) satisfies the identity

AKB∗ − CK̃ = Π2Π
∗
1. (1.13)

Indeed, it follows from (1.7)–(1.12) that

AKB∗ − CK̃ = Π2Π
∗
1,σ − CF̃ F̃ ∗ +

∑

i

(A − λiCB)FiF
∗
i B∗

= Π2Π
∗
1,σ − Π2γ

1

2 F̃ ∗ + Π2

∑

i

x
1

2

i F ∗
i B∗ = Π2Π

∗
1.

Moreover, the operator identity (1.13) suggests the following interpolation problem.

Problem 1.1 Given operators

A ∈ {H; H}, B ∈ {H; H̃}, C ∈ {H̃, H}, Π2 ∈ {G; H}
K ∈ {H; H}, K̃ ∈ {H̃; H̃}, Π1 ∈ {G; H̃} (1.14)

satisfying the operator identity (1.13), to describe all functions σ ∈ E which give the repre-

sentations (1.8)–(1.12).

The presence of the operators Pi and Fi in (1.8)–(1.10) is conditioned by singular points of

the function Γ (given by (1.2)) on the positive half–axis. Note that for the case when Γ is
analytic on IR+ the set Λ is empty and Problem 1.1 is simplified as follows.



Problem 1.2 Given operators (1.14) satisfying the operator identity (1.13), to describe all
functions σ ∈ E which give the representations

K =
∫ ∞

0
Γ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗ + P∞ (1.15)

K̃ =
∫ ∞

0
λBΓ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗B∗ + F̃ F̃ ∗ + P̃∞ (1.16)

Π1 =
∫ ∞

0
BΓ(λ)Π2 dσ(λ) − F̃ γ

1

2 (1.17)

where nonnegative operators P∞ ∈ {H; H}, P̃∞ ∈ {H̃; H̃}, γ ∈ {G; G} and the operator

F̃ ∈ {G; H̃} are subject to (1.11).

For a number of interpolation problems (e.g., Stieltjes moment problem, Krein’s extension
problem on IR+; see Sections 10 and 11) the operators B and C have zero kernels and γ = 0.

For such a case the additional terms P∞, P̃∞ and F̃ do not appear in (1.15)–(1.17), and
Problem 1.2 deals in fact with integral representations of given operators K, K̃ and Π1

satisfying the operator identity (1.13).
The solvability criterion of Problem 1.1 is established by the following

Theorem 1.3 Let the operator Π∗
2 be surjective: RanΠ∗

2 = G. Then Problem 1.1 has a
solution if and only if K ≥ 0 and K̃ ≥ 0.

The necessary part of the theorem follows immediately from (1.8), (1.9); the sufficiency will
be proved in Section 5.

The paper is organized as follows: in Section 2 we construct the abstract analogues
of V. P. Potapov’s fundamental matrix inequalities. The equivalence of Problem 1.1 to the

system of the constructed inequalities is established in Sections 3 and 4. The parametriza-

tion of all solutions in terms of the linear fractional transformation is given in Section 7
under assumption that K and K̃ are boundedly invertible. The matrix of coefficients of

this linear fractional transformation is presented in Section 6. Sections 8–10 are devoted
to concrete interpolation problems illustrating the general theory: two–sided residue in-

terpolation problem of Nudelman type [22] (which generalizes classic Nevanlinna–Pick and
Carathéodory–Féjer problems), boundary interpolation problem of Loewner type, Stieltjes

moment problem. In Section 11 we establish analogues of Krein’s extension problem for a
number of integro–differential operators which appear and play a central role in the spectral

analysis of the matrix string [24].

2 Fundamental Matrix Inequalities

In this section we explain why Problem 1.1 can be considered as some general interpolation
problem in the Stieltjes class of analytic operator–valued functions. Following Potapov’s

method we describe all solutions dσ of Problem 1.1 in terms of the system of the fundamental
matrix inequalities. We begin with the definition and some needed results concerning Stieltjes

functions.



Definition 2.1 A {G; G}–valued function s(z) is said to be in the Stieltjes class S(G) if it
is analytic in the complex plane with a cut along the positive semi–axis C\IR+ and such that

s(z) − s(z)∗

z − z̄
≥ 0 (ℑ z 6= 0) and s(x) ≥ 0 (x < 0). (2.1)

The class S(G) is a subclass of the Nevanlinna class N (G) which have been already mentioned

in Section 1 and which consists of all {G; G}–valued functions s(z) analytic in C\IR and
satisfying the first inequality in (2.1) and the symmetry relation

s(z) = s(z̄)∗ (z 6∈ IR).

Note that the latter symmetry relation holds for any Stieltjes function s automatically, since
s takes selfadjoint values on IR−. The following theorem exhibits an equivalent definition of

the class S(G).

Theorem 2.2 The function s(z) analytic in C\IR+ belongs to S(G) if and only if

s(z) − s(z)∗

z − z̄
≥ 0 and

zs(z) − z̄s(z)∗

z − z̄
≥ 0 for ℑ z 6= 0.

In other words, s(z) ∈ S(G) if and only if s(z) ∈ N (G) and zs(z) ∈ N (G).

Theorem 2.3 The function s(z) belongs to S(G) if and only if it admits the integral repre-

sentation

s(z) = γ +
∫ ∞

0

dσ(λ)

λ − z
(2.2)

where γ is a nonnegative operator from {G; G} and σ is a nondecreasing {G; G}–valued
function such that ∥∥∥∥∥

∫ ∞

0

dσ(λ)

λ + 1

∥∥∥∥∥ < ∞ (2.3)

and integrals in (2.2), (2.3) converge in the weak sense. The measure dσ is uniquely deter-
mined from the function s by the Stieltjes inversion formula

σ(λ2) − σ(λ1) =
1

π
lim

ε→+0

∫ λ2

λ1

ℑ s(x + iε)dx. (2.4)

which is also meant in the weak sense.

Two last theorems can be easily deduced from their scalar analogues [21, p.392]. Note that

the uniform convergence of the integrals in (2.2), (2.3) can be provided by certain additional
restrictions on s.

Theorem 2.4 Let s ∈ S(G) and let supy≥1 ‖ℑ s(iy)‖ < ∞. Then the integrals in (2.2),

(2.3) converge uniformly. If moreover, s satisfies

sup
y≥1

‖y s(iy)‖ < ∞, (2.5)



then it admits a representation

s(z) =
∫ ∞

0

dσ(λ)

λ − z
(2.6)

where σ is a nondecreasing {G; G}–valued function such that

∥∥∥∥
∫ ∞

0
dσ(λ)

∥∥∥∥ < ∞ (2.7)

and the integrals in (2.6), (2.7) converge uniformly.

The latter theorem is an immediate consequence of Theorems 4.7 and 4.8 from [6, p.25] where
the results claimed in Theorem 2.4 were obtained for Nevanlinna functions s ∈ N (G) and

representing measures dσ supported by the whole real axis. Since any Stieltjes function s

can be characterized as a Nevanlinna function taking nonnegative values on IR−, the Stieltjes

inversion formula (2.4) implies, that the representing measure dσ increases only on IR+, and
assertions of Theorem 2.4 follow from the corresponding results in [6].

To every triple of representations (1.8), (1.10) we associate the {G; G}–valued func-
tion

s(z) = γ +
∫

IR+\Λ

dσ(λ)

λ − z
+
∑

λi∈Λ

xi

λi − z
. (2.8)

Since

s(z) − s(z)∗

z − z̄
=

∫

IR+\Λ

dσ(λ)

|λ − z|2 +
∑

λi∈Λ

xi

|λi − z|2 ≥ 0 (2.9)

zs(z) − z̄s(z)∗

z − z̄
= γ +

∫

IR+\Λ

λ dσ(λ)

|λ − z|2 +
∑

λi∈Λ

λixi

|λi − z|2 ≥ 0, (2.10)

the function s given by (2.8) belongs to the Stieltjes class S(G) by Theorem 2.2.

It turns out that Problem 1.1 is equivalent to a system of certain inequalities with respect

to s ∈ S(G). The next theorem establishes only the necessary part of this equivalence.

Theorem 2.5 Let dσ ≥ 0 be a measure from (1.8), (1.10) and let s(z) be the associated

function defined by (2.8). Then the following inequalities




K Ψ(z)

Ψ(z)∗
s(z) − s(z)∗

z − z̄


 ≥ 0,




K̃ zBΨ(z) + Π1

z̄Ψ(z)∗B∗ + Π∗
1

zs(z) − z̄s(z)∗

z − z̄


 ≥ 0 (2.11)

hold for all z ∈ C\(IR ∪ Z) where

Ψ(z) = Γ(z) {Π2s(z) + CΠ1} (2.12)

and Z is a set defined via (1.1).



Proof: Taking into account (1.4), we begin with the following evident inequalities
(

Kσ T

T ∗ D

)
=

∫

IR+\Λ

(
Γ(λ)Π2

1
λ−z̄

IG

)
dσ(λ)

(
Π∗

2Γ(λ)∗,
1

λ − z
IG

)
≥ 0 (2.13)

(
K̃σ T̃

T̃ ∗ D̃

)
=

∫

IR+\Λ

(
BΓ(λ)Π2

1
λ−z̄

IG

)
λdσ(λ)

(
Π∗

2Γ(λ)∗B∗,
1

λ − z
IG

)
≥ 0. (2.14)

In view of (2.9) and (2.10),

D =
s(z) − s(z)∗

z − z̄
−
∑

λi∈Λ

xi

|λi − z|2 , D̃ =
zs(z) − z̄s(z)∗

z − z̄
− γ −

∑

λi∈Λ

λixi

|λi − z|2 . (2.15)

Using the resolvent like identity

Γ(λ) − Γ(z) = (λ − z)Γ(λ)CBΓ(z) (λ, z ∈ C\Z) (2.16)

which follows immediately from (1.2) and taking into account (1.6), (1.10), (2.8) and (2.12)

we conclude from (2.11) that

T =
∫

IR+\Λ
Γ(λ)Π2

dσ(λ)

λ − z

= Γ(z)Π2

∫

IR+\Λ

dσ(λ)

λ − z
+
∫

IR+\Λ

Γ(λ) − Γ(z)

λ − z
Π2 dσ(λ)

= Γ(z)Π2


s(z) − γ −

∑

λi∈Λ

xi

λi − z


+ Γ(z)CΠ1,σ

= Ψ(z) + Γ(z)



CΠ1,σ − CΠ1 − Π2γ − Π2

∑

λi∈Λ

xi

λi − z





= Ψ(z) + Γ(z)



CF̃γ

1

2 − Π2γ −
∑

λi∈Λ

(
Π2 xi

λi − z
+ CBFi x

1

2

i

)
 . (2.17)

In view of the third condition in (1.11), CF̃γ
1

2 − Π2γ = 0 and using the second condition
in (1.12) we obtain

1
λi−z

Π2 xi + CBFi x
1

2

i = 1
λi−z

{
Π2 xi − (A − λiCB)Fi x

1

2

i + (A − zCB)Fi x
1

2

i

}

= 1
λi−z

(A − zCB)Fi x
1

2

i ,

which being substituted into (2.17) gives

T = Ψ(z) −
∑

λi∈Λ

Fi x
1

2

i

λi − z
. (2.18)

Similarly,

T̃ :=
∫

IR+\Λ
BΓ(λ)Π2

λ dσ(λ)

λ − z



= zB

∫

IR+\Λ
Γ(λ)Π2

dσ(λ)

λ − z
+
∫

IR+\Λ
BΓ(λ)Π2 dσ(λ)

= zBΨ(z) − z
∑

λi∈Λ

BFi x
1

2

i

λi − z
+ Π1,σ

= zBΨ(z) + Π1 + F̃ γ
1

2 −
∑

λi∈Λ

λi

λi − z
BFi x

1

2

i . (2.19)

Finally, on account of (2.13) and (2.14), the inequalities

(
Kσ T

T ∗ D

)
+
∑

λi∈Λ

(
Fi

x
1

2

i

λi−z̄

)(
F ∗

i ,
x

1
2
i

λi−z

)
+

(
P∞ +

∑
Pi 0

0 0

)
≥ 0

(
K̃σ T̃

T̃ ∗ D̃

)
+
∑

λi∈Λ

λi

(
BFi

x
1

2

i

λi−z̄

)(
F ∗

i
B∗,

x

1
2
i

λi−z

)
+

(
F̃ F̃ ∗ + P̃∞ +

∑
λiBPiB

∗ −F̃ γ
1

2

−γ
1

2 F̃ ∗ γ

)
≥ 0.

are in force and coincide in view of (1.8), (2.15), (2.18) and (2.19), with the fundamental

matrix inequalities (2.11).

In Section 4 we shall prove the converse statement to Theorem 2.5: that every function s

which is analytic in C\IR+ and satisfies inequalities (2.11) at every point z ∈ C\(IR ∪ Z),
defines via (2.4) a (unique) measure dσ which is a solution of Problem 1.1. Thus, there exists

a one to one correspondence between the set of all solutions dσ of Problem 1.1 and the set
of all analytic solutions s of the system (2.11).

On the other hand we may make two immediate conclusions about a function s which
is a solution of (2.11). The first is that s is a Stieltjes function (by Theorem 2.2, since

the right bottom blocks in the matrices in (2.11) are both positive semidefinite). We also
conclude from the first inequality in (2.11) (since the diagonal blocks K and s(z)−s(z)∗

z−z̄
are

bounded at every point z ∈ C\IR+) that the offdiagonal block Ψ(z) is bounded at every point
z ∈ C\IR+. To provide Ψ(z) to be bounded in a neighborhood of any point zi ∈ Z\IR+, s

has to meet definite interpolation conditions at zi which can be easily expressed in terms of
A, B, C, Π1 and Π2. If Γ(z) is analytic on IR+ (see e.g., the example in Section 8), then

every Stieltjes function s satisfying these interpolation conditions is a solution of the system
(2.11). Therefore, Problem 1.1 is equivalent to (and may be considered as) an interpolation

problem for Stieltjes functions.

In a more general case when Γ(z) is not necessarily analytic on IR+ (or at infinity), Problem

1.1 is still equivalent to an interpolation problem, a part of interpolation conditions of which
is given in terms of asymptotic equalities (for the power moment problem such an asymptotic

condition is established in the theorem of H. Hamburger and R. Nevanlinna [1, Section 3.1]).

3 Transformation of fundamental matrix inequalities

To establish the equivalence of Problem 1.1 and the system (2.11), it remains to show that
every solution s of (2.11) generates a measure dσ which is a solution of Problem 1.1. To do



it we apply a special transformation to the fundamental inequalities. Such a method was
applied in [13], [17], [19] for quite different interpolation problems (we also refer to [18] for

a general view on this method). Here we adapt the ideas from the papers just mentioned
to the Stieltjes case (i.e., to the case of two fundamental matrix inequalities). We introduce

the operator–valued function

S(z) := KB∗C∗Γ(z̄)∗ + Γ(z) {Π2s(z) + CΠ1}Π∗
2Γ(z̄)∗ = {KB∗C∗ + Ψ(z)}Γ(z̄)∗ (3.1)

(Ψ is given by (2.12)) and show that it belongs to the Stieltjes class S(H). Moreover, we

prove that s(z) satisfies the system (2.11) if and only if S(z) satisfies a pair of much simplier
inequalities (3.4). Since Γ(z) has singular points in C\IR+, the analyticity of S in the whole

C\IR+ does not follow directly from (3.1). To establish its analyticity in C\IR+ we need the
following auxiliary lemma.

Lemma 3.1 Let H be separable Hilbert space, let Ω be a countable closed subset of C\IR+

and let S be a {H; H}–valued function analytic on C\(IR+ ∪ Ω) and such that

S(z) − S(z)∗

z − z̄
≥ 0,

zS(z) − z̄S(z)∗

z − z̄
≥ 0 (∀ z ∈ C\(IR+ ∪ Ω)). (3.2)

Then all possible singularities of S in C\IR+ are removable and S belongs to S(H).

Proof: First we prove the assertion of lemma for a scalar function S (i.e for H = C). It is

easily seen that if S has the nonnegative (or nonpositive) imaginary (or real) part in some
neighborhood Uz0

of the isolated singular point z0, then the singularity at z0 is removable. Let

z0 ∈ C\IR+ be an isolated singular point of S which satisfies (3.2). If z0 ∈ C+ (z0 ∈ C−), then
the first inequality in (3.2) provides the imaginary part of S to be nonnegative (respectively,

nonpositive) in some neighborhood Uz0
. Therefore z0 is a removable singular point of S. The

second inequality in (3.2) is equivalent to

S(z) + S(z)∗

2
≥ −z + z̄

2
· S(z) − S(z)∗

z − z̄
(3.3)

and implies in particular, that S has a nonnegative real part in the left half–plane. Let

z0 ∈ IR− be an isolated singular point of S. Then S has the nonnegative real part in some
neighborhood Uz0

and also in this case the singularity of S at z0 is removable. By the

assumption of lemma, every isolated point of Ω is an isolated singular point of S. By the
preceding arguments, S can be continuously extended to all of these points. Let us assume

that Ω contains points which are not removable singular points of S. The set of all such
points we denote by Ω′. The set Ω′ is countable (as a subset of a countable set Ω) and closed

(as a complement of the open set C\(IR+ ∪ Ω′), the domain of analyticity of the function
S). Therefore Ω′ contains an isolated point z0 ∈ Ω′ which is an isolated singular point of

S. By the previous arguments, z0 is a removable singular point of S and z0 6∈ Ω′, by the

definition of Ω′. The obtained contradiction shows that the set Ω′ is empty and Ω consists
only of removable singular points of S.

Now let S be an operator–valued function which takes values in {H; H} and is subject to



(3.2). Then for every choice of f ∈ H, the scalar function sf,f (z) = 〈S(z)f, f〉H satisfies
(3.2) and by the preceding analysis, it is analytic in C\IR+. Therefore the function

sf,g(z) := 〈S(z)f, g〉H =
3∑

ℓ=0

〈S(z)(f + iℓg), f + iℓg〉H

is analytic in E for every choice of f, g ∈ H. This means that S is analytic in the weak

sense (and therefore, in the strong sense as well) in C\IR.
Since the set Ω is countable, for every z0 ∈ Ω ∩ {z : ℑ z 6= 0}, there exists a

sequence {zj} of points from (C\IR)\Ω which converges to z0. Inequalities (3.1) are valid at
every point zj and therefore, they are in force at every nonreal point z0 ∈ Ω. So, S satisfies

inequalities (3.2) all over C\IR and by Theorem 2.2, S ∈ S(H).

Theorem 3.2 Let s(z) be a solution of the system (2.11). Then the function S(z) defined

by (3.1) belongs to the Stieltjes class S(H) and satisfies the system




K S(z)

S(z)∗
S(z) − S(z)∗

z − z̄


 ≥ 0,




K̃ zBS(z) + BK

z̄S(z)∗B∗ + KB∗ zS(z) − z̄S(z)∗

z − z̄


 ≥ 0 (3.4)

for all z ∈ C\IR+. If moreover, Π2f 6= 0 whenever f 6= 0, then s satisfies (2.11) if and only
if S(z) is a solution of (3.4).

Proof: Let s(z) be a solution of the system (2.11) and let z be a point from C\(IR ∪ Z).

Multiplying the first and the second inequalities from (2.11) by the block–operators

(
IH 0

Γ(z̄)CB Γ(z̄)Π2

)
∈ {H ⊕H; H⊕H}

and (
IH̃ 0

Γ(z̄)C Γ(z̄)Π2

)
∈ {H̃ ⊕ H; H̃ ⊕H},

respectively on the left and by their adjoints on the right we obtain

(
K S(z)

S(z)∗ D(z)

)
≥ 0,

(
K̃ S̃(z)

S̃(z)∗ D̃(z)

)
≥ 0 (3.5)

where S(z) is the function given by (3.1) and where

S̃(z) =
{
K̃C∗ + Π1Π

∗
2 + zBΨ(z)Π∗

2

}
Γ(z̄)∗, (3.6)

D(z) = Γ(z̄) {CBKB∗C∗ + CBΨ(z)Π∗
2 + Π2Ψ(z)∗B∗C∗

+Π2
s(z) − s(z)∗

z − z̄
Π∗

2

}
Γ(z̄)∗, (3.7)

D̃(z) = Γ(z̄)
{
CK̃C∗ + zCBΨ(z)Π∗

2 + CΠ1Π
∗
2 + z̄Π2Ψ(z)∗B∗C∗ + Π2Π

∗
1C

∗

+ Π2
zs(z) − z̄s(z)∗

z − z̄
Π∗

2

}
Γ(z̄)∗. (3.8)



To simplify (3.6)–(3.8) we first note that in view of (1.2), (2.12) and (3.1),

zS(z) + K = zΨ(z)Π∗
2Γ(z̄)∗ + K (IH + zB∗C∗Γ(z̄)∗) = (zΨ(z)Π∗

2 + KA∗) Γ(z̄)∗ (3.9)

and

zCBΨ(z)Π∗
2 + CΠ1Π

∗
2 = AΨ(z)Π∗

2 − Π2s(z)Π∗
2. (3.10)

Next, the identities

Γ(η) {Π2Π
∗
1C

∗ − CΠ1Π
∗
2}Γ(ω)∗ = KB∗C∗Γ(ω)∗ − Γ(η)CBK

+(η − ω̄)Γ(η)CBKB∗C∗Γ(ω)∗
(3.11)

and

Γ(η) {ηCΠ1Π
∗
2 − ω̄Π2Π

∗
1C

∗}Γ(ω)∗ = Γ(η)AK−KA∗Γ(ω)∗−(η−ω̄)Γ(η)CK̃C∗Γ(ω)∗ (3.12)

hold for every pair of points η and ω at which Γ(z) is analytic and can be easily verified with
help of (1.2) and (1.13). Substituting (1.13) into (3.6) and taking into account (3.9) we get

S̃(z) = {BKA∗ + zBΨ(z)Π∗
2}Γ(z̄)∗ = zBS(z) + BK. (3.13)

Furthermore, substituting (3.11) and (2.16) (with λ = z̄) into (3.7) and taking into account
(3.1) and (2.12), we obtain

(z − z̄)D(z) = KB∗C∗Γ(z̄)∗ − Γ(z̄)CBK + Γ(z̄) {CΠ1Π
∗
2 − Π2Π

∗
1C

∗}Γ(z̄)∗

+Γ(z̄)Π2(s(z) − s(z)∗)Π∗
2Γ(z̄)∗ + (Γ(z) − Γ(z̄)) {Π2s(z) + CΠ1}Π∗

2Γ(z̄)∗

+Γ(z̄)Π2 {s(z)∗Π∗
2 + Π∗

1C
∗} (Γ(z̄)∗ − Γ(z)∗) +

= KB∗C∗Γ(z̄)∗ − Γ(z̄)CBK + Ψ(z)Π∗
2Γ(z̄)∗ − Γ(z̄)Π2Ψ(z)∗

= S(z) − S(z)∗.

Similarly substituting (3.10), (3.12) into (3.8) and using (3.9), (2.12) and the resolvent like

identity
λΓ(λ) − zΓ(z) = (λ − z)Γ(λ)AΓ(z), (3.14)

we get

(z − z̄)D̃(z) = KA∗Γ(z̄)∗ − Γ(z̄)AK + Γ(z̄) {z̄CΠ1Π
∗
2 − zΠ2Π

∗
1C

∗}Γ(z̄)∗

+(zΓ(z) − z̄Γ(z̄)) {Π2s(z) + CΠ1}Π∗
2Γ(z̄)∗

+Γ(z̄)Π2 {s(z)∗Π∗
2 + Π∗

1C
∗} (Γ(z̄)∗ − Γ(z)∗)

+Γ(z̄)Π2 {z̄s(z) − zs(z)∗}Π∗
2Γ(z̄)∗

= KA∗Γ(z̄)∗ − Γ(z̄)AK + zΨ(z)Π∗
2Γ(z̄)∗ − z̄Γ(z̄)Π2Ψ(z)∗

= zS(z) − z̄S(z)∗.

Thus,

D(z) =
S(z) − S(z)∗

z − z̄
, D̃(z) =

zS(z) − z̄S(z)∗

z − z̄
(3.15)



which being substituted together with (3.13) into (3.5), lead to (3.4). So, inequalities (3.4)
hold for every z ∈ C\(IR ∪ Z). By Lemma 3.1, S ∈ S(H). Since the set Z is countable, by

the arguments from the proof of Lemma 3.1 we conclude that inequalities (3.4) are valid at
every z ∈ C\IR.

Conversely, let S be of the form (3.1) and satisfy (3.4), let Π2 be injective and let z be a

point from C\(IR ∪ Z). Multiplying the first and the second inequalities from (3.4) by the
block–operators

(
IH 0

−CB (A − z̄CB)

)
and

(
IH̃ 0
−C (A − z̄CB)

)

respectively on the left and by their adjoints on the right we get

(
K Ψ(z)Π∗

2

Π2Ψ(z)∗ Π2
s(z)−s(z)∗

z−z̄
Π∗

2

)
≥ 0,

(
K̃ (zBΨ(z) + Π1)Π

∗
2

Π2 (z̄Ψ(z)∗B∗ + Π∗
1) Π2

zs(z)−z̄s(z)∗

z−z̄
Π∗

2

)
≥ 0.

Using notations

K(z) :=

(
K Ψ(z)

Ψ(z)∗ s(z)−s(z)∗

z−z̄

)
and K̃(z) :=

(
K̃ zBΨ(z) + Π1

z̄Ψ(z)∗B∗ + Π∗
1

zs(z)−z̄s(z)∗

z−z̄

)
(3.16)

we rewrite two last inequalities as

(
IH 0
0 Π2

)
K(z)

(
IH 0
0 Π∗

2

)
≥ 0,

(
IH̃ 0
0 Π2

)
K̃(z)

(
IH̃ 0
0 Π∗

2

)
≥ 0.

Therefore
〈K(z)f, f〉H⊕G ≥ 0,

〈
K̃(z)g, g

〉
H̃⊕G

≥ 0 (3.17)

for every choice of f ∈ H ⊕ RanΠ∗
2 and g ∈ H̃ ⊕ RanΠ∗

2. Since Π2 injective, RanΠ2
∗

= G
and therefore, the inequalities (3.17) hold on dense sets in H ⊕ G and H̃ ⊕ G, respectively.

Since K(z) and K̃(z) are bounded operators (for every z ∈ C\IR+ at which Γ is analytic),
it follows from (3.17) that K(z) ≥ 0 and K̃(z) ≥ 0 which proves (2.11).

Theorem 3.3 Let S satisfy the system (3.4). Then it admits a representation

S(z) =
∫ ∞

0

dΣ(λ)

λ − z
(3.18)

with a nondecreasing {H; H}–valued function Σ(λ) on IR+ such that

(i)
∫ ∞

0
dΣ(λ) ≤ K, (ii)

∫ ∞

0
BdΣ(λ) = BK, (iii)

∫ ∞

0
λBdΣ(λ)B∗ ≤ K̃. (3.19)

The integral in (3.18) and two first integrals in (3.19) converge uniformly while the third
integral in (3.19) converges in the weak sense.



Proof: Multiplying the first inequality in (3.4) by the block operator

(
IH 0
1
2
IH z̄IH

)
on the

left, by its adjoint on the right and evaluating the resulting inequality at z = iy we obtain

(
K 1

2
K + iyS(iy)

1
2
K − iyS(iy)∗ 1

4
K

)
≥ 0, (3.20)

which implies in particular, that

sup
y≥1

‖yS(iy)‖ < ∞. (3.21)

It follows from (3.4) that

S(z) − S(z)∗

z − z̄
≥ 0 and

zS(z) − z̄S(z)∗

z − z̄
≥ 0 for ℑ z 6= 0,

and therefore, S(z) is a Stieltjes function, by Theorem 2.2. By Theorem 2.4 and in view

of (3.21), S admits a representation (3.18) with a {H;H}-valued measure dΣ(λ) ≥ 0 such

that the integral
∫ ∞

0
dΣ converges uniformly and ‖

∫ ∞

0
dΣ(λ)‖ < ∞. Let M > 0 be such that

‖
∫ ∞

M
dΣ(λ)‖ < ε. Using (3.18) evaluated at z = iy , we obtain

∥∥∥∥iyS(iy) +
∫ ∞

0
dΣ(λ)

∥∥∥∥ =

∥∥∥∥∥

∫ ∞

0

λ

λ − iy
dΣ(λ)

∥∥∥∥∥

≤
∥∥∥∥∥

∫ M

0

λ√
λ2 + y2

dΣ(λ)

∥∥∥∥∥+

∥∥∥∥∥

∫ ∞

M

λ√
λ2 + y2

dΣ(λ)

∥∥∥∥∥

≤ M√
M2 + y2

∥∥∥∥∥

∫ M

0
dΣ

∥∥∥∥∥ + ε

and therefore uniformly,

lim
y→+∞

−iyS(iy) =
∫ ∞

0
dΣ(λ). (3.22)

Taking advantage of (3.20) and (3.22) we get

K −
∫ ∞

0
dΣ(λ) = K + lim

y→+∞
iyS(iy)

= lim
y→+∞

(
1
2
I I

)( K 1
2
K + iyS(iy)

∗ 1
4
K

)(
1
2
I

I

)
≥ 0,

which implies the first inequality in (3.19). Evaluating the second inequality in (3.4) at

z = iy we get (
K̃ iyBS(iy) + BK

−iyS(iy)∗B∗ + KB∗ 1
2
(S(iy) + S(iy)∗)

)
≥ 0. (3.23)

By (3.22), lim
y→+∞

S(iy) = 0 which together with (3.23) implies lim
y→+∞

‖iyBS(iy)+BK‖ = 0.

Comparing this last equality with (3.22) we obtain (3.19(ii)).



To prove (3.19(iii)) we multiply (3.23) by the block operator
(
IH̃, −iyB

)
on the left and

by its adjoint on the right. This leads to the inequality 1
2
y2B (S(iy) + S(iy)∗)B∗ ≤ K̃ for

y ≥ 1. Substituting (3.18) evaluated at z = iy into this last inequality we get

∫ ∞

0

λy2

λ2 + y2
BdΣ(λ)B∗ ≤ K̃ (y ≥ 1).

By Fatou’s lemma, for every f ∈ H̃,

∫ ∞

0
lim

y→+∞

〈
λy2

λ2 + y2
dΣ(λ)B∗f, B∗f

〉

H
=
∫ ∞

0
〈λdΣ(λ)B∗f, B∗f〉H ≤

〈
K̃f, f

〉
H̃

which completes the proof of theorem.

Lemma 3.4 Let s ∈ S(G) be a solution of the system (2.11), let S ∈ S(H) be the associated

function given by (3.1) and let dσ and dΣ be the measures from their integral representations
(2.2) and (3.18). Then

∫ b

a
(A − λCB) dΣ(λ) (A∗ − λB∗C∗) =

∫ b

a
Π2 dσ(λ) Π∗

2 (3.24)

for every segment [a; b] ⊂ IR+.

Proof: Let T (z) be the {H; H}–valued function defined by

T (z) = Π2s(z)Π∗
2. (3.25)

Since s ∈ S(G), T belongs to S(H). By (3.1), T also can be represented as

T (z) = (A − zCB)S(z)(A∗ − zB∗C∗) − (A − zCB)KB∗C∗ − CΠ1Π
∗
2. (3.26)

Substituting (2.2) into (3.25) we get

T (z) = Π2γΠ∗
2 +

∫ ∞

0
Π2

dσ(λ)

λ − z
Π∗

2. (3.27)

On the other hand, upon substituting (3.18) into (3.26) we come to

T (z) = C

(
K̃ −

∫ ∞

0
λBdΣ(λ)B∗

)
C∗ +

∫ ∞

0

(A − λCB)dΣ(λ)(A∗ − λB∗C∗)

λ − z
. (3.28)

Indeed, using (3.18), (3.26) and the equality

(A − zCB)
dΣ(λ)

λ − z
(A∗ − zB∗C∗) = (A − λCB)

dΣ(λ)

λ − z
(A∗ − λB∗C∗) + CB dΣ(λ) A∗

+(A − zCB) dΣ(λ) B∗C∗ − λCB dΣ(λ) B∗C∗,

we obtain

T (z) = Φ +
∫ ∞

0

(A − λCB)dΣ(λ)(A∗ − λB∗C∗)

λ − z
(3.29)



where

Φ = CB

∫ ∞

0
dΣ(λ)A∗+(A−zCB)

{∫ ∞

0
dΣ(λ) − K

}
B∗C∗−C

∫ ∞

0
λBdΣ(λ)B∗C∗−CΠ1Π

∗
2.

In view of (3.19(ii)) and (1.13),

Φ = CBKA∗ − C

∫ ∞

0
λBdΣ(λ)B∗C∗ − CΠ1Π

∗
2 = C

(
K̃ −

∫ ∞

0
λBdΣ(λ)B∗

)
C∗

which being substituted into (3.29), gives (3.28). Comparing two different representations

(3.27) and (3.28) of the same function T we conclude by the uniqueness, that

C

(
K̃ −

∫ ∞

0
λBdΣ(λ)B∗

)
C∗ = Π2γΠ∗

2 (3.30)

and that the representing measures Π2
dσ(λ)
λ−z

Π∗
2 and (A− λCB)dΣ(λ)(A∗ − λB∗C∗) coincide.

The latter is equivalent to (3.24).

Corollary 3.5 If A − λCB is boundedly invertible for every λ ∈ [a, b] (i.e. if [a, b] ⊂
IR+\Λ), then

∫ b

a
dΣ(λ) =

∫ b

a
(A − λCB)−1Π2 dσ(λ) Π∗

2(A
∗ − λB∗C∗)−1 =

∫ b

a
Γ(λ)Π2 dσ(λ) Γ(λ)∗. (3.31)

Lemma 3.6 Let T ∈ {H̃; H̃} be nonnegative and let D ∈ {H̃; H} and G ∈ {G; H} satisfy

DTD∗ = GG∗. (3.32)

Then there exists an operator S ∈ {H; G} such that

DS = G and SS∗ ≤ T. (3.33)

Proof: Representing (3.32) as DT
1

2 (DT
1

2 )∗ = GG∗ we conclude by R. G. Douglas theorem

[7] that there exists a partial isometry S̃ : H̃ → G such that

S̃S̃∗ ≤ IG and DT
1

2 S̃ = G.

Setting S := T
1

2 S̃, we deduce (3.33) from the two last relations.

In conclusion of this section we discuss the inequalities (3.19(i)) and (3.19(iii)). Although∫ ∞

0
dΣ(λ) and

∫ ∞

0
λB dΣ(λ) B∗ are not equal to K and K̃ respectively, their differences

can be simply described.



Lemma 3.7 Let dΣ(λ) ≥ 0 be a {H; H}–valued measure from the integral representation
(3.18) of the function S(z). Then

K =
∫ ∞

0
dΣ(λ) + P∞, K̃ =

∫ ∞

0
λB dΣ(λ) B∗ + F̃ F̃ ∗ + P̃∞, (3.34)

where P∞ ∈ {H; H}, P̃∞ ∈ {H̃; H̃} and F̃ ∈ {G; H̃} are bounded operators satisfying

conditions (1.11).

Proof: It follows from (3.19(i)) that the operator P∞ := K −
∫ ∞

0
dΣ(λ) is nonnegative,

while (3.19(ii)) implies that

0 = B

(
K −

∫ ∞

0
dΣ(λ)

)
= BP∞.

Making use of (3.30) and applying Lemma 3.6 to the operators

T = K̃ −
∫ ∞

0
λBdΣ(λ)B∗ ∈ {H̃; H̃}, D = C ∈ {H̃, H}, G = Π2γ

1

2 ∈ {G; H},

we conclude that there exists an operator F̃ ∈ {G; H̃} such that

CF̃ = Π2γ
1

2 and F̃ F̃ ∗ ≤ K̃ −
∫ ∞

0
λBdΣ(λ)B∗. (3.35)

The second relation in (3.35) means that the operator

P̃∞ := K̃ −
∫ ∞

0
λBdΣ(λ)B∗ − F̃ F̃ ∗

is nonnegative while the first one together with (3.30) implies that

CP̃∞C∗ = C

(
K̃ −

∫ ∞

0
λBdΣ(λ)B∗ − F̃ F̃ ∗

)
C∗ = Π2γΠ∗

2 − Π2γΠ∗
2 = 0

and therefore, CP̃∞ = 0.

4 On solutions of fundamental matrix inequalities

In this section we show that every solution s(z) of the system (2.11) induces the unique

measure dσ(λ) ≥ 0 on IR+\Λ which gives the representations (1.8)–(1.10).

Let s(z) satisfy (2.11) and admit a representation (2.2). By Theorems 3.2 and 3.3,
the {H; H}–valued function S(z) defined by (3.1) admits an integral representation (3.18)

with a measure d Σ(λ) ≥ 0 which is subject to the constraints (3.19). Let Λ = {λi} be the
set defined in (1.3) and let xi ∈ {G; G} and Xi ∈ {H; H} be nonnegative operators defined

by
xi = σ(λi + 0) − σ(λi − 0) and Xi = Σ(λi + 0) − Σ(λi − 0). (4.1)

Setting in (3.24) a → λi − 0 and b → λi + 0 we get

(A − λiCB)Xi (A − λiCB)∗ = Π2 xi Π
∗
2. (4.2)



Applying Lemma 3.6 to the operators

T = Xi ∈ {H; H}, D = (A − λiCB) ∈ {H, H}, G = Π2x
1

2

i ∈ {G; H}

we conclude that there exists Fi ∈ {G; H} such that

(A − λiCB) Fi = Π2x
1

2

i and FiF
∗
i ≤ Xi. (4.3)

The second relation in (4.3) means that the operator

Pi := Xi − FiF
∗
i

is nonnegative while the first relation in (4.3) together with (4.2) implies that

(A − λiCB) Pi (A − λiCB)∗ = (A − λiCB) (Xi − FiF
∗
i ) (A − λiCB)∗

= Π2xiΠ
∗
2 − Π2xiΠ

∗
2 = 0. (4.4)

Therefore, (A − λiCB)Pi = 0. Using notations (4.1) we rewrite (3.34) as

K = K◦ + P∞ +
∑

λi∈Λ

Xi, K̃ = K̃◦ + P̃∞ + F̃ F̃ ∗ +
∑

λi∈Λ

λi BXiB
∗. (4.5)

where
K◦ =

∫

IR+\Λ
d Σ(λ), K̃◦ =

∫

IR+\Λ
λB d Σ(λ) B∗

and P∞, P̃∞, F̃ are operators satisfying (1.11). By (4.2)–(4.4), Xi can be represented as

Xi = Pi + FiF
∗
i (4.6)

where Pi and Fi are operators satisfying (1.12). On account of (3.31),

∫

δ
dΣ(λ) =

∫

δ
Γ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗.

for every borel subset δ ⊂ IR+\Λ. Therefore,

K◦ =
∫

IR+\Λ
d Σ(λ) =

∫

IR+\Λ
Γ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗ = Kσ (4.7)

K̃◦ =
∫

IR+\Λ
λB d Σ(λ) B∗ =

∫

IR+\Λ
λBΓ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗B∗ = K̃σ. (4.8)

Substituting (4.6)–(4.8) into (4.5) we get the representations (1.8) and (1.9).

Theorem 4.1 Let s be a solution of the system (2.11). Then s belongs to the Stieltjes

class S(G), admits a representation (2.2) with a measure dσ ≥ 0 which in turn, gives the
representations (1.8) and (1.9). If moreover, Π2f 6= 0 whenever f 6= 0, then dσ gives also

the representation (1.10).



Proof: The first claim of theorem concerning the representations (1.8) and (1.9) has been
proved just before. Assuming Π2 to be injective we substitute (1.8) and (1.9) into (1.13) and

use (1.2), (1.11) and (1.12):

Π1Π
∗
2 = BKA∗ − K̃C∗

=
∫

IR+\Λ
BΓ(λ)Π2 dσ(λ) Π∗

2 + BP∞A∗ − P̃∞C∗ − F̃ F̃ ∗C∗ +
∑

i

BFiF
∗
i (A − λiCB)∗

=

{∫

IR+\Λ
BΓ(λ)Π2 dσ(λ) − F̃ γ

1

2 +
∑

i

BFix
1

2

i

}
Π∗

2. (4.9)

The latter means that

Π1f =

{∫

IR+\Λ
BΓ(λ)Π2 dσ(λ) − F̃ γ

1

2 +
∑

i

BFix
1

2

i

}
f (4.10)

for every f ∈ RanΠ∗
2. Since Π2 is injective, RanΠ∗

2 = G and (4.10) implies (1.10).

5 Existence of a solution in the semidefinite case

In this section we prove the sufficiency part of Theorem 1.3: if Π∗
2 is surjective, then Problem

1.1 has a solution.
By Theorem 4.1, it suffices to show that there exists a solution s of system (2.11). We

use a suitable adaptation of the regularization method which was applied by V. Katsnelson

in [16], [15] to continuous interpolation problems (see also [23]). Setting K̃ε to be a strictly
positive operator defined by

K̃ε = K̃ + εIH̃ (ε > 0), (5.1)

we show that the Stieltjes function

sε(z) := Π∗
1

(
K̃ε − zBKB∗

)−1
Π1

is bounded uniformly with respect to ε on every compact subset Ω in C\IR+. Then there

exists a sequence sεj
converging (as εj → 0) uniformly on every compact subset of C\IR+ to

an analytic function s which turns to be a solution of system (2.11). We begin with some

auxiliary estimates.

Lemma 5.1 Let S ∈ S(H) satisfy the inequality




K S(z)

S(z)∗
S(z) − S(z)∗

z − z̄


 ≥ 0 (z ∈ C\IR). (5.2)

Then

‖S(z)‖ ≤ 2‖K‖
|z − z̄| (ℑ z 6= 0) and ‖S(z)‖ ≤ 2‖K‖

|z + z̄| (ℜ z < 0). (5.3)



Proof: Multiplying (5.2) by
(

2
z̄−z

IH, IH
)

on the left and by its adjoint on the right we
obtain

4K

|z − z̄|2 − S(z) − S(z)∗

z − z̄
≥ 0,

which together with (5.2) implies
(

K S(z)
S(z)∗ 4

|z−z̄|2 K

)
≥ 0.

Therefore,

|〈S(z)f, g〉H|2 ≤ 〈Kf, f〉H · 〈 4
|z−z̄|2 Kg, g〉H (∀f, g ∈ H)

and taking supremum in this last inequality through all ‖f‖ = ‖g‖ = 1 we get ‖S(z)‖2 ≤
4

|z−z̄|2‖K‖2 which is equivalent to the first inequality in (5.3).

As a Stieltjes function, S satisfies inequality (3.3) which together with (5.2) implies



K S(z)

S(z)∗ −S(z) + S(z)∗

z + z̄


 ≥ 0 (∀z : ℜ z < 0). (5.4)

Multiplying the latter inequality by
(

2
z̄+z

IH, IH
)

on the left and by its adjoint on the right
we get

4K

|z + z̄|2 +
S(z) + S(z)∗

z + z̄
≥ 0,

which being substituted into (5.4) implies
(

K S(z)
S(z)∗ 4

|z+z̄|2 K

)
≥ 0.

The arguments used just before lead to ‖S(z)‖2 ≤ 4
|z+z̄|2‖K‖2 and complete the proof of

lemma.

Lemma 5.2 Let K̃ε be defined by (5.1). Then

∥∥∥∥
(
K̃ε − zBKB∗

)−1
∥∥∥∥ ≤





|z|
ε|z−z̄| , ℑ z 6= 0
|z|

ε|z+z̄| , ℜ z < 0.
(5.5)

Proof: It holds for every nonnegative operator K that

∥∥∥(zI − K)−1
∥∥∥ =

1

dist(z; specK)
≤ 1

dist(z; IR+)
≤
{ 1

|z−z̄| , ℑ z 6= 0
1

|z+z̄| , ℜ z < 0.
(5.6)

Applying (5.6) to K = K̃
− 1

2
ε BKB∗K̃

− 1

2
ε and replacing z by 1

z
, we obtain

‖(I − zK̃
− 1

2
ε BKB∗K̃

− 1

2
ε )−1‖ = 1

|z|‖(1
z
I − K̃

− 1

2
ε BKB∗K̃

− 1

2
ε )−1‖ ≤





|z|
|z−z̄| , ℑ z 6= 0
|z|

|z+z̄| , ℜ z < 0
(5.7)



Setting in (5.6) K = K̃ and z = −ε2 we get

‖K̃−1
ε ‖ = ‖(K̃ + ε2I)−1‖ ≤ 1

ε2
,

and since K̃ε is selfadjoint,

‖K̃− 1

2
ε ‖ = ‖K̃−1

ε ‖ 1

2 ≤ 1√
ε
. (5.8)

Estimates (5.5) follow from the evident inequality

‖(K̃ε − zBKB∗)−1‖ ≤ ‖K̃− 1

2
ε ‖ · ‖(I − zK̃

− 1

2
ε BKB∗K̃

− 1

2
ε )−1‖ · ‖K̃− 1

2
ε ‖

in view of (5.7) and (5.8).

Corollary 5.3 The function ε
(
K̃ε − zBKB∗

)−1
is bounded uniformly with respect to ε on

every compact subset of C\IR+.

Let us introduce the auxiliary space

G̃ = G ⊕H (5.9)

and operators

Π̃1,ε = (Π1, −εC∗) ∈ {G̃; H̃}, Π̃2 = (Π2, IH) ∈ {G̃; H}. (5.10)

The regularized identity

AKB∗ − CK̃ε = Π̃2Π̃
∗
1,ε (5.11)

is a consequence of (1.13), (5.1) and (5.10). Let us consider the function

Sε(z) := Π̃∗
1,ε

(
K̃ε − zBKB∗

)−1
Π̃1,ε (5.12)

which is {G̃; G̃}–valued and analytic in C\IR+ in view of (5.5).

Lemma 5.4 The function Sε belongs to the Stieltjes class S(G̃) and satisfies the regularized
system




K Ψε(z)

Ψε(z)∗
Sε(z) − Sε(z)∗

z − z̄


 ≥ 0,




K̃ε zBΨε(z) + Π̃1,ε

z̄Ψε(z)∗B∗ + Π̃∗
1,ε

zSε(z) − z̄Sε(z)∗

z − z̄


 ≥ 0

(5.13)
for all z ∈ C\(IR ∪ Z) where Z is a set defined via (1.1) and

Ψε(z) = Γ(z)
{
Π̃2Sε(z) + CΠ̃1,ε

}
. (5.14)



Proof: It follows from (5.12) that

Sε(z) − Sε(z)∗

z − z̄
= Π̃∗

1,ε

(
K̃ε − z̄BKB∗

)−1
BKB∗

(
K̃ε − zBKB∗

)−1
Π̃1,ε (5.15)

zSε(z) − z̄Sε(z)∗

z − z̄
= Π̃∗

1,ε

(
K̃ε − z̄BKB∗

)−1
K̃ε

(
K̃ε − zBKB∗

)−1
Π̃1,ε. (5.16)

Substituting (5.12) into (5.14) and using (1.2), (5.11) we get

Ψε(z) = Γ(z)
{
Π̃2Π̃

∗
1,ε + C

(
K̃ε − zBKB∗

)} (
K̃ε − zBKB∗

)−1
Π̃∗

1,ε

= Γ(z) {AKB∗ − zCBKB∗}
(
K̃ε − zBKB∗

)−1
Π̃∗

1,ε

= KB∗
(
K̃ε − zBKB∗

)−1
Π̃∗

1,ε. (5.17)

Therefore,

zBΨε(z) + Π̃∗
1,ε =

(
IH̃ + zBKB∗

(
K̃ε − zBKB∗

)−1
)

Π̃∗
1,ε

= K̃ε

(
K̃ε − zBKB∗

)−1
Π̃∗

1,ε. (5.18)

Substituting (5.15)–(5.18) into (5.13) we get the following inequalities


 IH

Π̃∗
1,ε

(
K̃ε − z̄BKB∗

)−1
B


K

(
IH, B∗

(
K̃ε − zBKB∗

)−1
Π̃1,ε

)
≥ 0




IH̃
Π̃∗

1,ε

(
K̃ε − z̄BKB∗

)−1


 K̃ε

(
IH̃,

(
K̃ε − zBKB∗

)−1
Π̃1,ε

)
≥ 0

which are evidently true.

Lemma 5.5 Let Sε be the function defined by (5.12) and let Ω be any compact set in C\IR+.

Then Sε is bounded on Ω uniformly with respect to ε.

Proof: Using (5.10) we represent Sε in the block form

Sε(z) =

(
sε(z) s1,ε(z)

s1,ε(z̄)∗ s2,ε(z)

)
=

(
Π∗

1

−εC

)(
K̃ε − zBKB∗

)−1
(Π1, −εC∗) (5.19)

with respect to decomposition (5.9) of the space G̃ and conclude by Corollary 5.3, that
the functions s1,ε and s2,ε are bounded in Ω uniformly with respect to ε. To establish the

boundedness of sε we apply Theorem 3.2 to the system (5.13) (this is possible since (5.13)
has the same structure as (2.11) and since the identity (5.11) holds). By Theorem 3.2 we

conclude in particular, that the function

S(z) := KB∗C∗Γ(z̄)∗ + Γ(z)
{
Π̃2Sε(z) + CΠ̃1,ε

}
Π̃∗

2Γ(z̄)∗ (5.20)



belongs to the Stieltjes class S(H) and satisfies inequality (5.2) (or, that is the same, the
first inequality in (3.4). By Lemma 5.1, S is subject to estimates (5.3). By (5.20),

Π̃2Sε(z)Π̃∗
2 = (A − zCB)S(z)(A∗ − zB∗C∗) − (A − zCB)KB∗C∗ − CΠ̃1,ε

and using (5.3) we conclude that the function Π̃2Sε(z)Π̃∗
2 is bounded in Ω uniformly with

respect to ε. In view of block representations (5.10), (5.19) of Π̃2 and Sε,

Π2sε(z)Π∗
2 = Π̃2Sε(z)Π̃∗

2 + s1,ε(z̄)∗Π∗
2 + Π2s1,ε(z) − s2,ε(z),

and since all functions in the right hand side of the latter equality are bounded in Ω uniformly
with respect to ε, the same conclusion is true for Π2sε(z)Π∗

2. Since Π∗
2 is surjective (i.e.,

boundedly invertible from the right), the function sε is bounded in Ω uniformly with respect
to ε. Thus, all block entries in (5.19) are bounded which ends the proof of lemma.

Now we can complete the proof of Theorem 1.3. Take a sequence εj ց +0 and let Sεj
(z)

be Stieltjes functions defined via (5.19) with ε = εj. By Lemma 5.5, the family of functions

Sεj
(z) analytic in C\IR+ is bounded on each compact set in C\IR+. Then there exists a

subsequence Sεk
(z) from this family which converges to an analytic function S(z) on each

compact set in C\IR+:

S(z) =

(
s(z) s1(z)

s1(z̄)∗ s2(z)

)
= lim

εk→0

(
sε(z) s1,εk

(z)
s1,εk

(z̄)∗ s2,εk
(z)

)
. (5.21)

As a limit of Stieltjes functions S belongs to S(G̃). By (5.5) and (5.19),

‖s2,εk
‖ = ε2

k‖C
(
K̃ε − zBKB∗

)−1
C∗‖ ≤ εk‖C‖2 ·





|z|
|z−z̄| , ℑ z 6= 0
|z|

|z+z̄| , ℜ z < 0

and therefore,

s2(z) = lim
εk→0

s2,εk
(z) = 0

on each compact set (and therefore, everywhere) in C\IR+. Since S is a Stieltjes function,

the latter equality implies that s1(z) ≡ 0 (for z = x < 0 this follows from the nonnega-
tivity of S(x) and for all z ∈ C\IR+ by the uniqueness theorem). Returning to the block

decomposition (5.21) we conclude that S(z) is of the form

S(z) =

(
s(z) 0
0 0

)
. (5.22)

Since Sεk
(z) is a solution of regularized inequalities (5.13), the limit function S(z) satisfies

the following limit inequalities




K Ψ(z)

Ψ(z)∗
S(z) − S(z)∗

z − z̄


 ≥ 0,




K̃ zBΨ(z) + Π1

z̄Ψ(z)∗B∗ + Π∗
1

zS(z) − z̄S(z)∗

z − z̄


 ≥ 0 (5.23)



for all z ∈ C\(IR ∪ Z) where, in accordance to (5.14) and (5.10),

Ψ(z) = lim
εk→0

Ψεk
(z) = Γ(z) {(Π2, IH)S(z) + C (Π1, 0)} . (5.24)

Upon substituting (5.22) and (5.24) into (5.23) it is readily seen that the function

s(z) = PGS(z) |G = lim
εk→0

sεk
(z)

satisfies the system (2.11). By Theorem 4.1 this means that Problem 1.1 has a solution.

6 Multiplicative Stieltjes classes

Now we turn to the description of all solutions of Problem 1.1 (or equivalently, of all functions
s satisfying the system (2.11). Below we give such a description in terms of a linear fractional

transformation (see Theorem 7.3) under assumptions

K−1 ∈ {H; H}, K̃−1 ∈ {H̃; H̃} and RanΠ∗
2 = G. (6.1)

It turns out that the ”matrix” of coefficients of the linear fractional transformation describing
all solutions of Problem 1.1 (the resolvent matrix of the problem) is an operator–valued

function from the multiplicative Stieltjes class Wπ which was introduced in [12] (for matrix–
valued case) and studied in [9], [11].

Definition 6.1 A function Θ(z) which is {G ⊕G; G⊕G}–valued and analytic for almost all
z ∈ C is said to be in the class Wπ(G) if

Θ(z)JΘ(z)∗ − J

i(z̄ − z)
≥ 0 (z ∈ C\IR), Θ(z)JΘ(z)∗ = J (z ∈ IR), (6.2)

Θ(x)JπΘ(x)∗ ≥ Jπ (x < 0),

where

J =

(
0 iIG

−iIG 0

)
, Jπ =

(
0 IG
IG 0

)
, (6.3)

and is said to be in the class W(G) if it satisfies only the conditions (6.2).

Remark 6.2 In Definition 6.1 and in what follows by ”almost all points z of a domain E”
we mean all z ∈ E except at most countable closed set of points. For convenience, this

exceptional set will be sometimes indicated.

Remark 6.3 The second property in (6.2) (J–unitarity of Θ ∈ W(G) almost everywhere
on IR) implies by the symmetry principle, that

Θ(z)−1 = JΘ(z̄)∗J (6.4)

and in particular, that Θ(z) is boundedly invertible for almost all z.



It is easily seen that classes Wπ(G) and W(G) are closed under multiplication: if Θ1 and
Θ2 belong to Wπ(G) (respectively, to W(G)) then Θ1Θ2 and Θ2Θ1 also belong to Wπ(G)

(respectively, to W(G)). The following theorem establishes the link between classes W(G)
and Wπ(G) and exhibits in fact an equivalent definition of the class Wπ(G).

Theorem 6.4 A function Θ belongs to Wπ(G) if and only if

Θ ∈ W(G) and Θ̃(z) = P (z)Θ(z)P (z)−1 ∈ W(G), (6.5)

where

P (z) =

(
zIG 0
0 IG

)
. (6.6)

For the finite dimensional case (dim G < ∞) this result was established in [12]. The proof

for dim G = ∞ relies on similar arguments and will be omitted.
In this section we construct a function Θ ∈ Wπ(G) which corresponds to the interpolation

data (1.14) satisfying the operator identity (1.13) and conditions (6.1).

Lemma 6.5 Let µ < 0 be a point such that Γ(µ) = (A − µCB)−1 ∈ {H; H} and let D ∈
{H; H} and D̃ ∈ {H̃; H̃} be defined as

D = Γ(µ)∗
{
K−1 − µB∗K̃−1B

}
Γ(µ), D̃ =

(
K̃ − µBKB∗

)−1
. (6.7)

Then the operators

N =

(
IG − µΠ∗

1D̃Π1Π
∗
2DΠ2 Π∗

1D̃Π1

−µΠ∗
2DΠ2 IG

)
(6.8)

and

Ñ =

(
IG − µΠ∗

1D̃Π1Π
∗
2DΠ2 µΠ∗

1D̃Π1

−Π∗
2DΠ2 IG

)
(6.9)

are J–unitary
NJN∗ = ÑJÑ∗ = J (6.10)

and the following equalities hold

Γ(µ) (Π2, CΠ1) N = K
(
A∗DΠ2, B∗D̃Π1

)
, (6.11)

(BΓ(µ)Π2, G(µ)Π1) Ñ = K̃
(
C∗DΠ2, D̃Π1

)
, (6.12)

where G(z) is a {H̃; H̃}–valued function defined by

G(z) = IH̃ + zBΓ(z)C = IH̃ + zB (A − zCB)−1
C (6.13)

and where J is the signature operator given in (6.3).



Proof: Equalities (6.10) follow immediately from (6.8) and (6.9). Moreover, it is easily seen
that the operators N and Ñ are J–unitary if and only if D and D̃ are selfadjoint. The

verification of (6.11) and (6.12) is based on the following equalities

Γ(µ)
(
Π2Π

∗
1D̃ + C

)
= KB∗D̃ (6.14)

Γ(µ) − µKB∗D̃Π1Π
∗
2D = KA∗D (6.15)

the proof of which we begin with. The first equality follows from (1.13), (6.7) and (1.2):

Γ(µ)
(
Π2Π

∗
1D̃ + C

)
= Γ(µ)

(
Π2Π

∗
1 + C

(
K̃ − µBKB∗

))
D̃

= Γ(µ) (AKB∗ − µCBKB∗) D̃

= Γ(µ) (A − µCB) KB∗D̃ = KB∗D̃.

To prove (6.15) we note the equality

(
V −1 − Y X−1Z

)−1
= V + V Y (X − ZV Y )−1

ZV

which holds for every choice of operators X, Y , Z and V acting on appropriate spaces and

such that X, V and X −ZV Y are invertible. Applying this latter equality to the operators

V = K, X = K̃, Y = µB∗, Z = B

and taking advantage of the definition (6.7) of D̃ we get

(
K−1 − µB∗K̃−1B

)−1
= K + µKB∗D̃BK, (6.16)

which is equivalent to

K
(
IH + µB∗D̃BK

) (
K−1 − µB∗K̃−1B

)
= IH. (6.17)

Note that in view of (6.14),

IH + µB∗D̃BK = IH + µB∗
(
D̃Π1Π

∗
2 + C

)
Γ(µ)∗ =

(
A∗ + µB∗D̃Π1Π

∗
2

)
Γ(µ)∗. (6.18)

Substituting (6.18) into (6.17) and multiplying both sides of (6.17) by Γ(µ) on the right, we
obtain

K
(
A∗ + µB∗D̃Π1Π

∗
2

)
D = Γ(µ),

which is equivalent to (6.15). Using (6.8) and (6.14) we get

Γ(µ) (Π2, CΠ1) N = Γ(µ)
(
Π2 − µ

(
Π2Π

∗
1D̃ + C

)
Π1Π

∗
2DΠ2,

(
Π2Π

∗
1D̃ + C

)
Π1

)

=
(
Γ(µ)Π2 − µKB∗D̃Π1Π

∗
2DΠ2, KB∗D̃Π1

)

which coincides with (6.11), on account of (6.15). Making use of (6.11), (6.13), (1.13) and

Ñ =
(

µIG 0
0 IG

)
N
(

µ−1IG 0
0 IG

)
,



we obtain

(BΓ(µ)Π2, G(µ)Π1) Ñ = (0, Π1) Ñ + µBΓ(µ) (Π2, CΠ1) N
(

µ−1IG 0
0 IG

)

= (−Π1Π
∗
2DΠ2, Π1) + µBK

(
A∗DΠ2, B∗D̃Π1

) (
µ−1IG 0

0 IG

)

=
(
(−Π1Π

∗
2 + µBKA∗) DΠ2,

(
IH̃ + µBKB∗D̃

)
Π1

)

= K̃
(
C∗DΠ2, D̃Π1

)

which proves (6.12).

Lemma 6.6 Let K, K̃, Π1 and Π2 satisfy (1.13) and (6.1) and let Γ, P , N , Ñ , G be the
operators defined by (1.2), (6.6), (6.8), (6.9) and ( 6.13) respectively. Then the functions

Θ(z) =

{
IG⊕G + (z − µ)

(
Π∗

1C
∗

−Π∗
2

)
Γ(z̄)∗K−1Γ(µ) (Π2, CΠ1)

}
N (6.19)

Θ̃(z) =

{
IG⊕G + (z − µ)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1 (BΓ(µ)Π2, G(µ)Π1)

}
Ñ (6.20)

are of the class W(G) and satisfy the relation

Θ̃(z)P (z) = P (z)Θ(z). (6.21)

For every pair of points z and ω at which Θ and Θ̃ are analytic, it holds that

Θ(z)JΘ(ω)∗ − J

i(ω̄ − z)
=

(
Π∗

1C
∗

−Π∗
2

)
Γ(z̄)∗K−1Γ(ω̄) (CΠ1, −Π2) (6.22)

and
Θ̃(z)JΘ̃(ω)∗ − J

i(ω̄ − z)
=

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1 (G(ω̄)Π1, −BΓ(ω̄)Π2) . (6.23)

Proof: First we note that by formulas (6.19), (6.20), each singular point of Θ or Θ̃ belongs to

the set Z∗ of all singular points of the function Γ(z̄)∗. This set is symmetric with respect to
the real axis to the countable closed set Z defined by (1.1) and therefore, it is also countable

and closed.
Since the operator N is J–unitary, it follows from (6.19) that

Θ(z)JΘ(ω)∗ − J = i

(
Π∗

1C
∗

−Π∗
2

)
Γ(z̄)∗K−1Γ(µ)L(z, ω)Γ(µ)∗K−1Γ(ω̄) (CΠ1, −Π2) (6.24)

where

L(z, ω) = (µ − z)Γ(ω̄)−1KΓ(µ)−∗ + (ω̄ − µ)Γ(µ)−1KΓ(z̄)−∗

+(z − µ)(ω̄ − µ) (Π2Π
∗
1C

∗ − CΠ1Π
∗
2) . (6.25)



Using (1.2) and the equality

Π2Π
∗
1C

∗ − CΠ1Π
∗
2 = AKB∗C∗ − CBKA∗

which can be easily derived from (1.13), we simplify (6.25) as

L(z, ω) = (µ − z) (A − ω̄CB) K (A∗ − µB∗C∗) + (ω̄ − µ) (A − µCB)K (A∗ − zB∗C∗)

+(z − µ)(ω̄ − µ) (AKB∗C∗ − CBKA∗)

= (ω̄ − z) (A − µCB) K (A∗ − µB∗C∗)

= (ω̄ − z)Γ(µ)−1KΓ(µ)−∗.

Substituting the last equality into (6.24) we get (6.22). To show (6.23) we begin with

equalities

BΓ(µ)Π2Π
∗
1G(µ)∗ − G(µ)Π1Π

∗
2Γ(µ)∗B∗ = K̃C∗Γ(µ)∗B∗ − BΓ(µ)CK̃ (6.26)

and
zΓ(z) − ωΓ(ω)

z − ω
C = Γ(z)CG(ω) (6.27)

which are easily checked with help of (3.11). Since Ñ is J–unitary, it follows from (6.20)
that

Θ̃(z)JΘ̃(ω)∗ − J = i(µ − z)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1 (G(µ)Π1, −BΓ(µ)Π2)

+i(ω̄ − µ)

(
Π∗

1G(µ)∗

−Π∗
2Γ(µ)∗B∗

)
K̃−1 (G(ω̄)Π1, −BΓ(ω̄)Π2)

+i(z − µ)(ω̄ − µ)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1 {BΓ(µ)Π2Π

∗
1G(µ)∗

− G(µ)Π1Π
∗
2Γ(µ)∗B∗} K̃−1 (G(ω̄)Π1, −BΓ(ω̄)Π2) . (6.28)

In view of (6.26), (6.27) and (2.16), the third term in the right hand side of the latter equality

is equal to

i(z − µ)(ω̄ − µ)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

){
C∗Γ(µ)∗B∗K̃−1 − K̃−1BΓ(µ)C

}

× (G(ω̄)Π1, −BΓ(ω̄)Π2)

= i(ω̄ − µ)

(
Π∗

1C
∗ (zΓ(z̄)∗ − µΓ(µ)∗)

−Π∗
2 (Γ(µ)∗ − Γ(z̄)∗)

)
B∗K̃−1 (G(ω̄)Π1, −BΓ(ω̄)Π2)

−i(z − µ)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1B ((ω̄Γ(ω̄) − µΓ(µ))CΠ1, (Γ(µ) − Γ(ω̄))Π2) ,

which being substituted into (6.28) implies

Θ̃(z)JΘ̃(ω)∗ − J

= i(µ − z)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1 ((G(µ) + B (ω̄Γ(ω̄) − µΓ(µ))C) Π1, −BΓ(ω̄)Π2)

+i(ω̄ − µ)

(
Π∗

1 (G(µ)∗ + C∗ (zΓ(z̄)∗ − µΓ(µ)∗) B∗)
−Π∗

2Γ(z̄)∗B∗

)
K̃−1 (G(ω̄)Π1, −BΓ(ω̄)Π2) .



The latter equality is equivalent to (6.23) since

G(µ) + B (zΓ(z) − µΓ(µ))C = G(z).

The equalities (6.22) and (6.23) imply in particular, that the functions Θ and Θ̃ have J–
properties (6.2). By (6.19), (6.20), Θ and Θ̃ are analytic in C except at most the set Z∗ of

all singular points of the function Γ(z̄)∗ which is countable and closed. Therefore, Θ and
Θ̃ belong to the class W(G) according to Definition 6.1. To prove (6.21) we note that on

account of (6.19) and (6.20), it is equivalent to

ÑP (z) + (z − µ)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)
K̃−1 (BΓ(µ)Π2, G(µ)Π1) ÑP (z)

= P (z)N + (z − µ)P (z)

(
Π∗

1C
∗

−Π∗
2

)
Γ(z̄)∗K−1Γ(µ) (Π2, CΠ1) N,

which in turn, can be rewritten in view of (6.11) and (6.12), as

P (z)N − ÑP (z) = (z − µ)

(
Π∗

1G(z̄)∗

−Π∗
2Γ(z̄)∗B∗

)(
C∗DΠ2, D̃Π1

)
P (z)

−(z − µ)P (z)

(
Π∗

1C
∗

−Π∗
2

)
Γ(z̄)∗

(
A∗DΠ2, B∗D̃Π1

)
. (6.29)

By (6.6), (6.8) and (6.9),

P (z)N − ÑP (z) = (z − µ)

(
0 Π∗

1D̃Π1

Π∗
2DΠ2 0

)

and therefore, (6.29) is equivalent to

(
0 Π∗

1D̃Π1

Π∗
2DΠ2 0

)
=

(
Π∗

1 0
0 Π∗

2

)
Υ(z)

(
DΠ2 0

0 D̃Π1

)
, (6.30)

where

Υ(z) =

(
zG(z̄)∗C∗ − zC∗Γ(z̄)∗A∗ G(z̄)∗ − zC∗Γ(z̄)∗B∗

Γ(z̄)∗A∗ − zΓ(z̄)∗B∗C∗ 0

)
.

It follows immediately from (1.2) and (6.13) that Υ(z) =

(
0 IH̃
IH 0

)
and thus, (6.30) (which

is equivalent to (6.21)) is in force.

Remark 6.7 Since both Θ and Θ̃ belong to W(G), it follows from (6.21) by Theorem 6.4

that Θ is of the class Wπ(G).

Corollary 6.8 Let Θ and Θ̃ be defined by (6.19) and (6.20) respectively. It holds that for

every choice of points z and ω at which Θ−1 and Θ̃−1 are analytic,

J − Θ(ω)−∗JΘ(z)−1

i(ω̄ − z)
=

(
Π∗

2

Π∗
1C

∗

)
Γ(ω)∗K−1Γ(z) (Π2, CΠ1) (6.31)



and

J − Θ̃(ω)−∗JΘ̃(z)−1

i(ω̄ − z)
=

J − P (ω)−∗Θ(ω)−∗P (ω)∗JP (z)Θ(z)−1P−1(z)

i(ω̄ − z)

=

(
Π∗

2Γ(ω)∗B∗

Π∗
1G(ω)∗

)
K̃−1 (BΓ(z)Π2, G(z)Π1) .

(6.32)

Proof: The first equality in (6.32) is a consequence of (6.21). Further, the symmetry relation

(6.4) for Θ and a similar relation for Θ̃ imply that

Θ(ω)−∗JΘ(z)−1 − J = J (Θ(ω̄)JΘ(z̄)∗ − J)J

Θ̃(ω)−∗JΘ̃(z)−1 − J = J
(
Θ̃(ω̄)JΘ̃(z̄)∗ − J

)
J.

Substituting (6.22) and (6.23) into right hand sides in the two latter equalities and taking
into account the structure (6.3) of the operator J we derive (6.31) and (6.32).

It will be shown in the next section that the function Θ constructed via (6.19) is

the matrix of coefficients of the linear fractional transformation describing all solutions of
Problem 1.1. The formula (6.19) for Θ can be essentially simplified when the operator A

from (1.14) is the identity operator. This is the case for a number of concrete interpolation
problems (e.g., the Stieltjes moment problem, continuous interpolation problems on the half-

axis; see Sections 10 and 11). For such a choice of A, the functions Γ(z) and G(z) defined
via (1.2) and (6.13), are of the form

Γ(z) = (IH − zCB)−1

G(z) = IH̃ + zB (IH − zCB)−1
C =

(
IH̃ − zBC

)−1

and Lemma 6.6 can be reformulated as

Lemma 6.9 Let K, K̃ be strictly positive operators satisfying the identity

KB∗ − CK̃ = Π2Π
∗
1, (6.33)

and let N , Ñ be J–unitary operators defined by

N =

(
IG Π∗

1K̃
−1Π1

0 IG

)
, Ñ =

(
IG 0

−Π∗
2K

−1Π2 IG

)
. (6.34)

Then the functions

Θ(z) =

{
IG⊕G + z

(
Π∗

1C
∗

−Π∗
2

)
(IH − zB∗C∗)−1K−1 (Π2, CΠ1)

}
N (6.35)

Θ̃(z) =

{
IG⊕G + z

(
Π∗

1

−Π∗
2B

∗

)
(IH̃ − zC∗B∗)−1K̃−1 (BΠ2, Π1)

}
Ñ (6.36)

are of the class W(G) and satisfy the relation (6.21). In particular, Θ belongs to Wπ(G).

Proof: Since Γ(z) is analytic at the origin, one can set µ = 0 in Lemmas 6.5 and 6.6. Since

Γ(0) = IH, it follows from (6.7) that D = K−1, D̃ = K̃−1 and thus, the operators N and
Ñ defined via (6.8) and (6.9), respectively, becomes to (6.34). Now the formulas (6.35) and

(6.36) are immediate consequences of (6.19) and (6.20), respectively and all assertions of the
lemma follow from Lemma 6.6.



7 Description of all solutions

In this section we parametrize all solutions of Problem 1.1 by a linear fractional transforma-

tion. To formulate the corresponding result we need a definition of a Stieltjes pair which we
now recall.

Definition 7.1 A pair {p(z), q(z)} of two {G; G}–valued functions p and q analytic almost

everywhere in C\IR+ is called a Stieltjes pair if

p(z)∗p(z) + q(z)∗q(z) ≥ ε(z)IG (7.1)

for some ε > 0 depending on z and for almost all z ∈ C\IR+ (the nondegeneracy of the pair),

and if the following inequalities

(p(z)∗, q(z)∗)
J

i(z̄ − z)

(
p(z)
q(z)

)
=

q(z)∗p(z) − p(z)∗q(z)

z − z̄
≥ 0, (7.2)

(p(z)∗, q(z)∗)
P (z)∗JP (z)

i(z̄ − z)

(
p(z)
q(z)

)
=

zq(z)∗p(z) − z̄p(z)∗q(z)

z − z̄
≥ 0 (7.3)

hold for every z ∈ C\IR where p and q are analytic.

Here J and P (z) are operators defined in (6.3) and (6.6) respectively. A pair {p, q} is said

to be equivalent to the pair {p1, q1} if there exists a {G; G}–valued meromorphic function
R(z) which is boundedly invertible (i.e. R−1 ∈ {G; G}) at almost all points z ∈ C\IR+ and

such that
p1(z) = p(z) R(z) and q1(z) = q(z) R(z). (7.4)

Lemma 7.2 Under hypothesis (6.1) the system (2.11) of the fundamental matrix inequalities
is equivalent to the following system

(s(z)∗, IG)
Θ(z)−∗JΘ−1(z)

i(z̄ − z)

(
s(z)
IG

)
≥ 0 (7.5)

(s(z)∗, IG)
Θ(z)−∗P (z)∗JP (z)Θ−1(z)

i(z̄ − z)

(
s(z)
IG

)
≥ 0, (z ∈ C\(IR ∪ Z)) (7.6)

where Θ is the function given by (6.19).

Proof: Since K and K̃ are boundedly invertible and positive, the system (2.11) is equivalent

to

s(z) − s(z)∗

z − z̄
− Ψ(z)∗K−1Ψ(z) ≥ 0 (7.7)

zs(z) − z̄s(z)∗

z − z̄
− (zBΨ(z) + Π1)

∗
K̂−1 (zBΨ(z) + Π1) ≥ 0. (7.8)

In view of (2.12), (6.6) and (6.13),

Ψ(z) = Γ(z) (Π2, CΠ1)

(
s(z)
IG

)
, zBΨ(z) + Π1 = (BΓ(z)Π2, G(z)Π1) P (z)

(
s(z)
IG

)



which allows to rewrite (7.7) and (7.8) as

(s(z)∗, IG)

{
J

i(z̄ − z)
−
(

Π∗
2

Π∗
1C

∗

)
Γ(z)∗K−1Γ(z) (Π2, CΠ1)

}(
s(z)
IG

)
≥ 0,

(s(z)∗, IG)P (z)∗
{

J

i(z̄ − z)
−
(

Π∗
2Γ(z)∗B∗

Π∗
1G(z)∗

)
K̃−1 (BΓ(z)Π2, G(z)Π1)

}
P (z)

(
s(z)
IG

)
≥ 0.

In view of (6.31) and (6.32), the two latter inequalities coincide with (7.5) and (7.6), respec-
tively.

The next theorem describes all the solutions s of the system of inequalities (7.5), (7.6) (or
equivalently, of the system of the fundamental matrix inequalities (2.11)). By Theorems 2.5

and 4.1, every such s is a Stieltjes function and the associated measure dσ (uniquely defined
by s via the Stieltjes inversion formula (2.4)) is a solution of Problem 1.1. A system of such

type for the finite dimensional case (dim G < ∞) was considered in [11]. The corresponding
arguments are applicable to the infinite dimensional situation; we present them for the sake

of completeness.

Theorem 7.3 Let (6.1) be fulfilled and let

Θ(z) =

(
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

)
(7.9)

be the block decomposition of the function Θ ∈ Wπ defined by (6.19) into four {G; G}–
valued blocks. Then the function s satisfies inequalities (7.5), (7.6) if and only if it can be

represented in the form

s(z) = (Θ11(z)p(z) + Θ12(z)q(z))(Θ21(z)p(z) + Θ22(z)q(z))−1 (7.10)

for some Stieltjes pair {p, q} ∈ S(G) such that

(Θ21(z)p(z) + Θ22(z)q(z))−1 ∈ {G; G} (∀z ∈ C\IR+). (7.11)

Proof: Let s be a solution of the system (7.5), (7.6). We define a pair {p, q} by

(
p(z)
q(z)

)
= Θ−1(z)

(
s(z)
IG

)
. (7.12)

Then (
s(z)
IG

)
= Θ(z)

(
p(z)
q(z)

)
=

(
Θ11(z)p(z) + Θ12(z)q(z)
Θ21(z)p(z) + Θ22(z)q(z)

)

and in particular, s admits a representation (7.10). On the other hand the latter equality
implies Θ21(z)p(z) + Θ22(z)q(z) ≡ IG and thus, the condition (7.11) is fulfilled. It remains

to show that the pair {p, q} defined by (7.12) is a Stieltjes pair.



To do that we substitute (7.12) into (7.5), (7.6) and get the inequalities (7.2), (7.3)
for p and q. Next, it follows from (6.4) and (6.19) that

Θ−1(z) = JN∗J

{
IG⊕G + (z − µ)

(
−Π∗

1C
∗

Π∗
2

)
Γ(µ)K−1Γ(z) (Π2, CΠ1)

}
.

By assumptions on Γ, the function Θ−1(z) is boundedly invertible for all z ∈ C\Z and

therefore, for every choice of z ∈ C\Z and f ∈ G,

〈(p(z)∗p(z) + q(z)∗q(z))f, f〉G =
〈(

p(z)
q(z)

)
f,
(

p(z)
q(z)

)
f
〉
G⊕G

≥
〈
Θ−1(z)

(
s(z)
IG

)
f, Θ−1(z)

(
s(z)
IG

)
f
〉
G⊕G

≥ ε(z)
〈(

s(z)
IG

)
f,
(

s(z)
IG

)
f
〉
G⊕G

≥ ε(z) 〈f, f〉G .

Therefore, (p(z)∗p(z)+ q(z)∗q(z)) is boundedly invertible for all z ∈ C\Z and by Definition

7.1, {p, q} belongs to S(G).
Conversely, let {p, q} be any Stieltjes pair satisfying (7.11) and let s be of the form (7.10).

Rewriting (7.10) in the following equivalent form

(
p(z)
q(z)

)
= Θ−1(z)

(
s(z)
IG

)
v(z) (v(z) = Θ21(z)p(z) + Θ22(z)q(z)) (7.13)

and substituting (7.13) into inequalities (7.2), (7.3) (which are in force since {p, q} ∈ S(G))

we obtain

v(z)∗(s(z)∗, IG)
Θ(z)−∗JΘ−1(z)

i(z̄ − z)

(
s(z)
IG

)
v(z) ≥ 0,

v(z)∗(s(z)∗, IG)
Θ(z)−∗P (z)∗JP (z)Θ−1(z)

i(z̄ − z)

(
s(z)
IG

)
v(z) ≥ 0.

By (7.11), v(z) is boundedly invertible at every point z ∈ C\IR+ and therefore, the two last
inequalities are equivalent to (7.5) and (7.6), respectively. Thus, the function s of the form

(7.10) satisfies the inequalities (7.5) and (7.6).

Remark 7.4 It is easily seen that two Stieltjes pairs {p, q} and {p1, q1} lead by the

transformation (7.10) to the same function s(z) if and only if these pairs are equivalent (in
the sense of (7.4)).

Note also that for the case dim G < ∞, the condition (7.11) is fulfilled automatically for
every Stieltjes pair {p, q} and at almost every point z ∈ C\IR+ (see [11]).

8 Two–sided residue interpolation problem

In the last four sections we apply the preceding analysis to several concrete interpolation

problems. The first example is the two–sided residue interpolation problem suggested by A.



Nudelman in [22] and considered for Stieltjes functions in [2].
The data set for an interpolation problem consists of three separable Hilbert spaces Hζ, Hπ,

G and of an ordered collection

Ω = {C+, C−, Aπ, Aζ , B+, B−, Υ} (8.1)

of seven operators

C−, C+ ∈ {Hπ; G}, Aπ ∈ {Hπ; Hπ}, Aζ ∈ {Hζ; Hζ}, B+, B− ∈ {G; Hζ}, Υ ∈ {Hπ;Hζ}

such that
specAζ

⋃
specAπ ⊂ C+, Ran

(
B∗

+, C−
)

= G (8.2)

and the following identity holds

AζΥ − ΥAπ = B−C− − B+C+. (8.3)

Problem 8.1 Given a set Ω of operators (8.1) find all functions s ∈ S(G) such that
∮

L
(zI − Aζ)

−1B+s(z)dz = B− (8.4)
∮

L
s(z)C−(zI − Aπ)−1dz = C+ (8.5)

∮

L
(zI − Aζ)

−1B+s(z)C−(zI − Aπ)−1dz = Υ (8.6)

where L ∈ C+ is a closed contour around specAζ ∪ specAπ.

Such a contour exists since specAζ ∪ specAπ is a closed bounded set separated from the real

axis:
dist(specAζ ∪ specAπ; IR) > 0. (8.7)

Condition (8.6) is added to the left–sided condition (8.4) and the right–sided condition (8.5)

to take into account possible intersections of the spectra of the operators Aζ and Aπ.

Note that the equality (8.3) follows immediately from (8.4)–(8.6) and is therefore, a
necessary condition for Problem 8.1 to be solvable. In the case when specAζ ∩specAπ = {∅},
the operator Υ is uniquely defined by (8.3) and therefore it need not to be preassigned as a
part of interpolation data (8.1).

Note also that in the case when spectra of Aζ and Aπ consist of finite number
of isolated points, the contour integrals in (8.4)–(8.6) are equal to sums of residues of the

corresponding functions taken all over C+. In such residue form Problem 8.1 appears in [2].

Substituting integral representation (2.2) of a Stieltjes function s into (8.4)–(8.6)
and using operator calculus we obtain the equivalent conditions

B+γ +
∫ ∞

0
(λI − Aζ)

−1B+dσ(λ) = B− (8.8)

γC− +
∫ ∞

0
dσ(λ)C−(λI − Aπ)−1 = C+ (8.9)

∫ ∞

0
(λI − Aζ)

−1B+dσ(λ)C−(λI − Aπ)−1 = Υ (8.10)



which are expressed in terms of the measure dσ associated with s. As the integral in (2.2),
the integrals in (8.8)–(8.10) converge in the weak sense.

To reduce Problem 8.1 to Problem 1.2 we introduce several bounded operators

which are uniquely defined by the interpolation data (8.1). These are:

Kζ =
∫ ∞

0
(λI − Aζ)

−1B+dσ(λ)B∗
+(λI − A∗

ζ)
−1 (8.11)

Kπ =
∫ ∞

0
(λI − A∗

π)−1C∗
−dσ(λ)C−(λI − Aπ)−1 (8.12)

K̃ζ =
∫ ∞

0
λ(λI − Aζ)

−1B+dσ(λ)B∗
+(λI − A∗

ζ)
−1 + B+γB∗

+ (8.13)

K̃π =
∫ ∞

0
λ(λI − A∗

π)−1C∗
−dσ(λ)C−(λI − Aπ)−1 + C∗

−γC− (8.14)

Υ̃ =
∫ ∞

0
λ(λI − Aζ)

−1B+dσ(λ)C−(λI − Aπ)−1 + B+γC−. (8.15)

The weak convergence of all integrals in (8.11)–(8.15) follows from the convergence of inte-
grals (8.8)–(8.10), in view of (8.7) and since

∥∥∥∥λ
(
λIHζ

− Aζ

)−1 − IHζ

∥∥∥∥→ 0,
∥∥∥λ (λIHπ

− Aπ)−1 − IHπ

∥∥∥→ 0 (λ → ∞).

Assumptions on spectra of operators Aζ and Aπ ensure that the Lyapunov equations

AζKζ − KζA
∗
ζ = B−B∗

+ − B+B∗
−, A∗

πKπ − KπAπ = C∗
+C− − C∗

−C+

have the unique solutions Kζ and Kπ. It follows from (8.8), (8.9) that the operators Kζ and
Kπ defined by (8.11) and (8.12) satisfy these Lyapunov equations and are therefore uniquely

defined by the interpolation data (8.1). The equalities

K̃ζ = AζKζ + B+B∗
−, K̃π = A∗

πKπ + C∗
−C+, Υ̃ = AζΥ + B+C+ (8.16)

follow from (8.8)–(8.15) and show in particular, that the operators K̃ζ , K̃π and Υ̃ also

are uniquely defined by the interpolation data (8.1). Thus, equalities (8.11)–(8.15) can be
considered as supplementary interpolation conditions for Problem 8.1 which are compatible

with initial conditions (8.8)–(8.10). Another consequence of (8.16) is the identity

(
Aζ 0
0 A∗

π

)(
Kζ Υ
Υ∗ Kπ

)
−
(

K̃ζ Υ̃

Υ̃∗ K̃π

)
= −

(
B+

C∗
−

)(
B∗

−, C+

)

which means that the operators

K =

(
Kζ Υ
Υ∗ Kπ

)
, K̃ =

(
K̃ζ Υ̃

Υ̃∗ K̃π

)
, Π1 = −

(
B−
C∗

+

)
, Π2 =

(
B+

C∗
−

)

(8.17)

A =

(
Aζ 0
0 A∗

π

)
, B = C =

(
IHζ

0
0 IHπ

)



satisfy the identity (1.13). Let us consider Problem 1.2 for a special choice (8.17) of its data.
Since B and C are now identity operators, it follows from (1.11) that P∞ = P̃∞ = 0 and

F̃ = Π2γ
1

2 . Thus conditions (1.15)–(1.17) take the form

K =
∫ ∞

0
Γ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗, K̃ =
∫ ∞

0
λΓ(λ)Π2 dσ(λ) Π∗

2Γ(λ)∗ + Π2γΠ∗
2

Π1 =
∫ ∞

0
Γ(λ)Π2 dσ(λ) − Π2γ

and are equivalent, in view of (8.17), to (8.8)–(8.15). By Theorem 1.3, Problem 8.1 is solvable

if and only if operators K and K̃ defined in (8.17) are both nonnegative. If they are strictly

positive, the parametrization of all solutions of Problem 8.1 is given by Theorem 7.3.

A special choice of data (8.1) leads to the two–sided analogue of the classical Nevanlinna–Pick

problem.

Problem 8.2 Given different points zj ∈ C+ (j = 1, . . . , n), given spaces Gj ⊆ G and given

operators
uj, vj ∈ {G; Gj}; fj , gj ∈ {Gj ; G}; wj ∈ {Gj ; Gj}

such that
ujgj = vjfj , (8.18)

find all functions s ∈ S(G) satisfying the following interpolation conditions

ujs(zj) = vj, s(zj)fj = gj, ujs
′(z)fj = wj (j = 1, . . . , n). (8.19)

Let us define the spaces Hζ and Hπ by

Hζ = Hπ =
n⊕

j=1

Gj . (8.20)

It is easily seen that conditions (8.19) are equivalent to residue conditions (8.4)–(8.6) for

C− = (f1, . . . , fn) , C+ = (g1, . . . , gn) , Aζ = Aπ =




z1IG1

. . .

znIGn




B+ =




u1
...

un


 , B− =




v1
...
vn


 , Υ = (Υjk)

n

j,k=1 , Υjk =

{
wj , j = k

ujgk−vjfk

zj−zk
, j 6= k

where all the operators are given in the block matrix form with respect to direct sum (8.20).
Note that the identity (8.3) for the mentioned operators is provided by conditions (8.18).



8.1 Interpolation at negative points

Since Stieltjes functions are analytic on IR−, interpolation conditions at negative points can
be put into consideration as well as nonreal ones. However, the nonnegativity of Stieltjes

functions on IR− induces some pecularities of such a problem.

Problem 8.3 Let A, K ∈ {H; H} and B+, B− ∈ {G; H} be operators such that

specA ⊂ IR−, RanB∗
+ = G and AK − KA∗ = B−B∗

+ − B+B∗
−.

Find all functions s ∈ S(G) satisfying the interpolation conditions

∮

L
(zI − A)−1B+s(z)dz = B− (8.21)

∮

L
(zI − A)−1B+s(z)B∗

+(zI − A)−1dz = K (8.22)

where L ∈ C\IR+ is a closed contour around specA.

Since s(z) is selfadjoint for z < 0, the left–sided condition (8.21) is equivalent to the right–

sided condition (8.5) for Aπ = A, C− = B∗
+ and C+ = B∗

−. Therefore, (8.22) is the analogue
of the two–sided condition (8.6) for the present situation. Reproducing arguments from the

previous subsection we conclude that conditions (8.21), (8.22) are equivalent to conditions
(1.15)–(1.17) for

B = C = IH, Π2 = B+, Π1 = B−, K̃ = AK + B+B∗
−

and therefore Problem 8.3 is a particular case of Problem 1.2.

9 Boundary interpolation problem

In general, a Stieltjes function s is not analytic on IR+. However, as a function of bounded
type, it has weak boundary limits

s(x) = lim
ε→+0

s(x + iε) = lim
ε→+0

s(x − iε)∗

at almost all (with respect to the Lebesgue measure dλ) points x ∈ IR+. The boundary
interpolation problem involves finding all Stieltjes functions which take prescribed boundary

values at prescribed points on IR+. In order to include the boundary interpolation problem
into the general scheme we require more: the existence of the weak limit

lim
ε→0

s(λj + iε) − s(λj + iε)∗

2iε
∈ {G; G} (9.1)

at every point λj of interpolation. Under such an assumption, boundary values s(λj) exist
and are selfadjoint.



Problem 9.1 Given points λj ∈ IR+ (j = 1, . . . , n), given selfadjoint operators sj ∈ {G; G}
and nonnegative operators wj ∈ {G; G} find all functions s ∈ S(G) such that

lim
ε→0

s(λj + iε) = sj, lim
ε→0

s(λj + iε) − s(λj + iε)∗

2iε
≤ wj (j = 1, . . . , n). (9.2)

Let s be a Stieltjes function satisfying (9.2) and let (2.2) be its integral representation with
a {G; G}–valued nonnegative measure dσ satisfying (2.3). Then the assumption (9.1) is

equivalent to

lim
ε→0

∫ ∞

0

dσ(λ)

(λ − λj)2 + ε2
∈ {G; G} (j = 1, . . . , n), (9.3)

while conditions (9.2) are expressed in terms of the representing measure as

γ + lim
ε→0

∫ ∞

0

dσ(λ)

λ − λj − iε
= sj , lim

ε→0

∫ ∞

0

dσ(λ)

(λ − λj)2 + ε2
≤ wj (j = 1, . . . , n). (9.4)

Since the limits in (9.3) represent bounded operators,

lim
ε→0

∫ ∞

0

εdσ(λ)

(λ − λj)2 + ε2
= 0. (9.5)

On the other hand, the weak convergence of the integral
∫ ∞

0

dσ(λ)
(λ−λj)2

follows from (9.3) by

Fatou’s lemma. Applying Lebesgue’s dominated convergence theorem we obtain that

lim
ε→0

∫ ∞

0

dσ(λ)

(λ − λj)2 + ε2
=
∫ ∞

0

dσ(λ)

(λ − λj)2
. (9.6)

Using the inequality λ
(λ−λj )2

< 2
λ+1

which holds for all λ > 4λj + 1 we get

∫ ∞

0

λdσ(λ)

(λ − λj)2
≤

∫ 4λj+1

0

4λj + 1

(λ − λj)2
dσ(λ) +

∫ ∞

4λj+1

2dσ(λ)

λ + 1

≤ (4λj + 1)
∫ ∞

0

dσ(λ)

(λ − λj)2
+ 2

∫ ∞

0

dσ(λ)

λ + 1
.

Since dσ satisfies (2.3), the last estimate implies the weak convergence of the integral∫ ∞

0

λdσ(λ)
(λ−λj)2

and again by Lebesgue’s dominated convergence theorem we conclude that

lim
ε→0

∫ ∞

0

λdσ(λ)

(λ − λj)2 + ε2
=
∫ ∞

0

λdσ(λ)

(λ − λj)2
. (9.7)

Now it follows from (9.5)–(9.7) that

lim
ε→0

∫ ∞

0

dσ(λ)

λ − λj − iε
= lim

ε→0

∫ ∞

0

λdσ(λ)

(λ − λj)2 + ε2
− lim

ε→0

∫ ∞

0

λj − iε

(λ − λj)2 + ε2
dσ(λ)

=
∫ ∞

0

λdσ(λ)

(λ − λj)2
−
∫ ∞

0

λjdσ(λ)

(λ − λj)2
=
∫ ∞

0

dσ(λ)

λ − λj

. (9.8)



Taking advantage of (9.6) and (9.8) we rewrite conditions (9.4) in the form

γ +
∫ ∞

0

dσ(λ)

λ − λj

= sj,

∫ ∞

0

dσ(λ)

(λ − λj)2
≤ wj (j = 1, . . . , n). (9.9)

The supplementary conditions

∫ ∞

0

dσ(λ)

(λ − λj)(λ − λℓ)
=

sj − sℓ

λj − λℓ

, γ +
∫ ∞

0

λdσ(λ)

(λ − λj)2
≤ λjwj + sj

γ +
∫ ∞

0

λdσ(λ)

(λ − λj)(λ − λℓ)
=

λjsj − λℓsℓ

λj − λℓ

, (j, ℓ = 1, . . . , n; j 6= ℓ)

(9.10)

as well as convergence of the corresponding integrals, follow immediately from (9.9). Let us

consider Problem 1.1 for

H = H̃ = G ⊕ · · · ⊕ G︸ ︷︷ ︸
n times

(9.11)

and for operators

A =




λ1IG
. . .

λnIG


 , B = C = IH, Π1 = −




s1
...
sn


 , Π2 =




IG
...
IG




K = (Kjℓ)
n

j,ℓ=1 with Kjℓ =





wj, j = ℓ
sj − sℓ

λj − λℓ

, j 6= ℓ

K̃ =
(
K̃jℓ

)n

j,ℓ=1
with K̃jℓ =





λjwj + sj , j = ℓ
λjsj − λℓsℓ

λj − λℓ

, j 6= ℓ

(9.12)

which are presented in the block forms with respect to decompositions (9.11) of H and H̃.

The identity (1.13) for these operators can be easily verified and according to (1.2),

Γ(λ)Π2 = (A − λIH)−1Π2 =




(λ1 − λ)−1

...
(λn − λ)−1


 . (9.13)

Conditions (1.11) and (1.12) imply

P∞ = P̃∞ = 0, F̃ = Π2γ
1

2 xi = 0 (9.14)

and provide the operator Pi + FiF
∗
i to be of the form

Pi + FiF
∗
i =




0 · · · 0 · · · 0
.
..

. . .
.
..

0 · · · pi · · · 0
...

. . .
...

0 · · · 0 · · · 0




(0 ≤ pi ∈ {G; G}) (9.15)



(i.e., with the only possibly nonzero ii–entry pi in the block representation with respect
to decomposition (9.11)). Substituting (9.12)–(9.15) into (1.8)–(1.12) and comparing corre-

sponding {G; G}–blocks we get

Kjℓ =





∫ ∞

0

dσ(λ)
(λ−λj)2

+ pj j = ℓ
∫ ∞

0

dσ(λ)
(λ−λj)(λ−λℓ)

j 6= ℓ
K̃jℓ =





∫ ∞

0

λdσ(λ)
(λ−λj)2

+ γ + λjpj j = ℓ
∫ ∞

0

λdσ(λ)
(λ−λj )(λ−λℓ)

+ γ j 6= ℓ

(Π1)j = −sj =
∫ ∞

0

dσ(λ)
λj−λ

− γ.

Taking into acccount the explicit formulas for Kjℓ and K̃jℓ it is easily seen that the obtained

equalities are equivalent to (9.9), (9.10). Therefore Problem 1.1 with a special choice (9.12)
of the data is equivalent to Problem 9.1. By Theorem 1.3, Problem 9.1 has a solution if and

only if operators K and K̃ defined in (9.12) are nonnegative. If these operators are strictly
positive, the set of all solutions of Problem 9.1 is described as in Theorem 7.3.

10 Stieltjes moment problem

The next example is the truncated Stieltjes moment problem which consists of the following.

Problem 10.1 Given nonnegative bounded operators s0, . . . , sN acting in a separable Hilbert
space G find all nondecreasing {G; G}–valued functions σ(λ) on IR+ such that

∫ ∞

0
λkdσ(λ) = sk (k = 0, . . . , N − 1) and

∫ ∞

0
λNdσ(λ) ≤ sN , (10.1)

where the indicated integrals converge in the weak sense.

There is a slight difference between the cases of even and odd N which suggests to consider
them separately. However, both of these cases are reduced to Problem 1.2 for a special choice

of data (1.14).

1. Let N = 2n + 1 and let

H = H̃ = G ⊕ · · · ⊕ G︸ ︷︷ ︸
(n+1) times

. (10.2)

We consider Problem 1.2 for A = B = IH and

K =




s0 s1 · · · sn

s1 s2 · · · sn+1
...

...
...

sn sn+1 · · · s2n




, K̃ =




s1 s2 · · · sn+1

s2 s3 · · · sn+2
...

...
...

sn+1 sn+2 · · · s2n+1




(10.3)

Π1 =




s0
...
sn


 , Π2 =




IG
0
.
..
0


, C =




0 0 . . . 0

IG 0
. . .

..

.
...

. . .
. . . 0

0 . . . IG 0






where all the operators are presented in the block-matrix form with respect to decomposition
(10.2). It is easily verified that these operators satisfy (1.13) and, according to (1.2),

Γ(z)Π2 =




IG
zIG
..
.

znIG


. (10.4)

The operators P∞, P̃∞, F̃ and γ satisfying (1.11), necessarily are of the form

γ = 0, P∞ = 0, P̃∞ + F̃ F̃ ∗ =




0 · · · 0 0
..
.

..

.
..
.

0 · · · 0 0
0 · · · 0 s


 (0 ≤ s ∈ {G; G}). (10.5)

Substituting (10.3)–(10.5) into (1.15)–(1.17) and comparing {G; G}–blocks in the obtained
operator equalities we get (10.1). Note that first N −1 conditions in (10.1) are equivalent to

(1.15), whereas the inequality for the last moment follows from the integral representation
of the right bottom {G; G}–block of K̃ in (1.16). All other conditions which can be deduced

from (1.16) and (1.17) are superfluous but compatible with conditions (10.1).

Let now N = 2n, let

H = G ⊕ · · · ⊕ G︸ ︷︷ ︸
(n+1) times

, H̃ = G ⊕ · · · ⊕ G︸ ︷︷ ︸
n times

and let us consider Problem 1.2 for operators

K =




s0 s1 · · · sn

s1 s2 · · · sn+1
...

...
...

sn sn+1 · · · s2n




, K̃ =




s1 s2 · · · sn

s2 s3 · · · sn+1
...

...
...

sn sn+1 · · · s2n−1




, Π1 =




s0

s1
...

sn−1




(10.6)

Π2 =




IG
0
..
.
0


, A = IH, C =




0 . . . 0
IG 0

0 IG
. . .

...
...

. . .
. . . 0

0 . . . 0 IG




, B =




IG 0 . . . 0

0 IG
. . .

..

.
.
..

. . . 0
0 . . . 0 IG 0




which satisfy the identity (1.13). By (1.2), Γ(z)Π2 is as in (10.4). Conditions (1.11) provide
P̃∞, F̃ and γ to be zero operators while P∞ should be of the form

P∞ =




0 · · · 0 0
.
..

.

..
.
..

0 · · · 0 0
0 · · · 0 s


 (0 ≤ s ∈ {G; G}). (10.7)

Substituting (10.4), (10.6) and (10.7) into (1.15) we get (10.1). Besides, conditions (1.16),
(1.17) are compatible with (10.1).

A number of more complicated examples of the moment problem type may be found in [5].



11 Analogues of Krein’s extension problem

In this section we consider continuous interpolation problems on integral representations of

functions generating positive integral operators in the Hilbert space Ln
2 [0; ℓ] of all Cn–valued

finctions with summable square

‖f‖2
Ln

2
[0; ℓ] =

∫ ℓ

0
f(λ)∗f(λ)dλ.

Example 11.1 Denote by Pℓ the set of all Cn×n–valued functions k(x) continuous on [−ℓ; ℓ]
and such that the bounded operators K and K̃ acting in Ln

2 [0; ℓ] by the rules

(Kf)(x) =
∫ ℓ

0
k(x − t)f(t)dt, (K̃f)(x) = i

d

dx

∫ ℓ

0
k(x − t)f(t)dt, (11.1)

are nonnegative.

The condition K ≥ 0 means that the function k(x) is Hermitian positive on [−ℓ; ℓ] and

therefore (see [20]), it admits a representation

k(x) =
∫ ∞

−∞
e−ixλdσ(λ) (11.2)

for a nonnegative Cn×n–valued measure dσ(λ) satisfying condition (2.7). In particular,
k(x) = k(−x)∗. We show that the additional condition K̃ ≥ 0 provides the existence of

a representing measure dσ(λ) in (11.2) with the support in IR+.

Let C ∈ {Ln
2 [0; ℓ]; Ln

2 [0; ℓ]} and Π1, Π2 ∈ {Cn; Ln
2 [0; ℓ]} be the operators defined by

(Cf)(x) = −i

∫ x

0
f(t)dt, (Π1g)(x) = k(x)g, (Π2g)(x) = g (11.3)

for f ∈ Ln
2 [0; ℓ] and g ∈ Cn. Then

Π∗
1f =

∫ ℓ

0
k(t)∗f(t)dt =

∫ ℓ

0
k(−t)f(t)dt;

(CK̃f)(x) =
∫ x

0

d

dt

∫ ℓ

0
k(t − ξ)f(ξ)dξ =

∫ ℓ

0
k(t − ξ)f(ξ)dξ

∣∣∣∣∣

x

0

=
∫ ℓ

0
k(x − ξ)f(ξ)dξ −

∫ ℓ

0
k(−ξ)f(ξ)dξ

and now it is easily seen that the operators from (11.1) and (11.3) satisfy the identity

K − CK̃ = Π2Π
∗
1, (11.4)

which is a particular case of the identity (1.13) corresponding to a choice A = B = ILn
2
[0; ℓ].

According to (1.2),

(Γ(λ)Π2g)(x) = (I − λC)−1g =
∞∑

j=0

λjCjg = e−iλxg (∀g ∈ Cn). (11.5)



By Theorem 1.3, there exists a measure dσ(λ) giving representations (1.15)–(1.17). Since
operators B and C are injective, relations (1.11) provide P∞ and P̃∞ to be zero operators.

Next, let F̃ ∈ {Cn; Ln
2 [0; ℓ]} and γ ∈ Cn×n be subject to

CF̃g = Π2γ
1

2 g (∀ g ∈ Cn).

Taking advantage of (11.3) we rewrite the latter equality as

−i

∫ x

0
(F̃ g)(t)dt ≡ γ

1

2 g = const.

Therefore, F̃ g is a zero element of Ln
2 [0; ℓ] and since g is arbitrary, F̃ = 0. This in turn,

implies γ = 0. On account of (11.3), (1.17) and (11.5),

(Π1g)(x) = k(x) g =
∫ ∞

0
Γ(λ)Π2dσ(λ) g =

∫ ∞

0
e−iλxdσ(λ) g

and since g is an arbitrary vector from Cn,

k(x) =
∫ ∞

0
e−ixλdσ(λ). (11.6)

As a solution of Problem 1.2, the measure dσ should provide the convergence of the integral

in the right side of (11.6). For x = 0 this implies (2.7). Conversely, for every function k of
the form (11.6) the operators K and K̃ defined via (11.1) are nonnegative:

(Kf, f)Ln
2
[0; ℓ] =

∫ ℓ

0

∫ ℓ

0
f(t)∗

∫ ∞

0
eitλdσ(λ)e−iτλf(τ)dtdτ ≥ 0

(
K̃f, f

)
Ln

2
[0; ℓ]

=
∫ ℓ

0

∫ ℓ

0
f(t)∗

∫ ∞

0
λeitλdσ(λ)e−iτλf(τ)dtdτ ≥ 0

and therefore, k ∈ Pℓ. Moreover, the integral in (11.6) makes sense for all x ∈ IR and
therefore, k can be extended to the whole real axis such that the corresponding integral

operators K and K̃ will be still positive semidefinite. In fact the following theorem is

proved.

Theorem 11.2 A Cn×n–valued function k belongs to the class Pℓ if and only if it admits a

representation (11.6) with a nonnegative Cn×n–valued measure dσ satisfying condition (2.7).
Every k ∈ Pℓ admits an extension to a function k̃ ∈ P∞.

Example 11.3 Denote by Kℓ the set of all Cn×n–valued functions k(x) continuous on [0; 2ℓ]
and such that the bounded operators K and K̃ acting in Ln

2 [0; ℓ] by the rules

(Kf)(x) =
∫ ℓ

0
(k(x + t) + k(|x − t|)) f(t)dt

(K̃f)(x) = − d2

dx2

∫ ℓ

0
(k(x + t) + k(|x − t|)) f(t)dt

(11.7)

are nonnegative.



In particular, k(x) = k(x)∗. Let us define the operators C, Π1 and Π2 by

(Cf)(x) = −
∫ x

0
(x − t)f(t)dt, (Π1g)(x) = 2k(x)g, (Π2g)(x) = g (11.8)

for f ∈ Ln
2 [0; ℓ] and g ∈ Cn. Since

Π2Π
∗
1f = 2Π2

∫ ℓ

0
k(t)∗f(t)dt = 2

∫ ℓ

0
k(t)f(t)dt (f ∈ Ln

2 [0; ℓ])

and

(CK̃f)(x) =
∫ x

0
(x − t)

d2

dt2

∫ ℓ

0
(k(t + ξ) + k(|t − ξ|)) f(ξ)dξ

= (x − t)
d

dt

∫ ℓ

0
(k(t + ξ) + k(|t − ξ|)) f(ξ)dξ

∣∣∣∣∣

x

0

+
∫ ℓ

0
(k(t + ξ) + k(|t − ξ|)) f(ξ)dξ

∣∣∣∣∣

x

0

=
∫ ℓ

0
(k(x + t) + k(|x − t|)) f(t)dt − 2

∫ ℓ

0
k(t)f(t)dt,

the identity (11.4) holds for the operators introduced in (11.7) and (11.8). Applying the

equality

(Cmf) (x) =
(−1)m

(2m − 1)!

∫ x

0
(x − t)2m−1f(t)dt (11.9)

(which follows immediately from the definition (11.8) of the operator C) to the function
f(t) = g (g ∈ Cn) we get

(Cmg) (x) =
(−1)m

(2m − 1)!

∫ x

0
(x − t)2m−1dt g =

(−1)m

2m!
x2m g (m ≥ 1) (11.10)

and therefore,

(Γ(λ)Π2g)(x) = (I − λC)−1g =
∞∑

m=0

λmCm g =
∞∑

m=0

(−1)m

2m!
x2mλm g = cos x

√
λ g. (11.11)

By Theorem 1.3, there exists a measure dσ(λ) giving representations (1.15)–(1.17). As in
Example 11.1, P∞, P̃∞ and F̃ satisfying (1.11), necessarily are zero operators. From (1.17)

we get the integral representation of a function k ∈ Kℓ: by (11.8) and (11.11), it holds for
every g ∈ Cn that

(Π1g)(x) = 2k(x) g =
∫ ∞

0
Γ(λ)Π2dσ(λ) g =

∫ ∞

0
cos x

√
λdσ(λ) g

and therefore,

k(x) =
1

2

∫ ∞

0
cos x

√
λ dσ(λ). (11.12)



The representing measure dσ provides the convergence of the integral in the right side of
(11.12) and therefore dσ satisfies condition (2.7). Conversely, for every function k of the

form (11.12) the operators K and K̃ defined via (11.7) are nonnegative:

(Kf, f)Ln
2
[0; ℓ] =

∫ ℓ

0

∫ ℓ

0
f(t)∗

∫ ∞

0
cos t

√
λdσ(λ) cos τ

√
λ f(τ)dtdτ ≥ 0

(
K̃f, f

)
Ln

2
[0; ℓ]

=
∫ ℓ

0

∫ ℓ

0
f(t)∗

∫ ∞

0
λ cos t

√
λdσ(λ) cos τ

√
λ f(τ)dtdτ ≥ 0.

Note that the only positivity of the operator K from (11.7) guarantees the existence of a
representation

k(x) =
1

2

∫ ∞

−∞
cos x

√
λdσ(λ)

of the function k for a nonnegative measure dσ on the whole real axis (see [20]). To ensure
the convergence of the integral, the representing measure has to satisfy besides (2.7) an

appropriate condition on IR−.

Example 11.4 Denote by Fℓ the set of all Cn×n–valued functions k(x) piecewise continuous

on [−2ℓ; 2ℓ], satisfying k(x) = k(x)∗ = −k(−x) and such that the bounded operators K and
K̃ acting in Ln

2 [0; ℓ] by the rules

(Kf)(x) = d
dx

∫ ℓ

0
(k(x − t) + k(x + t)) f(t)dt

(K̃f)(x) = d
dx

∫ ℓ

0
(k(x − t) − k(x + t)) f(t)dt

(11.13)

are nonnegative.

Let us define the operators B, C, Π1 and Π2 by

(Bf)(x) =
∫ x

0
f(t)dt, (Cf)(x) = −

∫ x

0
f(t)dt, (Π1g)(x) = 2k(x)g, (Π2g)(x) = g

(11.14)
for f ∈ Ln

2 [0; ℓ] and g ∈ Cn. The straightforward calculations show that

(KB∗f)(x) =
∫ ℓ

0
(k(x − t) − k(x + t)) f(t)dt, Π2Π

∗
1f = 2

∫ ℓ

0
k(t)f(t)dt

(CK̃)(x) =
∫ ℓ

0
(k(x − t) − k(x + t)) f(t)dt − 2

∫ ℓ

0
k(t)f(t)dt

and therefore,

KB∗ − CK̃ = Π2Π
∗
1. (11.15)

Furthermore,

(CBf)(x) = −
∫ x

0
(x − t)f(t)dt,

and using the calculations from the the previous example, we get

(Γ(λ)Π2g)(x) = (I − λCB)−1x = cos x
√

λ g, B(Γ(λ)Π2g)(x) =
sin x

√
λ√

λ
.



As above, the operators P∞, P̃∞ and F̃ satisfying (1.11) are zero operators. By Theorem
1.3 there exists a measure dσ(λ) giving representations (1.15)–(1.17). ¿From (1.17) we get

the integral representation of a function k ∈ Fℓ:

k(x) g =
1

2
(Π1g)(x) =

∫ ∞

0
BΓ(λ)Π2dσ(λ) g =

∫ ∞

0

sin x
√

λ√
λ

dσ(λ) g. (11.16)

Moreover, for every function k of the form (11.16) the operators K and K̃ defined via (11.13)
are nonnegative:

(Kf, f)Ln
2
[0; ℓ] =

∫ ℓ

0

∫ ℓ

0
f(t)∗

∫ ∞

0
cos t

√
λdσ(λ) cos τ

√
λ f(τ)dtdτ ≥ 0

(
K̃f, f

)
Ln

2
[0; ℓ]

=
∫ ℓ

0

∫ ℓ

0
f(t)∗

∫ ∞

0
sin t

√
λdσ(λ) sin τ

√
λ f(τ)dtdτ ≥ 0.

For the special choice of k,

k(x) =

{
1
2
, x ≥ 0

−1
2
, x < 0

the operators K and K̃ defined via (11.13) are identity operators on Ln
2 [0; ℓ].

Example 11.5 Denote by Fℓ the set of all Cn×n–valued kernels k(x, y) of the form

k(x, y) = s(x + y) + h(x − y) (0 ≤ x, y ≤ ℓ) (11.17)

where s and h are Cn×n–valued functions differentiable on [0; 2ℓ] and [−ℓ; ℓ] respectively and
such that the bounded operators K and K̃ acting in Ln

2 [0; ℓ] by the rules

(Kf)(x) =
∫ ℓ

0
k(x, t)f(t)dt and (K̃f)(x) = − d2

dx2

∫ ℓ

0
k(x, t)f(t)dt (11.18)

are nonnegative.

The functions s and h in the representation (11.17) are defined by the kernel k up to additive
constants. Under the normalizing condition h(0) = 0,

s(x) = k
(

x
2
, x

2

)
and h(x) = k(x, 0) − k

(
x
2
, x

2

)
.

Let C be defined as in (11.8) and let Π1 and Π2 be the operators which map C2n into Ln
2 [0; ℓ]

by the rules
(

Π1

(
g1

g2

))
(x) = 2k(x, 0)g1 + k′(x, 0)g2,

(
Π2

(
g1

g2

))
(x) = g1 + xg2 (g1, g2 ∈ Cn).

(11.19)
Using the equalities

Π2Π
∗
1f = Π2




∫ ℓ

0
k(0, t)f(t)dt

∫ ℓ

0
k′(0, t)f(t)dt


 =

∫ ℓ

0
(k(0, t) + xk′(0, t)) f(t)dt



and

(CK̃f)(x) =
∫ x

0
(x − t)

d2

dt2

∫ ℓ

0
k(t, ξ)f(ξ)dξ

= (x − t)
d

dt

∫ ℓ

0
k(t, ξ)f(ξ)dξ

∣∣∣∣∣

x

0

+
∫ ℓ

0
k(t, ξ)f(ξ)dξ

∣∣∣∣∣

x

0

=
∫ ℓ

0
k(x, t)f(t)dt −

∫ ℓ

0
(k(0, t) + xk′(0, t)) f(t)dt

we get identity (11.4). Applying (11.9) to the function f(t) = tg2 (g2 ∈ Cn) we obtain

(Cm(tg2)) (x) =
(−1)m

(2m − 1)!

∫ x

0
(x − t)2m−1tdt g2 =

(−1)m

(2m + 1)!
x2m+1 g2

which together with (11.11) and (11.19) implies

(
Γ(λ)Π2

(
g1

g2

))
(x) = (I − λC)−1(g1 + tg2) =

∞∑

j=0

λjCj(g1 + tg2)

= cos x
√

λ g1 +
sin x

√
λ√

λ
g2,

or equivalently,

(Γ(λ)Π2 g) (x) =

(
cos x

√
λ,

sin x
√

λ√
λ

)
g (g ∈ C2n). (11.20)

By Theorem 1.3 there exists a nonnegative C2n×2n–valued measure dσ(λ) (despite the evi-
dence from the previous examples, the size of a measure is more than the size of the function

k) giving representations (1.15)–(1.17). As before, P∞, P̃∞ and F̃ are zero operators. From
(1.15) we get the integral representation of the kernel k:

k(x, y) =
∫ ∞

0

(
cos x

√
λ,

sin x
√

λ√
λ

)
dσ(λ)


 cos y

√
λ

sin y
√

λ√
λ


 .

If the kernel k of the form (11.17) is such that only the operator K is nonnegative, such a
representation exists with a measure supported in general, by the whole real axis ([3]).
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