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INTERPOLATION FOR MULTIPLIERS
ON REPRODUCING KERNEL HILBERT SPACES

VLADIMIR BOLOTNIKOV

(Communicated by Joseph A. Ball)

Abstract. All solutions of a tangential interpolation problem for contractive
multipliers between two reproducing kernel Hilbert spaces of analytic vector-

valued functions are characterized in terms of certain positive kernels. In a
special important case when the spaces consist of analytic functions on the
unit ball of Cd and the reproducing kernels are of the form (1 − 〈z, w〉−1)Ip
and (1−〈z,w〉)−1Iq, the characterization leads to a parametrization of the set
of all solutions in terms of a linear fractional transformation.

1. Introduction

A Hilbert space H of Cp×1-valued functions which are defined on a domain
Ω ∈ Cd is said to be a reproducing kernel Hilbert space if there exists a Cp×p-
valued function K(z, ω) such that for every point ω ∈ Ω and every vector c ∈ Cp,
the function Kwc := K(· , w)c belongs to H and 〈f, Kwc〉H = c∗f(w) for every
function f ∈ H. The function K(z, w) turns to be positive on Ω in the sense that∑n
j,`=1 c

∗
jK(z(j), z(`))c` ≥ 0 for every choice of an integer n, of vectors c1, . . . , cn ∈

Cp and of points z(1), . . . , z(n) ∈ Ω or, equivalently, if the Hermitian block matrix
with `j-th entry K(z(j), z(`)) is positive semidefinite. This property will be denoted
by K(z, ω) � 0. The function K(z, ω) is, furthermore, uniquely defined (as is
easily verified), and is called the reproducing kernel of H. The fundamental result
of Aronszajn [4] states that for every positive kernel K on Ω, there is a unique
reproducing kernel Hilbert spaceH(K) with K as its reproducing kernel. Moreover,
the set H0 consisting of functions of the form

∑
K(· , wj)cj , where {cj} and {wj}

are finite sequences in Cp and Ω, respectively, is a dense linear manifold in H(K).
In what follows we shall write Kw(z) rather than K(z, w) if the last function will
be considered as a function of z with a fixed point w ∈ Ω.

Let K(1)(z, w) and K(2)(z, w) be two positive kernels on Ω, which are respec-
tively, Cq×q- and Cp×p-valued and let H(K(1)) and H(K(2)) be the corresponding
reproducing kernel Hilbert spaces. A Cp×q-valued function S defined on Ω is called
a contractive multiplier from H(K(1)) to H(K(2)) if the multiplication operator
MS : H(K(1))→ H(K(2)), defined by

(1.1) MS(f(z)) = S(z)f(z),
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is a contraction (if K(1) = K(2), then S is called a contractive multiplier on
H(K(1))). The latter means that IH(K(2)) − MSM∗

S ≥ 0 and is equivalent to

(1.2) KS(z, w) := K(2)(z, w)− S(z)K(1)(z, w)S(w)∗ � 0 (z, w ∈ Ω).

The set of all contractive multipliers S from H(K(1)) to H(K(2)) will be denoted
by S(K(1),K(2)).

In this paper we shall focus on the following interpolation

Problem 1.1. Given functions f1, . . . , fn in H(K(1)) and h1, . . . , hn in H(K(2))
find necessary and sufficient conditions which insure the existence of a function
S ∈ S(K(1),K(2)) such that

(1.3) (M∗
Shj)(z) = fj(z), j = 1, . . . , n.

We shall make frequent use of notations

(1.4) H(z) = [h1(z) . . . hn(z)] and F (z) = [f1(z) . . . fn(z)],

which allows us to rewrite interpolation conditions (1.3) in a more compact form
as

(1.5) (M∗
SH)(z) = F (z).

Note that the tangential Nevanlinna–Pick problem in the class S(K(1),K(2)) is a
particular case of Problem 1.1. Indeed, a simple computation shows that

(M∗
SK

(2)
w )(z) = K(1)

w (z)S(w)∗,

and thus a special choice of hj = K
(2)
wj cj and fj = K

(1)
wj dj in (1.3) leads to the

left-sided interpolation conditions

K(1)
wj (z)S(wj)∗cj ≡ K(1)

wj (z)dj , j = 1, . . . , n.

Under the further assumption that K(1) is not degenerate (i.e., K(1)(z, z) > 0 for
all z ∈ Ω), the latter conditions are equivalent to the classical Nevanlinna–Pick
conditions

S(wj)∗cj = dj , j = 1, . . . , n.
In Section 2 all the solutions S of Problem 1.1 are characterized in terms of certain
positive kernels constructed from the interpolation data. In Section 3 we consider
a particular case of Problem 1.1 for multipliers on multivariable analogues of the
Hardy space H2 of the unit disk, studied in [5]. For this case, the general result
(Theorem 2.4) leads to a parametrization of the set of all solutions in terms of a
linear fractional transformation. The Nevanlinna–Pick problem in this setting (see
Remark 3.1) has been considered in [6].

2. The main result

As mentioned above, for a function S ∈ S(K(1),K(2)) the kernelKS(z, w) defined
in (1.2) is positive on Ω. The corresponding reproducing kernel Hilbert space will
be referred to as H(S).

The original characterization of H(S), as the space of all elements functions
f ∈ H(K(2)) such that

(2.1) κ(f) := sup
g∈H(K(1))

{
‖f + Sg‖2H(K(2)) − ‖g‖

2
H(K(1))

}
is finite and ‖f‖2H(S) = κ(f), is due to de Branges and Rovnyak [8].
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On the other hand, the general complementation theory (see, e.g., [15, Ch.1])
applied to the contractive operator MS provides the characterization of H(S) as
the operator range
(2.2)
H(S) = Range(I −MSM∗

S)
1
2 with ‖(I −MSM∗

S)
1
2h‖H(S) = ‖(I − π)h‖HH(K(2))

,

where π denotes the orthogonal projection onto Ker(I −MSM∗
S)

1
2 .

To state the main theorem we need some preliminary results. The first one fol-
lows immediately from the characterization (2.2) upon setting h = (I−MSM∗

S)
1
2 f .

Lemma 2.1. Let S ∈ S(K(1),K(2)) and f ∈ H(K(2)). Then (IH(K(2))−MSM∗
S)f

belongs to H(S) and

(2.3) ‖(I −MSM∗
S)f‖2H(S) = 〈(I −MSM∗

S)f, f〉H(K(2)).

Let K be a positive CN×N -valued kernel on Ω and letH(K) be the corresponding
reproducing kernel Hilbert space consisting of CN -valued vector functions. The
usage of matrix-valued functions with the columns inH(K) prompts us to introduce
(besides the standard inner product) the following bilinear form:

(2.4) [X, Y ]H(K) =
(
〈x`, yj〉H(K)

)j=1,...,m

`=1,...,n

which makes sense for every pair of functions

X(z) = [x1(z) . . . xn(z)] ∈ (H(K))1×n, Y (z) = [y1(z) . . . ym(z)] ∈ (H(K))1×m,

which are respectively, CN×n- and CN×m-valued.

Remark 2.2. The form (2.4) can be viewed as the matrix representation of the
operator M∗

Y MX : Cn → Cm with respect to the standard basis, where MX :
Cn → H(K) and MY : Cm → H(K) are the multiplication operators given by

MXc = X(z)c and MY d = Y (z)d.

The next preliminary lemma characterizesH(K) in terms of positive kernels (see
[9, Theorem 2.2] for scalar-valued kernels and [2, Lemma 2.2] for the matrix case):

Lemma 2.3. A nonzero vector-valued function f defined on Ω belongs to H(K) and
satisfies ‖f‖2H(K) ≤ γ if and only if the kernel K(z, w)− γ−1f(z)f(w)∗ is positive
on Ω.

The next theorem characterizes all the solutions S of Problem 1.1 in terms of
positive kernels and in terms of the reproducing kernel Hilbert spaces H(S). The
first develops Potapov’s method (which characterizes the solutions of an interpo-
lation problem in terms of a related fundamental matrix inequality [11]), and the
second is related to reproducing kernel methods in interpolation theory [10].

Theorem 2.4. Let H ∈ (H(K(2)))1×n and F ∈ (H(K(1)))1×n be as in (1.4), let S
be a p× q matrix-valued function which is analytic in Ω, let KS be defined by (1.2)
and let

(2.5) P := [H, H ]H(K(2)) − [F, F ]H(K(1))

and

(2.6) B(z) = H(z)− S(z)F (z).
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Then the following statements are equivalent:

(1) S is a solution to Problem 1.1.
(2) For every choice of x ∈ Cn, the function B(z)x belongs to the space H(S)

and

(2.7) ‖Bx‖2H(S) = x∗Px.

(3) The following kernel is positive on Ω:

(2.8) K(z, w) :=
[

P B(w)∗

B(z) KS(z, w)

]
� 0.

(4) The following operator

(2.9) P :=
[

P M∗
B

MB I −MSM∗
S

]
:
[
Cn
H(K(2))

]
→
[
Cn
H(K(1))

]
is positive semidefinite.

Proof. (1)⇒ (2). Let S be a solution to Problem 1.1. Then MSM∗
S ≤ IH(K(2))

and (1.5) is in force. Substituting (1.5) into the right-hand side of (2.5) and (2.6)
we get

(2.10) P = [H, H ]H(K(2)) − [M∗
SH, M∗

SH ]H(K(1)) = [(I −MSM∗
S)H, H ]H(K(2))

and

(2.11) B(z) = H(z)− S(z)(M∗
SH)(z) = ({I −MSM∗

S}H) (z).

Since Hx ∈ H(K(2)) for every x ∈ Cn, the last formula implies, by Lemma 2.1,
that Bx ∈ H(S). Finally, by (2.3) and (2.10),

‖Bx‖2H(S) = ‖(I −MSM∗
S)Hx‖2H(S) = 〈(I −MSM∗

S)Hx, Hx〉H(K(2)) = x∗Px.

(2)⇒ (3). By Lemma 2.3, equality (2.7) implies

KS(z, w)− (x∗Px)−1B(z)xx∗B(w)∗ � 0 (z, w ∈ Ω)

for every vector x ∈ Cn such that Px 6= 0. The last inequality is obviously equiva-
lent to

(2.12)
[
x∗Px x∗B(w)∗

B(z)x KS(z, w)

]
� 0 (z, w ∈ Ω).

If Px = 0, then (2.7) implies B(z)x ≡ 0, and thus (2.12) is in force as well. Thus,
(2.12) holds for every x ∈ Cn, which is equivalent to (2.8).

(3)⇒ (4). By the reproducing kernel property,

(M∗
SK

(2)
w )(z) =

[
M∗

SK
(2)
w , K(1)

z

]
H(K(1))

=
[
K(2)
w , SK(1)

z

]
H(K(2))

= K(1)
w (z)S(w)∗

and therefore,
(2.13)[

(I −MSM∗
S)K(2)

w , K(2)
z

]
H(K(2))

= K(2)
w (z)− S(z)K(1)

w (z)S(w)∗ = KS(z, w),
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which shows, in particular, that the kernel KS is positive. Fix a vector f ∈ Cn ⊕
H(K(2)) of the form

(2.14) f =
r∑
j=1

[
cj

K
(2)

w(j)dj

]
(cj ∈ Cn, dj ∈ Cp, w(j) ∈ Ω).

By (2.13),〈
(I −MSM∗

S)K(2)

w(`)d`, K
(2)

w(j)dj

〉
H(K(2))

= d∗jKS(w(j), w(`))d`

and by the reproducing kernel property,〈
MBc`, K

(2)

w(j)dj

〉
H(K(2))

= d∗jB(w(j))c`.

Using the two last equalities and taking into account partitionings (2.8) and (2.9)
of K and P we get〈

P
[

c`

K
(2)

w(`)dj

]
,

[
cj

K
(2)

w(j)dj

]〉
Cn⊕H(K(2))

=
[
c∗j d∗j

]
K(w(j), w(`))

[
c`
d`

]
.

By linearity and in view of (2.14),

〈Pf, f〉Cn⊕H(K(2)) =
r∑

j,`=1

[
c∗j d∗j

]
K(w(j), w(`))

[
c`
d`

]
.

Since the kernel K(z, w) is positive on Ω, the expression on the right-hand side of
the last equality is nonnegative. Thus, 〈Pf, f〉Cn⊕H(K(2)) ≥ 0 for every vector f
of the form (2.14). Since the set of all such vectors is dense in Cn ⊕H(K(2)), P is
positive semidefinite.

(4)⇒ (1). If P is positive semidefinite, then in particular, MSM∗
S ≤ I and

therefore, S ∈ S(K(1),K(2)). It remains to show that the interpolation condition
(1.5) is valid. To this end let us consider the block operator

P̂ =

 IH(K(1)) MF M∗
S

M∗
F M∗

HMH M∗
H

MS MH IH(K(2))

 :

 H(K(1))
Cn
H(K(2))

→
 H(K(1))
Cn
H(K(2))

 .
Here we use a somewhat sloppy notation: the domain and range of a multiplication
operator MX depends on the X . Specifically, we have

MF : Cn → H(K(1)), MH : Cn → H(K(2))

with therefore
M∗

F : H(K(1))→ Cn, M∗
H : H(K(2))→ Cn,

but
MS : H(K(1))→ H(K(2))

with therefore
M∗

S : H(K(2))→ H(K(1)).

Taking advantage of Remark 2.2, we obtain from (2.5) and (2.6) the representations

P = M∗
HMH −M∗

FMF , MB = MH −MSMF ,
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which allow us to conclude that the operator P given in (2.9) is the Schur comple-
ment of the (1, 1) block entry of P̂:

P =
[

M∗
HMH M∗

H

MH IH(K(2))

]
−
[

M∗
F

MS

] [
MF M∗

S

]
.

Since P is positive semidefinite, it follows that P̂ ≥ 0. Therefore the Schur com-
plement of the (3, 3) block entry of P̂ is positive semidefinite:[

IH(K(1)) MF

M∗
F M∗

HMH

]
−
[

M∗
S

M∗
H

] [
MS MH

]
=
[

I −M∗
SMS MF −M∗

SMH

M∗
F −M∗

HMS 0

]
≥ 0.

The last relation implies that MF −M∗
SMH = 0, which is equivalent to (1.5). �

3. Example

In this section we apply the preceding analysis to a class Sp×q of Cp×q-valued
functions S analytic in the unit ball Bd =

{
z = (z1, . . . , zd) ∈ Cd :

∑d
1 |zj |2 < 1

}
of Cd and such that

(3.1) KS(z, w) =
Ip − S(z)S(w)∗

1− 〈z, w〉 � 0 (z, w ∈ Bd).

The Nevanlinna–Pick problem for these functions (in the operator-valued version)
has been recently considered in [6]. It was shown that every solution of the prob-
lem corresponds to a unitary extension of a partially defined isometric operator,
which led to a parametrization of all solutions given in terms of a Redheffer lin-
ear fractional transformation. We shall pose a more general interpolation problem
and, upon including it in the general scheme of Problem 1.1, shall get a different
parametrization of all its solutions.

We shall use standard notations: points in Cd will be denoted by z = (z1, . . . , zd),
where zj ∈ C and 〈z, w〉 =

∑d
j=1 zjw̄j will stand for the standard inner product

in Cd. For multiindices n = (n1, . . . , nd) ∈ Nd we set

n1 + n2 + . . .+ nd = |n|, n1!n2! . . . nd! = n!, zn1
1 zn2

2 . . . zndd = zn.

The kernel

(3.2) k(z, w) =
1

1− 〈z, w〉

is positive on Bd. It can be shown (see, e.g., [5, Lemma 3.8]) that in the metric of
H(k),

〈zn, zm〉H(k) =


n!
|n|! if n = m,

0 otherwise,

which leads to the following characterization of H(k):

(3.3) H(k) =

f(z) =
∑

n∈Nd
fnz

n, with ‖f‖2H(k) =
∑

n∈Nd

n!
|n|! |fn|2 <∞

 .
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The space H(kIp) can be viewed as the tensor product Hilbert space H(k)⊗Cp×1

and we denote it Hp(k) for short. Similarly, we use the notation Hp×q(k) for the
space of Cp×q-valued functions with entries in H(k). Note that the bilinear form
defined in (2.4) takes in this context the form

(3.4) [H, F ]H(k) =
∑

n∈Nd

n!
|n|! F

∗
nHn,

and makes sense for every choice of H ∈ Hp×m(k) and F ∈ Hp×`(k).
The kernel KS defined in (3.1) is a particular case of (1.5) corresponding to the

particular choice of K(1) = kIq and K(2) = kIp, and condition (3.1) means that S
is a contractive multiplier from Hq(k) to Hp(k).

Let matrices C1 ∈ Cp×m, C2 ∈ Cq×m and A1, . . . , Ad ∈ Cm×m be such that
1. The joint spectrum of A1, . . . , Ad sits inside Bd:

(3.5) σjoint(A1, . . . , Ad) ⊂ Bd.

2. For every two products (“words”)Wn(A1, . . . , Ad) andW ′n(A1, . . . , Ad) con-
taining the same number nj of a letter Aj (for all j = 1, . . . , d),

(3.6)
[
C1

C2

]
Wn(A1, . . . , Ad) =

[
C1

C2

]
W ′n(A1, . . . , Ad)

(for instance, the last condition is clearly satisfied if A`Aj = AjA` (`, j = 1, . . . , d)).
We set

(3.7) C =
[
C1

C2

]
, A =

 A1

...
Ad

 and Z(z) =
[
z1Im z2Im . . . zdIm

]
,

and we shall use the shorthand notation

(3.8) CAn = CAn1
1 An2

2 · · ·A
nd
d

for a multiindex n = (n1, n2, . . . , nd), when the order of multipliers is not essential.
We assume furthermore that

3. The series
∑

n∈Nd
|n|!
n! (An)∗C∗CAn converges.

Note that the assumptions 1 and 3 provide that the function

(3.9) G(z) = (Im − Z(z)A)−1

is analytic in Bd and belongs to Hm×m(k). Making use of notation (3.8) one can
write

(3.10) CG(z) = C

Im − d∑
j=1

zjAj

−1

= C
∑

n∈Nd

|n|!
n!

Anzn.

The symbol IP(A, C) will be used to denote the following interpolation problem:
Given A, C and G as above, find necessary and sufficient conditions which insure

the existence of a function S ∈ Sp×q such that

(3.11) M∗
S(C1G(z)) = C2G(z)

and describe the set of all such functions.
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Remark 3.1. It can be easily seen that the particular choice of

[
C1

C2

]
=
[
b1 . . . bm
c1 . . . cm

]
, Aj =


w̄

(j)
1

. . .
w̄

(j)
m

 (j = 1, . . . , d)

in (3.11) for prescribed m points w(`) = (w(`)
1 , . . . , w

(`)
d ) ∈ Bd and vectors b` ∈ Cp,

c` ∈ Cq, leads to left–sided Nevanlinna–Pick conditions b∗`S(w(`)) = c∗` (` =
1, . . . ,m).

The IP(A, C) can be included in the general scheme of Problem 1.1 upon setting

(3.12) H(z) = C1G(z) ∈ Hp×m(k) and F (z) = C2G(z) ∈ Hq×m(k).

Then the function B defined in (2.6) takes the form B(z) = (C1 − S(z)C2)G(z).
By Theorem 2.4 we get that a Cp×q-valued function S analytic in Bd is a soluttion
to the IP(A, C) if and only if
(3.13)

K(z, w) :=

 P G(ω)∗(C∗1 − C∗2S(w)∗)

(C1 − S(z)C2)G(z)
Ip − S(z)S(w)∗

1− 〈z, w〉

 � 0 (z, w ∈ Bd),

where

(3.14) P := [C2G, C2G]H(k) − [C1G, C1G]H(k) .

Making use of the signature matrix

(3.15) J =
[
Ip 0
0 −Iq

]
we can represent P as

(3.16) P = [JCG, CG]H(k) .

In contrast to the general case, inequality (3.13) admits a nice description of all
its solutions. First we note that the Pick matrix P defined in (3.14) satisfies the
generalized Stein equation

(3.17) P −
d∑
j=1

A∗jPAj = C∗JC.

Indeed, due to conditions (3.6) one can solve (3.17) iteratively to get a (unique)
solution P of (3.17) in the form of a uniformly converging series

P =
∑
n∈Nd

|n|!
n!

(An)∗C∗JCAn.

On the other hand, substituting the Taylor expansion (3.10) for G into the left-hand
side in (3.16) and making use of (3.4) we come to the same expression for P :

[JCG, CG]H(k) =

JC ∑
n∈Nd

|n|!
n!

Anzn, C
∑

n∈Nd

|n|!
n!

Anzn


H(k)

=
∑

n∈Nd

|n|!
n!

(An)∗C∗JCAn.
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Let us assume that P is positive definite. Then the C(p+q)×(md+p+q)–valued
function

Θ(z) =
[
0 Ip+q

]
+ CG(z)P−1

[
(z1Im −A∗1)P

1
2 . . . (zdIm −A∗d)P

1
2 −C∗J

](3.18)

is analytic in Bd and satisfies

(3.19)
J −Θ(z)JΘ(w)∗

1− 〈z, w〉 = CG(z)P−1G(w)∗C∗, where J =
[
Imd 0
0 J

]
,

for every choice of z = (z1, . . . , zd) and w = (w1, . . . , wd) in Bd. Indeed, it follows
readily from (3.19) that

(3.20) J −Θ(z)JΘ(w)∗ = CG(z)P−1T (z, w)P−1G(w)∗C,

where

T (z, w) =

I − d∑
j=1

w̄jA
∗
j

P + P

I − d∑
j=1

zjAj


−

d∑
j=1

(zjI −A∗j )P (w̄jI −Aj)− C∗JC.

Making use of (3.17), we get

T (z, w) = 2P −
d∑
j=1

(
zjw̄jP +A∗jPAj

)
− C∗JC = (1− 〈z, w〉)P,

which together with (3.20) imply (3.19).
Still assuming that P is positive definite, we conclude that (3.13) is equivalent

to
Ip − S(z)S(w)∗

1− 〈z, w〉 − (C1−S(z)C2)G(z)P−1G(ω)∗(C∗1 −C∗2S(w)∗) � 0 (z, w ∈ Bd),

which in its turn, can be written as[
Ip −S(z)

]{ J

1− 〈z, w〉 − CG(z)P−1G(w)∗C
}[

Ip
−S(w)∗

]
� 0 (z, w ∈ Bd).

Taking advantage of (3.19), we rewrite the last inequality as

(3.21)
[
Ip −S(z)

] Θ(z)JΘ(w)∗

1− 〈z, w〉

[
Ip

−S(w)∗

]
� 0 (z, w ∈ Bd).

Theorem 3.2. Let P be positive definite and let

(3.22) Θ =
[

Θ11 Θ12

Θ21 Θ22

]
:
[
Cmd+p

Cq
]
→
[
Cp
Cq

]
be the partition of the function Θ given by (3.18) into four blocks of the indicated
sizes. Then the set of all solutions S of the IP(A, C) are parametrized by the linear
fractional transformation

(3.23) S(z) = (Θ11(z)E(z) + Θ12(z)) (Θ21(z)E(z) + Θ22(z))−1
,

when the parameter E varies on the set S(md+p)×q.
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Proof. It follows from (3.19) and (3.22) that

−Iq −Θ21(z)Θ21(z)∗ + Θ22(z)Θ22(z)∗ ≥ 0 (z ∈ Bd).

Therefore, Θ22(z) is invertible at every point z ∈ Bd and ‖Θ22(z)−1Θ21(z)‖ < 1.
Then the function

Θ21(z)E(z) + Θ22(z) = Θ22(z)(Θ22(z)−1Θ21(z)E(z) + Iq)

is invertible in Bd for every E ∈ S(md+p)×q, which means that the transformation
(3.2) is well defined on the set S(md+p)×q.

According to the preceding analysis S is a solution of the IP(A, C) if and only
if it satisfies the inequality (3.21). Setting

(3.24)
[
u(z) −v(z)

]
=
[
Ip −S(z)

]
Θ(z)

where u and v are respectively, Cp×(md+p)- and Cp×q-valued, one can rewrite (3.21)
as

u(z)u(w)∗ − v(z)v(w)∗

1− 〈z, w〉 � 0 (z, w ∈ Bd),

which is equivalent (see, e.g., [3, Theorem 3.1]) to the existence of a function E ∈
S(md+p)×q such that

u(z)E(z) = v(z) (z ∈ Bd).

By (3.24), we conclude that S is a solution of the IP(A, C) if and only if[
Ip −S(z)

]
Θ(z) = u(z)

[
Imd+p −E(z)

]
for some bounded analytic function u and a function E ∈ S(md+p)×q. The latter is
equivalent to [

Ip −S(z)
]

Θ(z)
[
E(z)
Iq

]
= 0,

which, being rewritten as

Θ11(z)E(z) + Θ12(z)− S(z) (Θ21(z)E(z) + Θ22(z)) = 0,

is evidently equivalent to (3.23). �

As a consequence of the last theorem we get that under the assumption P > 0,
the IP(A, C) has infinitely many solutions. Using the standard approximation
argument it can be easily shown that if P is positive semidefinite, then there exists
a solution to the IP(A, C) (the questions about paremetrization of all solutions and
uniqueness criteria are more delicate and will be considered elsewhere). Therefore,
the condition P ≥ 0 is necessary and sufficient for the IP(A, C) to be solvable
(the necessity of this condition follows readily from (3.13)). This conclusion is not
surprising in light of recent papers [1], [14], [12], [13], [6] where this result has
been established (for a wide class of reproducing kernel Hilbert spaces) for the
Nevanlinna–Pick problem.

I am indebted to the referee whose suggestions led to a substantial simplification
of the proof of Theorem 2.4.
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