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On the Carathéodory—Fejér interpolation prob-
lem for generalized Schur functions
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Abstract. The solutions of the Carathéodory—Fejér interpolation problem for
generalized Schur functions can be parametrized via a linear fractional trans-
formation over the class of classical Schur functions. The linear fractional
transformation of some of these functions may have a pole (simple or mul-
tiple) in one or more of the interpolation points or not satisfy one or more
interpolation conditions, hence not all Schur functions can serve as a param-
eter. The set of excluded parameters is characterized in terms of the related
Pick matrix.
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1. Introduction

The objective of this paper is to study some aspects of the Carathéodory—Fejér
interpolation problem for generalized Schur functions.

Definition 1.1. A function S belongs to the generalized Schur class S, if it is
meromorphic on the unit disk D and the kernel

_1-5(:)5@)
 1—zw
has k negative squares on D N p(S) (p(S) stands for the domain of analyticity of
S); in formulas: sq_(Kgs) = k.

Ks(z,w) : (1.1)

The last equality means that for every choice of an integer r and of r points
21y.-.,2 € DN p(S), the Hermitian matrix [Ks(zj,z,-)]:’j:1 has at most k& and
for at least one such choice it has exactly k negative eigenvalues counted with
multiplicities.

The class Sy is the classical Schur class consisting of functions S such that
the kernel in (1.1) is positive (that is, has no negative squares). This turns to be
equivalent to the property of S to be analytic and less than one in modulus on D.

The classes S appeared implicitly in [23] in connection with interpolation
problems (see discussion in [6, Chapter 19]), and were comprehensively studied by
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Krein and Langer [20], [21]. It was shown in particular, that a function S belongs
to the class S, if and only if it admits a representation of the form

S() = 3

for some Schur function Sy € Sy and a Blaschke product B of degree k, having
disjoint zeroes in D (quite different proofs of this factorization can be found in
[18], [16], [10]). This representation in turn, leads to a characterization of S, as
the class of all functions S such that

(1.2)

1. Sis meromorphic in D and has & poles inside D counted with multiplicities.

2. S is bounded on an annulus {z: p < |z| < 1} for some p € (0, 1).

3. Boundary nontangential limits S(t) := lim,_,; S(z) exist and satisfy |S(¢)| <
1 for almost all ¢ € T.

Various interpolation problems for generalized Schur functions (as well as
for their matrix and operator valued analogues) were considered in [4], [5], [7],
[22], [18], [6], [12], [13], [2], [3]. In the present paper we focus on some aspects of
the Carathéodory-Fejér interpolation problem which will be denoted by CF, and
which consists of the following:

CF,: Given k distinct points zy,...,zr € D, equally many nonnegative inte-
gers ny,...,ng and N := Zle n; complex numbers S;; (0<j<n;—1; 1<i<
k), find all functions S € S, which are analytic at z; and satisfy

SD(z)=j18;;  (i=1,....k j=0,...,n; — 1). (1.3)

In other words, it is required to find all functions S € S, with prescribed Taylor
expansions

S(z) = Sio + (z — Z,')S,',l +...+(z—- Zi)ni_lsi,ni_l + ...

at z; for i = 1,..., k. Throughout the paper J,(a) denotes the n x n Jordan block
with the number a on the main diagonal and L,, stands for the row vector of the
length n with the first coordinate equals one and other coordinates equal zero:

a 1 0o ... 0
0 a 1
Jn(a) = ol Ln:[l 0 0]
a 1
0 0 a

Associated with interpolation data are matrices

Jnl (zl)
T =
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and
C = [ 01 Ck ], where Cz = [ Si70 S,',l Sz',ni—l ], (1.5)

which contain all the data and in turn, can be considered as interpolation data.
Since |z;| < 1, the series

P =) (T")¥(E*E - C*C)T* (1.6)
7=0
converges and defines a unique solution P of that the Stein equation

P-T*PT = E*E - C*C, (1.7)
which is referred to as the Pick matriz of the CF, problem.

The CF,; was studied in [6, Chapter 19] in a more general bitangential matrix
setting. We recall some needed results from [6] adopted to the present situation. It
was shown that if a meromorphic function S meets interpolation conditions (1.3),
then

sq_(Ks) > sq_(P) (1.8)

which therefore, is a necessary condition for the CF problem to have a solution.
On the other hand, if

sq_(P)=k and detP #0, (1.9)

then the CF, problem has infinitely many solutions, which are parametrized by a
linear fractional transformation. Let ©(z) be the C?>*2-valued function defined by

~ _ @11(2) @12(z)
0(2) = l@)m(z) 622(2)] (1.10)

c
E

Iz+(].—2)

—

] (ZI-T)'P'(I-T*"'[ -C* E* ]
and let
k
_ | ©11(2) ©12(2) | _ i) B
0(z) == [ On1(2) Om(2) | = ZI;II (z—2)" | ©(2). (1.11)
The following theorem (for the proof see [6, Section 19.3]) is our starting point.
Theorem 1.2. Let the Pick matriz P of the CF, problem meet conditions (1.9)

and let © be the function given in (1.11). Then all solutions S of the CF problem
are parametrized by the linear fractional transformation

_ 911(2)€(2) + O12(2)
@21 (z)S(z) + @22(2) ’
where the parameter £ runs through the set of those functions in So which satisfy

@21(21')5(21') + @22(21') 75 0 (Z =1,.. ,k) (113)

S(z) = Tol€] :

(1.12)
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Theorem 1.2 gives a complete description of all solutions of the CF problem.
However, an important issue (below we point out some reasons for that) is to
characterize the range of the linear fractional transformation (1.12) with parameter
& varying on the whole Schur class Sp.

This question was considered in [19] in connection with the problem of finding
the Poincaré distance of a rational L function to Sy (the latter problem amounts
to finding of a smallest in L* norm function in the range of a linear fractional
transformation of the form (1.13)).

In [7] the range of (1.13) was characterized in the model-matching form as
Range (T@) = {Tl +T2Q : Q (S Hf;o} ﬂBLOO, (114)

where T} is any function analytic on the closed unit disk D and satisfying inter-
polation conditions (1.3) and

Ty(z) = ljl ( f__;;) h (1.15)

Furthermore, BL> stands for the closed unit ball of L* and H.° is the set of

all fractions % with @ € H* and B a Blaschke product of degree k. The latter
characterization shows in fact that the transformation (1.13) with the Schur-class
free parameters describes all solutions of the following truncated Takagi—Sarason

problem.

TS,: Given a function Ty analytic on D and the Blaschke product Ty of the
form (1.15), find all functions S € {T1 + ToH°} N BL*.

Interpolation data for S is now determined by values of T} (and its derivatives
of appropriate orders) at the zeroes z;’s of Ty. If the Pick matrix P defined by
the formula (1.6) from the interpolation data is invertible and has x negative
eigenvalues, then all solutions of the TS, problem are parametrized by (1.12)
with the parameter £ varying over Sy (see [6, Chapter 19] for more details).

Thus, every solution S of the CF, problem is a solution of the TS, problem,
but not conversely. In the contrast to the CF, problem, solutions of the TS,
problem are allowed to have poles at z;’s and thus, to miss some of interpolation
conditions. All solutions S of the TS, problem that do not solve the CF problem
are obtained via (1.12) from parameters £ that satisfy not all of the conditions
(1.13). Such functions seem to be of certain interest. This interest becomes greater
if one considers an interpolation problem for pseudomultipliers of the Hardy space
H?, that is, for functions S that are not necessarily meromorphic on I, but with
the associated kernel K g(z,w) still having x negative squares (see e.g., [1], [8], [9])-

A Schur function £ is called an excluded parameter of the transformation
(1.12) if it does not satisfy at least one condition in (1.13). The notion of an
excluded parameter was introduced in [18] in the context of the Nevanlinna—Pick
problem (with no derivatives involved in the interpolation conditions). In [15,
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Chapter 5], excluded parameters were studied in the context of the Nevanlinna—
Pick problem for generalized Nevanlinna functions. It was shown that excluded
parameters can be classified in terms of diagonal entries of the inverse P~1 of the
Pick matrix P of the problem.

The purpose of the present paper is to give a more detailed analysis of ex-
cluded parameters and of functions S obtained from such parameters via (1.12).
Mostly we shall be interested in two questions: how many negative squares S may
lose and how many and which interpolation conditions it may not satisfy. It turns
out that the answers depend not only on at how many interpolating points the
denominator in (1.12) takes zero values, but also on the multiplicity of this zero.
We come up with the following

Definition 1.3. A function £ € S is said to be an excluded parameter of multiorder
m = (my,...,myg) of the transformation (1.12) if the function ©2 & + Oy, has
zeroes of multiplicities m; at z; fori =1,... k.

According to this definition, a nonexcluded parameter can be considered as
an excluded parameter of multiorder zero.

Thus, each excluded parameter £ of multiorder m = (my, ..., my) is charac-
terized by equalities

(0916 +022)D () =0 (i=1,....k; j=0,...,m; —1) (1.16)
and inequalities
(021 4+ 0x0) ™) () #£0 (i=1,...,k). (1.17)
We shall use the standard notation
lm|=mi +...+my
and the following partial order > on the set of multiorders: we shall say that
m= (Mi,...,Mg) > m=(mq,...,my)

if m; > m; for alli = 1,...,k and |m| > |m|. We also shall write m > m if
m > m or m = m. We also fix the multiinteger

n=(ng,...,ng), |n|=N.
With every multiindex m = (my, ..., my) we associate the sets
Zo={ie{l,...,k}: m; <n;}, Zr={ie{l,...,k}: m; >n;}, (1.18)
20 ={ie{l,....k}: m;=0}C 2,

and the positive integer

k
S ST DL S A Y
iz i€Zh =1

Now we can state the main result of the paper.
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Theorem 1.4. If £ is an excluded parameter of multiorder m = (my, ..., my), then
the function S = Tgl€] belongs to the class Sx—-,., where Ym is given in (1.19).
Furthermore, S has poles of multiplicities m; — n; at z; (i € Z}) and satisfies
interpolation conditions

SD(z)=3418; (G=0,....,ni—m;y—1) (i€ Zy) (1.20)
and constraints
S(niimi)(zz') 75 (n, — m,)' Sz',n,-fm,- (Z € Z;l \ Zgl) (121)

Remark 1.5. Note that for m = (0,...,0) = 0, the last theorem reduces to a part
of Theorem 1.2.

Indeed, it follows by definitions (1.18), (1.19) that Z5 = {1,...,k}, Z¢ =0,
Yo = 0 and conditions (1.20) reduce to conditions (1.3). Thus, for m = 0, Theorem
1.4 reads: for every nonexcluded parameter (i.e., for every excluded parameter of
zero multiorder) &, the function S = Tg[€] belongs to the class Sx—o = S and
satisfies conditions (1.3).

Note also that Theorem 1.4 doesn’t say anything about interpolation condi-
tions (1.3) for j =m; —m;+1,...,n; —1 (in the relevant case, when 1 < m; < ny);
these conditions may or may not be satisfied.

Following [15], we shall also characterize excluded parameters in terms of

certain principal submatrices of the matrix P!, the inverse of the Pick matrix of
the CF,, problem. To formulate the result we first introduce several more objects

associated with a multiinteger m = (my, ..., my). Let
N; = |: Omix(ni—mi) Imi ]a i€ Z;p
’ Iﬂi? S Zrtv
(1.22)
M = |: In;—m, O(m'*mi)Xmi ]7 L€ Z,
! 0-dimensional matrix, i€ Zt,
so that
[%f]:[m (i=1,...,k) (1.23)
K3
and let B
Pm=NmP™'N% and Py = MuPMZ, (1.24)
where
N]_ Ml
N = , and My, = . (1.25)
Ny, My,

It is easily seen that 13m and Py, are ym X Ym and (N —=4m) X (N —vm), respectively,
where vy, is the integer given by (1.19).
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Theorem 1.6. There exists an excluded parameter of multiorder at least m < n
if and only if the matriz P defined in (1.24) is negative semidefinite. Moreover,
if P is negative definite, then there are infinitely many excluded parameters of
multiorder m. If P is negative semidefinite (singular), then there is only one
excluded parameter of multiorder at least m, which is a Blaschke product of degree
r = rank(Pp).

In Section 5 we compare this result with classification of excluded parameters
obtained in [15].

Note also that the matrix P, (which is, by definition (1.24), a principle
submatrix of P) is the Pick matrix of the reduced CF problem with interpolation
conditions (1.20), and Theorem 1.4 claims that the function S = Tg[£] is a solution
of this interpolation problem. It will be shown (see Corollary 2.5) that if P is
invertible and P, is negative semidefinite, then

sq_(Pm) =sq_(P) —rankPm = £ — Ym

and thus, by (1.8), S € Sz with K > kK — Y. However, Theorem 1.4 guarantees
that actually, K = K — Ym.

The paper is organized as follows. Section 2 contains some needed auxiliary
results which can be found (probably in a different form) in many sources and are
included for the sake of completeness. It will be shown in Section 4 that excluded
parameters can be characterized as solutions of certain Carathéodory—Fejér inter-
polation problem CFgq for Schur functions. All the needed facts on this problem
are recalled in Section 3. Proofs of Theorems 1.5 and 1.6 are presented in Section
4. Two particular cases of the CF, problem (the Nevanlinna-Pick problem and
one point interpolation problem) are considered in Sections 5 and 6. The obtained
results are illustrated in Section 7 by two numerical examples.

2. Some auxiliary results
In this section we present some auxiliary results needed in the sequel.

Lemma 2.1. Let T, E and C be given by (1.4) and (1.5). Then the row vectors E
and C defined by

C _ C —1p—-1 *
7 _[E](I—T) PYI-T (2.1)
satisfy the Stein identity
Pl_TP'T* = E*E - C*C. (2.2)

Furthermore, the function ©(z) defined in (1.10) admits a representation

C

@@:r+[E

]@I—TyJ[_é* E*] (2.3)
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where
T:Ig—[g](l T) [_5* E] (2.4)
and the equality
8(2) g - [ < ] (21 = T)"'P~Y(I — 2T*) (2.5)

holds at every point z & {z1,...,2r}.

Proof: Under the assumption that P is invertible, identity (2.2) turns to be
equivalent to (1.7). Indeed, by (2.1) and (1.7),
E'E-C*C = (I-T)P'\U-T*) '[E*E—-C*C](I-T) ‘P '(I-T")
= (I-T)P™ 1(1 T '[P -T*PT)(I -T)'P~Y(I - T*)
= (I-TP'[I-T"'"P+PTI-T)"|P " (I-T%
T)

= (I-T)P'+TP~YI-T%
— pl_TPIT".
By (1.10),
() = L+(1-2) [ g ] (I-T) (1 -T)' [ ~C+ B~ |

- L+ [ g ] (I-T)'=(-1)) [ -C* B ], (26)

which clearly is equivalent to (2.3). Finally, identity (2.5) follows immediately from

(2.6), (2.2) and (2.1):

0(2) % _|¢ +(1-2) { g ] (z2I -T)""(I -T)~* (P~' = TP~'T*)
_ [ “lu ] -LpL (1 —T*)
[ C 1 ] (2] = T)"' — (I - T)~1) (P~' — TP~'T")
- [ “le ] iy g { < ] (zI - T)' (P~ — TP'T")
_ [ g ] (21 =T) (=(zI = T)P~'T* + P~1 — TP~'T*)
= [ g ] (2 =T) 'P (I —2T%).

In what follows, J denotes the signature matrix

-[i 2]
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A 2x2matrix M is called J—unitaryif MJM* = M, or equivalently, M*JM = J.

Lemma 2.2. The function @)(z) defined in (1.10) is J—unitary at every point on

the unit circle T. Moreover, for z,w & {z1,...,2x},
J=0()JOw)* = (1-zw) [ g ] (I -T) ‘P Y @I -T*) [ C* E*],
(2.7)
YRR | -Cc| ) —1 -1 TS
J—0w)JO(z) = (1-20) [ e ] (@ — T*)"LP(2I — T) [ _C* E* ]
(2.8)
and . '
det O(z) = H (%) . (2.9)

Proof: Identities (2.7) and (2.8) are verified by straightforward computations
using (1.7) and (2.3), respectively. Since © is rational, it follows from (2.7) that
@(z) is J—unitary at every point z € T. Furthermore, it follows from the structure
(1.4) of T that

k

k
det(aly — AT) = [[ det(aln; — BJn,(z:) = [ (e = Bzi)™.

i=1 i=1

Using (1.7) and the equality det(I + AB) = det(I + BA), we get

det ©(2) = det (IQ+(1 — )7 —T)"' PN (I -T*) ' [ —=C* E* ] [ g D

det ((zI -T)"'P~'(I-T*)™")

x det (I —T*)P(zI —T)+ (1 —2)(P —T*PT))
= det (I-T)'P I -T*") - det (I —2T*)P(I-T))
k

. (1—2z)(1—2) i
= I ( (z—zn(l—zi)) s
Lemma 2.3. Let ©(z) be defined by (1.11). Then the function
T(z) = [ _8;?8 _8EE3 ] [ g ] (2 = T)~ (2.10)
is analytic on D.
Proof: By (2.5),
O(2) " [ g ] (21 -T) ! = g (I —2T*)7 P (2.11)
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Furthermore,
(= ——
det ©(2)
and thus, by (1.11) and (2.9),
k n;
~ 1 1-—2; ¢ @22(2) —@12(2)
_ . . 2.12
o = ]I (=) | -eal o) (212
Combining the last relation with (2.10) and (2.11) we conclude that

k - i ~
\I’(Z) = H (W) l % ] (I— ZT*)_IP,

1-—2z;
i=1 B

which completes the proof, since the function on the right hand side of the last
equality is clearly analytic on D. O

Lemma 2.4. Let P € C"*" be an invertible hermitian matriz and let

- P1 P2 1 _ o é
SEE IR

be two conformal decompositions with Ps, P e ¢mxm, Furthermore, let P be
negative semidefinite. Then

sq_(Py) =sq_(P) —m. (2.13)

Proof: We start with the case when P is negative definite. It follows from the

factorization
4 _[a B]_[I pP! I 0
e PN e Pt
(2.14)

g P 0o I
that the matrix a — BP~!3*, the Schur complement of P in P!, is invertible.
Taking inverses in (2.14), we get

I 0 ] [ (a= BP0

a—BP1p* 0
0 P

P= |: _IB*ﬁfl I 0 P71

and conclude that the matrix
P =(a—pBP g (2.15)
is invertible. It follows from (2.14) that
sq_(P') = sq_(P) +sq_(a — BP'4"),
which implies, on account of (2.15), that

sq_(P1) = sq_(P;"") = sq_(P"") —sq_(P) = sq_(P) — m.
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To prove (2.13) in the general case, we use the fact that a sufficiently small per-
turbation of an invertible matrix does not change the numbers of its positive and
negative eigenvalues. Starting with the block decomposition (2.14), we introduce
the matrix

wmreef3 2] (5 4] B

Since
1R — P71 =,
there exists €9 > 0 such that R, is invertible and has k negative eigenvalues for
every positive € < g9. By continuity of singular values we can assume without loss
of generality that
smin(P_l)
2

where smin(A) stands for the minimal singular value of a square matrix A. Then
we have

Smin(Re) > (0 < e < gg),

e-lIPl - 2e- 1Pl
Smin(RE) Smin(Pfl) )

(2.16)
Since ]35 is negative definite, we can apply the first part of the proof to conclude
that the matrix

IR = P|| = [|RZ'(P™" = R.)P|| <e-|RZ'(| - |IP]| =

Rey:=[In-m O]RZ [ I"(;"‘ ] = (a—pP7'p*)

has sq_(P) — m negative eigenvalues for every positive £ < g¢. Since by (2.16)
|Rei — Pi|| < ||RZY = P|| < ed,

(where d is a positive constant independent of €) it follows that for € small enough,
8q_(R.,1) = sq_(P1), which completes the proof. O

Corollary 2.5. Let P be the Pick matriz of the CF, problem (which is by as-
sumption, invertible and with k negative eigenvalues). Let m = (myq,...,my) be a
multiinteger and let Py, and P be the matrices given in (1.24). If P is negative
semidefinite, then

5q_(Pm) = sq_(P) — rank(Pm) = £ — Yem, (2.17)
where v s the integer defined in (1.19).

Proof: Making use of matrices Ny and My, given in (1.25) we introduce the
permutation matrix
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(U is a permutation matrix due to (1.23)) and note that the following conformal

block decompositions hold:

P
*

UPU* = [ . ] and UP~'U* = (UPU*)™" = [ I = ] .

P
Upon applying Lemma 2.4 to the matrix UPU* we conclude that if the matrix
Py, € C'=X7m ig negative semidefinite, then

$q_(Pm) = sq_(P) — dim(Pm) = 6 — Ym. 0O

3. Interpolation for Schur functions

In this section we recall some results on the Carathéodory—Fejér interpolation
problem for Schur functions which will be the main tool in the investigation of the
excluded parameters of the parametrization (1.12) in the next section. It would be
natural to formulate this problem in the same terms as the CF,;, problem but with
k = 0. However, it is convenient to treat the case of CFy in a slightly different
form, which turns out to be more appropriate for our purposes.

Problem 3.1. Given k distinct points 21,...,2r € D, equally many nonnegative
integers myq,...,my and 2k functions a;(z) and b;(z) analytic at z; (i=1,... k),
find all Schur functions £ € Sy such that

@€ +b)" (z)=0 (i=1,....k j=0,...,m;—1). (3.1)

Interpolation conditions (3.1) are equivalent to

J . ] )
> ( @ ) a9l 02O (z)) = bW (2;) (i=1,....k j=0,...,mi—1). (3.2)

£=0
Associated with this interpolation problem are the matrices

Jm1 (zl)

= ; (3.3)
I, (zk)

A=[4 - A] and B=[B - B], (3.4

where -

almi=1) ; _

A= (zmzi—g') aj(z) ai(2) ] ) (3.5)

and -

o bgmi_l) (Z@) I

b (m; = 1)1 bi(zi) bi(zi) ] : (3.6)
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Since |z;| < 1, the series

K =) F/(A*A-B*B)(F*) (3.7)
3=0
converges and defines a unique solution K of that the Stein equation
K — FKF* = A*A— B*B, (3.8)

which is the Pick matriz of Problem 3.1. Furthermore, Problem 3.1 has a solution
if and only if K is positive semidefinite. The Carathéodory—Fejér problem for
Schur functions is well known and well studied. The following theorem giving a
description of all solutions can be found in many sources (see e.g., [6, Chapter 18],
[17, Chapter 5], [11]).

Theorem 3.2. If the matriz K defined in (3.7) is positive definite, the set of all
solutions of Problem 3.1 is parametrized by the formula

_ & 911(2)E(2) + ®12(2)
E(z) = Tsl€] := o (2)E(0) + Oma(2)] (3.9)

where & = (®;;) is the 2 x 2 matriz valued function given by

d(2)=1I—-(1-2) [ _g ] (I—2F)'K'(I-F)! [ A* B* ] (3.10)
and € (2) is the parameter varying over the Schur class So. If K is positive semi-
definite, then Problem 3.1 has a unique solution which is a Blaschke product of
degree r = rankK .

In the contrast to the indefinite case, the denominator in (3.10) does not
vanish inside D.
A calculation similar to that in the proof of Lemma 2.2 shows that
ElG—w)1-z) \™
det ®(z) _21;[1 ((1—zz,~)(1—z,~)> , (3.11)
while the arguments used for the proof of Lemma 2.3 lead us to the conclusion
that the function
(zI-F)~'[ A* B* ]®(2)
is analytic in ID. Due to the structure of matrices F', A and B, the latter is equiv-
alent to ‘
([a; b;]®)P =0 (i=1,....k j=0,...,m;—1). (3.12)
The following simple remark will be however, useful.

Remark 3.3. If the Pick matrix of Problem 3.1 is positive definite, then there are
infinitely many solutions £ which do not satisfy additional conditions

(@€ +b) ™) (2) =0 (i=1,...,k). (3.13)
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Indeed, substituting (3.9) into (3.13) we rewrite these last conditions in terms
of the parameter & as

( 11 + D15
a, e T 12

(mi)
1 ~ +bz (21)20 (Z=1,,k),
B9y & + By )

which is equivalent, since @215 + ®55 does no vanish at z; and in view of (3.12),
to

~ ~ (mi) )
(a,-[d)né’ + @12] + bz[(I‘ng + @22]) (Zz) =0 (i = 1, ey k)
Making use of Leibniz’s rule and again taking into account (3.12), we conclude
that & of the form (3.9) satisfies conditions (3.13) if and only if the corresponding
parameter £ satisfies

c,-E(z,-) = d, (’L = 1, ey k,‘) (314)
where
C; = (ai‘I’n + biq)m)m" (2’,) and d; = (ai‘1)12 + biq)gg)m" (z,) (7, =1,..., k)
(3.15)

Assuming that ¢; = d; = 0 (for some i) we get from (3.12) and (3.15)

which in turn, implies that the function [ a; b; ] ® has at z; the zero of multi-
plicity at least m; + 1. But then the determinant of ® has at z; zero of multiplicity
at least m; + 1, which is impossible, in view of (3.11). Thus,

leil + |di| >0 (i=1,....k).

But then it is obvious that there are infinitely many Schur functions & which do
not satisfy (3.14) for ¢ = 1,..., k. Each such function leads via (3.9) to a Schur
function £ that is a solution of Problem 3.1 and does not satisfy (3.13).

4. Excluded parameters and interpolation conditions

In what follows,

Ue(z) = O11(2)&(z) + O12(2), Ve(z) = 021(2)E(2) + 022(2), (4.1)
for a fixed Schur function &, so that (1.12) takes the form
Ue(2)
S(z) = . 4.2
©) = 7 (42)
By (4.1),

and
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Note also that excluded parameters £ of multiorder m = (my,...,my) are char-
acterized by conditions
Ve(zi) =Vi(z) =...= V™ D) =0 (i=1,...,k) (4.5)
and
Vi) #0 (i=1,...,k). (4.6)

Theorem 4.1. Let P be invertible with sq_P = &, let £ be a Schur function, let O,
Us and Vg be given as in (1.11) and (4.1). Then
1. The nontangential boundary limits Ug(t) and Ve (t) exist at almost every
point t € T and satisfy

|Us(t)] < |Ve(t)] a.e. on T.
2. It holds that
N{Vg} = N{@ng + @22} = N{®22} = K, (47)

where N(f) stands for the total number of zeroes of a function f that fall
inside D.
Ug and Vg can have a common zero at no point inside D, but zy, ..., 24.
4. Ug and Vg cannot have a common zero at z; of multiplicity greater than

n;.
5. If Vg has the zero of multiplicity m; > n; at z;, then Ug has the zero of

multiplicity n; ot z;.

©w

Proof: The existence of boundary limits for Ug and Vg follows from definitions
(4.1), since £ is a Schur function and ©;;’s are polynomials. By (4.4),

Ve@P - [Ue()P = [ Ue(z) W)N[[éﬁg))]

- (70 1]ewvew [P ] ws

Upon multiplying (2.8) (evaluated at z = w) by Hle |z — 2;]?>™ and letting 2 —
te T, we get

k
o) Jot) =[] It — z|*" J.
=1

Now we let z — t in (4.8) to get

k
Ve®F = U@ = JLIt- [ £6) 1]J[5§t)]

k
[Tt =zl —1e@®) >o,
i=1

since £ is a Schur function and therefore |£(¢)| < 1 a.e. on T. This completes the
proof of the first statement.



16 Vladimir Bolotnikov IEOT

Upon multiplying (2.7) (evaluated at z = w) by Hle |z — 2;|?™ and letting
z—=>teT, we get

k
o) J0()* = [ It - 2> J.
=1

Taking into account block decompositions of © and J, we compare the right bottom
elements in the latter matrix equality to get
k
@21 ()7 — @25 ()> = — ] It = il ™.
i=1
Thus, |@22(t)| > |O21(¢)| on T and since £ € Sy, it follows that
[©22(t)] > @21 (1)E(2)|

at almost every point ¢ € T. Then, by Rouche’s theorem, the functions @21 & + @22
and ©33 have the same number of zeroes in the disk {z : |z| < r} for every r close
enough to 1. Since the polynomial 4, has finitely many zeroes in D, we let r — 1
to conclude that

N{(“)ng + (")22} = N{®22}
The last equality shows that Vg has the same number of zeroes inside D for every
£ € 8. But it follows by Theorem 1.2 that

N{Vg} = N{@zlg + @22} =K

for every nonexcluded parameter £ (in this case, the function S = Tg[£] belongs
to S, and therefore, it has & poles all of which are zeroes of Vg). This completes
the proof of the second statement.

To prove the third statement, note that by (1.11) and (2.9),

k i ) o
det O(z) = (H (z — zl)2n) det O(z) = H ((z —2i)(1 — 22;)(1 — zz)) -

i=1 i=1 1=z
(4.9)
Assuming that Ug(w) = Ve(w) = 0 at some point w € D, we get from (4.4) that

O(w) [ E(w) ] —0

1
and therefore, that det @(w) = 0. But by (4.9), z1,...,2; are the only zeroes of
det ©, which completes the proof of the third statement.

Assuming that Ug and Vg have the common zero of order m; > n; at z;, we
conclude by (4.4) that the vector valued function

o) [ E(lz) ]

has the zero of multiplicity m; > n; at z;. But then, det ©(z) has the zero of
multiplicity m; > n; at z;, which contradicts to (4.9) and completes the proof of
the theorem. O
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The first statement in Theoren 4.1 can be completed by the following
Remark 4.2. There exists p € (0, 1) and K, < oo such that

|Ug(2)| < K, - |Ve(2)] Vze A, ={z: p<|z| <1} (4.10)

Proof: It follows from (2.8) (evaluated at z = w and multiplied by Hle [t —
2;|?™), that

k
0(2)*J0(2) = [[ It — 2™ T — (1 = |2")0(2)*F(2)*PF(2)0(z),  (4.11)

where
Fz)= (I -T)" [ G+ B+ |8()".
Since © is J-unitary on T, it follows by the symmetry principle that @(z)*1 =
JO(1/2)*J, which together with (1.10) implies
~ [ C

O()"=L+(E-1] 4 ] (I-T)'P I -2 [ -C* E*]. (412)

Thus, O0-1is analytic on D and therefore, the function F' may have poles inside D
only at z1,...,24. Fix r < 1 such that » > max{|z1],...,|2q|} and let

B:= sup [|F(2)||= max [F(z)].
r<|z|<1 r<|z[<1

Then
—B?||P|| . < F(2)*"PF(2) < B*||P| . r<|z]<1). (4.13)
Now we choose p € (r, 1) such that
§:=(1-p")B*|P|| < 1. (4.14)
Now we conclude from (4.11) and (4.13) that
k

0(2)*J0(2) > [ It — 2™ J — 60(2)*0(2)

i=1
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for every z such that p < |z| < 1. Substituting the last inequality into (4.8), we
get

Ve (2)|* — [Ue (2)?

\Y
ﬂ‘ : £
E)
|
N
o
3

k
= I[E-=ra-leen s [ %6 %0 1] v |

k
= H |z — 2™ (1 = [E(2)[) = 0|Ue (2)]* — 8|Ve (2)[*-

Therefore,

k
L+ 0)|Ve(2)]* — (1 - 6)|Ue(= H —zi™M(1 - [EE) 20 (p<lzl<1)
which implies (4.10) with K, := ié which depends on p and is positive and
finite, due to (4.14). O

Corollary 4.3. There are no excluded parameters of multiorder m with |m| > N =
|n].
Indeed, if Vg has zeroes of multiplicities m; at z;, then by (4.7),
m|=my+...+mpy < NVg)=k <N

(the last inequality is clear, since the number & of negative squares of P cannot
exceed the size N of P).

However, one cannot guarantee that m; < n; for all j =1,...,k or, in other
words, that m < n. In the case when m; > n;, the last statement in Theorem 4.1
implies that the function S = U5 will have the pole of multiplicity m; — n; at z;.

Equalities (1.16) mean that £ is a solution of Problem 3.1 with
©21(2) 022(2)

)= = _—

i) [lgsi(z — 20" [Lezi(z — 20)™

Of course, we could choose a; = ©y1(2) and b; = Oax(z) for all 4 = 1,...,k, but
the choice (4.15) makes some subsequent calculations easier. By (1.11) and (2.3),

0(z) C
H?;éi(z — z¢)™ E
Let

and b;(z) = (i=1,...,k). (4.15)

=(z—zi)’“T+[ ](z—z,-)m(zf—T)l[ _0* B ]

éz[él ék]and E:[El Ek]
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be decompositions of C and E conformal with decompositions (1.4) and (1.5). It
follows by the structure (1.4) of T' that

(")(Z) Cz n; — Ak T i
Note that
TZ(Z) = (z - zi)m (ZI - JTbi (zi))_l
(2 — 2™t Z— % 1
_ 0 (z — 2z;)™i L z— 2z
0 . 0 (o z)m-t
and thus,
[ai(z) bi(z) ] = 1 [ ©21(2) ©22(2) ]

[Tfi(z — 2e)™
= Ln.Ti(2) [ _Cr Er ] YOz =2)™) (i=1,...,k).

Now it is clear that for j < n;, %agj) (2;) and %bgj) (z;) are equal to (n; — j)-

*

th entries of the columns —5’;‘ and Ez , respectively. Therefore, in the setting of
(4.15), the matrices A;, B; defined in (3.5), (3.6), take the form

_— ~. 0 .—~. 0
Ai——C,[Imi] and Bl—Ez[Imi ]

Assuming furthermore, that m < n (i.e., m; < n; for i = 1,...,k) and making
use of matrices Ny, defined in (1.25), we conclude that in the setting of (4.15), the
matrices A and B given in (3.4), take the form

A=-CNr, and B=EN:,. (4.16)

The next step is to compute the Pick matrix K (given by (3.7)) in the setting
of (4.15). Note that matrices T and F given in (1.4) and (3.3) respectively, are
intertwined by Ny,:

NmT = FNp,.

Making use of (4.16), (2.4) and of the last commutation relation, we get
A*A—B*B = Nn (5*5 - EE) N
= Nu (TP 'T*—P ') N
= FNyuP'N! — NP 'N:.

Thus, the matrix
NP INZ = =P



20 Vladimir Bolotnikov IEOT

satisfies the Stein equation (3.8) and since this equation has a unique solution, it
follows that

K = —Ppn. (4.17)

Proof of Theorem 1.6: First we note that excluded parameters £ € Sy of multi-
orders m > m are characterized by equalities (4.5) regardless restrictions (4.6),
which means that each such £ is a solution of Problem 3.1 in the setting of (4.15).
But this latter problem has a solution if and only if its Pick matrix K is positive
semidefinite. The first statement in Theorem 1.6 now follows from (4.17). Further-
more, it follows by Theorem 3.2, that if P is negative semidefinite (singular),
then Problem 3.1 has only one solution £ which is a Blaschke product of degree
r = rank(—Pm) = rank(Pm). The existence of infinitely many excluded parame-
ters of multiorder m, that is, solutions of Problem 3.1 which in addition satisfy
constraints (1.17), follows by Remark 3.3. O

Proof of Theorem 1.4: It follows by Lemma 2.3, that the function

A =11 e 1| 928 o || G er-n

is analytic at z1,..., zx. Making use of (4.3), we represent ) as
Q(2) = [Ve(2)C — Ug(2)E] (2T = T)™".

The block structure of matrices T', C and F leads to the conformal block structure
of Q:

Q(z) = Qi(2) ... Qw(2) ],
where

Qi(2) = [Ve(2)Ci = Ue (2) L] (21 = T (2:)) (4.18)

and to the conclusion that ();(z) is analytic at z; for z = 1, ..., k. It is readily seen
from the definition of ); that the residue of @); at z; equals

Sio Six1 - Simi-1
) [0 Sio
ResoaQil) = | Ve(w) ..~ 7P ’ S
i - s . ,1
0o ... 0 Si0

Ui (z;) ] .

- et vy o T
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Since @; is analytic at z; and therefore, Res,—,,Q;(z) = 0, the last displayed
equality implies

U("'_l)(zz)
| vt i
Sio Sip - Sini—1
(ni—1) . :
— V, Z; 0 Sz,O
= |: Vg(zi) ST() :| . ) S
) : R i1
0 . 0 Si,o

Thus, if m; < n;, then conditions (4.5) force
Uéj)(zz-) =0 for; j=0,...m; — 1,

which means that Ug has the zero at z; of at least the same multiplicity as Ve does
and therefore, the function S = Tg[€] admits an analytic continuation to z;. If
m; > n;, then the same arguments show that Ug has zero of multiplicity m; > n;
at z;. If m; > n;, then 2; is a common zero of Ug and Vg of multiplicity greater
than nj, which is impossible, by Statement 4 of Theorem 4.1. Thus, m; = n;,
which means that Ug has zeroes of multiplicities n; at 2; for i € Z7.

By (4.7), V¢ has k zeroes inside . Since £ is an excluded parameter of
multiorder m, Vg has m; zeroes at z; (for i = 1,...,k) and the remaining x — |m)|
zeroes in D\ {z1,...,2r}. We have already shown that for every ¢ € Z_,, all the
m; zeroes of Vg at z; are canceled by zeroes of Ug and n; zeroes of Vg at z; are
canceled if ¢ € Z7.. After all cancellations, the function Vg will have m; —n; zeroes
at z; (for all i € Z}) and still K — |m| zeroes in D\ {21, .., 2;} which has not been

canceled, by Statement 3 of Theorem 4.1. Thus, the function S = g—z will have

Kk — |m|+ Z(mi—ni—l)zn— Zmi— Z(ni—i—l):n—'ym
i€z i€Z_ i€Zy

poles inside D. Moreover, by the first statement in Theorem 4.1, |S()| < 1 a.e. on
T and by Remark 4.2, S(z) < K, < oo for every z € A, = {z: p < |z| < 1. Thus,
S belongs to Sk,

The next step is to show that S satisfies interpolation conditions (1.20). To
this end, we make use of (4.2) to represent the function @); from (4.18) as

Qi(2) = Ve(2) [Cs — S(2) L] (2] = T, (2:)) 1,

and to conclude that

Ri,o R’i,l e Ri’nlfl
pm=0 0 R :
Res:=,Qi(2) = | Ve(z) fnil()zq) o
i — 1) . R;
0 ... 0 Rip

= 0, (4.19)
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where
SG)(z)
;!
Since V™ (20) # 0, it follows from (4.19) that
Ri;=0 (j=0,...,ni—mgi=1,...k),
which is equivalent to (1.20), by (4.20).

It remains to show that if m; < n;, then S is subject to the corresponding
inequality in (1.21).

Assuming that one of the inequalities (say, the first, for definiteness) in (1.21)
fails, i.e., that

Ri,]’ = Sz',j — (] =0,...,n; — 1). (4.20)

S§m=m) (1) = (ny —m1)! S1my—mas (4.21)
we come to contradiction as follows. Let
m' = (my —1,ma,...,my) (4.22)

and let P, and f’m/ be defined via (12~4) By Theorem 1.6, ﬁm < 0.~Since
my < ny, it follows by construction, that Ppy is a principal submatrix of Py, (of

the size (ym — 1) X (7m — 1)) and therefore, it is also negative semidefinite. Then
by (2.17) and (4.22),

8q_ (Pm) =8q_(P) — dim(Pyy) = & — Ym + 1. (4.23)

On the other hand, P, is the Pick matrix of a reduced Carathéodory—Fejér prob-
lem with interpolation conditions (1.20) and (4.21). By (1.20) and by assumption
(4.21), the function S = Tg[£] is a solution of this problem and thus, by (1.8) and
(4.23),
sq_(Ks) >sq (Pm') =K —Ym+ 1.
But it has been already shown that S belongs to S,_,,., which is a contradiction.
O

The following three statements are simple corollaries of Theorem 1.6.

Corollary 4.4. Let
Pl = ((P_l)z'j)k (P_l)ij € Chixni (4.24)

i,j=1>
be the decomposition of P~ conformal to (1.4) and let p;; denote the bottom
diagonal entry of the diagonal block (P~');; in this decomposition.

1. Ifp;; > 0, then for every excluded parameter of multiorder m = (my, ..., my)
it holds that m; = 0. If p;; > 0 for j = 1,...,k, then there are no excluded
parameters in the transformation (1.12).

2. If pj; = 0, then there is only one excluded parameter & of multiorder m
with mj > 1, which is a unimodular constant.

3. Ifpj; <0, then there are infinitely many excluded parameters of multiorder
m with m; > 1.
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Proof: If m; > 0, then P contains pj; as a diagonal entry and therefore, it is
not negative semidefinite. Thus, by Theorem 1.6, there are no excluded parameters
with m; > 0. Furthermore, if m; = 0 for all j =1,...,k, then every parameter £
is of multiorder m = 0, that is, it is not excluded.

By Theorem 1.6, the only excluded parameter &, with partial order m; > 0
is a Blaschke product of degree zero, i.e., a unimodular constant. This proves the
second statement. The last statement follows by Theorem 1.6. O

Note that Theorem 1.6 does not characterize excluded parameters of mul-
tiorders m A n. In fact, these parameters still can be characterized in terms of
the Pick matrix K of Problem 3.1 in the setting of (4.15). But in the case when
m £ n, this matrix is not anymore a principal submatrix of (—P~1) and the
characterization loses its beauty.

Note also that Theorem 1.6 does not establish necessary and sufficient condi-
tions for existence of a unique excluded parameter of multiorder m (it gives such
conditions for existence of a unique excluded parameter of multiorder at least m).
The following theorem partially completes this gap.

Theorem 4.5. Let m; < n; fori =1, ...,k and let the matriz Py, given by (1.24) is
negative semidefinite (singular). Then there is an excluded parameter of multiorder
m = (my,...,mg) if and only if P is “mazimal” in the sense that the matriz
13;,-1 s not negative semidefinite, whenever m > m.

Proof: By Theorem 1.6, there is only one excluded parameter £ of multiorder
not less than m. Furthermore, P is not “maximal” if and only if P < 0 for some
m such that

m>m and |m|=|m|+1.

This means, again by the solvability criteria for the CF problem, that at least
one inequality in (1.17) fails, which means in its turn, that multiorder of &y is not
less that m > m. Thus, if P < 0, the only excluded parameter & is of multiorder
m if and only if P is “maximal”. O

A similar characterization can be obtained for any multiorder, but again, not
in terms of the Pick matrix P of the problem.

We conclude the section with a brief discussion of some connections between
Theorem 1.4 and characterization (1.14).

First we note that a part of statements in Theorem 1.4 are intuitively clear
by (1.14): if S belongs to the range of the transformation (1.12), it admits a
representation

Q

S=T+Tf, (4.25)
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where T} is a fixed H* interpolant, T5 is the Blaschke product defined in (1.15),
B is a Blaschke product of degree x and @ is a function from H*. The norm
constraint

ISllze <1 (4.26)

imposes certain restrictions on the choice of ) and B in (4.25), which we ignore
for the moment.

If B has the zero of multiplicity m; > n; at z;, then S has in fact (after
cancellation of the factor (z — z;)™ in T» and B) the pole of multiplicity m; —n;
at z;. In the case when m; < nj, a similar cancellation leads us to the conclusion
that S admits the analytic continuation at z; and since the second term in the
representation (4.25) has the zero of multiplicity at least n; —m; at z;, it follows
that the first n; — m; Taylor coefficients of S and 7} at z; coincide and we come
in fact, to conditions (1.20) in Theorem (1.5).

On the other hand, conditions (1.21) mean (in the context of the TS, prob-
lem) that the n; —m; + 1-th Taylor coefficients of S and T; at z; are different,
i.e., that the second term in (4.25) has the zero of multiplicity exactly n; —m; at
zj, or equivalently, that

é(Zj) #0 if n; >m;. (4.27)
It follows also by Theorem 1.4 that the functions Q and B cannot have common
zeroes, which means by the Krein-Langer representation (1.2) that

! Q € Sk. (4.28)

1Qa~ B
Otherwise S of the form (4.25) would have less than s poles satisfying at the
same time all the interpolation conditions (1.3), which is impossible, by Theorem
1.4. Restrictions (4.27) and (4.28) are not imposed by (4.25); thus, they shoud be
implied by the norm constraint (4.26). However, direct proofs of these implications
do not seem to be trivial.

Note also that in the coset characterization (1.14) one can replace 77 by any
solution 7] of the corresponding CF, problem (so that the choice of @ = 0 in
(4.25) would certainly lead to a function S = T{ € BL*. In this case the norm
constraint (4.26) imposes quite different restrictions on the choice of Q and B some
of which also can be clarified with help of Theorem 1.4.

5. Nevanlinna—Pick interpolation problem

In this section we discuss a particular case of the CF, problem, when n; = 1
(t=1,...,k) in (1.3). The corresponding problem is called the Nevanlinna—Pick
interpolation problem NP,:
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Given points z1,...,2r € D and complex numbers Sy, ...,Sk, find all func-
tions S € S, which are analytic at z1,. .., 2, and satisfy
S(z) = S; (i=1,...,k). (5.1)
In this case (1.4) and (1.5) take the form
21
T= . , E=[1 ...1], C=[5 ...S]. (5.2)

The Pick matrix P € CF*¥ of NP,, problem can be derived from the Stein equation

(1.7):
P_F—Q&r
1—Zizj |, 5
If P is invertible and has x negative eigenvalues, then (again by the general re-
sult [6, Chapter 19]), the NP, problem has infinitely many solutions which are
parametrized by the linear fractional transformation (1.12) with the matrix of
coefficients

_[euE 6w ]_ (T — ) B2
o) = | o) o2 |- (tl(z z)> 8(2)

3

where © is given via (1.10) in the setting of (5.2). Let p;; denote the ij-th entry
in the matrix P~

Pt = [pyli oy s (5.3)
and let m = (my,...,mg) be a fixed multiinteger. Then (1.24) takes the form

(where Z9, is the set defined in (1.18)) and excluded parameters are characterized
in terms of the latter matrix by Theorem 1.6, which in the present context reads
as follows.

Theorem 5.1. If £ is an excluded parameter of multiorder m, then the function
S = Te[€] belongs to the class Si—.,,. It has poles of multiplicities m; — 1 at
z; (if m; > 1) and can is extended analytically to all other interpolating points.
Moreover,

Note that the entries p;; appearing in Corollary 4.4 are precisely the diagonal
entries of the matrix P~! in (5.3). Thus, in the context of the NP, problem,
Corollary 4.4 leads to certain “local” classification of excluded parameters:

1. If p;; > 0 then for every excluded parameter of multiorder m = (mq, ..., my),

it holds that m; = 0.
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2. If pj; = 0, there is only one excluded parameter £, which is a unimodular
constant.
3. If pj; <0, then there are infinitely many excluded parameters with m; =
1.
This classification was first obtained in [15] in the context of generalized Nevan-
linna functions.

6. One point interpolation problem

In this section we consider another particular case of the CF, problem, when
k=1

Given a point zg € D and complex numbers Sy, ..., Sn_1, find all functions
S € S, which are analytic at zo and satisfy
S (2)=41S;,  (j=0,...,n—1). (6.1)
In this case (1.4) and (1.5) take the form
T =Jn1(20), E=Lpy1 and C=[ Sy -+ Sp1 |, (6.2)

In this case, we say that £ is an excluded parameter of order m (multiorder is not
needed anymore) if the function Vg has the zero of multiplicity m at zo.

By Corollary 4.3, there are no excluded parameters of order greater than n.
According to (1.18), v, = m and (1.24) takes the form

P,=[0 Im]Pl[I?n],

ie., P,, is just the m x m bottom principal submatrix P of P~1. Theorems 1.4
and 1.6 in the present context lead to

Theorem 6.1. Let the Pick matriz P of the one point CF problem be invertible
and have k negative eigenvalues. Then
1. There exists an excluded parameter of order m of the transformation (1.12)
if and only if either the matriz B, is negative definite or it is the mazimal
negative semidefinite (singular) bottom principal submatriz of P! (i.e.,
the matriz 1~Dm+1 has one positive eigenvalue).
2. If B, < 0, then there are infinitely many excluded parameters € of order
m.
3. If P, is the mazimal negative semidefinite (singular) bottom principal
submatriz of P~1, then there is a unique excluded parameter £ of order
m, which is a Blaschke product of degree r = rankP.
4. If £ is an excluded parameter of order m of the transformation (1.12),
then the function S = Tg[E] belongs to the class Sx_p,, admits an analytic
continuation at zg, satisfies interpolation conditions

S(j)(Z()):j!Sj (Gj=0,...,n—m—1). (6.3)
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and is subject to

S (20) £ (n = m)! Sp_mm. (6.4)

7. Examples

In this section we illustrate the preceding results by two simple numerical examples.
In the first example we consider a one point interpolation problem with three
interpolation conditions.

Example 7.1. Let zg = 0, Sop = 1, S1 = 1 and S5 = 0. Then Then the matrices
in (1.4) and (1.5) take the form

010
T=|(00 1|, E=[100], C=[11 0]
0 00
and the unique solution P of the Stein equation (1.7) equals
010
P=—-|111
011
Furthermore,
0 -1 1
Pl=|-1 0 0
1 0 -1

and the formula (1.11) takes the form (we omit simple straightforward calculations)

1+2—-22 23—z
O(z) = 1-—22 B +22—2

Since sq_(P) = 2, it follows by Theorem 1.2, that all functions S € Sy such that
S0)=1, S'(0)=1 and S"(0)=0, (7.1)
are parametrized by the formula
(1+2z-2)E(R)+22 -2
(1=22)E(2) + 28+ 22— 2’
where the parameter £ is an arbitrary Schur function, such that £(0) # 0. Since
the right bottom entry in P! is negative and since the 2 x 2 bottom principal
submatrix of P! is the maximal negative semidefinite submatrix of P~!, it follows

by Theorem 1.6 that there are infinitely many excluded parameters of order one
and only one excluded parameter of order two of the transformation (7.2).

S(z) = (7.2)

Excluded parameters £ in the transformation (7.2) are characterized by equal-
ity £(0) = 0 and therefore, are of the form

E(2) = 2E(z), E €. (7.3)
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A function & of the form (7.3) is an excluded parameter of the first order if and
only if N
£(0) # 1. (7.4)

Substituting (7.3) into (7.2) we get

Sy = Ltz —2EE +2" 1
(1-22)¢8(z)+22+2-1
It is easily verified, that under assumption (7.4),

£(0) -1 1
sO=50=0"1_1 s=—1 2o

£(0) -1 £(0)-1
and thus, S satisfies only the two first interpolation conditions in (7.1) and does not
satisfy the third. All these conclusions follow immediately from the last statement
in Theorem 1.3.

The only excluded parameter £ of the second order is subject to
£0)=0 and £'(0)=1
and since £ € Sy, it follows that £(z) = z. The corresponding function S equals
_ 1+z-224+22-1
1-22+2242-1
and has zero negative squares. Furthermore, it satisfies the first condition in (7.1)

and does not satisfy the second. Note that the third condition is satisfied, which
is not guaranteed by Theorem 1.3, but may happen.

1

S(2)

The next example treats a two-point Nevanlinna—Pick problem.

Example 7.2. Let z; =0, 25 = —%, Si0=2and Sy = % Then the matrices
in (1.4) and (1.5) take the form

T=[8 _0%], E=[1 1], C=[2

[][S+)
[E—

and the unique solution P of the Stein equation (1.7) equals

-3 -2
P = |: 5 :| .
-2 -3
It is easily seen that sq_(P) = 2 and thus, the corresponding multipoint interpo-
lation problem consists of finding all functions S € S2 such that

S(0)=2 and S(-1/2)=3/2. (7.5)

Furthermore,

and according to (1.11),

[ —G=4)(z+2) 2(z—-1)(2z+1)
0(z) = [ —2(z—1)(z+2) 4z —-1)(22+1) ] '
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All functions S € S, satisfying interpolation conditions (7.5) are parametrized by
the formula

_ (=4 +2)E(2) +2(z - 1)(22 4+ 1)
$G) =Tell = o2 + @ = D@+ 1)’ (7.6)

where the parameter £ is an arbitrary Schur function, such that
E(0) #1/4 and &(-1/2) #0.

By Corollary 4.3 there are no excluded parameters of multiorder m with |m| > 2.
Since the diagonal entries in P! are negative, there are infinitely many excluded
parameters of multiorders (1,0) and (0,1). Furthermore, since P; ;) = P! <0,
there are infinitely many excluded parameters £ € Sp of multiorder (1,1). Each
such parameter is subject to interpolation conditions

£0)=1/4 and &(-1/2)=0

and thus, all excluded parameters of multiorder (1,1) are parametrized by the
formula

+ 2241 (42—-1)E(z)+2(1—2
£(2) = Talf] = (2= DEE) +201-2)
z+2  2(z2—-1)E(2) — (z — 4)
when & varies over So- It is easily seen that the last transformation is inverse to
the transformation (7.6) and therefore,

S =Telf] = Te[Ts[E]] = £.

Thus, every excluded parameter of multiorder (1,1) leads to a Schur function
S € Sy which furthermore, satisfies no condition in (7.5).

Next, we note that there is no excluded parameter £ of multiorder (0,2);
if it existed, the denominator in (7.6) would have the zero of multiplicity two at
z = —1%, or equivalently, £ would meet conditions

E(-1/2)=0 and E&'(-1/2)=4/3,
which is impossible, since £ € Sp.
Finally, it turns out that the denominator in (7.6) may have zero of order
two at z = 0, or equivalently, there are Schur functions £ such that
£(0)=1/4 and &'(0)=-3/8.

They are parametrized by the formula

(2022 — 22)E(2) + 5 — 82

E(z) = - . (7.7)
(522 — 82)&(z) + 20 — 22
Substituting (7.7) into (7.6) we get
S(z) = 1 1828(z) + 72— 10 (7.8)

z (7-102)E(2) + 18
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Evaluating the last equality at z = —1/2, we get S(—1/2) = 3/2. Thus, every
excluded parameter of multiorder (2,0) leads to a function S which has a simple
pole at the origin and satisfies the interpolation condition at the point z = —1/2.

8. Conclusive remarks

In conclusion we give some justification of the choice (1.11) of the matrix © of
coefficients of the linear fractional transformation (1.12). The matrix of coefficients
of a linear fractional transformation is not defined uniquely; any multiple of © by
a scalar valued function (e.g., the function O given by (1.10)) obviously gives rise
to the same linear fractional transformation. Looking back, one can see, however,
that the following three properties of © were helpful for obtaining characterization
of excluded parameters £ and investigation of corresponding functions Tg[£]:

1. © is a scalar multiple of a J-unitary (on T') matrix function.

2. © is analytic on the closed unit disk D, which guarantees that the numer-
ator Ug and the denominator Vz in (1.12) are analytic on D.

3. det © has zeroes of multiplicities n; at z; for 4 = 1,...,k which implies
|©21(2:)|? + |©22(2:)|?> > 0 and thus, the denominator in (1.12) vanishes
at z; just for some (not all) parameters £.

To get a function © with all these properties we have multiplied the J-unitary (on

T function © by an appropriate polynomial in (1.11). Furthermore, any function

#0O where ¢(z) is a scalar valued function analytic on I which does not vanish at

z; (i =1,...,k) has properties 1 — 3 and therefore, can be used as the matrix of

coefficients in the parametrization formula (1.12) and all the above constructions.

We vlould like to emphasize one special choice of ¢. In what follows, A* = (a;;)

and A = (a;;) stand for the transpose and for the complex conjugate of a matrix

A = (aij).

Lemma 8.1. Let T, E, C, P and © be given by (1.4)—(1.6) and (1.11). Then the

function

~ ~ 2 i

O(z) = [Gij(z)] =DL+(z-1) [ ] (I-2T)""P '(I-T")"' [ B* —C']
(8.1)

Al

O(2) = ¢(2)0(2), where ¢(2) = H ((l—zlz‘:ﬁ) i ) (8.2)

=1
Proof: Let © be the function given by (1.10). By (2.12),

~ by Py O -0
6-1.— | Bur P2 ] . [ 22 12 ]
[ Dy P2 ¢ -0 Oy
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and thus,
P22l — B1n
Tolf] = ———. 8.3
olfl= 5 = Ta. (8.3)
Using explicit formulas for scalar entries in (4.12) and (8.1) we get
®11(2) = 1-(z-1D)C(I-T)'PY(I-21""'C*

= (1-(z-1DCUI-T)'P ' (I-2T""'C%)
= 1-(z-1)CUI - ZD)"'P (I - TH 10t = Bn(2)
and quite similarly,
B15(2) = —012(2), Po1(2) = —021(2), Ba2(2) = O11(2).
Substituting the four last relations into (8.3) we conclude that Te[£] = T5[£] for

every parameter £ € Sg. Therefore, 0= ¢O for some scalar valued function ¢. It
remains to show that ¢ is of the form (8.2). To this end, we conclude from (1.10)
that

Bu(z) = 1-(1-2)C(I-T)"'P~H(I-T*"'C*
det(I-(1=2)(zI-T)'P'(I-T*)"'C*C)
det [(zI —=T)' P~ (I —-T*)7"]
~det[I —=T*)P(2I-T) - (1-2)C*C]
and on the other hand, we get from (8.1)
011(2) +(z—1)E(I - 2T)"'P {(I-TH)'E*
= 1+(z-1)E{ - T)P YI -2 (I-TH)'E*
= det(I+(z=-1)I-T)PY(I—-2T*)""I-T") 'E*E)
= det[(I-T)'P}I—2T"""]
- det[(I — 2T*)P(I - T) + (1 — 2)E*E].
It follows immediately from (1.7) that
(I—T*)P(zI =T) - (1—2)C*C = (I - 2T*)P(I = T) + (1 — 2)E*E

and therefore,

O1(2) _ det[(I —T*)P(zI —T)]
O11(z) det[(I —2T*)P(I-T)I

which in turn, implies, on account of (1.11),

éll(z) _ k ( 1-—2z; )m _
Ou(z) 11;11 (1—22)(1 — 2) = ¢(2),
and completes the proof. .

Since ¢(z;) #0for i =1,...,k, the transformations (1.12) and
&—Ts [€] (8.4)
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have the same excluded parameters. Due to a nice realization formula (1.12), the
function © appears in interpolation literature side by side with the function ©
introduced in (1.11). It turns out that in the matrix valued setting (we refer to
[6] for details) the description (1.12) suits more to the left sided interpolation
problem, whereas the parametrization (8.4) is more appropriate for the right sided
problem. Of course, these tangential problems are equivalent in the present scalar
valued setting and we could use O instead of O in all preceding considerations.
Our choice was caused by the advantage of the fact that © is a matrix polynomial
(whereas © is a rational function), which allowed us to make some calculations
simpler.
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