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Abstract

We solve a tangential boundary interpolation problem with a finite number of interpolat-
ing points for a multivariable analogue of the Schur class. The description of all solutions is
parametrized in terms of a linear fractional transformation whose entries are given explicitly
in terms of the interpolation data. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

In this paper, we consider a boundary Nevanlinna–Pick interpolation problem for
a multivariable analogue Sp×q

d of the Schur class. This class consists, by definition,
of all Cp×q -valued functions S analytic in the unit ball

Bd =

z = (z1, . . . , zd) ∈ Cd :

d∑
j=1

|zj |2 < 1




of Cd and such that the kernel
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KS(z,w) = Ip − S(z)S(w)∗

1 − 〈z,w〉 (1.1)

is positive on Bd . The latter means that
n∑

j,�=1

c∗
jKS(z

(j), z(�))c� � 0

for every choice of an integer n, of vectors c1, . . . , cn∈Cp and of points z(1), . . . , z(n)

∈ Bd or equivalently, that the Hermitian block matrix with �j th entry KS(z
(j), z(�))

is positive semidefinite. This property will be denoted by KS(z,w) 	 0. Note that
positivity of KS on Bd characterizes S(z) as a contractive multiplier on the Arveson
space [2].

For d = 1, the class Sp×q

1 coincides with the classical Schur class (which consists
of functions analytic and contractive-valued on the unit disk D = B1). However, a
Cp×q -valued function S, analytic and contractive-valued in Bd , is characterized by
the positive kernel

K̃S(z, w) = Ip − S(z)S(w)∗

(1 − 〈z,w〉)d
on Bd , which is equal to KS only for d = 1. If d � 2, the Schur class S

p×q
d is

contained properly in the set of analytic contractive-valued functions on Bd .
Points in Cd will be denoted by z = (z1, . . . , zd), where zj ∈ C. In (1.1) and

throughout the paper

〈z,w〉 =
d∑

j=1

zj w̄j (z, w ∈ Cd)

stands for the standard inner product in Cd . The unit sphere �(Bd) will be denoted
by Sd .

The Nevanlinna–Pick interpolation problem (to find necessary and sufficient con-
ditions which insure the existence of a function S ∈ S

p×q
d taking prescribed values

at prescribed points in Bd ) has been considered in [1,16,19]. It was shown that (sim-
ilarly to the one variable case [17,18]) the problem has a solution if and only if
the Pick matrix of the problem is positive semidefinite. The complete description of
the set of all solutions of the tangential Nevanlinna–Pick problem was first obtained
in [7]. It was shown that every solution of the problem corresponds to a unitary
extension of a partially defined isometric operator, which led to a parametrization of
all solutions in terms of a Redheffer linear fractional transformation. It turns out that
similar ideas lead to a description of all solutions for much more general bitangential
interpolation problem [4]. Another approach, based on the method of fundamental
matrix inequalities, has been suggested in [8] for a general tangential interpolation
problem. In this paper, we consider a Nevanlinna–Pick type problem when the in-
terpolating points are on the unit sphere Sd and the prescribed values of contractive
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multipliers are replaced by radial boundary limits. For the one variable case such a
problem (as well as more general problems involving boundary derivatives of higher
orders) was considered in [3,5,6,10,11,14].

The boundary Nevanlinna–Pick problem in the class Sp×q
d can be formulated as

follows:

Problem 1.1. Given m distinct points β(1) = (β
(1)
1 , . . . , β

(1)
d ), . . . , βm=(β

(m)
1 , . . . ,

β
(m)
d ) on the unit sphere Sd , given vectors ξj ∈ Cp, ηj ∈ Cq and given numbers γj ,

find necessary and sufficient conditions which insure the existence of a function
S ∈ S

p×q
d which has prescribed radial boundary limits

lim
r→1

S(rβ(j))∗ξj = ηj (j = 1, . . . , m) (1.2)

and prescribed upper bounds for radial angular derivatives

lim
r→1

ξ∗
j

Ip − S(rβ(j))S(rβ(j))∗

1 − r2
ξj � γj (j = 1, . . . , m). (1.3)

The following result which can be considered as a multivariable matrix analogue
of the classical Julia–Carathéodory theorem will be useful for the subsequent analy-
sis.

Theorem 1.2. Let S ∈ Sp×q, β ∈ Sd and ξ ∈ Cp. Then:
I. The following three statements are equivalent:
(1) S is subject to

sup
0�r<1

ξ∗ Ip − S(rβ)S(rβ)∗

1 − r2
ξ < ∞.

(2) The radial limit

L1 := lim
r→1

ξ∗ Ip − S(rβ)S(rβ)∗

1 − r2
ξ

exists.
(3) The radial limit

lim
r→1

S(rβ)∗ξ = η (1.4)

exists and serves to define the vector η ∈ Cq . Furthermore,

lim
r→1

S(rβ)η = ξ, ξ∗ξ = η∗η, (1.5)

and the radial limit

L2 = lim
r→1

ξ∗ξ − ξ∗S(rβ)η
1 − r

exists.



242 V. Bolotnikov / Linear Algebra and its Applications 346 (2002) 239–260

II. If any of the preceding three statements holds true, then L1 = L2.
III. Any two of the three equalities in (1.4) and (1.5) imply the third.

Proof. For the proof of all the statements for the single-variable case (d = 1) see
[12, Lemma 8.3 and Theorem 8.5]. For the case d � 2, let us introduce the slice-
function

Sβ(ζ ) := S(ζβ) (ζ ∈ D),

which clearly belongs to the classical Schur class Sp×q

1 . Applying one-variable re-
sults to this function and returning to the original function S, we obtain all the desired
assertions. �

Note that tangential analogues of Julia–Carathéodory theorem (including bound-
ary derivatives of higher orders) were considered also in [13] and [10, Section 8].
Multivariable analogues of Julia–Carathéodory theorem can be found in [20, Section
8.5] (although the results from [20] are related to holomorphic maps from Bd1 into
Bd2 rather than to functions from the class Sp×q

d , they suggest a different formula-
tion of a boundary Nevanlinna–Pick problem with the radial limits in (1.2) and (1.3)
replaced by weak K-limits; such a problem is planned to be considered elsewhere).

Conditions (1.2) are called left-sided interpolation conditions for S. It follows
from Theorem 1.2 that if the limits in (1.2) exist and equal ηj , then the necessary
condition for the limits in (1.3) to exist and to be finite is

ξ∗
j ξj = η∗

j ηj (j = 1, . . . , m). (1.6)

Now it follows from the third assertion in Theorem 1.2 that S satisfies also right-sided
interpolation conditions

lim
r→1

S(rβ(j))ηj = ξj (j = 1, . . . , m).

Thus, Problem 1.1 is in fact a two-sided interpolation problem and conditions (1.6)
are necessary for this problem to have a solution. As in the case of one variable, the
solvability criterion of Problem 1.1 can be formulated in terms of the Pick matrix P
constructed from the interpolation data.

Theorem 1.3. Problem 1.1 has a solution if and only if equalities (1.6) hold and
the matrix

P = (
Pj�

)m
j,�=1 , where Pj� =




ξ∗
j ξ� − η∗

j η�

1 − 〈β(j), β(�)〉 , j /= �,

γj , j = �,

(1.7)

is positive semidefinite or equivalently, if and only if the matrix P defined in (1.7) is
a positive semidefinite solution of the generalized Stein equation

P − A∗
1PA1 − · · · − A∗

dPAd = C∗JC, (1.8)
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where

J =
[
Ip 0
0 −Iq

]
, C =

[
C1
C2

]
=

[
ξ1 · · · ξm
η1 · · · ηm

]
(1.9)

and

Aj =



β
(1)
j 0

. . .

0 β
(m)

j


 (j = 1, . . . , d). (1.10)

The proof will be given in Section 4. Here, we note only that P defined as in (1.7)
satisfies the Stein equation (1.8) if and only if conditions (1.6) hold true. Indeed, by
(1.9) and (1.10), all the nondiagonal entries of P are uniquely determined from (1.9)
and are the same as in (1.7). The jjth entry in the matrix on the left-hand side of (1.9)
is equal to

γj − β̄
(j)

1 γjβ
(j)

1 − · · · − β̄
(j)
d γjβ

(j)
d = (1 − 〈β(j), β(j)〉)γj = 0,

whereas the jj entry in the matrix on the right-hand side equals to ξ∗
j ξj − η∗

j ηj . Thus,
conditions (1.6) are equivalent to (1.9).

Note also that conditions (1.6) are necessary and sufficient for the existence of a
function S ∈ S

p×q
d which satisfies interpolation conditions (1.2) and has finite radial

derivatives

lim
r→1

ξ∗
j

Ip − S(rβ(j))S(rβ(j))∗

1 − r2
ξj < ∞ (j = 1, . . . , m).

This result follows immediately from Theorem 1.3, since one can always choose
diagonal entries γ1, . . . , γm in (1.7) so that P will be positive definite.

The following theorem (which will be proved in Section 4) gives a parametriza-
tion of all solutions to Problem 1.1.

Theorem 1.4. Let P be a positive definite solution of the Stein equation (1.7), let
rankP = n � m and let

ν = rank(P + C∗
2C2) − rankP. (1.11)

Then there exists a rational (p + q) × (nd + p + q) matrix-valued function �(z),

� =
(

�11 �12
�21 �22

)
:
(

Cnd+p

Cq

)
→

(
Cp

Cq

)
,

which defines a map via the linear fractional transformation

S(z) = (
�11(z)E(z) + �12(z)

)(
�21(z)E(z) + �22(z)

)−1 (1.12)
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from the set of all functions E ∈ S
(nd+p)×q
d of the form

E(z) =
(
Ê(z) 0

0 Iν

)
, Ê ∈ S

(nd+p−ν)×(q−ν)
d , (1.13)

onto the set of all solutions S(z) of Problem 1.1.

In other words, S is a solution of Problem 1.1 if and only if it admits a represen-
tation (1.12) for some parameter E of the form (1.13).

Problem 1.1 is termed nondegenerate if the corresponding Pick matrix is positive
definite and degenerate if P is positive semidefinite.

The paper is organized as follows. Section 2 characterizes the set of all solu-
tions of Problem 1.1 in terms of a positive kernel, Section 3 presents a description
of the all solutions of a nondegenerate Problem 1.1 in terms of a linear fractional
transformation, and Section 4 treats the degenerate case.

2. Fundamental matrix inequality

In this section, we characterize all the solutions S of Problem 1.1 in terms of
a certain positive kernel. This characterization develops Potapov’s method of the
fundamental matrix inequality (which characterizes the solutions of an interpola-
tion problem in terms of a related fundamental matrix inequality; see e.g. [15]).
In [9] a general boundary interpolation problem was considered for matrix-valued
Schur functions of the unit disk (i.e., in the class Sp×q

1 ) involving prescribed angular
derivatives of higher orders. Here we present a very special case of [9, Theorem
3.1] which is needed for the subsequent analysis (see also [9, Section 8] for more
details).

Theorem 2.1. Let S be a Cp×q -valued function analytic in the open unit disk D.
Then S belongs to the class Sp×q

1 and meets the interpolation conditions

lim
r→1

S(r)∗ξ = η and lim
r→1

ξ∗ Ip − S(r)S(r)∗

1 − r2
ξ � γ

if and only if the following kernel is positive on the unit disk D:


γ
ξ∗ − η∗S(ω)∗

1 − ω̄

ξ − S(ζ )η

1 − ζ

Ip − S(ζ )S(ω)∗

1 − ζ ω̄


 	 0 (ζ, ω ∈ D).

Remark 2.2. Let A1, . . . , Ad be matrices defined in (1.10) and let G be the function
given by

G(z) = Im − z1A1 − · · · − zdAd. (2.1)
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By (1.10),

G(z) =



1 − 〈z, β(1)〉 0
. . .

0 1 − 〈z, β(m)〉


 (2.2)

and therefore, it is invertible at every point z ∈ Cd for which 〈z, β(j)〉 /= 1 for j =
1, . . . , m. In particular, G is invertible at every point z ∈ B

d\{β(1), . . . , β(m)}.

Theorem 2.3. Let S be a Cp×q -valued function analytic in Bd and let P, C, Aj and
G be defined by (1.7), (1.9), (1.10) and (2.1), respectively. Then S is a solution to
Problem 1.1 if and only if the following kernel is positive on Bd :

S(z, w) :=
[

P G(w)−∗(C∗
1 − C∗

2S(w)∗)
(C1 − S(z)C2)G(z)−1 KS(z,w)

]
	 0. (2.3)

Proof. Let S belong to S
p×q
d and satisfy (1.2). Fix a number r ∈ (0, 1) and m points

w(j) = rβ(j), j = 1, . . . , m, (2.4)

in Bd . Since the kernel KS is positive on Bd , it follows that

Kr (z, w) :=
[

Kr �r (w)∗
�r (z) KS(z,w)

]
	 0 (z, w ∈ Bd),

where

Kr =
[
KS(w

(j), w(�))
]m
j,�=1

,

(2.5)
�r (z) = [

KS(z,w
(1)) · · · KS(z,w

(m))
]

(the dependence of Kr and �r on r is conditioned by (2.4)). Let

T = diag[ξ1, . . . , ξm]. (2.6)

Then clearly,[
T ∗KrT T ∗�r (w)∗
�r (z)T KS(z,w)

]
=

[
T ∗ 0
0 Ip

]
Kr (z, w)

[
T 0
0 Ip

]
	 0

(z, w ∈ Bd). (2.7)

By (1.2) and (1.7),

lim
r→1

ξ∗
� KS(w

(�), w(j))ξj = lim
r→1

ξ∗
�

Ip − S(rβ(�))S(rβ(j))∗

1 − 〈rβ(�), rβ(j)〉 ξj

= ξ∗
� ξj − η∗

�ηj

1 − 〈β(�), β(j)〉 (j /= �), (2.8)
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lim
r→1

ξ∗
j KS(w

(j), w(j))ξj = lim
r→1

ξ∗
j

Ip − S(rβ(j))S(rβ(j))∗

1 − r2
ξj

= γ̃j � γj , (2.9)

lim
r→1

KS(z,w
(j))ξj = lim

r→1

Ip − S(z)S(rβ(j))∗

1 − 〈z, rβ(j)〉 ξj

= ξj − S(z)ηj

1 − 〈z, β(j)〉 (�, j = 1, . . . , m), (2.10)

which imply, on account of partitionings (2.5) and (2.6), the existence of the follow-
ing radial limits:

P̃ := lim
r→1

T ∗KrT and �(z) = lim
r→1

�r (z)T . (2.11)

Moreover, it follows from (2.8) and (2.9) that

P̃ = (
P̃j�

)m
j,�=1 , where P̃j� =



ξ∗
j ξ� − η∗

j η�

1 − 〈βj , β�〉 , j /= �,

γ̃j , j = �,

(2.12)

whereas (1.9), (2.2) and (2.10) lead to

�(z)=
[
ξ1 − S(z)η1

1 − 〈z, β(1)〉 · · · ξm − S(z)ηm

1 − 〈z, β(m)〉
]

=(C1 − S(z)C2) (In − z1A1 − · · · − zdAd)
−1

=(C1 − S(z)C2)G(z)−1. (2.13)

Thus, taking the limit in (2.7) as r → 1 we obtain, on account of (2.11)–(2.13),

lim
r→

[
T ∗KrT T ∗�r (w)∗
�r (z)T KS(z,w)

]

=
[

P̃ G(w)−∗(C∗
1 − C∗

2S(w)∗)
(C1 − S(z)C2)G(z)−1 KS(z,w)

]
	 0. (2.14)

Comparing (2.12) and (1.7) we conclude that P̃ � P and thus, (2.14) implies (2.3).
Conversely, let S be a Cp×q -valued function analytic in Bd for which the kernel

(2.3) is positive on Bd . Then, in particular, the kernel KS(z,w) is positive on Bd

and thus, S belongs to S
p×q
d . The positivity of the kernel (2.3) implies also that the

following kernels are positive on Bd :


γj
ξ∗
j − η∗

j S(w)∗

1 − 〈β(j), w〉
ξj − S(z)ηj

1 − 〈z, β(j)〉
Ip − S(z)S(w)∗

1 − 〈z,w〉


 	 0 (j = 1, . . . , m). (2.15)
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Let us introduce the slice-functions

Sj (ζ ) = S(ζβ(j)) (ζ ∈ D) (2.16)

for j = 1, . . . , m, which are analytic and contractive-valued on the open unit disk
D. Setting z = ζβ(j) and w = ωβ(j) in (2.15), we obtain then that

 γj
ξ∗
j − η∗

j Sj (ω)
∗

1 − ω̄
ξj − Sj (ζ )ηj

1 − ζ

Ip − Sj (ζ )Sj (ω)
∗

1 − ζ ω̄


 	 0 (j = 1, . . . , m).

By Theorem 2.1, Sj satisfies the interpolation conditions

lim
r→1

Sj (r)
∗ξj = ηj

and

lim
r→1

ξ∗
j

Ip − Sj (r)Sj (r)
∗

1 − r2
ξj � γj (j = 1, . . . , m),

which immediately imply (1.2) and (1.3), by the definition (2.16) of Sj . �

3. Description of all solutions in the nondegenerate case

By Theorem 2.3, the set of all solutions of Problem 1.1 coincides with the set
of all functions S ∈ S

p×q
d such that the kernel (2.3) is positive. In this section, we

parametrize this set under the assumption that P is positive definite.
Let J be the signature matrix as in (1.9), let

J =
[
Imd 0
0 J

]
and let � be a C(md+p)×q -valued function analytic on Bd . We say that � is (J, J)-
inner in Bd if

�(z)J�(z)∗ � J (z ∈ Bd) (3.1)

and

�(z)J�(z)∗ = J (3.2)

at every point z on Sd at which � is analytic. The next lemma provides an example
of a (J, J)-inner function.

Lemma 3.1. Let P be a positive solution of the Stein equation (1.8). Then the func-
tion

�(z)=[
0 · · · 0 Ip+q

] + CG(z)−1P−1

× [
(z1Im − A∗

1)P
1/2 · · · (zdIm − A∗

d)P
1/2 −C∗J

]
(3.3)
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is (J, J)-inner in Bd , analytic at every point z ∈ Bd except for β(1), . . . , β(m) and
moreover,

J − �(z)J�(w)∗

1 − 〈z,w〉 =CG(z)−1P−1G(w)−∗C∗

(z, w ∈ Bd\{β(1), . . . , β(m)}). (3.4)

Proof. By definition (3.3), � is analytic at every point z at which G(z) is invertible

and thus, by Remark 2.2, it is analytic at every point z ∈ Bd\{β(1), . . . , β(m)}. The
proof of (3.4) is quite straightforward (see e.g. [8]) and relies on the identity (1.8)
rather than on special structures of matrices P, C1, C2 and Aj . Relations (3.1) and
(3.2) follow immediately from (3.4). �

Lemma 3.2. Let a (J, J)-inner function � be analytic on an open set U ⊂ Bd and
continuous on U. Furthermore, let

� =
[
�11 �12
�21 �22

]
:
[

Cmd+p

Cq

]
→

[
Cp

Cq

]
(3.5)

be the partition of � into four blocks of the indicated sizes. Then for every choice of
E ∈ S(md+p)×q, the function (�21E + �22)

−1 is uniformly bounded in norm on U.

Proof. Substituting the partitioning (3.5) of � together with conformal partitionings
of J and J into (3.1) and (3.2) and comparing the 22 blocks we conclude that

�21(z)�21(z)
∗ − �22(z)�22(z)

∗ � −Iq (z ∈ U).

The last inequality implies that

�22�
∗
22 � Iq + �21�

∗
21 and �−1

22 �21�
∗
21�

−∗
22 � Iq − �−1

22 �−∗
22 .

Therefore, the functions �22, �−1
22 and �−1

22 �21 are, respectively, invertible, contin-
uous and strictly contractive at every point z ∈ U. Let

max
z∈U

‖�−1
22 (z)‖ = M and max

z∈U
‖�−1

22 (z)�21(z)‖ = δ < 1.

Since E takes contractive values on Bd , it follows that for every z ∈ U,

‖(�21(z)E(z) + �22(z))
−1‖�‖�21(z)

−1‖ · ‖(Iq + �−1
22 (z)�21(z)E(z))

−1‖
�M‖(Iq + �−1

22 (z)�21(z)E(z))
−1‖

�M max
U∈Cq×q , ‖U‖�δ

‖(Iq + U)−1‖

� M

1 − δ
,

which completes the proof. �



V. Bolotnikov / Linear Algebra and its Applications 346 (2002) 239–260 249

Corollary 3.3. Let � be analytic at a point β ∈ Sd . Then

sup
0�r<1

‖ (�21(rβ)E(rβ) + �22(rβ))
−1 ‖ < ∞

for every choice of E ∈ S(md+p)×q .

Proof. If � is analytic at β ∈ Sd , then U ∈ Bd can be chosen so that U will contain
the complex segment connecting β with the origin. Now the desired bound follows
from the previous lemma. �

The following theorem gives a parametrization of all solutions of Problem 1.1 in
the case when the Pick matrix P is positive definite.

Theorem 3.4. Let P be a positive solution of the Stein equation (1.8), let � be the
(J, J)-inner function given in (3.3) and partitioned into four blocks as in (3.5). Then
all solutions S of Problem 1.1 are described by the linear fractional transformation

S(z) = (�11(z)E(z) + �12(z)) (�21(z)E(z) + �22(z))
−1 , (3.6)

when the parameter E varies on the set S(md+p)×q .

Proof. It follows from Lemma 3.2 that for every E∈S(md+p)×q , the matrix (�21(z)

E(z) + �22(z)) is invertible at every point z ∈ Bd and thus, the transformation (3.6)
is well defined. By Theorem 2.3, it suffices to describe the set of all solutions S to
the inequality (2.3). Since P > 0, (2.3) is equivalent to

Ip − S(z)S(w)∗

1 − 〈z,w〉 − (C1 − S(z)C2)G(z)−1P−1G(ω)−∗

× (C∗
1 − C∗

2S(w)∗) 	 0,

which in turn can be written as[
Ip −S(z)

] {
J

1 − 〈z,w〉 − CG(z)−1P−1G(w)−∗C
} [

Ip
−S(w)∗

]
	 0.

Taking advantage of (3.4), we rewrite the last inequality as[
Ip −S(z)

] �(z)J�(w)∗

1 − 〈z,w〉
[

Ip
−S(w)∗

]
	 0 (z, w ∈ Bd). (3.7)

It was shown in [8] that the set of all solutions S satisfying (3.7) (for a (J, J)-inner
function � not necessarily being of the form (3.3)) is parametrized by formula (3.6).

�

4. Degenerate case

In this section, we consider degenerate Problem 1.1, i.e., the case when the Pick
matrix P is positive semidefinite. We shall show that the set of all solutions still
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can be parametrized by a linear fractional transformation, with parameters E being
of a special form. To be more precise, let the matrix P given in (1.7) be positive
semidefinite, let rankP = n � m and let the interpolating points β(j) be arranged so
that the upper left n × n block of P is positive definite. Thus,

P =
[
P1 P ∗

2
P2 P3

]
, where P1 ∈ Cn×n, P1 > 0,

(4.1)
P3 = P2P

−1
1 P ∗

2 .

Let

C1 = [
C11 C12

]
, C2 = [

C21 C22
]
,

Aj =
[
Aj1 0

0 Aj2

]
(j = 1, . . . , d)

be block decompositions of matrices C1, C2 and Aj conformal with (4.2), so that[
C11
C21

]
=

[
ξ1 · · · ξn
η1 · · · ηn

]
,

[
C12
C22

]
=

[
ξn+1 · · · ξm
ηm+1 · · · ηm

]
,

Aj1 =



β
(1)
j 0

. . .

0 β
(n)

j


 , Aj2 =



β
(n+1)
j 0

. . .

0 β
(m)

j




(j = 1, . . . , d),

and let

G1(z) = In − z1A11 − · · · − zdAd1.

It is easily seen that P1 is the Pick matrix of the following truncated (and nondegen-
erate, since P1 > 0) interpolation problem:

Find all functions S ∈ S
p×q
d satisfying interpolation conditions (1.2) and (1.3) for

j = 1, . . . , n:

lim
r→1

S(rβ(j))∗ξj = ηj and lim
r→1

ξ∗
j

Ip − S(rβ(j))S(rβ(j))∗

1 − r2
ξj � γj

(j = 1, . . . , n). (4.2)

Remark 4.1. By Theorem 3.4, the set of all functions S ∈ S
p×q
d satisfying (4.2) is

parametrized by the formula

S(z) = (�̃11(z)E(z) + �̃12(z))
(
�̃21(z)E(z) + �̃22(z)

)−1
, (4.3)

with the parameter E varying on the set S(nd+p)×q and the transfer function
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�̃ =
[
�̃11 �̃12

�̃21 �̃22

]
:
[

Cnd+p

Cq

]
→

[
Cp

Cq

]
given by

�̃(z)=[
0 · · · 0 Ip+q

] +
[
C11
C21

]
G1(z)

−1P−1
1

×
[
(z1In − A∗

11)P
1/2
1 · · · (zdIn − A∗

d1)P
1/2
1 −C∗

11 C∗
21

]
. (4.4)

It remains to choose among all functions S of the form (4.3) those which satisfy also
interpolation conditions (1.2) and (1.3) for j = n + 1, . . . , m. We shall show that
this can be achieved by an appropriate choice of parameters E in (4.3).

The function �̃ has the same structure as � given by (3.3) and similarly to (3.4),

J − �̃(z)̃J�̃(w)∗ =(1 − 〈z,w〉)
[
C11
C21

]
×G1(z)

−1P−1
1 G1(w)−∗ [

C∗
11 C∗

21

]
, (4.5)

where

J̃ =
[
Ind 0
0 J

]
. (4.6)

By Remark 2.2, G1(z) is invertible (and therefore, �̃(z) is analytic) at every point

from the closed unit ball B
d

except for n points β(1), . . . , β(n). In particular, � is an-
alytic at the remaining interpolating points β(n+1), . . . , β(m). Since 〈β(j), β(j)〉 = 1,
it follows from (4.5) that

�̃(β(j))̃J�̃(β(j))∗ = J (j = n + 1, . . . , m). (4.7)

Note also that the jth row (P2)j of the matrix P2 from the decomposition (4.2) can
be written in the matrix form as

(P2)j =
[

ξ∗
j ξ1 − η∗

j η1

1 − 〈β(j), β(1)〉 · · · ξ∗
j ξn − η∗

j ηn

1 − 〈β(j), β(n)〉
]

=[
ξ∗
j −η∗

j

] [
C11
C21

]
G1(β

(j))−1 (4.8)

and comparing diagonal entries in the equality P3 = P2P
−1
1 P ∗

2 , we obtain

γj =[
ξ∗
j −η∗

j

] [
C11
C21

]
G1(β

(j))−1P−1
1 G1(β

(j))−∗

× [
C∗

11 C∗
21

] [
ξj

−ηj

]
(4.9)

for j = n + 1, . . . , m.
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Lemma 4.2. Let ξ̃n+1, . . . , ξ̃m ∈ Cnd+p and η̃n+1, . . . , η̃m ∈ Cq be the vectors giv-
en by [

ξ̃j
η̃j

]
= J̃�̃(β(j))∗

[
ξj

−ηj

]
(j = n + 1, . . . , m). (4.10)

Then

ξ̃∗
j ξ̃j = η̃∗

j η̃j (j = n + 1, . . . , m), (4.11)

[̃
ηn+1 · · · η̃m

] = C2

[−P−1
1 P ∗

2
Im−n

]
, (4.12)

rank
[̃
ηn+1 · · · η̃m

] = rank(P + C∗
2C2) − rankP. (4.13)

Proof. Equalities (4.11) follow from (4.10), (4.7) and (1.6):

ξ̃∗
j ξ̃j − η̃∗

j η̃j =
[̃
ξ∗
j η̃∗

j

]
J̃

[
ξ̃j
η̃j

]

=[
ξ∗
j −η∗

j

]
�̃(β(j))̃J�̃(β(j))∗

[
ξj

−ηj

]

=[
ξ∗
j −η∗

j

]
J

[
ξj

−ηj

]
=ξ∗

j ξj − η∗
j ηj = 0.

Next, by (4.10), (4.4) and (4.8),

η̃∗
j =[

ξ∗
j −η∗

j

]
�̃(β(j))

[
0

−Iq

]

=η∗
j − [

ξ∗
j −η∗

j

] [
C11
C21

]
G1(β

(j))−1P−1
1 C∗

21

=η∗
j − (P2)jP

−1
1 C∗

21 (j = n + 1, . . . , m).

Therefore,

η̃∗
n+1
...

η̃∗
m


=



η∗
n+1
...

η∗
m


 − P2P

−1
1 C∗

21

=C∗
22 − P2P

−1
1 C∗

21

=[−P2P
−1
1 Im−n

]
C∗

2 ,

which is equivalent to (4.12). To verify (4.13), we start with an evident equality
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rank (P + C∗
2C2)= rank

[
I 0

−P2P
−1
1 I

]
(P + C∗

2C2)

×
[
I −P2P

−1
1

0 I

]
. (4.14)

Setting for short

N := C2

[−P−1
1 P ∗

2
Im−n

]
and making use of equality

P

[−P−1
1 P ∗

2
Im−n

]
= 0,

which follows directly from (4.2), we rewrite (4.14) as

rank(P + C∗
2C2) = rank

[
P1 + C∗

21C21 C∗
21N

N∗C21 N∗N

]
.

By the standard Schur complement argument,

rank(P + C∗
2C2)=rank(P1 + C∗

21C21)

+ rank(N∗(I − C21(P1 + C∗
21C21)

−1C∗
21)N),

which implies (4.13), since

rank(P1 + C∗
21C21) = rankP1 = n = rankP

and

rank
[
N∗(I − C21(P1 + C∗

21C21)
−1C∗

21)N
]

= rank
[
N∗(I + C21P

−1
1 C∗

21)
−1N

] = rankN. �

Lemma 4.3. Let K be any N × q contractive matrix, let ξ ∈ CN, η ∈ Cq and sup-
pose that ξ∗ξ = η∗η. Then the following three equalities are equivalent:

ξ = Kη, η = K∗ξ, ξ∗ξ = ξ∗Kη.

For the proof see [12, Lemma 0.9].

Lemma 4.4. Let β ∈ Sd , let E ∈ S
N×q
d , let a(z) be a CN -valued function on Bd

and let

lim
r→1

a(rβ) = ξ and lim
r→1

a(rβ)∗ IN − E(rβ)E(rβ)∗

1 − r2
a(rβ) = 0. (4.15)

Then there exist radial boundary limits

η := lim
r→1

E(rβ)∗a(rβ) = lim
r→1

E(rβ)∗ξ (4.16)
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so that ξ∗ξ = η∗η and moreover,

E(z)η ≡ ξ and E(z)∗ξ ≡ η. (4.17)

Proof. Under assumption that the first limit in (4.15) exists, the existence of the
second limit in (4.15) implies the existence of the first limit in (4.16) and the equality
η∗η = ξ∗ξ . Since E ∈ S

N×q
d , it follows from the triangle inequality,

‖E(z)∗ξ − η‖�‖ξ − a(z)‖ · ‖E(z)∗‖ + ‖E(z)∗a(z) − η‖
�‖ξ − a(z)‖ + ‖E(z)a(z) − η‖.

Thus limr→1 ‖E(rβ)∗ξ − η‖ = 0, which completes the proof of (4.16).
Furthermore, since E belongs to S

N×q
d , the kernel

KE(z, w) = IN − E(z)E(w)∗

1 − 〈z,w〉
is positive on Bd . In particular, the following block matrix is positive semidefinite:


IN − E(w)E(w)∗

1 − 〈w,w〉
IN − E(w)E(z)∗

1 − 〈w, z〉
IN − E(z)E(w)∗

1 − 〈z,w〉
IN − E(z)E(z)∗

1 − 〈z, z〉


 � 0,

where z and w are two fixed points in Bd . Multiplying this matrix by[
a(w) 0

0 IN

]

on the right, by its adjoint on the left and setting w = rβ, we get

a(rβ)∗ IN − E(rβ)E(rβ)∗

1 − r2
a(rβ) a(rβ)∗ IN − E(rβ)E(z)∗

1 − 〈rβ, z〉
IN − E(z)E(rβ)∗

1 − 〈z, rβ〉 a(rβ)
IN − E(z)E(z)∗

1 − 〈z, z〉


 � 0. (4.18)

Taking in (4.18) the limit as r tends to 1 and making use of (4.15) and (4.16), we get


0
ξ∗ − η∗E(z)∗

1 − 〈β, z〉
ξ − E(z)η

1 − 〈z, β〉
IN − E(z)E(z)∗

1 − 〈z, z〉


 � 0.

Since 〈z, β〉 /= 1 for every z ∈ Bd , it follows from the last inequality that E(z)η ≡ ξ ,
which proves the first identity in (4.17). The second identity follows from the first by
Lemma 4.3. �
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Lemma 4.5. Let ξ̃n+1, . . . , ξ̃m ∈ Cnd+p and η̃n+1, . . . , η̃m ∈ Cq be the vectors giv-
en in (4.10) and let S be of the form (4.3) for some parameter E ∈ S

(nd+p)×q
d . Then

S satisfies interpolation conditions (1.2) and (1.3) for j = n + 1, . . . , m if and only
if E is subject to

E(z)̃ηj ≡ ξ̃j (j = n + 1, . . . , m). (4.19)

Proof. A simple manipulation shows that (4.3) is equivalent to

[
Ip −S(z)

] [
�̃11(z)

�̃21(z)

]
E(z) ≡ − [

Ip −S(z)
] [

�̃12(z)

�̃22(z)

]
(4.20)

and therefore, on account of (4.5) and (4.6),

[
Ip −S(z)

] [
�̃11(z)

�̃21(z)

]
IN − E(z)E(z)∗

1 − 〈z, z〉
[
�̃11(z)

∗ �̃21(z)
∗] [

Ip
−S(z)∗

]

= [
Ip −S

]
[
�̃11

�̃21

] [
�̃

∗
11 �̃

∗
21

] −
[
�̃12

�̃22

] [
�̃

∗
12 �̃

∗
22

]
1 − 〈z, z〉

[
Ip

−S∗
]

= [
Ip −S(z)

] �̃(z)̃J�̃(z)∗

1 − 〈z, z〉
[

Ip
−S(z)∗

]

= [
Ip −S(z)

] {
J

1 − 〈z, z〉 −
[
C11
C21

]
G(z)−1P−1G(z)−∗ [

C∗
11 C∗

21

]}

×
[

Ip
−S(z)∗

]

= Ip − S(z)S(z)∗

1 − 〈z, z〉 − [
Ip −S(z)

] [
C11
C21

]
G1(z)

−1P−1
1 G1(z)

−∗

× [
C∗

11 C∗
21

] [
Ip

−S(z)∗
]
. (4.21)

Let us assume that S satisfies interpolation conditions (1.2) and (1.3) for j = n +
1, . . . , m and set

aj (z) = [
�̃11(z)

∗ �̃21(z)
∗] [

Ip
−S(z)∗

]
ξj . (4.22)

It follows from (1.2) and (4.10) that

lim
r→1

aj (rβ
(j)) = [

�̃11(β
(j))∗ �̃21(β

(j))∗
] [

ξj
−ηj

]
= ξ̃j . (4.23)
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Furthermore, multiplying both sides in (4.20) by ξ∗
j on the left and taking adjoints in

the resulting identity, we get

E(z)∗aj (z) = − [
�̃12(z)

∗ �̃22(z)
∗] [

Ip
−S(z)∗

]
ξj

and similarly to the preceding calculation,

lim
r→1

E(rβ(j))∗aj (rβ(j))

= − lim
r→1

[
�̃12(rβ

(j))∗ �̃22(rβ
(j))∗

] [
Ip

−S(rβ(j))∗
]
ξj

= − [
�̃12(β

(j))∗ �̃22(β
(j))∗

] [
ξj

−ηj

]
= η̃j . (4.24)

Finally, multiplying (4.21) by ξ∗
j on the left and by ξj on the right and taking into

account (4.22), we get

aj (z)
∗ IN − E(z)E(z)∗

1 − 〈z, z〉 aj (z)

= ξ∗
j

Ip − S(z)S(z)∗

1 − 〈z, z〉 ξj − ξ∗
j

[
Ip −S(z)

] [
C11
C21

]
G1(z)

−1P−1
1 G1(z)

−∗

× [
C∗

11 C∗
21

] [
Ip

−S(z)∗
]
ξj

and setting z = rβ(j) → β(j) in the last equality, we obtain, on account of (4.9),

lim
r→1

aj (rβ
(j))∗ IN − E(rβ(j))E(rβ(j))∗

1 − r2
aj (rβ

(j))

= lim
r→1

ξ∗
j

Ip − S(rβ(j))S(rβ(j))∗

1 − r2
ξj − γj .

Since the left-hand side limit is positive semidefinite and the limit on the right-hand
side does not exceed γj (by (1.3)), it follows that

lim
r→1

aj (rβ
(j))∗ IN − E(rβ(j))E(rβ(j))∗

1 − r2
aj (rβ

(j)) = 0.

The last relation together with (4.23) allows us to apply Lemma 4.4. In the present
context, a = aj , ξ = ξ̃j and the vector η defined via radial limits (4.16) equals (by
(4.24)) η̃j . Thus, the first identity in (4.17) leads to (4.19).

Conversely, let S be of the form (4.3) for some parameter E ∈ S
(nd+p)×q
d subject

to (4.19). Making use of (4.12) we conclude by Lemma 4.3 that

E(z)∗ξ̃j ≡ η̃j (j = n + 1, . . . , m). (4.25)
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Multiplying (4.3) by ξ∗
j on the left and subtracting η∗

j from both sides, we get

ξ∗
j S(z) − η∗

j =
{
ξ∗
j (�̃11(z)E(z) + �̃12(z)) − η∗

j (�̃21(z)E(z) + �̃22(z))
}

×(�̃21(z)E(z) + �̃22(z))
−1

=[
ξ∗
j −η∗

j

]
�̃(z)

[
E(z)
Iq

] (
�̃21(z)E(z) + �̃22(z)

)−1
,

which can be written as

ξ∗
j S(z) − η∗

j =[
ξ∗
j −η∗

j

] [
�̃(z) − �̃(β(j))

] [
E(z)
Iq

]
× (

�̃21(z)E(z) + �̃22(z)
)−1

, (4.26)

since by (4.10) and (4.25),

[
ξ∗
j −η∗

j

]
�̃(β(j))

[
E(z)
Iq

]
=

[̃
ξ∗
j η̃∗

j

]
J̃

[
E(z)
Iq

]
= ξ̃∗

j E(z) − η̃∗
j ≡ 0.

Since �̃ is analytic at β(n+1), . . . , β(m), it follows from Corollary 3.3 that

sup
0�r<1

‖(�̃21(rβ
(j))E(rβ(j)) + �̃22(rβ

(j)))−1‖ < ∞ (j = n + 1, . . . , m).

Since moreover, �̃ is continuous at z = β(j), the right-hand side expression in (4.26)
tends to zero as z = rβ(j) → β(j). Therefore, (4.26) implies

lim
r→1

ξ∗
j S(rβ

(j)) = η∗
j (j = n + 1, . . . , m). (4.27)

Rewriting (4.20) (which is equivalent to (4.3)) as

[
Ip −S(z)

]
�̃(z)

[
E(z)
Iq

]
≡ 0,

we multiply this identity by η̃j on the right and obtain, on account of (4.19),

[
Ip −S(z)

]
�̃(z)

[
ξ̃j
η̃j

]
≡ 0. (4.28)

Upon making subsequent use of (4.10), of (4.5) evaluated at w = β(j) and of the
block structure (1.9) of the matrix J, we get

�̃(z)

[
ξ̃j
η̃j

]

= �̃(z)̃J�̃(β(j))∗
[

ξj
−ηj

]

=
{
J − (1 − 〈z, β(j)〉)

[
C11
C21

]
G1(z)

−1P−1
1 G1(β

(j))−∗



258 V. Bolotnikov / Linear Algebra and its Applications 346 (2002) 239–260

× [
C∗

11 C∗
21

] } [
ξj

−ηj

]

=
[
ξj
ηj

]
− (1 − 〈z, β(j)〉)

[
C11
C21

]
G1(z)

−1P−1
1 G1(β

(j))−∗

× [
C∗

11 C∗
21

] [
ξj

−ηj

]
,

which, being substituted into (4.28), implies

ξj − S(z)ηj ≡(1 − 〈z, β(j)〉) [
Ip −S(z)

] [
C11
C21

]

×G1(z)
−1P−1

1 G1(β
(j))−∗ [

C∗
11 C∗

21

] [
ξj

−ηj

]
. (4.29)

The right-hand side expression in (4.29) tends to zero as z approaches β(j), since
G1(z) is invertible at β(j) (for j = n + 1, . . . , m), since S of the form (4.3) be-
longs necessarily to the class S

p×q
d (and therefore, ‖S(z)‖ � 1 on Bd ), and since

limz→β(j) (1 − 〈z, β(j)〉) = 0. Therefore, (4.29) implies

lim
r→1

S(β(j))ηj = ξj (j = n + 1, . . . , m). (4.30)

Furthermore, multiplying (4.29) by ξ∗
j /(1 − 〈z, β(j)〉) on the left and letting z =

rβ(j) → β(j), we come to

lim
r→1

ξ∗
j ξj − ξ∗

j S(rβ
(j))ηj

1 − r
= lim

r→1

[
ξ∗
j −ξ∗

j S(rβ
(j))

] [
C11
C21

]
G1(rβ

(j))−1

×P−1
1 G1(β

(j))−∗ [
C∗

11 C∗
21

] [
ξj

−ηj

]
,

which, in view of (4.27) and (4.9), is equivalent to

lim
r→1

ξ∗
j ξj − ξ∗

j S(rβ
(j))ηj

1 − r
= γj (j = n + 1, . . . , m). (4.31)

Taking into account (4.27), (4.30) and (4.31) we get, from the two first assertions in
Theorem 1.2, that

lim
r→1

ξ∗
j

Ip − S(rβ(j))S(rβ(j))∗

1 − r2
ξj = γj (j = n + 1, . . . , m).

The last equalities together with (4.30) mean that S satisfies interpolation conditions
(1.2) and (1.3) for j = n + 1, . . . , m, which completes the proof. �

Proof of Theorem 1.4. By Remark 4.1 and Lemma 4.5, the set of all solutions S
of Problem 1.1 are parametrized by formula (4.3), when the parameter E varies on
S

(nd+p)×q
d and satisfies conditions (4.19). Thus,
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E(z)
[̃
ηn+1 · · · η̃m

] = [̃
ξn+1 · · · ξ̃m

]
,

which displays the fact that the function E ∈ S
(nd+p)×q
d maps R1 =

Ran[̃ηn+1 · · · η̃m] isometrically onto R2 = Ran[̃ξn+1 · · · ξ̃m] for every z ∈
Bd . Therefore (see e.g., [12, Lemma 0.13]), E admits a representation of the form

E(z) = U

[
Ê(z) 0

0 Iν

]
V, (4.32)

where U ∈ C(nd+p)×(nd+p) and V ∈ Cq×q are fixed unitary matrices which depend
only on R1 and R2 (i.e., only on the interpolation data) and a function Ê ∈
S

(nd+p−ν1)×(q−ν1)
d , where

ν1 = dimR1 = dim R2.

By (4.13),

dimR1 = rank
[̃
ηn+1 · · · η̃m

] = rank(P + C∗
2C2) − rankP

and thus, ν1 is equal to the integer ν defined via (1.11). Moreover, setting

�(z) = �̃(z)

(
U 0
0 V ∗

)
,

it is easily seen that formulas (4.3) and (1.12) with parameters of the form (4.32) and
(1.13), respectively, are equivalent. It remains to note that � is (J, J̃)-inner since �
is (J, J̃)-inner and the matrices U and V are unitary. �

Proof of Theorem 1.3. The necessity part follows from Theorem 2.3, since the posi-
tivity of the kernel (2.3) implies that the Pick matrix P is positive semidefinite. The
sufficiency part follows from Theorem 1.4: under the assumption that P is a positive
definite solution of the Stein equation (1.8), the set of functions S of the form (1.12)
is not empty. �
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