Boundary interpolation for contractive-valued
functions on circular domains in C"

Joseph A. Ball and Vladimir Bolotnikov

Abstract. We consider a boundary interpolation problem for operator-valued
functions defined on a class of bounded complete circular domains in C*
(including as particular cases, Cartan domains of types I, II and III) which
satisfy the von Neumann’s inequality. The solvability criterion is obtained and
the set of all solutions is parametrized in terms of a family of Redheffer linear
fractional transformations.

1. Introduction

The classical Schur class S consisting of complex-valued analytic functions map-
ping the unit disk I into the closed unit disk D has been a source of much study
and inspiration and has served as a proving ground for new methods for over a
century now, beginning with the seminal work of Schur (for the original paper of
Schur and a survey of some of the impact and applications in signal processing,
see [28]). A major development has been the interpolation and realization theories
for Schur functions and more recently, for their operator-valued analogues. The
operator-valued Schur class S(€, £,) consisting of analytic functions S on the unit
disk with values S(z) equal to contraction operators between two Hilbert spaces
& and &, has played a prominent role in both engineering and operator-theoretic
applications (see e.g. [20, 21, 33, 29, 34]). We mention in particular that any such
function S(z) can be realized in the form

(1.1) S(z) =D+ 2C(I —zA)™'B

where the connecting operator (or colligation)

U— A B| |H o H

~|C D||€& Ex
is unitary, and where H is some auxiliary Hilbert space (the internal space for the
colligation). It is also well known that the Schur class of functions satisfies a von
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Neumann inequality: if S € S(&,&,) and T is a contraction operator on o Hilbert
space H', then ||F(rT)|| <1 for all r < 1. Here S(rT) can be defined, e.g., by

oo oo
SrT) =Y r"F,®T € LEQH E.@H) if F(z2)=) Fn2"
n=0 n=0
A related result is the Nevanlinna-Pick interpolation theorem, here stated for the
scalar case for simplicity:
Given points z1,...,2, € D and wy,...,w, € C, there exists S € S with S(z;) =
, , _ _ _ _ 1 —waw; | "
w; for j =1,...,n if and only if the associated Pick matriz A = [171_]]
— ZiZj i,j=1
is positive semidefinite.
By the classical Fatou’s lemma, the boundary radial limits S(t) = lim,_; S(rt)
exist at almost every point ¢ on the unit circle T (for operator-valued functions
such limits exist almost everywhere in the strong sense; see [33, Chapter 5]) and do
not exceed one in modulus (are contractive in the operator-valued case). Another
classical result by Julia-Carathéodory asserts that the boundedness of the quantity

d(z) = % in some radial neighborhood of a point ¢+ € T guarantees the
existence of the limit lim,_,; S(rt) (which is unimodular) and lim,_,; d(rt) (which
is nonnegative). The related interpolation result (stated again for the scalar case)

18:

Given points z1,...,2, € T and numbers wy, ..., w, and vy1,...,7%, such that
(1.2) lwjl=1 and ~v; >0 for i=1,...,n,
there exists S € S with
. 1= Sz |
‘ Ny = w; < =1,...
(1.3) }1_)11} S(rz;) =w; and AI_)II} e S vi for i=1,...,n

if and only if the associated Pick matriz A = [A,-j]?j:1 with the entries

1 —w;w; . .

Ay={ Toaz ‘77
Vi t=1,

is positive semidefinite.

Note that assumptions (1.2) are not restrictive as follows from the Julia-Carathéo-

dory theorem.

The boundary Nevanlinna—Pick interpolation problem was worked out using quite
different approaches: an indefinite modification of the Sz.-Nagy—Koranyi method
[9], the method of fundamental matrix inequalities [31], the recursive Schur algo-
rithm [25], the Grassmannian approach [14], via realization theory [13], and via
unitary extensions of partially defined isometries [30]. Note also that a similar
problem with equality sign in the second series of conditions in (1.3) was consid-
ered in [37, 27, 19].
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In fact most of the above papers handled a more general tangential version of
the boundary Nevanlinna—Pick problem for matrix and operator valued Schur
functions. The corresponding result is:

Given Hilbert spaces £, &« and £, given points z1,...,z, € T and operators
a,...,an € L(EL,E), 1y oy0n € LIEL,E), M1y, n € L(EL) such that
(1.4) ajaj =cjc; and ;>0 for i=1,...,n,
there exists S € S(E,E.) with
(1.5) }1_)11% S(rzj)*a; = ¢;
and
e, = S(rz;)S(rz;)” :

_ « ZE. <y =1,...

(1.6) }1_% a; T a; <v; for i=1,...,n

if and only if the associated Pick matriz A = [A,-j]zjzl with the entries
aja; —cic; ., .
4=t
Ay = T #J
Yis i =,
is positive semidefinite.
Interpolation theory for Schur functions has been extended recently to multi-
variable settings in several ways. Parametrizations of the set of all solutions of
nonboundary Nevanlinna—Pick problems were obtained in [16] for the polydisk
D™ C C" setting and in [17] for the unit ball B* C C" setting. Note that solvabil-
ity criteria for these problems were established earlier in [2, 1, 15, 3] for the case
of the polydisk, in [36, 4, 32, 24, 35, 18] for the unit ball setting (including more
general reproducing kernel Hilbert space and noncommutative Toeplitz-operator
settings), and in [38] for Cartesian products of unit balls of arbitrary dimensions.
In [12] we considered nonboundary Nevanlinna-Pick interpolation problem for a
class of contractive-valued functions analytic on a more general class of domains
introduced in [5] and which we now recall.
We start with a polynomial p x ¢ matrix-valued function

p1i(2) ... P1g(2)
(1.7) P(z) = : : : C" —» P
Pp1(2) ... Ppg(2)
and we define the domain Dp € C" by
Dp={z2€C": ||P(2)||cxa <1}.

Let £ and &, be two separable Hilbert spaces and £(&, &) be the space of bounded
linear operators from & into &,. We denote by SAp, (€, &) the Schur—Agler class
of L(&, E)-valued functions S(z) = S(z1,...,2,) which are analytic on Dp and
such that

IS(T,..., Tl < 1
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for any collection of n commuting operators (71, ...,T,) on a Hilbert space K,
subject to

|P(Ty,..., Ty < 1.
Domains Dp and classes SAp, (€, £x) (for £ = £, = C) have been introduced
in [5]. It was shown that the Taylor joint spectrum of the commuting n-tuple
(Ty,...,T,)is contained in Dp whenever ||P (T4, ..., T,)|| < 1, and hence S(T1,...,T},)
is well defined for any £(&,&,)-valued function S which is analytic on Dp by the
Taylor functional calculus (see [23]). Operator-valued Schur-Agler classes were
studied in [12]. The proof of the following theorem can be found in [12] and in [5]
(for the case of scalar-valued functions); we state only the parts needed for our
purposes here. In the statement and in the sequel, we often abbreviate expressions
of the sort P(z) ® Iy to simply P(z) without comment.

Theorem 1.1. Let S be a L(E, £)-valued function. The following statements are
equivalent:

1. S belongs to SAp, (€, &x).

2. There exist an auziliary Hilbert space H and an analytic function

(1.8) H(z) = [Hi(2) ... Hp(2)]
defined on Dp with values in L(CP @ H, E,) so that
(1.9) Ie, = 5(2)S(w)" = H(2) I en — P(2)P(w)”) H(w)",
or equivalently, there exists a positive kernel
Kl,l . K]_’p
(1.10) K=| : S x Qe L(CRE)
K1 - Kpp
such that
. — Sz ZKkkzw ZZsz 2)per(w)Ks ¢ (2, w)
k=11i,=1
(1.11) for all z,w € Dp.

3. There is a unitary operator

q
(1.12) U= [é g] : [CP?H] = [(C 5@: H]
such that
(1.13) S(z) =D + C (I — P(2)A) ' P(2)B.
For S of the form (1.13) it holds that
(1.14)

Ie, — S(2)S(w)* = C(I-P(2)A) " (I - P(2)P(w)*) (I - A*P(w)*)~" C*
and therefore, the representation (1.9) is valid for

(1.15) H(z)=C (I -P(z)A)~".
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The representation (1.13) is called a unitary realization of S € SAp. (€, ). For
the case of the unit disk (P(z) = z and Dp = D), the formula (1.13) presents
a unitary realization for a clasdscial Schur function S, i.e., coincides with the
realization formula (1.1) for the classical case.

Domains Dp and classes SAp, (€, &) enable us to consider in a unified way a
wide variety of domains in C* (we refer to [5, 12] for examples). In [12] we con-
sidered the bitangential Nevanlinna-Pick interpolation problem for Schur-Agler
functions with all interpolation nodes inside Dp. Ambrozie and Eschmeier in [6]
showed how to obtain results on interpolation as an application of a commutant
lifting theorem for this setting. In the present paper we shall study the bound-
ary Nevanlinna-Pick problem when prescribed (directional) values of an unknown
interpolant are replaced by preassigned (directional) values of radial boundary
limits. The techniques and results parallel those appearing in [11] for the special
case of the polydisk and in [10] for the special case of the ball; the general case
considered here, however, does present new features which must be understood
before arriving at a complete solution. The foundation for the present method is
the realization formula (1.13) for Schur-Agler functions in Theorem 1.1.

We assume that Dp is bounded and completely circular, i.e., that for every ¢ € C,
|¢| <1, and z € Dp, it holds that

¢z =(Cz1,---,(z) € Dp.
We assume furthermore that the distinguished boundary of Dp defined as
ODp ={z€C": P(2)P(2)" =I,},

is nonempty. The latter condition implies immediately that p < ¢, which will be
assumed throughout the paper.

In particular, Cartan domains of the first three types (more precisely, such domains
with p < ¢) and their direct products and intersections are included in this scheme.

Let €2 be a subset of 9Dp. The data set for the interpolation problem is as follows.
We are given an auxiliary Hilbert space &1 and three operator-valued functions

a: Qi—)ﬁ(gL,g*), C: QP—),C(EL,g),
(1.16) : QO L(EL) with T(€) > 0 for £ € Q.

The interpolation problem to be studied here is the following:

Problem 1.2. Find all functions S € SAp (€, £x) such that

(1.17) lim S(r§)*a(§) = ¢(§) for all £ € Q
and
(1.18) lim a(e)r 2 Z30OSCD" o g foraneen,

r—1 1—1r2
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where the limits in (1.17) and (1.18) are understood in the strong and in the weak
sense, respectively.

Note that in case when ) consists of finitely many points 21, ..., 2z,, conditions
(1.17) and (1.18) take the form (1.5) and (1.6), respectively, with a; = a(z;),
¢;j =c(z;) and v; = ¥(z;).

Condition (1.17) is called the left-sided interpolation condition for S. It follows
by a multivariable operator-valued analogue of the classical Julia-Carathéodory
theorem (see Lemma 2.1 below) that if the limit in (1.17) exists and equals ¢(£),
then a necessary condition for the limits in (1.18) to exist and to be finite is

(1.19) a(§)a(§) =c(§)"c(§)  (£€).

It follows again by (the third assertion of) Lemma 2.1, that S satisfies also the
right-sided interpolation condition

lim S(ré)e(6) =a(e)  (E€ Q).

Thus, Problem 1.2 is in fact a two-sided interpolation problem and conditions
(1.19) are necessary for this problem to have a solution.

The paper is organized as follows. Upon completion of the present Introduction, in
Section 2 we develop the Julia-Carathéodory theory for operator-valued functions
on Dp which we need for our purposes here, formulate the solution criterion (the
existence of a positive kernel satisfying a Stein equation together with an inequal-
ity constraint) for existence of solutions to Problem 1.2 and derive the necessity
part of this condition. In Section 3, under the assumption that this necessary con-
dition holds, we show that solutions of Problem 1.2 are equal to characteristic
functions of unitary colligations obtained as unitary extensions of a certain partial
isometry constructed from any positive kernel meeting the conditions of the exis-
tence criterion. In Section 4 we adapt the techniques of Arov-Grossman to obtain
the linear-fractional parametrization for the set of all characteristic functions of
colligations equal to a unitary extension of one such partial isometry. When the
partial isometry is taken to be that constructed from a particular positive kernel
satisfying the conditions of the solution criterion, we have a parametrization for
a particular subset of the set of all solutions of Problem 1.2. Taking the union of
these over all positive kernels meeting the conditions of the solution criterion then
gives us the set of all solutions. In particular, from this description of the set of
all solutions we arrive at the sufficiency of the existence criterion.

2. The solvability criterion

In this section we establish the solvability criterion of Problem 1.2. We start with
some auxiliary results. The assumption that Dp is a bounded completely circular
domain allows us to translate easily the classical Julia-Carathéodory theorem from
the unit disk D to Dp using slice—functions.
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Lemma 2.1. Let S € SAp, (€, &), B € 0Dp, x €& andlet H; (j=1,...,p) be
L(H, E)-valued functions from the representation (1.9). Then:
I. The following three statements are equivalent:

Ie, — S S *
1. S is subject to L := sup x* £ (T’BL (rf) x < 00.
0<r<1 1-—r
I _ *
2. The radial limit L := lim x* - S(rB)S(rf) X exists.
r—1 1-— 1"2
3. The radial limit
(2.1) lim S(rf)"x =y
exists in the strong sense and serves to define the vectory € £. Further-
more,
(22) lim S(rB)y =x,  |lylle = lIx[le.,

r—1
(the limit is understood in the weak sense) and the radial limit
(2.3) 7 — i Y'Y = X"S0B)y
r—1 1—7r
exists.
II. Any two of the three equalities in (2.1) and (2.2) imply the third.
II1. If any of the three statements in part I holds true, then the radial limits

(2.4) T, = lim HjrB)'x (j=1,-...p)
exist in the strong sense and the block operator
Th
(2.5) T=| :
T,
satisfies
(2.6) T*Ap(8)T =L=L<L,
where Ap(B) € L(CP @ H) is defined via the limit
(2.7) Ap(B) = lim 12~ Pl(/i rif(ﬁ Wi

Proof: For the proof of all the statements for the single-variable case (d = 1) and
P(z) = z (i.e., for the case of the unit disk) see [10, Lemma 2.3] (all the statements
but those related to Tj’s and for finite dimensional £ and &, are contained in
[26, Lemma 8.3, Lemma 8.4, and Theorem 8.5]). Note that in this case Ap(8) =
I,. These proofs rely on the theory colligations and realization for Schur-class
functions; for a more classical treatment (including for the case of the ball) and a
survey of the various proofs of the Julia-Carathéodory theorem, we refer to Section
2.3 of [22].
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For the general case, let us introduce the slice-function

(2.8) Sp(Q) :==8(BC),  (CeD,

which clearly belongs to the classical Schur class S(€, &) (indeed, it follows from
(1.9) that S takes contractive values at each point of Dp and in particular at each
point z € Dp of the form z = (B (¢ € D)).

The first two statements of the lemma concern the boundary behavior of the
function Sg near a boundary point ( = 1. Applying one-variable results to the
slice-function Sz and returning to the original function S, we obtain the two first
assertions. It is clear that the vectors x € &£, and y € £ can be replaced by bounded
linear operators from an auxiliary Hilbert space £, into &, and &, respectively, with
the limits then taken in the strong sense.

To prove the third statement, we first show that the limit in (2.7) exists. To this
end we introduce the slice function

(2.9) Ps(() =P80, (CeD).

Since Dp is a bounded completely circular domain, it holds for every point g €
0Dp and ¢ € D, that

Ps(OP3(Q)" =P(CAP((A)* < I,
and thus, Pg belongs to the classical Schur class S(C?, CP). Since it takes a coiso-

metric value at ¢ = 1, one can apply the one-variable result (statements I and IT)
of the lemma to x = I, and y = S(8)* to conclude that

r—1 1—17r2 r—1

and since P is a polynomial, the second limit in (2.10) exists and equals P (1)Ps(1)*.
Therefore, the limit in (2.7) exists.

Since Pg(¢) is a Schur function, there is an auxiliary Hilbert space Gz and a
unitary operator

(2.11) U, = [’éi gi] : [gfj] - [gﬁ]

such that

(2.12) Ps(¢) = D1 +¢Cy (Ig, — CA1) ™' By.
On the other hand, upon setting z = ¢4 in (1.13) we get
(2.13) S3(¢) = D+ C (Ipon — Pp(()A) "' Ps(()B

(in this realization we have in fact Pg(¢) ® I3, which (by the above convention)
is still denoted by P3(()) and similarly, we conclude from (1.9) that

L= i e L= SEASEH)
r—1 1-— 'r2

s Icr gy — Pa(r)Pp(r)”
(2.14) = P—»Hi x*H(rp) 1,2

*
X

H(rB)*x.
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Now we combine realization formulas (2.12) and (2.13) to get a unitary realization
for the Schur function Sg:

(2.15) S(¢) = D2 +(Cs (I — (As) ™" By,
where the operator
_ A2 B |G s

o0 o=l B [7]- 2
given by
(217) Ay = A+ Bl(I — ADl)ilAcl,
(2.18) By = Bi(I-AD;)'B,

Cz == C(I - DlA)_lCl,

D, = D+C(I-D,A)™'D:B,

is unitary. Indeed, by (1.13) and (2.12),
H((B) = CUI-Ps(QA) "
= O -D1A—-(C,(I-CA) "BA)™?
= O -Di1A)~ ' [I—-¢Ci(I~-CA)'BiA(I — D1 A)™Y]
(2.19) = CO(I=D1A)™' +(Co(I = (A3)™'B1A(I — DAY,

—1

and taking into account that
C(I = CA2)T'BiA(I = Dy A) T Ci(I = CA) T = (T = CAg) ™ = (T = A,
we obtain
Ss(¢) = D+ H((B)Ps(C)B
= D+ [C(—D1A)™" +(Co(I — (As) ' BiA(I — D1 A)™']
X [Dl + CCI (I — CAl)_l Bl] B
= D+C(I—-DiA'DiB+¢Cy(I-¢4A) "B B
+(Co(I — (A3) "B A(I - D1A)"'D\B
+(Cs [(I — CA3) ™t — (I —CA1) '] B1B
= Dy+(Co(I —CAy)™'Bi [T+ A(I - D1A)"'D{] B
= Dy +(Co(I —(A3)™'B,(I - AD)™'B
= Dy +(Co(I - (A3)™'Bs.
The verification of the fact that the operator Us is unitary is straightforward; it
involves the explicit formulas for the blocks Ay, Bs, Cs, Do and the fact that the

operators U and Uj are unitary. Alternatively, one can pursue the following higher
level path which perhaps is more informative.
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The starting point is the observation that the colligation
_ |42 B2 . |G s

Uz = [02 DQ] : [5 = e,
arises as the feedback coupling of Uy ® (I¢ @ Iy) with U:

Z1
U

U: m — Lﬂ and U; ® (Ic ® Iy): [‘"g] — [ﬁl] .

Us: [ ]H [’;1] if and only if
xr

By the general principle that a feedback coupling of 2 x 2 block unitary operators
is again unitary, we see that the colligation U, is unitary.

It follows from the unitarity of the realization (2.15) that

Ie, — 55(¢)Sp(w)”
1-—(w
and by the one-variable result, there exists the strong limit

(2.20) T := lim (I — rA%)~1Cix.
r—1

= Co(I = CA) ™ (I —wA3) ™' C5

Setting ¢ = r in (2.19) and letting r — 1, we come to the existence of the following
strong limit

(2.21) T := lim H(rB)"x = (I - A*D})"" (C*x + A*Bff) .
r—

On account of the block structure (1.8) of H, the strong limits T}’s in (2.4) exist.

It remains to show that T satisfies relations (2.6). But now this follows from (2.14),

(2.7) and (2.21):

I g = Pp(r)Ps(r)*
1—r2

which completes the proof. O

L = lim x"H(rp) H(rp)*x = T"Ap (B)T,

To state the solvability criterion of Problem 1.2 we introduce some notations. Let

I, 0 0
0 ISL :
(2.22) E, = . , By = . y ey Ep = 0 € L(EL,CP ®&L),
0 0 I,
let Ni,...,Ny: Q= L(E, CP ® EL) be the functions given by
pl,k(&)IEL

Pp.k (E)IEL
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and let Ap : Q — CP*P be the function defined via the limit

(2.24) Ap(€) = [A(©)]7._, = lim L PP (r)"

ig=1 = ;0] 1—12

By the preceding analysis, Ap is well defined at each point £ € 0Dp.

Theorem 2.2. Problem 1.2 has a solution if and only if there exist p? L(&)-valued
kernels K;;(€, 1) on Q x Q subject to the Stein identity

(2:25) D Kjj(6m)—=) (Z Pir (§)Pre(p) Kie (€, u)) = a(§)"a(p) —c(§)*c(p)
j=1 k=1 \i¢=1
and to the constraint
(2.26) D AK€ < T(E)
i,j=1

for every &, u € Q and such that the kernel

Ku(§p) - Kip(ép)
(2.27) K& p) = : :
Kpi(&p) oo Kpp(&sp)
is positive on €:
(2.28) K(&p) = 0.

Taking advantage of operators (2.22) and functions (2.23) and (2.24), one can
rewrite relation (2.25) as

(229) D EiK(&m)Er — Y Nu(©) K (& 1) Ni(n) = a(€)*a(n) — e(€)*c(p)-

14 q
k=1 k=1

Proof: Here we check the necessity of conditions (2.25)—(2.28). The proof of the
sufficiency part is postponed until Section 4 where it will be obtained as a conse-
quence of slightly stronger results. Let S be a solution of Problem 1.2, that is, let
S be an element of SAp, (€, &) which satisfies the interpolation conditions (1.17)
and (1.18). Since S belongs to SAp, (€, £«), the identity (1.9) holds for some
L(CP @ H,Ex)-valued function H which is analytic on Dp. Let H be decomposed
into blocks Hq, ..., H, asin (1.8) and let T;(£) stand for the following strong limit

(2:30) Tj(6) = lim H;(ré)"a(€) (G =1,...,p; € €9),
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which exists at every point £ € 2, by Lemma 2.1. Then the block operator-valued
function

(231) T@)=| : |=lmHrE aE) €9
T, (€)

satisfies (again by Lemma 2.1)

(232) T AROTE) = L) = lim a(g) = SIS
for each £ € Q). Let
(233 Ky =TTy (5=1,..p; Eue).

Then the kernel K (&, u) defined in (2.27) admits a representation

(2.34) Kew=| : |[Tw ... Tw]

and is clearly positive on 2. Furthermore, condition (2.26) holds by (1.18), (2.32)
and (2.34):

Y AGOKGEE = TE AREOTE)

ij=1

Ie, = 5(r§)S(ré)

r—1 1— T2

“ae) < 1),

Finally, setting z = r€ and w = ru (€ # p) in (1.9) and multiplying both sides in
the resulting identity by a(£)* on the left and by a(u) on the right, we get
(2.35)

a(§)” (Ie, — S(r§)S(rp)*) a(p) = a(§)"H(r&)(I — P(r&)P(rp)* ) H(rp)"a(p).-

Making use of interpolation condition (1.17), we get

lim a(§)" (Ig, — S(ré)S(rp)") a(p) = a(é)*a(u) — c(§) c(n),

r—1
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whereas relations (2.31), (2.34) together with (1.13) and partitionings (1.7) and
(1.8) lead to

lim a(£)"H(r§)) (Io e — P(r )P (rp)*) H(rp) a(p)
= lim > a(&)"H; (rO) H; (ru)*a()
— lim . a(§)" Hi(r§) <Z Pik("f)Pke(Tﬂ)> Hy(rp)*a(p)

k=1

=S LEO T - Y. (2 pik@)p_ke(u)) Ty(€)* Te(n)
k=1

j=1 i,€=1 \k=
= Z ij(f,/l) - Z (Z pik(&)pkl(/“)Kﬂf(é—: p’)
j=1 k=1 \i,f=1

Taking limits as r — 1 on both sides in (2.35) and making use of the last two
equalities, we get (2.25). O

3. Solutions to the interpolation problem and unitary extensions

In this section we analyze the structure of the set of solutions of Problem 1.2 under
the assumption that the necessary conditions (2.25)—(2.28) hold. We therefore
assume throughout this section: we are given an interpolation data set (a,c,¥)
as in (1.16) and there exist an L(EL)-valued positive kernel K(&,u) on Q x Q
satisfying the necessary conditions (2.25)—(2.28) in Theorem 2.2.

We define a P-colligation as a quadruple
(3.1) C={H, &, &, U}
consisting of three Hilbert spaces H (the state space), £ (the input space) and &,
(the output space), together with a connecting operator
A B CoH 5 CeoH
C D £ Ex )

The colligation is said to be wunitary if the connecting operator U is unitary. A
colligation

(3.3) C={H, &, &, U}

is said to be unitarily equivalent to the colligation C if there is a unitary operator
a: H — H such that

a®l, 0 _~la®l, 0
AL i

(3.2) U= [
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The characteristic function of the colligation C is defined as
(3.4) Se(z) =D + C (Iep o — P(2)A) ™' P(2)B.

Thus, Theorem 1.1 asserts that a £(£, £x)-valued function S analytic on Dp be-
longs to the class SAp, (£, &) if and only it is the characteristic function of some
unitary P-colligation C of the form (3.2).

Remark 3.1. Unitarily equivalent colligations have the same characteristic func-
tion.

In this section, under the assumption that the necessary conditions (2.25)—(2.28)
in Theorem 2.2 hold, we identify a class of unitary colligations, the characteristic
functions of which give rise exactly to the set of all solutions of Problem 1.2. These
unitary colligations coincide with unitary extensions of certain partial isometry
Vi constructed from some positive kernel meeting the conditions (2.25)—(2.28) for
Problem 1.2. We therefore assume that there exist positive kernel solutions K of
conditions (2.25)—(2.28) and we let E; and N; be defined as in (2.22) and (2.23),
respectively.

Let Ho be the linear space of £i-valued functions f(&) defined on Q which take
nonzero values at at most finitely many points and let H; be the linear space of
C? ® Ep-valued functions & — h(§) defined on © which take nonzero values at
at most finitely many points Let X € L(Ho,&x) and Y € L(Ho, £) be operators
defined by

(35) Xf=Y a@f©), Y= c@)f®).

€€ £eQ

For a fixed choice of positive kernel K meeting conditions (2.25)—(2.28), let Dg (h, g)
be the quadratic form on H; x H; defined as

(3.6) Di(h,g)= Y (K(& €)h(&), 9(&))o e, -

£i,60€Q

It follows by the definitions of the spaces Ho and H; and by the definitions (2.22)
and (2.23) of E; and Ny, that for every f € Hy, the functions E; f and Ny, f belong
to Hi. Furthermore, it follows from B(2.25) that

q

(3.7) > Dk(E;f, Ejg) = Y _ Dx(Npf, Nrg) = (X f, Xg)e, — (Y f, Yg)e.
j=1 k=1

We say that hy ~ hg if and only if Dg (hy — ha, y) = 0 for all y € Hgy and denote
[h] the equivalence class of h with respect to the above equivalence. The linear
space of equivalence classes endowed with the inner product

(3.8) ([rl, [9]) = Dx(h, 9)
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is a prehilbert space, whose completion we denote by H k. Rewriting (3.7) as

14 q

D (B f], [Esghq + (Y f, Ya)e =D ([Nef], [Negl) g + (X £, Xg)e.,

j=1 k=1

we conclude that the linear map

[E1 f] [N1f]
(3.9) Vi S I
[Epf] [N, 7]
Yf Xf
is an isometry from
[Er f] ~
_ : C @ Hk
(3.10) Dv, = Clos B, ] , fE€H1 p C [ < ]
Yf
onto
[N1f] ~
- : CloH
(3.11) Ry, = Clos won | feEMH y C [ 5 K ]
Xf

The next two lemmas establish a correspondence between solutions S to Problem
1.2 and unitary extensions of the partially defined isometry Vg associated with
some positive kernel solution K of (2.25)-(2.28) given in (3.6).

Lemma 3.2. Let S be a solution of Problem 1.2. Then there exists a kernel K
satisfying conditions (2.25)—(2.28) such that S is a characteristic function of a
unitary colligation

(312) U=

C D & &, ’

i é]: [ccm(ﬁwﬁ)]%[@q@(ﬁwﬁ)

which is an extension of the isometry Vg given in (3.9).

Proof: Let S be a solution to Problem 1.2. In particular, S belongs to SAp, (€, &)
and by Theorem 1.1, it is the characteristic function of some unitary colligation C
of the form (3.2). In other words, S admits a unitary realization (1.13) with the
state space H and representation (1.9) holds for the function H defined via (1.15)
and decomposed as in (1.8). This function is analytic and £(CP ® H, &.)-valued
on Dp and leads to the following representation

(3.13) S(z) =D+ H(2)P(2)B
of S, which is equivalent to (1.13).



16 Joseph A. Ball and Vladimir Bolotnikov

The interpolation conditions (1.17) and (1.18) which are assumed to be satisfied
by S, force certain restrictions on the connecting operator U = [ é [B, ] By
Lemma 2.1, the strong limit (2.31) exists. Substituting (3.13) into (1.17) we get

lim (D" + B*P(r€) H(r§)")a(€) = () (€€ ),

where the limit is understood in the strong sense. It also follows from (1.15) that
C + H(2)Z(z)A = H(z) and therefore, that (strongly)

C*a(€) + lim A"P(r€)" H(ré)"a(£) = lim H(r€)"a(e).

By (2.31), the two last (displayed) equalities are equivalent to

(3.14) D*a(§) + B*P(§)*T(€) = <(§)
and
(3.15) C*a(§) + A*P(§)"T(§) = T(§),

respectively, which can be written in matrix form as

[A* 0*] [P(f)*T(s)]:[T@)] (€.

B* D~ a(¢) c(£)
Since the operator [ é g ] is unitary, we conclude from the last equality that
A B | [T@©)| _ |PET()
(310 o o] [@) -7

Let K;; and K be defined as in (2.33) and (2.34), let Vg be the isometry given
n (3.9) and let

(3.17) R =[Ti(&) ... Tp© ]
so that
(3.18) K (& 1) = R(§)"R(p)-
Define the operator T : Hi — H by the rule
(3.19) Th="_ R(§)h(&).

13

Upon making subsequent use of (3.8), (3.6), (3.18) and (3.19), we get

(1), Wq, = Pr(hyy) = D (K(&,E)h(&), y(&))e
€ir6e

= > (R(E)N(&), R(&)y(E))n

&ir6e

= <Z R(&)h(&), ZR(Ei)y(&-)>
& &

= (Th, Ty)n.

H
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Therefore, the linear transformation U defined by the rule
(3.20) U: Tf - [f] (f € Ho)
can be extended to the unitary map (which still is denoted by U) from Ran T onto
Hk . Noticing that Ran T is a subspace of H and setting
N:=HoRanT and H:=Hx®N,
we define the unitary map U: H—H by the rule

~ [ Ug for geRanT
(3.21) Ug—{ g for geN.

Introducing the operators
A=UeI)AU®L), B=U®I)B, C=C{U&IL), D=D
we construct the colligation C via (3.3) and (3.12). By definition, C is unitar-

ily equivalent to the initial colligation C defined in (3.1). By Remark 3.1, C has
the same characteristic function as C, that is, S(z). It remains to check that the

connecting operator of C is an extension of Vg, i.e.,

o [ELf] [N1f]
A B : :

(3:22) ¢ b|wmp | mal T
vf Xf

To this end, note that by (3.20), (3.21), it holds for every f € Ho that
U* ([E;f]) = T(B; f) = Y _REE; f(§) =Y _Ti(Of(€) (=1,-..,p)
13 13

and therefore,
B [E1 f] T1(8)
(3:23) (U IL)" : = s | £ =T (&)
[Epf] Tp(¢)

Similarly,

U (Z R(€)Nk(£)f(€)> =UT(Npf) = [Nef] (k=1,...,q)
13

and since R(&)Ni(£) is equal to the k-th block row of P(£)T'(€) (which is clear
from the definitions (3.17), (2.32) and (2.23) of R, T and Ny), it follows that

B [N1f]

(3.24) U eI)(PE)TE)f(&) = :
[Npf]
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Thus, by (3.16), (3.23) and (3.24),

[E1f] [E1f]
iB L | _[UeL, 0][A B'[(17®Ip)*0] :
Cc D [E, f] | 0 I|]1C D | 0 I [E, ]
Yf Yf
UxI, 0][ A B] T(¢)
R CD_(g[C(E)]f(£)>
Ul 0] [ A B]|[T
SIS ERIEIE
[V1f]
_[UeI, 0] [ P(O)*T(€) _|
(3.25) = 0" 1] (Zg: a(E) ]f(&)) “ ol
Xf
which proves (3.22) and completes the proof of the lemma. O

The converse statement will be proved in Theorem 3.4 below. We start with some
auxiliary results.

Lemma 3.3. Let A: CP @ H — C? @ H be a contraction, and let B be a point in
ODp. Then the following limit

(3.26) Yp o= lim(1—r)(I - AP(rp))~!

exists in the strong sense and satisfies

(3.27) Y>>0, AP(B)Yg=Tp and YgA=TzP(h)".
Furthermore, the following limits also exist in the strong sense:
(3.28) lim (I — AP(rB)) ™" (I - AP(B)) = I-1"sP(B)"Ws,
(320)  lm(I—P(B)A)I - Pa(r)A)™ = I-WsXsP(g),
where

- Wo — g TO-TCD)

Proof: To show the strong convergence of the limit in (3.26), consider a unitary
realization (2.12) with the state space Gg of the Schur function Ps((). By a cal-
culation similar to (2.19),

(3.31) (I-APg(Q)) ' =(I - ADy) ' [T+ CAC\(I — (Az) ' Bi(I — ADy) '],
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where Aj is given in (2.17). Since A is a contraction on Gg, the limit
. -1
lim (1 —7) (Igy —14>) = Per(1-As)

converges strongly to the orthogonal projection of Gg onto the eigenspace {z €
Gs: Axx =z} of fixed vectors of Ay (for the proof see [10, Section 2]). Then it
follows from the two last relations that the limit in (3.26) converges strongly to
the operator

Y5 = (I — AD1)" ' AC1 Pgex(1—a,)B1(I — ADy) ™.
To show that this operator satisfies conditions (3.27), consider the function

(3.32) Bp(¢) = (I — AP(¢)) ™ (I + AP5(¢)).

Since

B5(¢) + ()" =2(I — AP(()) ™" [I — AP (OP5(Q)" A" (I - P5(¢)"A") ™" >0,

the real part of ®4 is positive semidefinite on D and therefore, ® admits a Herglotz
representation
. t+¢
B(0) = i9%5(0) + [ FE2ams)
with a positive operator-valued measure ¥3. Then a consequence of the Lebesgue
Dominated Convergence Theorem is that

(3.33) lim (1 - 1)@4(r) = 255({1})
where ¥3({1}) > 0 is the measure assigned by X3 at the point ¢t = 1. Therefore,
(3:34) tim (11 220wy,
By (3.32),
@5(7‘) +1

= (I - APs(r))™" = (I - AP(rp))™"

and upon comparing (3.26) with (3.34) we conclude that the limit in (3.26) exists
and Yg is given by

(3.35) Ts =3p({1}) 2 0.
From (3.32), (3.33) and (3.35) we see that
lim (1 = r)(I = AP(r6))~(I + AP(rf)) = 2T,
which together with (3.26) implies
lim (1 —7)(I - AP(rf)) " AP(rp) = lim (1 — r)AP(rB)(I — AP(rp))™" = Y.
The limits in the latter relations can be split into products which leads us to

AP(8)T5 = Y5AP(S) = Tj.
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Multiplying the second equality by P(8)* and taking into account that P(58)P(8)* =
I we come to
YA ="TsP(B3)",
which completes the proof of (3.27).
Furthermore, on account of (3.26) and the third relation in (3.27),

P(B) —P(rp)

lim (I = AP(r8) ™ (T = AP(8)) = I—lim(1—r)(I - AP(r)) "t A—2—

= I—YzAW;s
= I-TsP(B)"Ws

and quite similarly,

i (I~ A - PeAA™ = I-lim "O=PCD o)1 ap(rg) 4
= I-WsYs4
= I-WsTsP(B)",

which completes the proof of the lemma. O

Lemma 3.4. Let K be a kernel on Q satisfying conditions (2.25)—(2.28) and let
U of the form (3.12) be a unitary extension of the partially defined isometry Vg
given in (3.9). Then the characteristic function S of the unitary colligation C =
{(HoH, € &, U},
~ o~ -1
8(2) = D+ C (Ip giom — P()A)  P(2)B,

is a solution to Problem 1.2.
Proof: We start with a factorization of the form (3.18) for the kernel K

K(& p) = R(€)*R(w) with R(§) = [T1(§) ... Tp(§)] € L(C” @ €, H)
and then set

T1(¢)
T(¢) = : € L(Er,C” @ H).

Tu(§)

By the assumption that Uisa unitary map of the form (3.12) which extends Vg,
by reversing the argument in the proof of Lemma 3.2 we see that the operator U
defined by

U:[A B]_[(U@Iq)* 0] A B

¢c op| | o I||C D 0o I

5

satisfies (3.16) (or equivalently, (3.14) and (3.15)), which can be easily seen from
(3.25). By Remark 3.1, the colligations C and C defined in (3.1) and (3.3) have
the same characteristic functions and thus, S can be taken in the form (1.13).
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Let H(z) be defined as in (1.15) and decomposed as in (1.8). We shall use the
representation (3.13) of S(z) which is equivalent to (1.13).

Fix £ € Q C Dp and consider the Schur function P¢(¢) = P({£), (¢ € D). Then
it follows from (3.26) and (3.30) that

(3.36) lim (P() — P(rt)) (I — AP(6)) ™" = W .

Since the operator U is unitary, we have in particular,

(3.37) I— AA* = BB*.

Combining the second and the third relations in (3.27) we conclude that
(3.38) Te=TP(E)*A* =T AA.

It follows now from (3.38) by (3.37) that Y¢BB* = 0 and therefore, that
(3.39) YT¢B=0.

Multiplying both parts in (3.36) by B on the right we and taking into account
(3.39) we get

(3.40) lim (P(¢) — P(rt)) (1 — AP(6)) "B = 0.
Using (1.13) and expressions for D*a(¢) and C*a(¢) derived from (3.14) and (3.15),
respectively, we get
S(ré)*a(§) = Dra(§)+ B*P(ré)* (I - A"P(r&)*) ™' C*a(¢)
= ¢(§) - B"P(§)"T(¢)
+B*P(r)" (I - A"P(r§)") ™ (I - A"P(§)") T(¢)
(3.41) = c(§) - B (I-P(r&) A" (P(E)" - P(r&)")T(§).
Taking limits in the last identity as r tends to one and taking into account (3.40),
we come to (1.17).

It remains to verify (1.18). By (3.41),
(3.42)

c(§)*e(é) — c(§)*S(ré)*a(§) = c(&)*B* (I - P(r&)* A*) ™ (P(&)" — P(r)") T(§).
It follows from (3.16) that
AT (§) + Be(§) = P(§)"T(8)
and therefore, since P(§)P(§)* =1,
c(§)*B* =T()"(P(§) — A") =T()"P(§) (I —P(§)"A").

Substituting the latter equality into (3.42) and dividing both parts of the resulting
equality by (1 —r), we get

c(§)*c(§) — c(§)"S(rd)a(§)
1-—r

=TE)"P() (I —P(§)"A") (I - P(r)" A7)

L P PEE)”

— 7).
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Taking limits in the last identity as r — 1 and using (3.28) we get
(3.43) 1im X&) = &' SCO™AL) _ 1yerpe (1 - wrp(e)T) WET(E).

r—1 1—r
The operator Ap(£) > 0 given in (2.7), admits, by (2.10), representations

(3.44) Ap(€) = WeP(6)" = P(E)W.
Setting for short
(3.45) Ue = P(E) YW

and making use of (3.44) we rewrite (3.43) as

a0 iy SO = eO"S0a(0
On the other hand, it follows from (1.14) that
a(f)* Ig* - ‘ls(ji)zs(ré‘)* a(f)
= a@)"C (1 - Pre)4) 1= Pf’f)rf(ro*
(3.47)
It follows from (3.15) that
C*a(§) = (I - A"P(§)")T(E),
which being substituted into (3.47), leads to
a( BSOS )~ 1oy -P©A) - e !
L= PUOPEE)”
1—1r2
x (I = AP(r6)*) ™" (I - A"P(§)")T(¢).
Taking limits in the last identity as 7 — 1 and using (3.29), (2.24) and (3.45) we
get
(3-48)  lima(§)”
By Lemma 2.1,
i ae): - STOSEO" o el©)€() = e(€)"Sre) a(®)

r—1 1—1r2 r—1 1—r
which implies, on account of (3.46) and (3.48), that

T(€)* Ap()I - U)T(€) =T(&)" (I - Ug) A (&) (I - Ug) T(€).
The last equality implies

T(©)" (I-Ug) Ap(&) (I = Ug) T(§) = T(€)" (Ap(§) — Ui Ap(§)Ue) T(€)

=T Ap(E)(I = Ue)T(£)-

(I - A"P(r&)") ' C*a(é).

Ie, = 5(r§)S(ré)

1—r2

“a€) = T()" (I - UZ) Ap(€) (I — Ue) T(©).

)
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and now we conclude from (3.48) and (2.26), that for every £ € Q,
Ie. = S(ro(©)S(r(€), o

lim a(£)* T2

r—1

T(€)" (Ar(€) — Us Ap(§)Ug) T(€)

T(§)"Ar(T(E) < ¥(9),

where we used the assumption (2.26) for the last step. This proves (1.18) and
completes the proof of the theorem. O

IN

4. The universal unitary colligation associated with the
interpolation problem

A general result of Arov and Grossman (see [7], [8]) describes how to parametrize
the set of all unitary extensions of a given partially defined isometry V. Their
result has been extended to the multivariable case in [16] (for the case of the
polydisk), in [17] (for the case of the unit ball) and in [12] for P-colligations. We
recall the result from [12] for the reader’s convenience.

We assume that we are given an interpolation data set (a,c, ¥) as in (1.16) and a
kernel K (&, ) on Q x Q satisfying the conditions (2.25)—(2.28) as in the previous
section. Let Vg : Dy, = Ry, with Dy, and Ry, given as in (3.10) and (3.11)
be the isometry associated with K as in (3.9). Introduce the defect spaces

_[cre#H
= [08

:| @DVK and AK* :| eRVK

and let A k be another copy of Ag and A K+ be another copy of Ak, with unitary

identification maps
(41) iK: AK - AK and iK* : AK* — ZK*.

Define a unitary operator Uk ¢ from Dy, ® Ax & Ak, onto Rvg ® Ak« ® Ax
by the rule

Viz, if x € Dy,
(4.2) Ugor =14 ix(z) if z €Ak,
igh(z) if € Ak
Identifying [IZV; ] with {C”?’H] and [i‘;’: ] with [(Cq S%H , we decompose
Uk, defined by (4.2) according to
Uk11 Uki2 Ukjs CreH [C @ H
(4.3) Uko=| Uk21 Ukp2 Uk;23 K2 = &
Uk3z1 Ukz32 0 Ak« | Ak

The (3, 3) block in this decomposition is zero, since (by definition (4.2)), for every

T € ZK*, the vector Uk ox belongs to Ag, which is a subspace of [

Z]and
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therefore, is orthogonal to Ax (in other words Pz Uk ol .. = 0, where Px

stands for the orthogonal projection of Ry, ® Ak, ® Ak onto Ak).

The unitary operator Uk is the connecting operator of the unitary colligation

~ £ E,
(4.4) Cko = {H; [ Ak ] , [ Ax ] ; UK,O}:

which is called the universal unitary colligation associated with the kernel K sat-
isfying the necessary conditions (2.25)—(2.28) for existence of solutions of the in-
terpolation problem.

According to (3.4), the characteristic function of the P-colligation Ck ¢ defined in
(4.4) is given by

[ Yr1(z) Zk12(2) ]
Yr21(z) Zk2(2)

_ | Uk2e Ukps + Uk 21
Uk 32 0 Uk,

i)
] (I —P(2)Uk11)" " P(2) [Uk,12 Uk,s]

and belongs to the class Sp(€ ® EK*, Ei D KK), by Theorem 1.1.

Theorem 4.1. Let Vi be the isometry defined in (3.9) associated with a positive
kernel K meeting the necessary conditions (2.25)—(2.28) for existence of solutions
to the interpolation Problem 1.2, let Yk be the function constructed as above from
Vi, and let S be a L(E, E.)-valued function. Then the following are equivalent:

1. S is a solution of Problem 1.2.

2. There exists a kernel K satisfying conditions (2.25)—(2.28) so that S is
the characteristic function of a P-colligation C = {ﬁ@ﬁ, E, &, U} with
the connecting operator U being a unitary extension of Vi .

3. There ezists a positive kernel K satisfying conditions (2.25)—(2.28) such
that S is of the form

-1
46)  S(2) = Tk11(2) + Sx.12(2) (Iz* - T(z)zK,n(z)) T(2) Sk (2)
for a function T from the class SADP(EK, ZK*)

Proof: The equivalence 1 < 2 follows by Lemmas 3.2 and 3.3. For the proof of
2 & 3 (for a given fixed choice of K) see [12, Theorem 6.1]. O

As a corollary we obtain the sufficiency part of Theorem 2.2: under assumptions
(2.25)—(2.28) the set of all solutions of Problem 1.2 is parametrized by formula
(4.6) as one sweeps through all functions 7 from the class SAp,(Ak, Ak,) and
through all positive kernels K meeting the conditions (2.25)—(2.28), and hence in
particular is nonempty.
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