Available online at www.sciencedirect.com

SCIENCE Cbpmsc-r. m
@ Functional
Analysis

ELSEVIER Journal of Functional Analysis I (N1EE) INE-REE

http://www.elsevier.com/locate/jfa

Realization and interpolation for
Schur—Agler-class functions on domains with
matrix polynomial defining function in C”

Joseph A. Ball* and Vladimir Bolotnikov®™*

& Department of Mathematics, Virginia Polytechnic Institute, Blacksburg, VA 24061-0123, USA
® Department of Mathematics, The College of William and Mary, Room 110, Jones Hall, Box 8795,
Williamsburg, VA 23187-8795, USA

Received 17 January 2003; revised 13 April 2004; accepted 13 April 2004

Communicated by D. Sarason

Abstract

We consider a bitangential interpolation problem for operator-valued functions defined on
a general class of domains in C” (including as particular cases, Cartan domains of types I-1II)
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interpolation problems for this class of functions corresponds to a unitary extension of a
particular partially defined isometry uniquely specified by the interpolation data. Criteria for
existence of solutions are given (1) in terms of positivity of a certain kernel completely
determined by the data, or, more generally, (2) by the existence of a positive-kernel solution of
a certain generalized Stein equation completely determined by the data.
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1. Introduction and statement of main results

The classical Schur class % consisting of complex-valued analytic functions
mapping the unit disk D into the closed unit disk D has been a source of much study
and inspiration for over a century now, beginning with the seminal work of Schur
(for the original paper of Schur and a survey of some of the impact and applications
in signal processing, see [28]). More recently, the operator-valued version of the
Schur-class ¥ (&, &) consisting of analytic functions F on the unit disk with values
F(z) equal to contraction operators between two Hilbert spaces & and &, has played
a prominent role in both engineering and operator-theoretic applications (see e.g.
[21,22,30,40,41]). This class admits various remarkable characterizations some of
which are recalled below. The symbol Z(&, &) stands for the algebra of bounded
linear operators mapping & into &, and we shall shorten Z(&,8.) to L(&).

Theorem 1.1. Let F be an ¥ (&, & )-valued function analytic on D. Then the following
are equivalent:

(1) F belongs to (8,8.), i.e., ||F(z)||<1 for every zeD.
(2) F satisfies the von Neumann inequality: ||F(T)||<1 for any strictly contractive
operator T on a Hilbert space #', where F(T) is defined by

0 o0
F(T)=) FQT'eL(6QA,6.0A4") if F(z)=)Y_ F"
n=0 n=0
(3) F admits a representation of the form
F(z)=D+zC(1y —z4)"'B
where the connecting operator (or colligation)
A B H H
U= : — (1.1)
C D & é .
is unitary, and where J is some auxiliary Hilbert space (the internal space for the

colligation).
(4) There exist a Hilbert space # and an L (A, & )-valued function H(z) analytic on
D such that

Is, — F(z2)F(w)" = (1 —zw)H(z2)H(w)" (z,weD). (1.2)

(5) There exist a Hilbert space # and an L (&, #)-valued function G(z) analytic on
D such that

Is — F(z)'F(w) = (1 —2w)G(2)"G(w) (z,weD). (1.3)
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(6) There exist a Hilbert space # and operator-valued functions H and G as above
such that

{I(v —F(z)F(w)"  F(z) - F(W) }
F(Z)" = F(w)" I, —F(Z)'F(w)
_ [( W) H(2)H(w)" (2 — W)H(z)G(w) ]
(7 =w)G(EZ) H(w)" (1-2w)G(Z')" G(w)
for every z,Z/ ,w,w' eD.

Recall that an operator-valued function K : Q x Q+— (&) is called a positive
kernel if

> (K (i o)y hiy =0 (1.5)
i, j=1

for every choice of a positive integer r and of wy, ...,w,€Qand hy, ..., h,€ #. By one
of the original results of Aronszajn [9], an equivalent condition is that there exists a
function X : Q— L (H', #) (for some auxiliary Hilbert space #”) so that K has the
factorization

K(wl,wz) = X(wl)X(wz)*

Remark 1.2. The following three kernels
Ke(z,w) = H(z)Hw)", Kgr(z,w) = G(z)"G(w)
and

H(z)

K(z,Z/,w,w') = {G(z’)*

i G
are clearly positive on D? and D* respectively. Furthermore, they are uniquely

recovered from Egs. (1.2)—(1.5) in terms of F as follows:

e, — F(z)F(w)"

1 —zw

Is — F(2)"F(w)

Kulzw) = 1—zw

;o Kr(zw) = (1.6)

and

Is, —F(z)F(w)"  F(z) — F(w)

1 —zw z—w
K(z,2,w,w) = 1.7
G2 =1 ey R 1, — FEY RO | (1.7)

2 1 —Z'w
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which allows us to reformulate the above statements (4)—(6) in Theorem 1.1 in more
familiar terms as: the kernels Iy (respectively, K and ) are positive on D?* (D and
D4, respectively).

Remark 1.3. The significance of the characterization of the Schur class in terms of
positivity of the kernel Ky for interpolation theory is that it gives the necessity part

in the Nevanlinna—Pick type interpolation theorem: given points zy, ...,z,€D and
Wi, ..., W€ ZL(&,8.), there exists Fe S (&, 8.,) with F(z;) = wj forj=1,...,n if and

Ig, —w; ij

only if the associated Pick operator A = [ = ] is positive semidefinite.

Positivity of i also leads to the solvability criterion of a more general left
tangential interpolation problem, while the kernels KKg and K provide necessary and
sufficient conditions for solvability of a right tangential and bitangential interpolation
problems, respectively; see [14] for more detail.

It is easily checked that each one of statements (2)—(6) in Theorem 1.1 implies (1).
The nontrivial (and remarkable) fact is that 1 = (2)—(6). The situation changes in the
following more general setting: let Q(z) be a polynomial, let Z¢ < C be the domain
defined as

G = {zeC": Q)| <1}

and let us consider the class ¥4, (&, &) of Z(&,&.)-valued functions S analytic on
Zq and such that

[|S(z)]|<1 for every zeZq (1.8)

and the class Sq(&,6.) of L (&, )-valued functions S analytic on P¢g and
satisfying the following von Neumann type inequality:

[IS(T)]|<1 whenever Te Z(#) and ||Q(T)||<]. (1.9)

In particular, in (1.9) we may use # = C and T = z where z is a point in g to see
that (1.8) holds and therefore, that Yo(&,6.)=F 4,(8,6.). In general, this
inclusion is proper: for example, letting Q(z) = z*> we get Zo = D and therefore,
S 3,(&,6,) coincides with the classical Schur class. On the other hand the Schur

function S(z) = z does not satisfy property (1.9): the operator T = {O 2

.02 2
0 O}.C—»C

satisfies
QT = IT*|| =l0]| =0<1, while ||S(T)|| = ||T|| =2>1.

It is also clear that the class ¥4, (&, &) depends on the domain % rather than on
Q, whereas ¥(&, &.) depends just on Q.

Since in the case when Q(z) = z, the classes ¥4, (&,8.) and Fo(&,6,) both
reduce to ¥ (&, &), each of them can be considered as a certain generalization of the



J.A. Ball, V. Bolotnikov | Journal of Functional Analysis 1 (1111) 1I-1NR 5

classical Schur class. Furthermore, upon taking advantage of characterizations (3)—
(6), one can define the class of operator-valued functions admitting representations
of the form

S(z) =D+ Q(z)C(Iy — Q(z)4)™'B, (1.10)

where the connecting operator U is the same as in (1.1), as well as the classes of
functions for which one of the kernels

_1s = S(z)'S(w)
1 - Q(2)Q(w)

Ki(z,w) = ————— Kgr(z,w)

or

I, — S(z)S(w)"  S(z) — S(W)
1-Q()Q(w)  Q()—Q(W)
S(Z) —Sw)" Is—SE)'SW) |’
Q) -Q0)  1-QE)QW)

K(z,Z/,w,w') =

is positive on @6 or on 9‘(‘)7 respectively. However, no new generalizations of the

classical Schur class arise in this way: all the resulting classes coincide with
Fo(&,&,). In other words, the functions F analytic on Z¢ and satisfying the von
Neumann inequality (1.9) are precisely those admitting unitary realizations of the
form (1.10) and/or such that the any one of the three associated kernels K, Kr and
[ are positive. It is even more remarkable that a similar result can be established in
the following multivariable context: we start with a p x ¢ matrix-valued polynomial
in n complex variables

q,(2) - (hq(Z)
Q(z) = : : eCP*? for zeC" (1.11)
qpl(Z) qpq(z)

and we define the domain ZgeC" by
G = {zeC": Q)| <1}, (1.12)
or equivalently, in terms of real scalar polynomials, as
9q ={zeC":p,(2)>0 for/=1,...,q}, (1.13)

where we have set
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and where 6; ; stands for the Kronecker symbol equal to 1 for i = j and 0 for i#j.
Special choices of

Q(z) = and Q(z)=1[z1 z ... 2z (1.14)

Zn

lead to the unit polydisk Zq = D" and the unit ball ¢ = B" of C", respectively. The
classical Cartan domains of the first three types and their Cartesian products and
intersections also can be obtained upon a suitable choice of Q; we refer to [7,8,48] for
more examples.

Now we recall the Schur—Agler class &.</q(&,6&,). By definition, the class
S AQ(&,6,) consists of L (&, &.)-valued functions S(z) = S(zi, ...,z,) analytic on
Zq such that

IS(Ty, ..., Tu)lI<1

for any collection of » commuting operators (71, ...,T,) on a Hilbert space A,
subject to

||Q(T1> 7Tn)||<1

By Ambrozie and Timotin [8, Lemma 1], the Taylor joint spectrum of the
commuting n-tuple (7, ...,7,) is contained in 9¢ whenever ||Q(T}, ..., T,)|| <1,
and hence S(T7, ..., T,) is well defined for any (&, &,)-valued function S which is
analytic on Zq by the Taylor functional calculus (see [24]). Upon using #" = C and
T; =z for j=1,...,n where (z1,...,2,) is a point in Pq we conclude that any
Z (&, &) function is contractive valued on Zq, and thus the class ¥.Z¢(&, &) is a
subclass of the class %4, (&, &) of contractive valued functions analytic on Zq. As
we have already seen in Remark 1.2, this subclass in general is proper.

The classes .o/ ¢(&,6.) for the two generic cases (1.14) have been known for a
while. The polydisk setting was first presented by Agler [2] and then extended to the
operator valued case in [15,18]; see also [3]. The Schur—Agler functions on the unit
ball appeared in [26] in connection with a von Neumann’s inequality, later in
[1,38,45] in connection with complete Nevanlinna—Pick kernels, in [10,44] in
connection with the theory of commutative unitary dilations of commutative row
contractions, and in [29,39] in connection with Beurling-Lax representations of
Beurling-Lax type for invariant subspaces; for a thorough account of the operator-
valued case, see [19]. The general setting introduced above unifies these two generic
settings and moreover covers some other interesting cases. The general domains Zq
and classes & ¢(&,8.) (for & = &, = C) were already introduced in [8]. It was
pointed out there that classical Cartan domains of the first three types together
with their Cartesian products and intersections are domains of type Zq. Indeed,
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the choice of
n=pq and qu(z) =z 14 (=1,....p/=1,..,9)
leads to Z being a Cartan domain of type I. Choosing

+1 .
p=a n="EU g0 =q0) ad 4@ =z, (<isi<)
2 E

we get Y to be a Cartan domain of type II. In the case when

p(p—1 ..
p=a n="000 g0 = a0 and qE@) =z, (<<i<p)
2

9 turns out to be a Cartan domain of type III.

Remark 1.4. The referee suggested another possible notion of Schur—Agler class
associated with a domain 2 <C". Let us say that an #(&, &.)-valued function S
belongs to the Schur-Agler class .o/, (&, &) if ||S(T)||<1 for all operator-tuples
T = (Ty,...,T,) for which Z is a spectral set for 7. Let us suppose that there is a
matrix polynomial Q so that Q = Zq, i.e., so that

7 ={zeC":IQE)II<1}.

Then, if T = (T3, ..., T,) is a commuting operator-tuple for which & is a complete
spectral set, in particular it follows that

1Q(T)]|< sup [[QE)| = 1.
ze02

It then follows from the definitions that /.o (&,&.)c S/, (6, E.). We leave any

other connections between o7 4 (&, &.) and &/ o(&, &) for discussion on another

occasion.

The present paper extends the work of [8] to the operator-valued case. The
following theorem gives several equivalent characterizations of when a given
Z(&,6,)-valued function F defined on a subset Q of Z¢ extends to a function S
defined on all of Zg in the class ¥.«/q(&, &); in particular, taking Q = P in the
statement of the theorem gives several equivalent characterizations for the class
S (&, 8,) itself. We shall provide a complete proof of the following result in
Section 3; the scalar-valued case (where & = &, = C) can be found in [8] in a
somewhat different form.

Theorem 1.5. Let Q be a p x g-matrix valued polynomial as above. Suppose that F is
an (&, &)-valued function defined on a subset Q of 9q. The following statements are
equivalent:

(1) There is a function S€ ¥4 o(&,8E,) such that S|, = F.
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(2) There exist an auxiliary Hilbert space # and a function

H(z)=[H\(z) ... Hy(2)] (1.15)
defined on Q with values in ¥ (CP ® A, &) so that
I~ FF0w) = HE) (Ioer — QEQW)IHM  (1.16)

for all z,we Q.
(3) There exist an auxiliary Hilbert space # and a function

Gl(Z)
Gz =| : (1.17)

defined on Q with values in ¥ (C!'® H, &) so that
Iy — F(z)'F(w) = G(2) (Icrg e — Q(2)"Q(w)) G(w) (1.18)

for all z,weQ.
(4) There exist an auxiliary Hilbert space # and functions H(z) and G(z) as in (1.15)
and (1.17), so that

F Z)} (FOw)" L]

H(Z) * / 12
Gy | HOT QUG
[ oo o G (119)
forall z,z/ ,w,weQ.
(5) There is a unitary operator
A B CPH C'@H
U_[C D]{ & }ﬁ[ 8. } (120)
such that
F(z2)=D+ Clpgr —Q(2)4) 'Q(2)B  for all zeQ. (1.21)

Moreover, if F is of the form (1.21), then one extension S of F to an element of
S AQ(6,8,) is given by

S(z) =D+ Clogr —Q(2)4) 'Q(2)B  for all ze Zq (1.22)
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and it holds that
Is. = S()S(w)" = C(I - Q(2)4) ™ (I - Q)QUw) )T — A°Q(w)) ' C*,  (1.23)

S(z) = S(w) = C(I — Q(2)4) " (Q(z) = Q(w))(I — AQ(w))"'B,  (1.24)

Is = S(z)"S(w) = B'(I - Q(2)"4") " (1 = Q(2)"Q(w))( — AQ(w))'B.  (1.25)

Hence representations (1.16), (1.18) and (1.19) are valid on all of 2 (with S in place of
F) with

H(z)=C(I—-Q(2)4)"" and G(z) = (I — AQ(z))"'B. (1.26)

Remark 1.6. Similarly to Remark 1.2, statements (2)—(4) in Theorem 1.5 can be
reformulated in terms of positive kernels as follows.

Statements (2)—(4) in Theorem 1.5 are equivalent, respectively, to statements (2)—
(4') below:

(2") There exists a positive kernel

Kragn - Krap
Kp=| L ox Q20 ®6) (1.27)
Kipa - Kipy
such that
p_ 4
Is, — z Kear(zw) =Y > qu(2)au (0 Keis(z,w)
k=1 i/=1
for all z,weQ. (1.28)
(3') There exists a positive kernel
Krii1 -+ Kriig
Kp=| : L ex Q- 2(C1®6) (1.29)
KR:,q,l KR;q-q
so that
p
Is — F ZKRkaW Z Z% )G, (W) Kriiz(z, W)
k=1 i/=1

for all z,we Q. (1.30)
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(4') There exist kernels K (as in (1.27)), Kgr (as in (1.29)) and

Kirig - Kiriayg
Kip= | L ex 0 208,006

Kirpn - Kpg

satisfying identities (1.28), (1.30) and

Mm
MQ

(@i (2) — iy (W) Kir;iv(z,w)  (zweQ), (1.31)
i=1 /=1

respectively, and such that the kernel
((z,2), (w, W) > K

— [ Kp(z,w)  Kir(z,w)

Kir(w,2')"  Kr(Z lv,)}Eff«@”®&)@(<Dq<w)) (1.32)

is positive on (2 x Q) x (Q x Q).

Indeed, the equivalence between (1.16) and (1.28) (i.e., between statements (2) and
(2")) can be seen by using the formula

H,(z)
Ki(z,w) = S Hw)" e Hy(w)T] (1.33)
Hy(z)
to establish a correspondence between positive kernels of the form (1.27) and

functions H(z) of the form (1.15). Given that [{; and A are related in this way, we
then compute

P )4 q
3 Kuaeo) =3 S a@)an 0Kz, w)
k=1 k=1 i/=1

P4
DH(w) =Y > (@) (W) Hi(z) Hy(w)”

1 k=1 i/=1
= H(z)Iorgr — Q(2)Q(w)")H(w)" (1.34)
and the equivalence between (1.16) and (1.28) follows. The equivalence between

(1.18) and (1.30) (that is, between statements (3) and (3')) follows in a similar way by
using the formula

I
M”e

=~
Il

Kr(z,w) = : [Gi(w) - Gy(w)] (1.35)
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to establish a correspondence between positive kernels KKgr(z, w) of the form (1.29)
and functions G(z) of the form (1.17). Similarly, the equivalence between (1.19) and
(1.31) in part (4) of the statement of the Theorem follows by using (1.33), (1.35) and

H(z)
Kir(z,w) = [Gi(w) - Gy(w)],
Hy(z)
that is, using the formula
K(z,Z/,w,w') = T(z,2) T (w,w') (1.36)
where we have set
Tw,w') =[H,(w)" - H,w)" GW) - Gy(w), (1.37)

to establish a correspondence between positive kernels of the form (1.32) and
analytic operator functions H(z) and G(z) as in (1.15) and (1.17).

In contrast to the one variable case (see Remark 1.2), however, these kernels K,
Kr and K are not determined by F uniquely (for some exceptional cases, see
Examples 2.1 and 2.2).

Theorem 1.5 is a result on full operator-valued interpolation for the class
S Aq(6,8,), 1.e., for the case where the full value S(z) is specified (as S(z) = F(z)
where F(z) is given) at each point z in the set of interpolation nodes Q. It is also of
interest (and of importance in various applications in the classical case—see [14]) to
consider tangential interpolation problems for the class &.«7¢(&, &.). For the left
tangential interpolation problem, we assume that we are given data consisting of
functions

a:Q 28,86, c¢:Qu—>ZL(6L,8) (1.38)
where Q1 = Zq and where &1 is a Hilbert space. The problem then is:

Problem 1.7. Find all functions S€ .o/ (&, &) such that S satisfies the interpolation
conditions

S(é)*a(é) =¢(&) for all EeQy. (1.39)

For the right tangential interpolation problem, we assume that we are given data
consisting of functions

b: Qris Z(6x, &), d: Q> L(6r,6.) (1.40)

where Qr =% and &R is a Hilbert space. The problem then is:



12 J.A. Ball, V. Bolotnikov | Journal of Functional Analysis 1 (1111) 1I-1NR

Problem 1.8. Find all functions S€ .o/ (&, &) such that S satisfies the interpolation
conditions

S(ED(E) = d(€) for all Q. (1.41)

For the bitangential interpolation problem, we assume that we are given two
subsets Qp, and Qg of ¢ and data consisting of functions a,¢,b,d as in (1.38) and
(1.40). Then the problem is:

Problem 1.9. Find all functions S€ .o/ (&, &) such that S satisfies the interpolation
conditions

S(E)a@) =e(©) forall EeQr, SEDE) =d(E) for all EeQr.  (1.42)

Note that the left interpolation problem (Problem 1.7) is the special case of the
bitangential problem (Problem 1.9) where Qr = 0, and similarly, the right tangential
interpolation problem is the special case of the bitangential interpolation problem
when Q; = 0. Note that the special case of the left interpolation problem where

Q=0 =6, all)=1I;, and c(¢)=F(&),
the special case of the right interpolation problem where
Qr=Q, r=6, b({)=1Is and d(¢)=F(J),
and the special case of the bitangential interpolation problem where Q; = Qr = Q,
SL=2©6., Er=6, all)=1Is, c()=F(&), b&)=1Is, d¢&)=F()

are all essentially solved in the various equivalent parts of Theorem 1.5.
Define operators Ey, ..., Ey, EX, ..., EX by

s po
Mg, 0 0
0 Is :
Er=|. [\Ex=|""|....E = o | (1.43)
L 0 | 0 Is,
Mg, ] 0 0
0 ls :
ER = : JEX = :" s Ef = 0 (1.44)
L 0 ] 0 Is,
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and let
q., -4, : Qri> Z(6r, CIQ ER),
Q- q,: Q- ZL(6L,CFREL),
M,
Ny,

be the functions given by

qj1(£R>IwER
q;.(¢r) = for épeQr, qi(¢) =
qj,(Er) oy
EL 0
M _ |
CRI @)]
q.(¢)
ma) = | EE}
where j=1,....,p and k=1, ...

M, Qr> L(EL®ER, (CP®EL) @ (C!®ER)),

.,Nq : QL—>$((§L@@@R,(Cp®g)]_)®(@q®£)lz))

Qi (Eu) e,

for & eQy,

qpk(ﬁL)IéL

(1.45)

for &R € Qg,

for & ey, (1.46)

,q. Note that, in terms of this notation with &

taken to be &, and &g taken to be &, Eqgs. (1.28), (1.30) and (1.31) to be satisfied
by the respective kernels Ky, Kr and Kgp can be written in a more matricial

form as

Iy, —

Iy — F(&R)'F(ug) =

F(éL) — Flug) =

P
Z ) WKL, ) E

J=1

MQ

>
I

1

q
Z K (EL) Kir(EL, uR)E,

=1

=

)L, t ) (1),

(1.47)

»
(ER)" KR (Ero ur)EF — Z q;.(Er) KR (Cry 4G (1),
=

(1.48)

»
Z (E}) Kir (&L, tr)g; (ir),
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respectively. Furthermore, the latter three identities all together are equivalent to the
following block matrix identity:

. F(ukn—[”f“}[mm* 1

F(&r)" I
»
Z M;(Er) K(EL, Ers s r ) M (1R )
=1
: q
- Z Ni(EL) W (En, Ers pp, ur) Nk (L), (1.49)
k=1

where K is the kernel of the special form (1.32).

Note that if S = F satisfies the interpolation conditions (1.39) on Qi =%y,
multiplication of (1.47) on the left by a(¢;)" and on the right by a(y; ) leads to the
Stein equation

Z EL Ky (ép,1u)E Z (EL) Ki(&r, )@ ()
(fL) (HL)_C(fL) c(uL) (1.50)

with K1 equal to the positive kernel on Qp x Qp given by

K (o, ) = a(Er) Ko (&, pup)a(uy)

being satisfied for all &,y €Qp. Similarly, if S = F satisfies the interpolation
conditions (1.41) on Qr =%y, then multiplication of (1.48) on the left by b(¢g)™ and
on the right by b(ug) leads to the Stein equation

i KR fR,,uR i éR KR éRnuR)q] (éR)
k=1 J=1
b(¢r)b(ur) — d(¢R) d(ug) (1.51)

with Kr equal to the positive kernel on Qr X Qg given by

KR (&R, ur) = b(Er) KR (R, ur)b(lR).-

being satisfied for all &r, ug €Qr. Finally, if F =S satisfies the bitangential
interpolation conditions (1.42) for all £, €eQp and &r € Qg, then multiplication of

(1.49) on the left by ["‘(%L)* b(éok)*} and on the right by {“(’SL) b(SRJ leads to the
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Stein equation
q

»
Z M;(Er) K (ELs Ery s Hr) M(1R) — Z Nic(EL)" K (Er, Ery ey Hr) N (1)
J=1

k=1
~ faé)” c(éL)”
~ Lo ) a2 Jietm) b (1.2
with K equal to the positive kernel on (2 x Qr) x (2L x Qr) given by
K(C, Eryps ir) = {a(éoL) b(éoR)*:|K(éLaéRa,uLnuR)[a(gL) b(ER):|

being satisfied for all &, y; € Qr and &y, ug € 2r. We thus have already arrived at the
necessity direction for the following solution of the tangential interpolation problems
(1.7-(1.9).

Theorem 1.10. Suppose that we are given subsets Q1. and Qr of D¢ and data functions
a,c¢,b,d as in (1.38) and (1.40), and EjL, E}, @y, 4., M; and Ny are defined as in (1.43)-
(1.46). Then:

(1) The left tangential interpolation problem (Problem 1.7) has a solution if and only if
there is a positive kernel

KL : QL X QLF—)g(Cp®gL)

which satisfies the Stein equation (1.50) for all &, u; €Qy.
(2) The right tangential interpolation problem (Problem 1.8) has a solution if and only
if there is a positive kernel

KR : QR X QRHg(CqQ@gR)

which satisfies the Stein equation (1.51) for all &g, pg € Qr.
(3) The bitangential interpolation problem (Problem 1.9) has a solution if and only if
there is a positive kernel

K: (QL X QR) X (.QL X QR)HX((CP®(5EL)@(C(I®£R))

of the special form

Ki(é, )  Kir(ér, ug)

1.53
Kir(pe, €r)™ Kr(Er,HR) (1:53)

K(5L7 éRJML?#R) =

which satisfies the Stein equation (1.52) for every &, up € Qr and &g, ug € Qr.

As a corollary we state the result in explicit form for the case of interpolation by a
scalar Schur—Agler-class function at finitely many points in Zgq.
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Corollary 1.11 (see Ambrozie and Timotin [8]). Given N points z', ..., zN € D and N
complex numbers wy, ..., wy €C, there exists a function f in the scalar-valued Schur—
Agler class S 34 = S A 34(C,C) if and only if there exists a positive semidefinite
PN x pN matrix

I= [yk,/;k’,/’]k,k’:l,“.,p; (0=1,...N

such that

P
1 — 14}/111// = Z yk/k’ Vi Z Z sz pk/ ; Z/ )Vk/k’ /,] (154)

i=1 kk'=1

Remark 1.12. We mention that the recent preprint [7] of Ambrozie and Eschmeier
derives a commutant lifting theorem for the class S./¢(&,6.) (see [15] for the
special case of the polydisk Zq = DY and [19] for the case of the ball YDq = BY), and
obtains Corollary 1.11 (actually a version with higher multiplicity interpolation
conditions) as an application. It remains to work out if the general interpolation
Problem 1.9 considered here can be obtained as an application of such a commutant
lifting theorem.

Let us represent the block matrix entries K, Ky r, Kr in the block matrix form
(1.53) for K explicitly as

Pulw ... Y

Ki(& n) = : : ; (1.55)
lel(éaﬂ) 'PPP(éhu)
An(Gp) o Agé )

Kir(&n) = : : ) (1.56)
Apl(éa:u) qu(@.“)
D11(&pn) ... D& m)

Kr(&p) = : : (1.57)
Pu(Sn) oo Py(S )

with
g’//(énu)eg(gL) for (é,,LL)GQLXQL (j7/:17"'7p)7
Aj/(ému)eg(ngé{)L) for (énu)EQL X QR (]: 17 Y 2 { = 17 --~7q)7

Pjr(&,m)eL(6r) for (Eu)eQr x Qr (j,/=1,....9). (1.58)



J.A. Ball, V. Bolotnikov | Journal of Functional Analysis 1 (1111) 1I-1NR 17

It turns out that for every positive kernel K satisfying conditions of part (3) of
Theorem 1.10, there is a solution S of the bitangential interpolation Problem 1.9
such that, for some choice of associated functions H;(z) and G;(z) in representations
(1.16) and (1.18), it holds that

a(&) Hj(&)Hy(w) a(n) = Wi (& p) (& peQu; j,/ =1,...,p), (1.59)

a(é)*l_lj(é)G/(ﬂ)b(,u) :Aj/(ému) (5€QL7ME'QR; f = 17 Ry 2 = 17 ---7q)7
(1.60)

Furthermore, it turns out that conversely, for every solution S of Problem 1.9
with representations (1.16) and (1.18) (existence of these representations is
guaranteed by Theorem 1.5)), the kernel K defined via (1.53)(1.57) and
(1.59)—(1.61) satisfies conditions of Theorem 1.10. Similar remarks apply for the
left tangential and right tangential interpolation problems (Problems 1.7 and 1.8).
These observations suggest the following modifications of the tangential interpola-
tion Problems 1.7-1.9:

Problem 1.13. Given two functions a,c as in (1.38) and p* functions ¥, as in (1.58),
Sfind all functions S€ &/ o(&, &+) such that S satisfies the left tangential interpolation
conditions (1.39), and, for some choice of associated functions H;(z) in representation
(1.16) equalities (1.59) hold.

Problem 1.14. Given two functions b,d as in (1.40) and ¢* functions @/ as in (1.58),
Sfind all functions S€ S/ o(&, &) such that S satisfies the right tangential interpolation
conditions (1.39), and, for some choice of associated functions G;(z) in representation
(1.18) equalities (1.61) hold.

Problem 1.15. Given four functions as in (1.38) and (1.40) and p*> + pq + ¢* functions
Vs, Ajs and ;s as in (1.58), find all functions S€ S o/ (&, 6 ) such that S satisfies the
left and right tangential interpolation conditions (1.39) and (1.41), and, for some choice
of associated functions H;(z) and G;(z) in representations (1.16) and (1.18), equalities
(1.59)—(1.61) hold true.

The solutions of Problems 1.13—1.15 are given by the following modification of
Theorem 1.10.

Theorem 1.16. Suppose that we are given subsets Q1. and Qr of D¢ and data functions
a,c,b,d as in (1.38) and (1.40), and E}, ER, Qy, 4., M; and Ny are defined as in
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(1.43)(1.46), together with V(& 1), Aj(E, 1) and (&, u) as in (1.58). Define
kernels Ky (&, 1), KLr (&, 1) and K (&, u) as in (1.55)—(1.57). Then:

(1) Problem 1.13 has a solution if and only if the kernel Ky (&, u) is positive on Q x Qr
and satisfies the Stein equation (1.50).

(2) Problem 1.14 has a solution if and only if the kernel Kg(&, u) is positive on Qg x
Qr and satisfies the Stein equation (1.51).

(3) Problem 1.15 has a solution if and only if the kernel K of the form (1.53) is positive
on (Qr X Qr) x (QL x Qr) and satisfies the Stein equation (1.52).

The paper is organized as follows. After the present Introduction, in Section 2 we
present a number of examples of domains Q =C" which can be written in the form
9 for an appropriate Q. In Section 3 we give a complete proof of Theorem 1.5. The
proof of (1) = (2) relies on a Hahn—Banach separation argument following the ideas
in [2,8,15] used to prove closely related results. The proof of (2) = (5) is an
adaptation of the “lurking isometry” method which has been used recently as a
method of proof in a number of closely related realization and interpolation
problems for multivariable functions (see [4,8,11-13,15,19] and also [33-35] for an
abstract formalism in the single variable setting). Section 4 gives the reformulation of
Theorem 1.10 in terms similar to those in Theorem 1.5 and explains how all the
solvability criteria for all the results in the Introduction reduce to the proof of the
solvability criterion for the bitangential Problem 1.15 as stated in part (3) of
Theorem 1.16. The proof of part (3) of Theorem 1.16 is then completed by an
adaptation of the lurking isometry method to the setting where only bitangential
interpolation data are given. The final Section 5 applies Theorem 1.10 to obtain a
Toeplitz corona theorem for the setting here.

2. Examples of domains Z¢
We present some more examples arising for special choices of the function Q.

Example 2.1. Let p =1, i.e., let
Q@) =[x .. q2)]. (2.1)

In this case, ¥/ o(&, &) can be characterized as the set of all functions S analytic
on Zq and such that the kernel

Is, — S(z)S(w)*
1—q(2)q;(w)" — - — q,(2)q,(w)"

is positive on Zq. This case was considered in [19]. A special choice of Q when
q;(z) =z (=1, ...,q) leads to the class of Schur multipliers on the unit ball B? of
CY. Various interpolation problems in this class were considered in
[11,13,19,20,25,43]. If Q is of the form (2.1), then condition (1.59) is redundant in
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the formulation of Problems 1.13 and 1.15 (assuming that any solutions exist);
indeed by representation (1.16) with p = 1 and (1.42),

1—S()S(u)

Ku() =al®) = 0 (Oa ()" — . —q (), (1) k)
_ a(é)"a(p) —e(&)"e(n)
1—q(&)q ()" — ... —q,(&q,(0)"

from which we see that Kj(&,u) is completely determined from the other
interpolation data. Furthermore, for this case Problems 1.7 and 1.13 are equivalent
(assuming that the data set for Problem 1.13 is such that solutions exist).

Example 2.2. Similarly, if ¢ = 1, we have

qp.(Z)

then condition (1.61) is redundant in the formulation of Problems 1.14 and 1.15
(assuming any solutions exist), since Kgr(&, p) is completely determined from the
other interpolation data:

Kel&n) =P T 0@ - - — g @@ "
_ b(&) () —d(&)"d(n)
1—q(9)'q (1) — ... —q,(8)" q, (1)

Moreover, Problems 1.8 and 1.14 are equivalent (assuming that the data set for 1.14
is consistent).

Example 2.3. Let p=¢g=n=1, i.e,, let Q be a scalar valued polynomial of one
variable. By the preceding analysis, under the assumption that the interpolation
conditions are consistent, conditions (1.59) and (1.61) are redundant. Furthermore,
it follows from (1.60), (1.19) and (1.42) that for every choice of €@y and pue Qg
such that Q(&)#Q(p), it holds that

S(&) — S(u) “d(u) — (&) b(u)
Q%) - Q(w) Q%) - Q)

and thus, Ky g (&, u) is completely determined at such points by other interpolation
conditions and therefore need not be specified. In the case when Q(&)#Q(u) for
every (e and ueQg, all conditions (1.59)—(1.61) are not needed and Problem 1.9
is equivalent to Problem 1.15 (assuming that Problem 1.15 has any solutions).

If Q(z) =z, then the condition Q(&)#Q(u) for every eQp and peQg is
equivalent to Qp " Qg = 0. In the case when the intersection of Q; and Qg is not

Kir (& p) =a(é)
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empty, one should specify K g on this intersection. The nonredundant interpolation
conditions (1.60) for the case £ = ueQp N Qg can in this case be expressed directly in
terms of the interpolant S according to the formula:

Kir(&,8) =a(8)"'S'(&)b(E) for £eQpnQg. (2.2)

This case is treated in detail (for the case where Q; and Qg are assumed to be finite)
in the monograph [14]. In particular, there it is shown that the added interpolation
condition (2.2) is exactly what is required to make the interpolation conditions
(1.39), (1.41) together with (2.2) on S equivalent to S having the divisor-remainder
(also called model-matching in the engineering literature) form

S(z) = T1(2) — T2(2) Q(2) T5(2),

where T, T, and T3 are given operator-valued analytic functions on D and Q is an
arbitrary analytic operator-valued function on D. Here the zero invariant factors of
T, and T3 are assumed to be simple for ease of exposition.

Example 2.4. If p = g and q;(z) = 0 for i#/, i.e., if

q,(z) 0
Q(z2) = - : (2.3)
0 q,(2)

then Zq = (Y., Z,, and we have only p conditions in each of series (1.59)(1.61);
a(&) Hi(OH; (1) a(w) = (& p) (& peQuij=1,....p),
(&) Hi(&)Gi(wb(p) = A4;(&,n) ((eQu,uelrsj=1,...,p),
b(&)"Gi(&) Gi(wb(w) = (&, 1) (& pueQr; j=1,....9).

In particular, if p = ¢ =mn and q;(z) =z (j =1, ...,n) in (2.3), then Zq is the unit
polydisk D" and in this case, ¥.«/q(&, &) reduces to the well known Schur—Agler
class of the polydisk. Theorem 1.10 for this particular polydisk case can be found in
[1,3,12,15,18]. In the paper [16] it is shown that the analogue of condition (2.2) for
the polydisk case (required to achieve the equivalence between interpolation and
divisor-remainder form in the polydisk setting) is

a(é)” g—i(é)b(é) =pi(&) forall (eQLnQr and k=1,...,n, (2.4)

where p,’s are functions on Qp NQr given as part of the interpolation data set.
Unlike the situation for the disk case (n = 1-—see Example 2.3), the relations between
conditions (2.4) and (1.59)—(1.61) are not apparent in general; this issue will be taken
up on another occasion.
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Example 2.5. If

Ql(zl,]a"'azl,nl) 0
Q11 o Zdng) = :
0 Qu(zan, - s Zdn,)

it follows that Z¢q has the Cartesian product decomposition Zq = Zq, X --- X Zq,-
If furthermore,

Qj<Zj71, ...,Zj,n/) = [Zj71 Zj’,,/] (] = 1, ...,d),

then Zq is the Cartesian product of d unit balls of dimensions ny,...,n,.
Nevanlinna—Pick interpolation in the corresponding class & .«/q(&, &) was studied
in [48].

Example 2.6. A number of authors (see [5,6,37,42]) have considered generalizations
of Schur-class functions and associated interpolation problems on domains in the
complex plane defined by a condition of the form |a(z)|* — |b(z)|* >0 where a(z) and
b(z) are given polynomials. This gives a unified setting which, for example, includes
the case of the unit disk (a(z) = 1, b(z) = z) and the upper half plane (a(z) =z + i,

b(z) =z —i). If we allow Q(z) :ZE;;, this setting fits into our scheme. More

generally, one can let

Zl—i
Zy 41

Q(z) =
Zg— 1
Z¢l+i

so that Z is a Cartesian product of half planes; this is the setting of recent work of
Kalyuzhnyi—Verbovetzkii [32].

Example 2.7. If we take
21 —i z2V/2 zaV2

Q(Z): z1+i z1+1i Zl+l'7

then the corresponding domain Zq is Siegel’s domain of the second kind:

{(z1,.-y24) : 321 — |22|2 — = \zd|2>0}.

Example 2.8. Projective domains can be defined as

Dor ={zeC": Q(2)Q(z)" <P(2)P(z)"},
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where Q and P are p x ¢ and p x k matrix polynomials. If p = k = 1, this notion is
equivalent to that in Example 2.6.

Example 2.9. We remark that a common technique for the study of domains Q in C"
is through a smooth defining function p (see e.g. [36]), i.e., p is a smooth real-valued
Sfunction defined on C" with nonvanishing gradient on the boundary 0Q of Q such that
Q={zeC": p(z)<0}.If ¢ = 1, we see from (1.13) that our domains Z¢ correspond
to the special case where p is of the form p(z) =1 —>7_, |k (z)\2 for polynomials
pi(2), ...,pp(2). On the other hand, when ¢> 1, the domains Z¢ correspond to the

intersection of a collection of domains @, with such defining functions p,—allowing
nonsmooth boundary as in the case of the polydisk.

3. Characterization of the class ./ (&, &)

In this section we present the proof of Theorem 1.5.

For the proof of (1) = (2) in Theorem 1.5, we first need a few preliminaries.

Let % be the class of all operator-valued functions ¢ : Q x Q+— £ (&) having a
representation of the form

o(z,w) = H(z)(I — Q(z)Q(w)" ) H(w)" (3.1)
for some function H =[H;, - H,|: QL (A" ®CF,&,) for some auxiliary

Hilbert space #” for z, w in some subset Q of Z. Sometimes it is convenient to write
(3.1) in the equivalent form

r. 4
o(z,w) Z Ik i (2, W) Z Z 4 (29 (W) K £ (2, W) (3.2)

k=1 k/=1
for a positive kernel

Kl,l Kl,p
K= : 2 x Q- 2(6,.907),

KP P

this can be seen as in Remark 1.6 via a calculation analogous to (1.34). We
shall consider % as a subset of the linear space Z of all #(&,)-valued functions on
Q x Q. It is easy to see that € is a cone in Z, i.e., € is closed under sums and
multiplication by nonnegative scalars. We need to establish a few preliminary facts
concerning €.
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Lemma 3.1. Fix ¢e€%. Then, for each zeQ there is a finite constant M, < oo so that
|| H (2)|| < M-
forany H : Q— L (H' ®CP,E,) giving a representation for ¢ as in (3.1).

Proof. For ze Q<=9 fixed, I — Q(z)Q(z)" is invertible by definition of Zq. Set

M. = (|| = Q(2)Q()) |- lle(z.2)I)'"".

Then we compute, for any H(z) giving a representation for ¢ as in (3.1),

H(z)H(z) =H(2)(I - Q(2)Q())'* - (1 - Q(2)Q(2)")
(1= Q(:)Q()") *H (=)’
<|1=Q(=)Q(E)") |- HE)I - Q(2)Q() ) H(2)'
=l =Q()QE)) "Il 0(z,2) (by (3.1))
< M2,
and the lemma follows. [

Lemma 3.2. Any positive kernel ¢ : Q x Q+— L (&.) is in €, i.e., has a representation
(3.1) for some H.

Proof. Since Q is strictly contractive on Zq, so also is its first row q;.(z) =
[411(z) --- q;,(2)]. Hence the scalar function 1 —q;.(z)q;.(w)" is invertible on all of
Z¢q with inverse given by the convergent geometric series

(‘11»(2)(114(”’)*)/

p ‘
<Z %k(z)%k(w)) :
k=1

(1- (]1.(Z)ql‘(w)*)71 =

M 1M

7

I
o

By Schur’s theorem, each term of the infinite series is a positive kernel; hence (1 —

q,.(2)q;. (w)") "' is a positive kernel; choose a function 5 : #”— C so that we have the
factorization

(1 =q.(@)ar()) ™ = n(2n(w)".
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Since ¢(z,w) : Q x Q> L(&.), then ¢ has a factorization ¢(z,w) = H'(z)H'(w)" for
some H' : Q— L (A, &,). Let us now set

Hz) =[H'Z®niz) 0 - 0: A QA" QC—E,, (3.3)

where we have made the identification &,~4&,® C. Then it is straightforward to
check that ¢(z,w) has a representation (3.1) with H(z) as in (3.3), and the lemma
follows. O

We shall want to approximate the cone % by the cone %, (where ¢>0) given by
€, = {(/) QX QP (E.): p(z,w)
= H(z)(I = (1+2°Q2)QUw)" VH(w)" + Y (1= &zi5)y,(z)y;(w)"
=1

for some He Z(A#'®C’,&,) and y; : Qn—»g(,}’f/,o&)}. (3.4)

Sometimes it will be convenient to work with the equivalent representation

q
o(z,w) Z[ngkzw Z quk 2)q (W), (z, W)
k=1 i/—

1

Z (1 — &z w))T; (2, w), (3.5)

where K, = [Kg;i,/}’i’/:l and I';; (j =1,...,n) are positive kernels; this equivalence
follows in the same way as the equivalence between (1.16) and (1.28) explained in
Remark 1.6.

Lemma 3.3. Assume that Q is finite and that ¢ : Q x Qv L (&8.) is in the cone €, for
all ¢ sufficiently small. Then p€¥, i.e., ¢ has a representation (3.1).

Proof. The assumption is that there are functions
H,=[H, .. H,|: Q-2 ®C'¢E,) and vy, : QL (A" E.)

so that ¢ has the representation

n

¢(z,w) = Hy(2)(I = (1 + )’ Q(2)QUw) VH(w)" + D (1 = &2w;)y;,(2),(w)"

J=1

for all e>0 sufficiently small. One can adapt the proof of Lemma 3.1 to see that,
for each fixed zeQ, H,(z) and y;,(z) are bounded uniformly with respect to & for
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all 0<e<d, where >0 is chosen so that |z;]<1/d for j=1,...,n for all zeQ.
Hence also

Keiv(z,w) = Hyi(2)Hyy(w)" and  j(z,w) = yjAs(Z)yj,s(w)*

are uniformly bounded with respect to ¢ for all 0 <& < and give representation (3.5)
with K, and I';, defined as above. We assume that & is a separable Hilbert space,
and hence also the space of trace-class operators (&) (the pre-dual of #(&,)) is
separable. Then (see [27, Theorem 1, p. 426]) the unit ball of #(&.) in the weak-x
topology is metrizable. As the unit ball of #(&.) in the weak-+ topology is also
compact by Alaoglu’s Theorem (see [27, Theorem 2, p. 424]), there is a subsequence
ey —0 as N— oo such that K, .(z,w) = Kj(z,w) and I';,, (z,w) —>T;(z,w) in the
weak-* topology for each z, we Q. Moreover, from characterization (1.5) of positive
kernels, we see that [ = [[K/-?k}f’k:l and I'; (j = 1, ..., n) are again positive kernels. By
taking limits as N— oo in (3.5) (with ey in place of &), we see that ¢ has
representation (3.2). We conclude that ¢ €% as asserted. [

Lemma 3.4. Assume that Q is finite and choose ¢> 0 sufficiently small so that |z;| <1/
forj=1,....,nand ze Q. Then:

(1) Any positive kernel ¢ is in €.
(2) If ¢ is a positive kernel, then the kernel (1 — &2z;w;)@(z, w) is also in €, for each
j=1,....n

Proof. For the first assertion, a simple adjustment of the proof of Lemma 3.2 gives
H:Q—-2(H®CF &,) so that

0(z,w) = HE)(I — (1 +£7Q(2)Q(w) ) H(w)".

But this is the special case of the form required for membership in %, with y;(z) = 0
foreachj=1,...,n.

For the second assertion, use the defining form for membership in %, with H(z) =
0, 7;(z) chosen so that ¢(z,w) = y,(2)y;(w)" and y,(z) = 0 for k#j. O

Lemma 3.5. Assume that Q is a finite set and choose ¢>0 as in Lemma 3.4. Consider
the cone €, as a subset of the linear space X of L(8.)-valued functions on Q,
endowed with the locally convex topology of pointwise weak-+ convergence. Then €, is
closed in Z.

Proof. By the Krein-Smulian Theorem (see [27, Theorem 7, p. 429]), it suffices
to show that the intersection of %, with each bounded subset of % is closed
in Z. As noted in the proof of Lemma 3.3, the weak-+ topology restricted to
bounded sets is metrizable. Hence, to show that %, is closed in %, it suffices to
show that, whenever a bounded sequence {¢,} of elements of €, converges weak-x
to an element ¢ of %, then in fact @pe%.. By assumption, each ¢, has a
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representation as in (3.5)

q

P
on(zw) = 37 Kygalzw) = 32 (14 0200 () (0 K (2, w)
k=1 i,/=1

* Z (1 =&z ) (z, w). (3.6)
j=1

j=

Since @ (z,w) is uniformly bounded in norm by assumption, by an argument as in
the proof of Lemma 3.1 we see that KKy.; /(z, w) and I'; y(z, w) are uniformly bounded
in norm as N — oo for each z,we Q. By the weak-* compactness of the unit ball of
Z(8.), we may then drop down to a subsequence {@y,}x_;, . such that
Kngis(z,w) > Kis(z,w) and Ty, (z,w)—>Tj(z,w) in the weak-x topology as
K— . By the criterion (1.5) for positive kernels, we see that K(z,w)=
(K s(z,w)[7,_, and I';(z,w) (j=1,...,n) are again positive kernels. Taking limits
in (3.6) (with Nk in place of N) as K— oo yields a representation for ¢(z,w) of the
form (3.5), and we conclude that ¢ €%, as claimed. [

Proof of (1) = (2) in Theorem 1.5. The proof is based on a Hahn—Banach separation
argument adapted from the proofs of various other versions of this result in [2,8,15].

Suppose that the function F:Q— %(8,6,) extends to a function
SeSodg(8,8,). Our goal is to show that @p(z,w) =1Is, — F(z)F(w)" is in @.
Consider first the case where Q is finite. By Lemma 3.3 it suffices to show that ¢ is
in ¢, for any ¢>0. By the Hahn-Banach separation principle (see part (b) of
Theorem 3.4 in [47]), it suffices to show: given ¢>0 and a continuous linear functional
L:Z—C such that RL(p)=0 for all p€%€., it follows that RL(pr) >0 where R
indicates “real part”.

Fix e>0 and let L be any weak-* continuous linear functional L : Z + C such that
RL|,, >0. Define L; : Z+—C by

where we have set 5 .
@(z,w) = @(w,z)".

Note that L;(¢) = RL(¢) in case ¢ = ¢.
Define a sesquilinear form <{-,-»; on the linear space #, of £(&.,C)-valued
functions on Q by

CfrgoL = Li(g(z)f (w)).

Note that any function ¢ of the form ¢(z,w) = f(z)"f(w) has the property that
@ = ¢ and by part (1) of Lemma 3.4 any such ¢ is in %,. We conclude that

L f>L=RLISf(2)f(w))=0 for all feH#y.
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We may thus identify elements of 0-norm and then take a completion in the L-norm
to get a Hilbert space .
We next attempt to define operators 77, ..., T, on #1 with adjoints given by

T; . f(w)—>w;f(w) for fey.

By part (2) of Lemma 3.4 we know that the kernel (1 — &2zw;)f (z)"f (w) belongs to
%., and hence

A1, = ENT 115, = RLI(1 = E27)f (2)'f () >0.

Thus 7; extends to a bounded operator defined on all of ' with ||T}|| =

IT7l|<1/e.
Then the action of Q(7T)" : C’ ® #'L+— C!® A, is given simply as
filw)
QT) : f (W)= Q(w)f(w) for f(w)=| : |eH®@C A LRC.
Jp(w)

For f a block-column vector of the form f = col;—; .. ,fi€ #o®C’, note that for a

fixed weQ the value f(w) can be viewed as an operator from &, into C” (ie.,
fw)eZ(6.,Cr)), and

1B oo = D 1Al = D RLUGE)Si(w) = RL(S(2)f (w)).
i=1 i=1

Similarly
1Q(T) f 115 wer = RL(S(2)"Q2)QUw) S (w)).
Hence
1/ 11Er @, = (14 IQUT) fN[Er g0,
= RL(f(2)" (I = (148 Q2)Q(w) )f (w))- (3.7)
Clearly, any function ¢(z,w) of the form
o(z,w) = £(2) (Ior — (142)°Q(2)Q(w) ) (w)

is in %, (simply take y,(z) =0 in the defining representation for %.). Hence by
construction

RL(f(2) (T = (1+€)°Q(2)Q(w)")f (w)) >0
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and we see from (3.7) that

1
Ty, ..., Ty)||<—<L
||Q( 1y ) n)” l+e

Since by assumption S€¥<Z¢(&,8.), we therefore have that |[S(T7, ..., Ty)||<1
where S(T1, ..., Ty) e L(HLRE, HLRE ).

If we are in the scalar case (& = &, = C), we can now finish the proof quite simply.
From the fact that 77 is given by multiplication by w; on 2’ #1, we see that

necessarily S(77, ..., T;)" is given by
S(Ti, ... T,)" : f(w)>S(w)*f(w) for feX =AH.
For the particular case where f'eZ is the constant function f(w) = 1, we compute
0< [I/1%, = IIS(T, .., T 1%,
—RL(/(2)f (w)" = F(2)SE)S) F(w))
=RL(1 - S(z)S(w)")
=RL(pp(z,w)) (since S extends F).

We have thus shown that RL(¢g(z,w))>0 for any L: 2+ C with RL|, >0 as
desired.

For the general case we use a somewhat more indirect argument. For @€ % (£, &)
and k = (ki, ...,k,)€Z", a collection of nonnegative integers, the tensor product
operator T' *k @ @* acts on an element fw)®e, of #1 ®E.. We assume that the
function /" has a constant value f(w) = / for an element / of #(&.,C). We compute
the (#L®&)-inner product of (T**®®*)(/®e,) against another such object
(T @) (/' ®¢.) as follows:

(T @) (¢ ®e.), (TH @P) (' ®€)) vy 00

<wk/®<15*e*,Wk,f’@‘y*e,*)m@&

= (kLR - (Pen, DD

= LK) - (D D, ey g

= LKW (D Dre,, ey - l)

= Li(£"(e) (@) (@ F)e.l). (3:8)

Here we view the vector ¢, € &.. as the operator ¢, : ar o€, from C to &, with adjoint

operator (¢,)" : &,—C given by (€,)" : ¢/ (e, e. >, €C. In this way, the inner

*9 Tk
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product {(@'P%e,, €. ), , when viewed as an operator on C, can be written as the
operator composition

(P De,,e >y = () PPe, : CoC.
By linearity we see that we can generalize (3.8) to

(GIUT) (¢ ®e.),Go(T) (£’ ®€) ) wyou = Li1(£7(€,) Ga(2)G1(w) et)
(3.9)

for any polynomials G;(z) and G;(z) with coefficients in #(&, &.). It is easily seen
that (3.9) continues to hold if G;(z) = ﬁ@j(z) for j = 1,2, where ¢; is a rational

scalar function in z = (z, ..., z,) with no zeros in Z¢ and @j(z) is a polynomial in z
with coefficients in Z(&, &.). By the continuity properties of the Taylor functional
calculus (see e.g. Theorem 5.20 in [24]) and the weak-* continuity of L, it follows that
(3.9) continues to hold for G; and G, equal to any £(&,&.)-valued functions
holomorphic on %q.

We now apply (3.9) to the case where G| = Gy = Se ¥ A4 (&,8.) and /" =e, =

ey, (/') = e/ = e, where e,1,e., ...,e.n, ... is an orthonormal basis for &,, to get

(S(T) (ey;®ey), S(T) (€;®e:) ) w6 = Liewie:S(2)S(w) eszely).

Summing over i,j =1, ..., N then gives
N 2 N
S(T)*(Z e:j®ef;) = ) L SIS ese)
=1 Hwe hi=)
=RL(PyS(z)S(w) Py), (3.10)
where Py € % (&) is the orthogonal projection onto the span of {e,, ...,e.n}.

Moreover, we compute

<e:j®eﬁﬁj)e:j®e*i>.7fL®g* = <e:jaeii>$//1 : <e*jae*i>& = 5i,le(e*ite)-

Summing this over i,j =1, ..., N gives
N 2 N
> e€®ey =) Li(eyey;) = RL(Pw). (3.11)
Jj=1 HL@E, =]

Using that Se ¥/ o(&, &) and combining (3.10) and (3.11) now gives

N N
See| s (Sese)
J=1 HL®E. = H.®8

=RL(Py(I — S(z)S(w)")Py). (3.12)

2 2

0<
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By the pointwise weak-* continuity of L, upon letting N — oo in (3.12) we see that

RL(pp(z,w)) = RLU — S(z)S(w)") =0.

as desired.

It remains only to remove the assumption that Q is finite. This is done by
considering the net of all finite subsets w of Q. For each of these finite subsets @ we
have a representation of type (3.1) holding on w with associated coefficients H,,
depending on w. Without loss of generality we may assume that the auxiliary Hilbert
space A is independent of w: H,(z)e £ (A, &.). From Lemma 3.1 we see that, for
each fixed z, ||H,(z)|| is bounded independently of the finite set w for which ze w.
Then it follows that the associated positive kernel K, (z,w) = H,(z)Hy,(w)" is
bounded independently of the choice of finite subset @ containing z and w, where the
positive kernel K, (z, w) gives a representation of ¢ of the form (3.2). A compactness
argument can then be used to arrive at a pointwise weak-x limit point K(z, w) for all
<, (z,w). Since property (1.5) is preserved under such pointwise limits, we see that
<(z, w) is again a positive kernel. Moreover, we see that the limiting process leads to
a representation for ¢(z, w) of the form (3.2) on all of Q, and hence ¢ € % as wanted.
This completes the proof of (1) = (2) in Theorem 1.5. [

Proof of (2) = (5) in Theorem 1.5. Assume that F : Q+— £ (&, &,) is given such that
representation (1.16) holds for all z,weQ for some H : Q> L (A" QC’,&). We
rewrite (1.16) in the form

H(Z)Q(2) QW) H(w) +1s, = H(z)H(w)" + F(z)F(w)".

If we set

*H *
g = \/{ {Q(W) () }e* tweQ, e*ea@*},
s,
H *
R = \/{ { (W)* ]e* T WweQ, e*e&}
F(w)
(where \/ denotes “closed linear span’), we see that the formula

Ve[ B e L J

extends by linearity to define an isometry from & onto #. Extend V to a unitary
operator

{A* C*} {C”@%”] {Cq(@%’]
U = : — ,
B* D* &, &
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where # is a Hilbert space containing #”. Since U* extends V we have the operator
equation

(3.13)

[2;‘ g] [Q(W);:(W)*}

o

Since [|Q(w)]|< 1 for weQ and ||4*||<1 as U* is unitary, we can use the equation
from the first block row of (3.13) to solve for H(w)*:

Hw) = (I —A*Q(w)") ' C*.
From the second block row of (3.13) we then get
B Q(w) (I — A°Q(w)") 'C* + D* = F(w)".

Take adjoints and replace w by z to arrive at the representation (1.21) for F.
Given that F(z) has the form (1.21) for a unitary U, one computes

I — F(z)F(w)*
= 1-[D+CI - Q(2)4)”'Q()BI[D* + BQ(w)"(I - A°Q(w)") ™' C"]
= I —DD* — DB Q(w) (I — A*Q(w)") "' C* = C(I — Q(2)4)'Q(z) BD*
— C(I-Q(2)4)'Q(z)BB'Q(w) (I — 4°Q(w)") "' C". (3.14)
From the fact that U is unitary we have the relations
[ —DD* = CC*, —DB" = CA*, —BD*=AC*, —BB = —I+ AA".
Plugging this into (3.14) leaves us with
I—F(z)F(w)’
= CC* 4+ CA Q(w)" (I — A*Q(w)") ' C* + C(I — Q(2)4) ' Q(z)AC*
+ CI = Q(2)4)'Q(2)(—1 + 44)Q(w) (I — A"Q(w)") ' C”
= C(I - Q()A)'[(I = Q) A)(I = A'Q(w)") + (I — Q(2)4)A"Q(w)’
+ Q(2)A(I = A"Q(w)") = Q(2)Q(w)" + Q(2) 44" Q(w)’]
(I -4 Q(w)) ' C

= CI - Q()4)™(I - Q(z)Q(w)" ) (I — 47Q(w)") "' C* (3.15)
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and representation (1.16) holds with H(z) = C( — Q(z)A4)"'. A similar argument
can be used to show that the representation (1.18) holds with G(z) = (I —

AQ(z)) "' B and that (1.19) holds with this choice of H(z) and G(z). Thus we have
also shown that (5) = (2), (3) and (4) in Theorem 1.5. [

Proof of (5) = (1) in Theorem 1.5. Assume that F : Q+— #(&, &) has realization
(1.21) for all zeQ for some unitary U. As [|Q(z)||<1 for zeQ and ||4||<]1, the

inverse (I — Q(z)A4) ™" is well defined as the sum of the geometric series

(1-QE4)" =Y QE)4)
k=

0
and hence F has a natural extension to all of Z¢ given by
F(z)=D+C(I-Q(2)4) 'Q(z)B (ze%q).
Similarly, if T = (Ty,...,T,) is an n-tuple of commuting operators on a Hilbert
space % for which Q(T)eZ(C'®@ % ,C*®4") has [|Q(T)||<1, by the same
argument, the operator S(7)e L (AH ® &, 4 ® &) given by
S(T) =L ®D) + Ly ® OVl gxor — (QT)® Lr) (L ®A4)) ™
x (Q(T)®1x)Ixr ®B)

is well defined. Moreover we see that S(7') has the form

S(T)=D' +C'(I - x4")"'XB,
where X = Q(7) ® I is a strict contraction and where

U Iy ®A4 [}{/’@B:| [Cq®=%f®<#} [Cp@)»%”@]f]
= . —
Iy®C Iy®D HRE HRE,

is unitary. As has been pointed out and used in [8] as well as many other places,
computation (3.14)—(3.15) is more general than noted there; what is actually shown
is: If U= [’é g] A DESH DE. is unitary and Xe L (A, H) is a strict
contraction, then the operator

Y =D+ C(ly — XA) 'XBe 2 (&,6.) (3.16)
is well defined and satisfies
I—YY'=CU—XA)'I-XXx)I—-AX)"C (3.17)

and hence, in particular, || Y||<1.
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Applying this general principal with S(7T) in place of X and U’ in place of U, we
arrive at the desired result that ||S(7)||<1.
This completes the proof of (5) = (1) in Theorem 1.5. [

Completion of the proof of Theorem 1.5. We have now verified (1) = (2) = (5) =
(1) and along the way we have observed that (5) = (2)—(4). Trivially (4) = (2), (3)
(simply focus on the diagonal block entries in (1.19)). It remains only to show
(3) = (5). This can be done by a parallel version of the “lurking isometry”” argument
used in the proof of (2) = (5) given above.

Finally, assume that S(z) has the form (1.22) for some unitary coupling matrix U
as in (1.20). Then, from the general principle (3.17) with Y of the form (3.16) with X
taken to be X = Q(z), relation (1.23) follows. Relation (1.25) follows similarly (with
U* in place of U and with X = Q(z)"). Relation (1.24) is straightforward algebra:

S(z) = S(w) = C(I = Q(2)4)"'Q(2)B— C(I — Q(w)4)'Q(w)B
=C(I = Q(2)4) ' Q(=)(I — 4Q(w))
— (1= Q())Q)(I - 4Q(w))™'B
= C(I - Q(2)4)'[Q(2) = Q(w)(I — 4Q(w))'B.

This completes the proof of Theorem 1.5. [

4. The solvability criterion in Theorems 1.10 and 1.16

Solvability criteria for interpolation Problems 1.7-1.9 were given in Theorem 1.10
in terms of positive definite kernels satisfying certain Stein identities. However, these
solvability criteria can be formulated in terms similar to those in Theorem 1.5.
Moreover, in certain situations these alternative formulations are more convenient to

apply.

Theorem 4.1. Suppose that we are given subsets Qi and Qr of Y and data functions
a,c,b,d as in (1.38) and (1.40). Then:

(1) Problem 1.7 has a solution if and only if there exist a Hilbert space # and an
L(CP @A, &L )-valued function

R(z) = [Ri(z) -+ Ry(2)] (4.1)
defined on Qr so that
R(z)Icrgr — Q(2)Q(w))R(w)" = a(z)"a(w) — ¢(z)"e(w) (4.2)

for z,weQy.
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(2") Problem 1.8 has a solution if and only if there exist a Hilbert space # and an
ZL(CT® A, Er)-valued function

D(z) = (4.3)

defined on Q2 so that
D(z)" (Icog n — Q(2)"Q(w))D(w) = b(z)"'b(w) — d(z)"d(w) (4.4)

for z,we Qg.
(3') Problem 1.9 has a solution if and only if there exist a Hilbert space A and
Sfunctions R(z) and D(z) as in (4.1) and (4.3), so that

R(¢y) .
[D(éR)*Q(éR)*} [R(u)" Qlur)D(pr)]
REDQUED Ty, o
B { D(&R) ][Q(.“L) R(uy)" D(up)]
- [ae) e
_[d(ék)*][a(uL> e [b(ék)*][c(“L) b(ur)]  (4.5)

Jor all &y, py €Qr and Cg, pg € Qr.

Proof. The equivalence of the various statements in Theorem 4.1 to the respective
corresponding statements in Theorem 1.10 is based on a simple observation that
positive kernels K;, Kr and K of the special form (1.53) with factorizations

R (&)
K(@Gw=1| " [[Riw - Ryw],
| R,(&)
D, (&)
Kr (& u) = o |[[Di(w) o Dy(w)] (4.6)
| Dy(&)
and
K(&p, Eropp, mr) = T(EL, ER) Ty, iy ),
where

T(#Lv#R):[RI(#L)* Rp(.uL)* Di(pg) - Dq(#R)]
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satisfy Stein equations (1.50) (respectively, (1.51) and (1.52)) if and only if the R(z)
and D(z) constructed from these representation via formulas (4.1) and (4.3) are
subject to equalities (4.2) (respectively, (4.4) and (4.5)). O

Now we make explicit how the various parts of Theorems 1.10 and 1.16 can be
reduced to part (3) of Theorem 1.16 and then we will establish the solution criterion
for Problem 1.15 given in part (3) of Theorem 1.16.

As was observed in the Introduction, the left interpolation problem (Problem 1.7)
is the special case of the bitangential interpolation problem (Problem 1.9) where
Qr = 0 and the right interpolation problem (Problem 1.8) is the special case of the
bitangential interpolation problem (Problem 1.9) where Qp = 0. From these
observations we see immediately that parts (1) and (2) of Theorem 1.10 are
specializations of part (3) of Theorem 1.10. Similarly, parts (1) and (2) of Theorem
1.16 are specializations of part (3) of Theorem 1.16 corresponding to the respective
cases Qr = 0 and Q = (0. Moreover, it is not difficult to see that part (3) of Theorem
1.10 is an immediate consequence of part (3) of Theorem 1.16. Indeed, given an
interpolation data set a, ¢, b and d for Problem 1.9 as in (1.38) and (1.40) and a
function Se¥.Z¢(&,8.), use (1.59)—(1.61) to define additional data functions
V(& u), Ajs(&, 1) and @j,(&, u) and thereby generate a data set for Problem 1.15.
Then trivially, S solves Problem 1.9 if and only if S solves Problem 1.15. The
solution criterion for Problem 1.15 in part (3) of Theorem 1.16, with the extraneous
interpolation data ¥, (&, u), A;s(&, n) and @;,(&, 1) ignored, then gives the solution
criterion for solvability of Problem 1.9 in part (3) of Theorem 1.10. We conclude: o
prove all parts of Theorems 1.10 and 1.16, we need only to prove part (3) of Theorem
1.16.

Proof of Theorem 1.16. (3) We start with the necessity part. Let S be a solution of
Problem 1.15, that is let relations (1.38), (1.40) and (1.59)—(1.61) be in force, where
H\(2),...,Hy(z), Gi(2),...,Gy(z) are functions arising in representations (1.16) and
(1.18) (with S in place of F) associated with S. By Theorem 1.5 and Remark 1.6, we
know that (1.49) holds (with S in place of F) with the kernel K factored as in (1.36),
i.e., with

K(Er, Ery ip, HR) = T(5L75R)*T(NLaMR)7 (4.7)

where, according to (1.37),

—U—(,ULM“R):[HI(:“L)* Hp(:uL)* Gi(pg) - Gq(.UR)]-

Let us now define a kernel

KL(anuL) KLR(éL,,uR)

K =
(6L7€Ra.uLmuR) KLR(iuL’ﬁR)* KR(&R?#R)
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on (QL X QR) X (QL X QR) by

K(éLaéRaﬂL?ﬂR){a(ioL)* b(foR)*]K(éuéR,uL,uR){a(gL) b(ZR):|,
(4.8)
or equivalently,
K(&r, Erop, i) = T(EL, ER)" T (1L, R ), (4.9)
where we have set
T(pL, tr)
= [Hi(u) alp) - Hp(uo)'alp) Gi(up)b(ug) - Gy(ur)b(ug)). w0

From the factored forms (4.8) and (4.7) of K and [ we see that K is a positive. We
also read off from (4.8) together with (4.10) that K(&r, &g, uy, ug) is alternatively
given in terms of the interpolation data ¥, A;, and @, as in (1.55)—(1.57). Finally,
by restricting the Stein equation (1.49) (with S in place of F) to &,y €Qr and

&R, Ur € Qr and multiplying the result on the left by [“(%L)* b(fok)‘} and on the right by

[a(gL) b(SR)}, we see that K(&p, &g, up, pg) satisfies the Stein equation (1.52). In this

way we see the necessity of the solvability criterion in Theorem 1.10.

To prove the sufficiency part, we assume that the kernel K of the form (1.53) with
the block entries expressed in terms of interpolation data as in (1.55)—(1.57), is
positive on (QL X Qr) x (2L x Qr) and satisfies the Stein equation (1.52). We fix a
factorization

K(E, Erops ) = T (&L, ER) T (1L, pig) (4.11)
of K with an operator valued function 7" decomposed conformally with (4.10)

T(#LaHR):[RI(ML)* Rp(:uL)* Di(pg) - Dq(HR)]a
(4.12)

where
Ri,...,R,: QLA &), Dy, Dy Qri> L (Er, H')

and #” is an auxiliary Hilbert space, and define functions R and D via formulas (4.1)
and (4.3). As it was explained in the proof of Theorem 4.1, these functions satisfy
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identity (4.5), which can be written equivalently as

[ R(¢r) C(EL)*:|[R(/1L)* Q(NR)D(MR):|
D(&r)"Q(Er)" b(&r)" I L e(uy) b(ug)

- [Met a(g)*} [QWL)*R(uL)* Pl

D(&R)" d(&r)” a(ug) d(pg
If we set
V[ ™ o] mean mean e e

<”7?\/{[Q(MZ)(Z§ML)* ][], et metn, aen. mes,

we conclude from (4.13) that the formula

V:[R(NL)* Q(ﬂR)D(MR)][eL]H{Q(ﬂL)*R(,uL)* D(,uR)}[eL}

c(ur) b(ur) €RrR a(ug) d(ug) ] Ler

extends by linearity to define an isometry from 2 onto #. Extend V to a unitary
operator
A B Cr# C!'QH
U= : — ;
C D & 8

where # is a Hilbert space containing #’. We will show that the characteristic
function of the unitary Q-colligation U

S(z) =D+ Clprgr — Q(2)4) 'Q(2)B (4.14)

is a solution of Problem 1.15. By Theorem 1.5, .S belongs to the class /(& &)
and thus, it remains to show that S satisfies interpolation conditions (1.39), (1.41)
and (1.59)—(1.61).

To this end, we note that since U extends V, we have

{A B} [R(HL)* Q(,uR)D(MR):| _ |:Q(.UL)*R(:UL)* D(MR):|
C DIl e(u) b(ur) a(u) d(ug)

and since U is unitary, we have also

£ Sl s

[R(.“L)* Q(:“R)D(:uR)}
() b(ur) '
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Thus,
A"Q(u) R(u )" + Cauy) = R(up )", (4.15)
B'Q(u) R(u)" + Dra(p) = e(uy), (4.16)
AQ(ur)D(ir) + Bb(pr) = D), (4.17)
CQUuR) Dlstg) + Dblyig) = d(jzg). (4.18)

It follows from (4.15) that
R(n) = Uorgr — AQu)") ™ Craluy) (4.19)
which, when substituted into (4.16), gives
D*a(u) + B Qur) (Ir g — A*Q(ﬂL)*)_l Cra(p) = c(uy)-

Since y; is an arbitrary point in Qp, the latter equality coincides with (1.39), due to
(4.14). Furthermore, it follows from (4.17) that

D(up) = (Iergr — AQ(ur)) ™ Bb(ug), (4.20)
which being substituted into (4.18), leads to
Db(ug) + CQ(ur)Icigx — AQ(ER)) ™ Bb(ug) = d(ug).

This equality coincides with (1.41), due to (4.14). It remains to show that it satisfies
also conditions (1.59)—(1.61). But it follows from (1.26), (4.19) and (4.20) that

Ri(éL) = Hi(éu)"a(é) (J=1,...,p),
Di(Er) = Gr(Er)b(CR) (k=1,....9)
and these last relations together with factorization (4.9) imply (1.59)—(1.61).01

As an illustration of the solvability criterion, we now show how Corollary 1.11
follows from Theorem 1.10.

Proof of Corollary 1.11. We formulate the scalar problem as a left tangential
problem as follows. We take & = &, = &L = C. We take Q2 to be the finite set

Qp = {Zl, ...,ZN}C@Q.
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For i=1,...,N, set a(z') =1 and ¢(z') = w;. Then the interpolation conditions
(1.39) reduce to

S(zy=w; fori=1,...,N.

The solution criterion in Theorem 1.10 calls for a positive kernel Ky : Qp X
QL Z(CP®C)=CP". Let us define numbers y; /4 » by

Yok o = Ky jw (Z/» Z//)~
Now it is straightforward to verify that the Stein equation (1.50) collapses to the

system of equations (1.54), and Corollary 1.11 follows immediately from Theorem
1.10. O

5. Toeplitz Corona theorem

Suppose that ay, ...,a; are given functions in H* (D). The corona problem asks
for conditions on {a, ...,ar} so that there exist functions fj, ...,f; analytic and
uniformly bounded on D so that

afi+ - +afi = 1. (5.1)

The Toeplitz corona theorem (see [46] and [31]) asserts that there exist such
fis oS e H® (D) satisfying (5.1) with sup. ., {| /i (2)]* + -+ + [fk(z)\z}g(s% (i.e., with

F=[fi - fill e,¥n(C,C")if and only if
To T, + -+ T Ty 2810, (5.2)

where T,, : h(z) »>a;(z)h(z) is the analytic Toeplitz operator on the Hardy space
H?(D) with symbol @; for i = 1, ..., k. Equivalently, by looking at the gramian of the
left-hand side of (5.2) with respect to an arbitrary finite collection of reproducing
kernel functions k-,(z) = =z in H*(D), we see that condition (5.2) alternatively can

be expressed as

ai(zi)ai(zj) + - + ax(zi)ax(zj) — 5

1-— Z,'Zj

:MZ

E,’Cj)O
L]

for all complex scalars ¢y, ..., cy and all points zy, ...,zyeD for N =1,2,3, ..., i.e.,
the function

ar(2)ay(w) + - + ay(z)a,(w) — &*

k(z,w) = 1—zw
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is a positive kernel on D x D. The Carleson corona theorem (see [23]), on the other
hand, asserts: there exists fi, ...,fre H* (D) with

max sup |fi(z)|<M(d)< 0

1<i<k Iz <1

if and only if

‘1‘an {la1 (2)| + -+ + |ax(2)|} = 0> 0.

Unlike as in the formulation of the Toeplitz corona theorem, the relation between ¢
and M (9) is rather complicated in the Carleson corona theorem.

As explained in the Introduction, for the case of the unit disk (D = ¢ withn =1
and Q(z1) = z1), the Schur class (&, &.) and the Schur—Agler class ./ (&, &)
coincide. Thus the conclusion of the Toeplitz corona theorem can equivalently be
expressed as F = [fi - fi] e} &.o/p(C,CP).

In this section we present an extension of the Toeplitz corona theorem to the case
where the unit disk D is replaced by a domain of the general type Y for a matrix
polynomial Q. The result is as follows.

Theorem 5.1. Suppose that we are given analytic functions ay,...,ay uniformly
bounded on a domain %q, and a positive number 6>0. Then there exist bounded,
analytic functions f, ..., fr on D¢ such that

a(2)i(z) + - Far(2)fi(z) =1 for all zeD
and
F=[fi  fl'etgaq(c,ch)

if and only if there is an auxiliary Hilbert space # and an analytic ¥ (C’ ® #,C)-
valued function zv— H(z) on 9q so that

ar(2)ay(w) + - + ar(2)ar(w) — 8* = Hz) (I gn — (Q(2)Q(w) )@ Ly ) H(w)",

or, equivalently, there exists a positive kernel

Ky - Ky
K=|: D i 90 x Do L(TP)
Kpl Kﬁp
so that
k )4

ay(2)ar(w) + - + ar(z)ar(w) — 8> = Z Kii(z,w) Z Z a4, (2)q;, (W) Ki, j(z, w)].
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Proof. Take Q. = Z¢, &, =CF, 6 = 61 = 6r = C, a(2) = [a1(2) - ax(2)]", e(z) =
o in Theorem 1.10 part (1). Note that S(z) = [s;(z) --- sx(2)] " is in the Schur—Agler
class ¥.oZ¢(C, Ck) and satisfies the left interpolation condition (1.39) if and only if
F(z) = [fi(2) - fi(2)]" is in the scaled Schur—Agler class Lyddq(C, C*) and
satisfies the corona condition

a(2)fi(z) + - +ar(2)fi(z) = 1,

where we have set fi(z) = }si(z) for i =1, ...,k. Thus Theorem 5.1 amounts to a
straightforward specialization of Theorem 1.10 part (1). O

Remark 5.2. For the case where g = D" as in Example 2.4, Theorem 5.1 appears in
[18]; the result also can be seen as an application of the commutant lifting theorem
for the polydisk obtained in [15] in a standard way (see [46]). For the case where
9¢q = B" as in Example 2.1, the result does not appear explicitly in [19] but can be
derived from the commutant lifting theorem given there for multipliers for the
reproducing kernel Hilbert space associated with the positive kernel

1

k(z,w) = T~ oo o

on B”. A parallel application of the commutant lifting theorem in [7] leads to an
alternative derivation of Theorem 5.1.

Remark 5.3. The Toeplitz Corona Theorem (also called the Operator Corona
Theorem) can be used as a stepping stone toward proving the Carleson corona
theorem; we refer to [49] and the references found there.
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