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Abstract

We consider a bitangential interpolation problem for operator-valued functions defined on

a general class of domains in Cn (including as particular cases, Cartan domains of types I–III)

which satisfy a type of von Neumann inequality associated with the domain. We show that

any such function has a realization in terms of a unitary colligation and the defining

polynomial for the domain. We show how the solution of various classes of bitangential

interpolation problems for this class of functions corresponds to a unitary extension of a

particular partially defined isometry uniquely specified by the interpolation data. Criteria for

existence of solutions are given (1) in terms of positivity of a certain kernel completely

determined by the data, or, more generally, (2) by the existence of a positive-kernel solution of

a certain generalized Stein equation completely determined by the data.

r 2004 Elsevier Inc. All rights reserved.

Keywords: Schur-Agler functions; Polynomial-matrix defining function; Unitary realizations; Nevanlinna-

Pick problem

ARTICLE IN PRESS

�Corresponding author. Fax: +1-757-221-7400.

E-mail addresses: ball@calvin.math.vt.edu (J.A. Ball), vladi@math.wm.edu (V. Bolotnikov).

0022-1236/$ - see front matter r 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jfa.2004.04.008



1. Introduction and statement of main results

The classical Schur class S consisting of complex-valued analytic functions

mapping the unit disk D into the closed unit disk D has been a source of much study
and inspiration for over a century now, beginning with the seminal work of Schur
(for the original paper of Schur and a survey of some of the impact and applications
in signal processing, see [28]). More recently, the operator-valued version of the
Schur-class SðE;E�Þ consisting of analytic functions F on the unit disk with values
FðzÞ equal to contraction operators between two Hilbert spaces E and E� has played
a prominent role in both engineering and operator-theoretic applications (see e.g.
[21,22,30,40,41]). This class admits various remarkable characterizations some of
which are recalled below. The symbol LðE;E�Þ stands for the algebra of bounded
linear operators mapping E into E� and we shall shorten LðE;E�Þ to LðEÞ:

Theorem 1.1. Let F be an LðE;E�Þ-valued function analytic on D: Then the following

are equivalent:

(1) F belongs to SðE;E�Þ; i.e., jjFðzÞjjp1 for every zAD:
(2) F satisfies the von Neumann inequality: jjFðTÞjjp1 for any strictly contractive

operator T on a Hilbert space H0; where FðTÞ is defined by

FðTÞ ¼
XN
n¼0

Fn#TnALðE#H0;E�#H0Þ if FðzÞ ¼
XN
n¼0

Fnzn:

(3) F admits a representation of the form

FðzÞ ¼ D þ zCðIH � zAÞ�1
B

where the connecting operator (or colligation)

U ¼
A B

C D

� �
:

H

E

� �
/

H

E�

� �
ð1:1Þ

is unitary, and where H is some auxiliary Hilbert space (the internal space for the

colligation).
(4) There exist a Hilbert space H and an LðH;E�Þ-valued function HðzÞ analytic on

D such that

IE� � FðzÞFðwÞ� ¼ ð1 � z %wÞHðzÞHðwÞ� ðz;wADÞ: ð1:2Þ

(5) There exist a Hilbert space H and an LðE;HÞ-valued function GðzÞ analytic on

D such that

IE � FðzÞ�FðwÞ ¼ ð1 � %zwÞGðzÞ�GðwÞ ðz;wADÞ: ð1:3Þ
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(6) There exist a Hilbert space H and operator-valued functions H and G as above

such that

IE� � FðzÞFðwÞ� FðzÞ � Fðw0Þ
Fðz0Þ� � FðwÞ� IE � Fðz0Þ�Fðw0Þ

� �
¼

ð1 � z %wÞHðzÞHðwÞ� ðz � w0ÞHðzÞGðw0Þ
ðz0 � %wÞGðz0Þ�HðwÞ� ð1 � z0w0ÞGðz0Þ�Gðw0Þ

� �
ð1:4Þ

for every z; z0;w;w0AD:

Recall that an operator-valued function K : O	 O/LðEÞ is called a positive

kernel if

Xr

i; j¼1

/Kðoi;ojÞhj ; hiSHX0 ð1:5Þ

for every choice of a positive integer r and of o1;y;orAO and h1;y; hrAH: By one
of the original results of Aronszajn [9], an equivalent condition is that there exists a
function X : O/LðH0;HÞ (for some auxiliary Hilbert space H0) so that K has the
factorization

Kðo1;o2Þ ¼ X ðo1ÞX ðo2Þ�:

Remark 1.2. The following three kernels

KLðz;wÞ ¼ HðzÞHðwÞ�; KRðz;wÞ ¼ GðzÞ�GðwÞ

and

Kðz; z0;w;w0Þ ¼
HðzÞ

Gðz0Þ�
� �

½HðwÞ� Gðw0Þ�

are clearly positive on D2 and D4; respectively. Furthermore, they are uniquely
recovered from Eqs. (1.2)–(1.5) in terms of F as follows:

KLðz;wÞ ¼ IE� � FðzÞFðwÞ�

1 � z %w
; KRðz;wÞ ¼ IE � FðzÞ�FðwÞ

1 � %zw
ð1:6Þ

and

Kðz; z0;w;w0Þ ¼

IE� � FðzÞFðwÞ�

1 � z %w

FðzÞ � Fðw0Þ
z � w0

Fðz0Þ� � FðwÞ�

z0 � %w

IE � Fðz0Þ�Fðw0Þ
1 � z0w0

2664
3775; ð1:7Þ
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which allows us to reformulate the above statements (4)–(6) in Theorem 1.1 in more

familiar terms as: the kernels KL (respectively, KR and K) are positive on D2 (D2 and

D4; respectively).

Remark 1.3. The significance of the characterization of the Schur class in terms of
positivity of the kernel KL for interpolation theory is that it gives the necessity part
in the Nevanlinna–Pick type interpolation theorem: given points z1;y; znAD and

w1;y;wnALðE;E�Þ; there exists FASðE;E�Þ with FðzjÞ ¼ wj for j ¼ 1;y; n if and

only if the associated Pick operator L ¼ IE��wiw
�
j

1�zizj

h i
is positive semidefinite.

Positivity of KL also leads to the solvability criterion of a more general left

tangential interpolation problem, while the kernels KR and K provide necessary and
sufficient conditions for solvability of a right tangential and bitangential interpolation
problems, respectively; see [14] for more detail.

It is easily checked that each one of statements (2)–(6) in Theorem 1.1 implies (1).
The nontrivial (and remarkable) fact is that 1 ) ð2Þ–(6). The situation changes in the
following more general setting: let QðzÞ be a polynomial, let DQCC be the domain

defined as

DQ ¼ fzACn : jQðzÞjo1g

and let us consider the class SDQ
ðE;E�Þ of LðE;E�Þ-valued functions S analytic on

DQ and such that

jjSðzÞjjp1 for every zADQ ð1:8Þ

and the class SQðE;E�Þ of LðE;E�Þ-valued functions S analytic on DQ and

satisfying the following von Neumann type inequality:

jjSðTÞjjp1 whenever TALðHÞ and jjQðTÞjjo1: ð1:9Þ

In particular, in (1.9) we may use H ¼ C and T ¼ z where z is a point in DQ to see

that (1.8) holds and therefore, that SQðE;E�ÞCSDQ
ðE;E�Þ: In general, this

inclusion is proper: for example, letting QðzÞ ¼ z2 we get DQ ¼ D and therefore,

SDQ
ðE;E�Þ coincides with the classical Schur class. On the other hand the Schur

function SðzÞ ¼ z does not satisfy property (1.9): the operator T ¼ 0 2
0 0

� �
: C2-C2

satisfies

jjQðTÞjj ¼ jjT2jj ¼ jj0jj ¼ 0o1; while jjSðTÞjj ¼ jjT jj ¼ 241:

It is also clear that the class SDQ
ðE;E�Þ depends on the domain DQ rather than on

Q; whereas SQðE;E�Þ depends just on Q:
Since in the case when QðzÞ ¼ z; the classes SDQ

ðE;E�Þ and SQðE;E�Þ both

reduce to SðE;E�Þ; each of them can be considered as a certain generalization of the
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classical Schur class. Furthermore, upon taking advantage of characterizations (3)–
(6), one can define the class of operator-valued functions admitting representations
of the form

SðzÞ ¼ D þQðzÞCðIH �QðzÞAÞ�1
B; ð1:10Þ

where the connecting operator U is the same as in (1.1), as well as the classes of
functions for which one of the kernels

KLðz;wÞ ¼ IE� � SðzÞSðwÞ�

1 �QðzÞQðwÞ
; KRðz;wÞ ¼ IE � SðzÞ�SðwÞ

1 �QðzÞQðwÞ

or

Kðz; z0;w;w0Þ ¼

IE� � SðzÞSðwÞ�

1 �QðzÞQðwÞ
SðzÞ � Sðw0Þ
QðzÞ �Qðw0Þ

Sðz0Þ� � SðwÞ�

Qðz0Þ �QðwÞ
IE � Sðz0Þ�Sðw0Þ
1 �Qðz0ÞQðw0Þ

26664
37775;

is positive on D2
Q or on D4

Q; respectively. However, no new generalizations of the

classical Schur class arise in this way: all the resulting classes coincide with
SQðE;E�Þ: In other words, the functions F analytic on DQ and satisfying the von

Neumann inequality (1.9) are precisely those admitting unitary realizations of the
form (1.10) and/or such that the any one of the three associated kernels KL; KR and
K are positive. It is even more remarkable that a similar result can be established in
the following multivariable context: we start with a p 	 q matrix-valued polynomial
in n complex variables

QðzÞ ¼
q11ðzÞ y q1qðzÞ
^ ^

qp1ðzÞ y qpqðzÞ

264
375ACp	q for zACn ð1:11Þ

and we define the domain DQACn by

DQ ¼ fzACn : jjQðzÞjjCp	qo1g; ð1:12Þ

or equivalently, in terms of real scalar polynomials, as

DQ ¼ fzACn : rcðzÞ40 for c ¼ 1;y; qg; ð1:13Þ

where we have set

rcðzÞ ¼ det di; j �
Xp

k¼1

qkiðzÞqkjðzÞ
" #c

i; j¼1

for c ¼ 1;y; q
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and where di; j stands for the Kronecker symbol equal to 1 for i ¼ j and 0 for iaj:

Special choices of

QðzÞ ¼
z1

&

zn

264
375 and QðzÞ ¼ ½z1 z2 y zn� ð1:14Þ

lead to the unit polydisk DQ ¼ Dn and the unit ball DQ ¼ Bn of Cn; respectively. The

classical Cartan domains of the first three types and their Cartesian products and
intersections also can be obtained upon a suitable choice of Q; we refer to [7,8,48] for
more examples.

Now we recall the Schur–Agler class SAQðE;E�Þ: By definition, the class

SAQðE;E�Þ consists of LðE;E�Þ-valued functions SðzÞ ¼ Sðz1;y; znÞ analytic on

DQ such that

jjSðT1;y;TnÞjjp1

for any collection of n commuting operators ðT1;y;TnÞ on a Hilbert space K;
subject to

jjQðT1;y;TnÞjjo1:

By Ambrozie and Timotin [8, Lemma 1], the Taylor joint spectrum of the
commuting n-tuple ðT1;y;TnÞ is contained in DQ whenever jjQðT1;y;TnÞjjo1;
and hence SðT1;y;TnÞ is well defined for any LðE;E�Þ-valued function S which is
analytic on DQ by the Taylor functional calculus (see [24]). Upon using K ¼ C and

Tj ¼ zj for j ¼ 1;y; n where ðz1;y; znÞ is a point in DQ we conclude that any

LðE;E�Þ function is contractive valued on DQ; and thus the class SAQðE;E�Þ is a

subclass of the class SDQ
ðE;E�Þ of contractive valued functions analytic on DQ: As

we have already seen in Remark 1.2, this subclass in general is proper.
The classes SAQðE;E�Þ for the two generic cases (1.14) have been known for a

while. The polydisk setting was first presented by Agler [2] and then extended to the
operator valued case in [15,18]; see also [3]. The Schur–Agler functions on the unit
ball appeared in [26] in connection with a von Neumann’s inequality, later in
[1,38,45] in connection with complete Nevanlinna–Pick kernels, in [10,44] in
connection with the theory of commutative unitary dilations of commutative row
contractions, and in [29,39] in connection with Beurling–Lax representations of
Beurling–Lax type for invariant subspaces; for a thorough account of the operator-
valued case, see [19]. The general setting introduced above unifies these two generic
settings and moreover covers some other interesting cases. The general domains DQ

and classes SAQðE;E�Þ (for E ¼ E� ¼ C) were already introduced in [8]. It was

pointed out there that classical Cartan domains of the first three types together
with their Cartesian products and intersections are domains of type DQ: Indeed,
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the choice of

n ¼ pq and qijðzÞ ¼ zði�1Þqþj ði ¼ 1;y; p; j ¼ 1;y; qÞ

leads to DQ being a Cartan domain of type I: Choosing

p ¼ q; n ¼ pðp þ 1Þ
2

; qijðzÞ ¼ qjiðzÞ and qijðzÞ ¼ ziði�1Þ
2

þj
ð1pjpippÞ

we get DQ to be a Cartan domain of type II: In the case when

p ¼ q; n ¼ pðp � 1Þ
2

; qijðzÞ ¼ �qjiðzÞ and qijðzÞ ¼ ziði�1Þ
2

þj
ð1pjoippÞ

DQ turns out to be a Cartan domain of type III:

Remark 1.4. The referee suggested another possible notion of Schur–Agler class
associated with a domain DCCn: Let us say that an LðE;E�Þ-valued function S

belongs to the Schur–Agler class SA0
DðE;E�Þ if jjSðTÞjjp1 for all operator-tuples

T ¼ ðT1;y;TnÞ for which D is a spectral set for T : Let us suppose that there is a
matrix polynomial Q so that O ¼ DQ; i.e., so that

D ¼ fzACn : jjQðzÞjjo1g:

Then, if T ¼ ðT1;y;TnÞ is a commuting operator-tuple for which D is a complete
spectral set, in particular it follows that

jjQðTÞjjp sup
zA@D

jjQðzÞjj ¼ 1:

It then follows from the definitions that SAQðE;E�ÞCSA0
DðE;E�Þ: We leave any

other connections between SADðE;E�Þ and SAQðE;E�Þ for discussion on another

occasion.

The present paper extends the work of [8] to the operator-valued case. The
following theorem gives several equivalent characterizations of when a given
LðE;E�Þ-valued function F defined on a subset O of DQ extends to a function S

defined on all of DQ in the class SAQðE;E�Þ; in particular, taking O ¼ DQ in the

statement of the theorem gives several equivalent characterizations for the class
SAQðE;E�Þ itself. We shall provide a complete proof of the following result in

Section 3; the scalar-valued case (where E ¼ E� ¼ C) can be found in [8] in a
somewhat different form.

Theorem 1.5. Let Q be a p 	 q-matrix valued polynomial as above. Suppose that F is

an LðE;E�Þ-valued function defined on a subset O of DQ: The following statements are

equivalent:

(1) There is a function SASAQðE;E�Þ such that SjO ¼ F :
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(2) There exist an auxiliary Hilbert space H and a function

HðzÞ ¼ ½H1ðzÞ y HpðzÞ� ð1:15Þ

defined on O with values in LðCp#H;E�Þ so that

IE� � FðzÞFðwÞ� ¼ HðzÞ ICp#H �QðzÞQðwÞ�ð ÞHðwÞ� ð1:16Þ

for all z;wAO:
(3) There exist an auxiliary Hilbert space H and a function

GðzÞ ¼
G1ðzÞ
^

GqðzÞ

264
375 ð1:17Þ

defined on O with values in LðCq#H;EÞ so that

IE � FðzÞ�FðwÞ ¼ GðzÞ�ðICq#H �QðzÞ�QðwÞÞGðwÞ ð1:18Þ

for all z;wAO:
(4) There exist an auxiliary Hilbert space H and functions HðzÞ and GðzÞ as in (1.15)

and (1.17), so that

IE�

Fðz0Þ�
� �

½IE� Fðw0Þ� �
FðzÞ

IE

� �
½FðwÞ� IE�

¼
HðzÞ

Gðz0Þ�Qðz0Þ�
� �

½HðwÞ� Qðw0ÞGðw0Þ�

�
HðzÞQðzÞ

Gðz0Þ�
� �

½QðwÞ�HðwÞ� Gðw0Þ� ð1:19Þ

for all z; z0;w;w0AO:
(5) There is a unitary operator

U ¼
A B

C D

� �
:

Cp#H

E

� �
-

Cq#H

E�

� �
ð1:20Þ

such that

FðzÞ ¼ D þ C ICp#H �QðzÞAð Þ�1
QðzÞB for all zAO: ð1:21Þ

Moreover, if F is of the form (1.21), then one extension S of F to an element of

SAQðE;E�Þ is given by

SðzÞ ¼ D þ C ICp#H �QðzÞAð Þ�1
QðzÞB for all zADQ ð1:22Þ
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and it holds that

IE� � SðzÞSðwÞ� ¼ CðI �QðzÞAÞ�1ðI �QðzÞQðwÞ�ÞðI � A�QðwÞ�Þ�1
C�; ð1:23Þ

SðzÞ � SðwÞ ¼ CðI �QðzÞAÞ�1ðQðzÞ �QðwÞÞðI � AQðwÞÞ�1
B; ð1:24Þ

IE � SðzÞ�SðwÞ ¼ B�ðI �QðzÞ�A�Þ�1ðI �QðzÞ�QðwÞÞðI � AQðwÞÞ�1
B: ð1:25Þ

Hence representations (1.16), (1.18) and (1.19) are valid on all of DQ (with S in place of

F) with

HðzÞ ¼ CðI �QðzÞAÞ�1
and GðzÞ ¼ ðI � AQðzÞÞ�1

B: ð1:26Þ

Remark 1.6. Similarly to Remark 1.2, statements (2)–(4) in Theorem 1.5 can be
reformulated in terms of positive kernels as follows.

Statements (2)–(4) in Theorem 1.5 are equivalent, respectively, to statements ð20Þ–
ð40Þ below:

ð20Þ There exists a positive kernel

KL ¼
KL;1;1 ? KL;1;p

^ ^

KL;p;1 ? KL;p;p

264
375 : O	 O/LðCp#E�Þ ð1:27Þ

such that

IE� � FðzÞFðwÞ� ¼
Xp

k¼1

KL;k;kðz;wÞ �
Xp

k¼1

Xq

i;c¼1

qikðzÞqckðwÞKL;i;cðz;wÞ

for all z;wAO: ð1:28Þ

ð30Þ There exists a positive kernel

KR ¼
KR;1;1 ? KR;1;q

^ ^

KR;q;1 ? KR;q;q

264
375 : O	 O/LðCq#EÞ ð1:29Þ

so that

IE � FðzÞ�FðwÞ ¼
Xq

k¼1

KR;k;kðz;wÞ �
Xq

k¼1

Xp

i;c¼1

qkiðzÞqkcðwÞKR;i;cðz;wÞ

for all z;wAO: ð1:30Þ
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ð40Þ There exist kernels KL (as in (1.27)), KR (as in (1.29)) and

KLR ¼
KLR;1;1 ? KLR;1;q

^ ^

KLR;p;1 ? Kp;q

264
375 : O	 O/LðCp#E;Cq#E�Þ

satisfying identities (1.28), (1.30) and

FðzÞ � FðwÞ ¼
Xp

i¼1

Xq

c¼1

ðqicðzÞ � qicðwÞÞKLR;i;cðz;wÞ ðzwAOÞ; ð1:31Þ

respectively, and such that the kernel

ððz; z0Þ; ðw;w0ÞÞ/K

:¼
KLðz;wÞ KLRðz;w0Þ

KLRðw; z0Þ� KRðz0;w0Þ

� �
ALððCp#E�Þ"ðCq#EÞÞ ð1:32Þ

is positive on ðO	 OÞ 	 ðO	 OÞ:

Indeed, the equivalence between (1.16) and (1.28) (i.e., between statements (2) and
ð20Þ) can be seen by using the formula

KLðz;wÞ ¼
H1ðzÞ
^

HpðzÞ

264
375½H1ðwÞ� ? HpðwÞ�� ð1:33Þ

to establish a correspondence between positive kernels of the form (1.27) and
functions HðzÞ of the form (1.15). Given that KL and H are related in this way, we
then compute

Xp

k¼1

KL;k;kðz;wÞ �
Xp

k¼1

Xq

i;c¼1

qikðzÞqckðwÞKL;i;cðz;wÞ

¼
Xp

k¼1

HkðzÞHkðwÞ� �
Xp

k¼1

Xq

i;c¼1

qikðzÞqckðwÞHiðzÞHcðwÞ�

¼ HðzÞðICp#H �QðzÞQðwÞ�ÞHðwÞ� ð1:34Þ

and the equivalence between (1.16) and (1.28) follows. The equivalence between
(1.18) and (1.30) (that is, between statements (3) and ð30Þ) follows in a similar way by
using the formula

KRðz;wÞ ¼
G1ðzÞ�

^

GqðzÞ�

264
375½G1ðwÞ ? GqðwÞ� ð1:35Þ
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to establish a correspondence between positive kernels KRðz;wÞ of the form (1.29)
and functions GðzÞ of the form (1.17). Similarly, the equivalence between (1.19) and
(1.31) in part (4) of the statement of the Theorem follows by using (1.33), (1.35) and

KLRðz;wÞ ¼
H1ðzÞ
^

HpðzÞ

264
375½G1ðwÞ ? GqðwÞ�;

that is, using the formula

Kðz; z0;w;w0Þ ¼ Tðz; z0Þ�Tðw;w0Þ ð1:36Þ

where we have set

Tðw;w0Þ ¼ ½H1ðwÞ� ? HpðwÞ� G1ðw0Þ ? Gqðw0Þ�; ð1:37Þ

to establish a correspondence between positive kernels of the form (1.32) and
analytic operator functions HðzÞ and GðzÞ as in (1.15) and (1.17).

In contrast to the one variable case (see Remark 1.2), however, these kernels KL;
KR and K are not determined by F uniquely (for some exceptional cases, see
Examples 2.1 and 2.2).

Theorem 1.5 is a result on full operator-valued interpolation for the class
SAQðE;E�Þ; i.e., for the case where the full value SðzÞ is specified (as SðzÞ ¼ FðzÞ
where FðzÞ is given) at each point z in the set of interpolation nodes O: It is also of
interest (and of importance in various applications in the classical case—see [14]) to
consider tangential interpolation problems for the class SAQðE;E�Þ: For the left

tangential interpolation problem, we assume that we are given data consisting of
functions

a : OL/LðEL;E�Þ; c : OL/LðEL;EÞ ð1:38Þ

where OLCDQ and where EL is a Hilbert space. The problem then is:

Problem 1.7. Find all functions SASAQðE;E�Þ such that S satisfies the interpolation

conditions

SðxÞ�aðxÞ ¼ cðxÞ for all xAOL: ð1:39Þ

For the right tangential interpolation problem, we assume that we are given data
consisting of functions

b : OR/LðER;EÞ; d : OR/LðER;E�Þ ð1:40Þ

where ORCDQ and ER is a Hilbert space. The problem then is:
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Problem 1.8. Find all functions SASAQðE;E�Þ such that S satisfies the interpolation

conditions

SðxÞbðxÞ ¼ dðxÞ for all xAOR: ð1:41Þ

For the bitangential interpolation problem, we assume that we are given two
subsets OL and OR of DQ and data consisting of functions a; c; b; d as in (1.38) and

(1.40). Then the problem is:

Problem 1.9. Find all functions SASAQðE;E�Þ such that S satisfies the interpolation

conditions

SðxÞ�aðxÞ ¼ cðxÞ for all xAOL; SðxÞbðxÞ ¼ dðxÞ for all xAOR: ð1:42Þ

Note that the left interpolation problem (Problem 1.7) is the special case of the

bitangential problem (Problem 1.9) where OR ¼ |; and similarly, the right tangential
interpolation problem is the special case of the bitangential interpolation problem

when OL ¼ |: Note that the special case of the left interpolation problem where

OL ¼ O; EL ¼ E�; aðxÞ ¼ IE� and cðxÞ ¼ FðxÞ�;

the special case of the right interpolation problem where

OR ¼ O; ER ¼ E; bðxÞ ¼ IE and dðxÞ ¼ FðxÞ;

and the special case of the bitangential interpolation problem where OL ¼ OR ¼ O;

EL ¼ E�; ER ¼ E; aðxÞ ¼ IE� ; cðxÞ ¼ FðxÞ�; bðxÞ ¼ IE; dðxÞ ¼ FðxÞ

are all essentially solved in the various equivalent parts of Theorem 1.5.

Define operators EL
1 ;y;EL

p ;ER
1 ;y;ER

q by

EL
1 ¼

IEL

0

^

0

26664
37775;EL

2 ¼

0

IEL

^

0

26664
37775;y;EL

p ¼

0

^

0

IEL

26664
37775; ð1:43Þ

ER
1 ¼

IER

0

^

0

26664
37775;ER

2 ¼

0

IER

^

0

26664
37775;y;ER

q ¼

0

^

0

IER

26664
37775 ð1:44Þ
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and let

q1�;y; qp� : OR/LðER;C
q#ERÞ;

q�1;y; q�q : OL/LðEL;C
p#ELÞ;

M1;y;Mp : OR/LðEL"ER; ðCp#ELÞ"ðCq#ERÞÞ;

N1;y;Nq : OL-LðEL"ER; ðCp#ELÞ"ðCq#ERÞÞ

be the functions given by

qj�ðxRÞ ¼
qj1ðxRÞIER

^

qjqðxRÞIER

264
375 for xRAOR; q�kðxÞ ¼

q1kðxLÞIEL

^

qpkðxLÞIEL

264
375 for xLAOL;

ð1:45Þ

MjðxRÞ ¼
EL

j 0

0 qj�ðxRÞ

" #
for xRAOR;

NkðxLÞ ¼
q�kðxLÞ 0

0 ER
k

� �
for xLAOL; ð1:46Þ

where j ¼ 1;y; p and k ¼ 1;y; q: Note that, in terms of this notation with EL

taken to be E� and ER taken to be E; Eqs. (1.28), (1.30) and (1.31) to be satisfied
by the respective kernels KL; KR and KRL can be written in a more matricial
form as

IE� � FðxLÞFðmLÞ� ¼
Xp

j¼1

ðEL
j Þ

�
KLðxL; mLÞEL

j �
Xq

k¼1

q�kðxLÞ�KLðxL; mLÞq�kðmLÞ;

ð1:47Þ

IE � FðxRÞ�FðmRÞ ¼
Xq

k¼1

ðER
k Þ

�
KRðxR; mRÞER

k �
Xp

j¼1

qj�ðxRÞ�KRðxR; mRÞqj�ðmRÞ;

ð1:48Þ

FðxLÞ � FðmRÞ ¼
Xq

k¼1

q�kðxLÞ�KLRðxL; mRÞER
k �

Xp

j¼1

ðEL
j Þ

�
KLRðxL; mRÞqj�ðmRÞ;
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respectively. Furthermore, the latter three identities all together are equivalent to the
following block matrix identity:

I

FðxRÞ�
� �

½I FðmRÞ� �
FðxLÞ

I

� �
½FðmLÞ� I �

¼
Xp

j¼1

MjðxRÞ�KðxL; xR; mL; mRÞMjðmRÞ

�
Xq

k¼1

NkðxLÞ�KðxL; xR; mL; mRÞNkðxLÞ; ð1:49Þ

where K is the kernel of the special form (1.32).
Note that if S ¼ F satisfies the interpolation conditions (1.39) on OLCDQ;

multiplication of (1.47) on the left by aðxLÞ� and on the right by aðmLÞ leads to the
Stein equation

Xp

j¼1

ðEL
j Þ

�
KLðxL; mLÞEL

j �
Xq

k¼1

q�kðxLÞ�KLðxL; mLÞq�kðmLÞ

¼ aðxLÞ�aðmLÞ � cðxLÞ�cðmLÞ ð1:50Þ

with KL equal to the positive kernel on OL 	 OL given by

KLðxL; mLÞ ¼ aðxLÞ�KLðxL; mLÞaðmLÞ

being satisfied for all xL; mLAOL: Similarly, if S ¼ F satisfies the interpolation

conditions (1.41) on ORCDQ; then multiplication of (1.48) on the left by bðxRÞ� and

on the right by bðmRÞ leads to the Stein equation

Xq

k¼1

ðER
k Þ

�
KRðxR; mRÞER

k �
Xp

j¼1

qj�ðxRÞ�KRðxR; mRÞqj�ðxRÞ

¼ bðxRÞ�bðmRÞ � dðxRÞ�dðmRÞ ð1:51Þ

with KR equal to the positive kernel on OR 	 OR given by

KRðxR; mRÞ ¼ bðxRÞ�KRðxR; mRÞbðmRÞ:

being satisfied for all xR; mRAOR: Finally, if F ¼ S satisfies the bitangential
interpolation conditions (1.42) for all xLAOL and xRAOR; then multiplication of

(1.49) on the left by aðxLÞ�
0

0
bðxRÞ�

h i
and on the right by aðmLÞ

0
0

bðmRÞ

h i
leads to the
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Stein equationXp

j¼1

MjðxRÞ�KðxL; xR; mL; mRÞMjðmRÞ �
Xq

k¼1

NkðxLÞ�KðxL; xR; mL; mRÞNkðmLÞ

¼
aðxLÞ�

dðxRÞ�
� �

½aðmLÞ dðmRÞ� �
cðxLÞ�

bðxRÞ�
� �

½cðmLÞ bðmRÞ� ð1:52Þ

with K equal to the positive kernel on ðOL 	 ORÞ 	 ðOL 	 ORÞ given by

KðxL; xR; mL; mRÞ ¼
aðxLÞ� 0

0 bðxRÞ�
� �

KðxL; xR;mL; mRÞ
aðmLÞ 0

0 bðmRÞ

� �

being satisfied for all xL; mLAOL and xR; mRAOR: We thus have already arrived at the
necessity direction for the following solution of the tangential interpolation problems
(1.7)–(1.9).

Theorem 1.10. Suppose that we are given subsets OL and OR of DQ and data functions

a; c; b; d as in (1.38) and (1.40), and EL
j ; ER

k ; q�k; qj�; Mj and Nk are defined as in (1.43)–

(1.46). Then:

(1) The left tangential interpolation problem (Problem 1.7) has a solution if and only if

there is a positive kernel

KL : OL 	 OL/LðCp#ELÞ

which satisfies the Stein equation (1.50) for all xL; mLAOL:
(2) The right tangential interpolation problem (Problem 1.8) has a solution if and only

if there is a positive kernel

KR : OR 	 OR/LðCq#ERÞ

which satisfies the Stein equation (1.51) for all xR; mRAOR:
(3) The bitangential interpolation problem (Problem 1.9) has a solution if and only if

there is a positive kernel

K : ðOL 	 ORÞ 	 ðOL 	 ORÞ/L ðCp#ELÞ"ðCq#ERÞð Þ

of the special form

KðxL; xR; mL; mRÞ ¼
KLðxL; mLÞ KLRðxL; mRÞ

KLRðmL; xRÞ� KRðxR; mRÞ

� �
ð1:53Þ

which satisfies the Stein equation (1.52) for every xL;mLAOL and xR; mRAOR:

As a corollary we state the result in explicit form for the case of interpolation by a
scalar Schur–Agler-class function at finitely many points in DQ:
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Corollary 1.11 (see Ambrozie and Timotin [8]). Given N points z1;y; zNADQ and N

complex numbers w1;y;wNAC; there exists a function f in the scalar-valued Schur–

Agler class SADQ
:¼ SADQ

ðC;CÞ if and only if there exists a positive semidefinite

pN 	 pN matrix

G ¼ ½gk;c;k0;c0 �k;k0¼1;y;p; c;c0¼1;y;N

such that

1 � wcwc0 ¼
Xp

k¼1

gk;c;k0;c0 �
Xq

i¼1

Xp

k;k0¼1

½ pk;iðzcÞpk0;iðzc0 Þgk;c;k0;c0 �: ð1:54Þ

Remark 1.12. We mention that the recent preprint [7] of Ambrozie and Eschmeier
derives a commutant lifting theorem for the class SAQðE;E�Þ (see [15] for the

special case of the polydisk DQ ¼ Dd and [19] for the case of the ball DQ ¼ Bd), and

obtains Corollary 1.11 (actually a version with higher multiplicity interpolation
conditions) as an application. It remains to work out if the general interpolation
Problem 1.9 considered here can be obtained as an application of such a commutant
lifting theorem.

Let us represent the block matrix entries KL; KLR; KR in the block matrix form
(1.53) for K explicitly as

KLðx; mÞ ¼
C11ðx; mÞ y C1pðx; mÞ

^ ^

Cp1ðx; mÞ y Cppðx; mÞ

264
375; ð1:55Þ

KLRðx; mÞ ¼
L11ðx; mÞ y L1qðx; mÞ

^ ^

Lp1ðx; mÞ y Lpqðx; mÞ

264
375; ð1:56Þ

KRðx; mÞ ¼
F11ðx; mÞ y F1qðx; mÞ

^ ^

Fq1ðx; mÞ y Fqqðx; mÞ

264
375 ð1:57Þ

with

Cjcðx; mÞALðELÞ for ðx; mÞAOL 	 OL ð j; c ¼ 1;y; pÞ;

Ljcðx; mÞALðER;ELÞ for ðx; mÞAOL 	 OR ð j ¼ 1;y; p; c ¼ 1;y; qÞ;

Fjcðx; mÞALðERÞ for ðx; mÞAOR 	 OR ð j; c ¼ 1;y; qÞ: ð1:58Þ
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It turns out that for every positive kernel K satisfying conditions of part (3) of
Theorem 1.10, there is a solution S of the bitangential interpolation Problem 1.9
such that, for some choice of associated functions HjðzÞ and GjðzÞ in representations

(1.16) and (1.18), it holds that

aðxÞ�HjðxÞHcðmÞ�aðmÞ ¼ Cjcðx; mÞ ðx; mAOL; j; c ¼ 1;y; pÞ; ð1:59Þ

aðxÞ�HjðxÞGcðmÞbðmÞ ¼ Ljcðx; mÞ ðxAOL; mAOR; j ¼ 1;y; p; c ¼ 1;y; qÞ;
ð1:60Þ

bðxÞ�GjðxÞ�GcðmÞbðmÞ ¼ Fjcðx; mÞ ðx; mAOR; j; c ¼ 1;y; qÞ: ð1:61Þ

Furthermore, it turns out that conversely, for every solution S of Problem 1.9
with representations (1.16) and (1.18) (existence of these representations is
guaranteed by Theorem 1.5)), the kernel K defined via (1.53)–(1.57) and
(1.59)–(1.61) satisfies conditions of Theorem 1.10. Similar remarks apply for the
left tangential and right tangential interpolation problems (Problems 1.7 and 1.8).
These observations suggest the following modifications of the tangential interpola-
tion Problems 1.7–1.9:

Problem 1.13. Given two functions a; c as in (1.38) and p2 functions Cjc as in (1.58),

find all functions SASAQðE;E�Þ such that S satisfies the left tangential interpolation

conditions (1.39), and, for some choice of associated functions HjðzÞ in representation

(1.16) equalities (1.59) hold.

Problem 1.14. Given two functions b; d as in (1.40) and q2 functions Fjc as in (1.58),

find all functions SASAQðE;E�Þ such that S satisfies the right tangential interpolation

conditions (1.39), and, for some choice of associated functions GjðzÞ in representation

(1.18) equalities (1.61) hold.

Problem 1.15. Given four functions as in (1.38) and (1.40) and p2 þ pq þ q2 functions

Cjc; Ljc and Fjc as in (1.58), find all functions SASAQðE;E�Þ such that S satisfies the

left and right tangential interpolation conditions (1.39) and (1.41), and, for some choice

of associated functions HjðzÞ and GjðzÞ in representations (1.16) and (1.18), equalities

(1.59)–(1.61) hold true.

The solutions of Problems 1.13–1.15 are given by the following modification of
Theorem 1.10.

Theorem 1.16. Suppose that we are given subsets OL and OR of DQ and data functions

a; c; b; d as in (1.38) and (1.40), and EL
j ; ER

k ; q�k; qj�; Mj and Nk are defined as in
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(1.43)–(1.46), together with Cjcðx; mÞ; Ljcðx; mÞ and Fjcðx; mÞ as in (1.58). Define

kernels KLðx; mÞ; KLRðx; mÞ and KRðx; mÞ as in (1.55)–(1.57). Then:

(1) Problem 1.13 has a solution if and only if the kernel KLðx; mÞ is positive on OL 	 OL

and satisfies the Stein equation (1.50).
(2) Problem 1.14 has a solution if and only if the kernel KRðx; mÞ is positive on OR 	

OR and satisfies the Stein equation (1.51).
(3) Problem 1.15 has a solution if and only if the kernel K of the form (1.53) is positive

on ðOL 	 ORÞ 	 ðOL 	 ORÞ and satisfies the Stein equation (1.52).

The paper is organized as follows. After the present Introduction, in Section 2 we
present a number of examples of domains OCCn which can be written in the form
DQ for an appropriate Q: In Section 3 we give a complete proof of Theorem 1.5. The

proof of ð1Þ ) ð2Þ relies on a Hahn–Banach separation argument following the ideas
in [2,8,15] used to prove closely related results. The proof of ð2Þ ) ð5Þ is an
adaptation of the ‘‘lurking isometry’’ method which has been used recently as a
method of proof in a number of closely related realization and interpolation
problems for multivariable functions (see [4,8,11–13,15,19] and also [33–35] for an
abstract formalism in the single variable setting). Section 4 gives the reformulation of
Theorem 1.10 in terms similar to those in Theorem 1.5 and explains how all the
solvability criteria for all the results in the Introduction reduce to the proof of the
solvability criterion for the bitangential Problem 1.15 as stated in part (3) of
Theorem 1.16. The proof of part (3) of Theorem 1.16 is then completed by an
adaptation of the lurking isometry method to the setting where only bitangential
interpolation data are given. The final Section 5 applies Theorem 1.10 to obtain a
Toeplitz corona theorem for the setting here.

2. Examples of domains DQ

We present some more examples arising for special choices of the function Q:

Example 2.1. Let p ¼ 1; i.e., let

QðzÞ ¼ q1ðzÞ y qqðzÞ
� �

: ð2:1Þ

In this case, SAQðE;E�Þ can be characterized as the set of all functions S analytic

on DQ and such that the kernel

IE� � SðzÞSðwÞ�

1 � q1ðzÞq1ðwÞ
� �?� qqðzÞqqðwÞ

�

is positive on DQ: This case was considered in [19]. A special choice of Q when

qjðzÞ ¼ zj (j ¼ 1;y; q) leads to the class of Schur multipliers on the unit ball Bq of

Cq: Various interpolation problems in this class were considered in
[11,13,19,20,25,43]. If Q is of the form (2.1), then condition (1.59) is redundant in
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the formulation of Problems 1.13 and 1.15 (assuming that any solutions exist);
indeed by representation (1.16) with p ¼ 1 and (1.42),

KLðx; mÞ ¼ aðxÞ�
I � SðxÞSðmÞ�

1 � q1ðxÞq1ðmÞ
� �y� qqðxÞqqðmÞ

� aðmÞ

¼ aðxÞ�aðmÞ � cðxÞ�cðmÞ
1 � q1ðxÞq1ðmÞ

� �y� qqðxÞqqðmÞ
�;

from which we see that KLðx; mÞ is completely determined from the other
interpolation data. Furthermore, for this case Problems 1.7 and 1.13 are equivalent
(assuming that the data set for Problem 1.13 is such that solutions exist).

Example 2.2. Similarly, if q ¼ 1; we have

QðzÞ ¼
q1ðzÞ
^

qpðzÞ

264
375;

then condition (1.61) is redundant in the formulation of Problems 1.14 and 1.15
(assuming any solutions exist), since KRðx; mÞ is completely determined from the
other interpolation data:

KRðx; mÞ ¼ bðxÞ�
I � SðxÞ�SðmÞ

1 � q1ðxÞ
�
q1ðmÞ �y� qpðxÞ

�
qpðmÞ

bðmÞ

¼ bðxÞ�bðmÞ � dðxÞ�dðmÞ
1 � q1ðxÞ

�
q1ðmÞ �y� qpðxÞ

�
qpðmÞ

:

Moreover, Problems 1.8 and 1.14 are equivalent (assuming that the data set for 1.14
is consistent).

Example 2.3. Let p ¼ q ¼ n ¼ 1; i.e., let Q be a scalar valued polynomial of one
variable. By the preceding analysis, under the assumption that the interpolation
conditions are consistent, conditions (1.59) and (1.61) are redundant. Furthermore,
it follows from (1.60), (1.19) and (1.42) that for every choice of xAOL and mAOR

such that QðxÞaQðmÞ; it holds that

KLRðx; mÞ ¼ aðxÞ� SðxÞ � SðmÞ
QðxÞ �QðmÞ bðmÞ ¼

aðxÞ�dðmÞ � cðxÞ�bðmÞ
QðxÞ �QðmÞ

and thus, KLRðx; mÞ is completely determined at such points by other interpolation
conditions and therefore need not be specified. In the case when QðxÞaQðmÞ for
every xAOL and mAOR; all conditions (1.59)–(1.61) are not needed and Problem 1.9
is equivalent to Problem 1.15 (assuming that Problem 1.15 has any solutions).

If QðzÞ ¼ z; then the condition QðxÞaQðmÞ for every xAOL and mAOR is

equivalent to OL-OR ¼ |: In the case when the intersection of OL and OR is not
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empty, one should specify KLR on this intersection. The nonredundant interpolation
conditions (1.60) for the case x ¼ mAOL-OR can in this case be expressed directly in
terms of the interpolant S according to the formula:

KLRðx; xÞ ¼ aðxÞ�S0ðxÞbðxÞ for xAOL-OR: ð2:2Þ

This case is treated in detail (for the case where OL and OR are assumed to be finite)
in the monograph [14]. In particular, there it is shown that the added interpolation
condition (2.2) is exactly what is required to make the interpolation conditions
(1.39), (1.41) together with (2.2) on S equivalent to S having the divisor-remainder

(also called model-matching in the engineering literature) form

SðzÞ ¼ T1ðzÞ � T2ðzÞQðzÞT3ðzÞ;

where T1; T2 and T3 are given operator-valued analytic functions on D and Q is an
arbitrary analytic operator-valued function on D: Here the zero invariant factors of
T2 and T3 are assumed to be simple for ease of exposition.

Example 2.4. If p ¼ q and qijðzÞ � 0 for iaj; i.e., if

QðzÞ ¼
q1ðzÞ 0

&

0 qpðzÞ

264
375; ð2:3Þ

then DQ ¼
Tp

j¼1 Dqj
and we have only p conditions in each of series (1.59)–(1.61):

aðxÞ�HjðxÞHjðmÞ�aðmÞ ¼ Cjðx; mÞ ðx; mAOL; j ¼ 1;y; pÞ;

aðxÞ�HjðxÞGjðmÞbðmÞ ¼ Ljðx; mÞ ðxAOL; mAOR; j ¼ 1;y; pÞ;

bðxÞ�GjðxÞ�GjðmÞbðmÞ ¼ Fjðx; mÞ ðx; mAOR; j ¼ 1;y; qÞ:

In particular, if p ¼ q ¼ n and qjðzÞ ¼ zj (j ¼ 1;y; n) in (2.3), then DQ is the unit

polydisk Dn and in this case, SAQðE;E�Þ reduces to the well known Schur–Agler

class of the polydisk. Theorem 1.10 for this particular polydisk case can be found in
[1,3,12,15,18]. In the paper [16] it is shown that the analogue of condition (2.2) for
the polydisk case (required to achieve the equivalence between interpolation and
divisor-remainder form in the polydisk setting) is

aðxÞ� @S

@zk

ðxÞbðxÞ ¼ rkðxÞ for all xAOL-OR and k ¼ 1;y; n; ð2:4Þ

where rk’s are functions on OL-OR given as part of the interpolation data set.
Unlike the situation for the disk case (n ¼ 1—see Example 2.3), the relations between
conditions (2.4) and (1.59)–(1.61) are not apparent in general; this issue will be taken
up on another occasion.
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Example 2.5. If

Qðz1;1;y; zd;nd
Þ ¼

Q1ðz1;1;y; z1;n1
Þ 0

&

0 Qdðzd;1;y; zd;nd
Þ

264
375;

it follows that DQ has the Cartesian product decomposition DQ ¼ DQ1
	?	DQd

:

If furthermore,

Qjðzj;1;y; zj;nj
Þ ¼ ½zj;1 y zj;nj

� ð j ¼ 1;y; dÞ;

then DQ is the Cartesian product of d unit balls of dimensions n1;y; nd :
Nevanlinna–Pick interpolation in the corresponding class SAQðE;E�Þ was studied

in [48].

Example 2.6. A number of authors (see [5,6,37,42]) have considered generalizations
of Schur-class functions and associated interpolation problems on domains in the

complex plane defined by a condition of the form jaðzÞj2 � jbðzÞj240 where aðzÞ and
bðzÞ are given polynomials. This gives a unified setting which, for example, includes
the case of the unit disk (aðzÞ ¼ 1; bðzÞ ¼ z) and the upper half plane (aðzÞ ¼ z þ i;

bðzÞ ¼ z � i). If we allow QðzÞ ¼ bðzÞ
aðzÞ; this setting fits into our scheme. More

generally, one can let

QðzÞ ¼

z1 � i

z1 þ i
0

&
zd � i

zd þ i

266664
377775

so that DQ is a Cartesian product of half planes; this is the setting of recent work of

Kalyuzhnyı̆–Verbovetzkiı̆ [32].

Example 2.7. If we take

QðzÞ ¼ z1 � i

z1 þ i

z2

ffiffiffi
2

p

z1 þ i
y

zd

ffiffiffi
2

p

z1 þ i

" #
;

then the corresponding domain DQ is Siegel’s domain of the second kind:

fðz1;y; zdÞ : Iz1 � jz2j2 �?� jzd j240g:

Example 2.8. Projective domains can be defined as

DQ;P ¼ fzACn : QðzÞQðzÞ�oPðzÞPðzÞ�g;
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where Q and P are p 	 q and p 	 k matrix polynomials. If p ¼ k ¼ 1; this notion is
equivalent to that in Example 2.6.

Example 2.9. We remark that a common technique for the study of domains O in Cn

is through a smooth defining function r (see e.g. [36]), i.e., r is a smooth real-valued

function defined on Cn with nonvanishing gradient on the boundary @O of O such that

O ¼ fzACn : rðzÞo0g: If q ¼ 1; we see from (1.13) that our domains DQ correspond

to the special case where r is of the form rðzÞ ¼ 1 �
Pp

k¼1 jpkðzÞj2 for polynomials

p1ðzÞ;y; ppðzÞ: On the other hand, when q41; the domains DQ correspond to the

intersection of a collection of domains Oc with such defining functions rc—allowing
nonsmooth boundary as in the case of the polydisk.

3. Characterization of the class SAQðE;E�Þ

In this section we present the proof of Theorem 1.5.
For the proof of ð1Þ ) ð2Þ in Theorem 1.5, we first need a few preliminaries.
Let C be the class of all operator-valued functions j : O	 O/LðE�Þ having a

representation of the form

jðz;wÞ ¼ HðzÞðI �QðzÞQðwÞ�ÞHðwÞ� ð3:1Þ

for some function H ¼ ½H1 ? Hp� : O/LðH0#Cp;E�Þ for some auxiliary

Hilbert space H0 for z;w in some subset O of DQ: Sometimes it is convenient to write

(3.1) in the equivalent form

jðz;wÞ ¼
Xp

k¼1

Kk;kðz;wÞ �
Xp

k¼1

Xq

k;c¼1

qikðzÞqckðwÞKi;cðz;wÞ ð3:2Þ

for a positive kernel

K ¼
K1;1 ? K1;p

^ ^

Kp;1 ? Kp;p

264
375 : O	 O/LðE�#CpÞ;

this can be seen as in Remark 1.6 via a calculation analogous to (1.34). We
shall consider C as a subset of the linear space X of all LðE�Þ-valued functions on
O	 O: It is easy to see that C is a cone in X; i.e., C is closed under sums and
multiplication by nonnegative scalars. We need to establish a few preliminary facts
concerning C:
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Lemma 3.1. Fix jAC: Then, for each zAO there is a finite constant MzoN so that

jjHðzÞjjpMz

for any H : O/LðH0#Cp;E�Þ giving a representation for j as in (3.1).

Proof. For zAOCDQ fixed, I �QðzÞQðzÞ� is invertible by definition of DQ: Set

Mz ¼ ðjjðI �QðzÞQðzÞ�Þ�1jj � jjjðz; zÞjjÞ1=2:

Then we compute, for any HðzÞ giving a representation for j as in (3.1),

HðzÞHðzÞ� ¼HðzÞðI �QðzÞQðzÞ�Þ1=2 � ðI �QðzÞQðzÞ�Þ�1

� ðI �QðzÞQðzÞ�Þ1=2
HðzÞ�

p jjðI �QðzÞQðzÞ�Þ�1jj � HðzÞðI �QðzÞQðzÞ�ÞHðzÞ�

¼ jjðI �QðzÞQðzÞ�Þ�1jj � jðz; zÞ ðby ð3:1ÞÞ

pM2
z IE�

and the lemma follows. &

Lemma 3.2. Any positive kernel j : O	 O/LðE�Þ is in C; i.e., has a representation

(3.1) for some H.

Proof. Since Q is strictly contractive on DQ; so also is its first row q1�ðzÞ ¼
½q11ðzÞ ? q1qðzÞ�: Hence the scalar function 1 � q1�ðzÞq1�ðwÞ

� is invertible on all of

DQ with inverse given by the convergent geometric series

ð1 � q1�ðzÞq1�ðwÞ
�Þ�1 ¼

XN
c¼0

ðq1�ðzÞq1�ðwÞ
�Þc

¼
XN
c¼0

Xq

k¼1

q1kðzÞq1kðwÞ
 !c

:

By Schur’s theorem, each term of the infinite series is a positive kernel; hence ð1 �
q1�ðzÞq1�ðwÞ

�Þ�1 is a positive kernel; choose a function Z : H00/C so that we have the
factorization

ð1 � q1�ðzÞq1�ðwÞ
�Þ�1 ¼ ZðzÞZðwÞ�:
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Since jðz;wÞ : O	 O/LðE�Þ; then j has a factorization jðz;wÞ ¼ H 0ðzÞH 0ðwÞ� for
some H 0 : O/LðH0;E�Þ: Let us now set

HðzÞ ¼ ½H 0ðzÞ#ZðzÞ 0 ? 0� : H0#H00#Cp/E�; ð3:3Þ

where we have made the identification E�DE�#C: Then it is straightforward to
check that jðz;wÞ has a representation (3.1) with HðzÞ as in (3.3), and the lemma
follows. &

We shall want to approximate the cone C by the cone Ce (where e40) given by

Ce ¼ j : O	 O/LðE�Þ : jðz;wÞ
(

¼ HðzÞðI � ð1 þ eÞ2
QðzÞQðwÞ�ÞHðwÞ� þ

Xn

j¼1

ð1 � e2zjwjÞgjðzÞgjðwÞ�

for some HALðH0#Cp;E�Þ and gj : O/LðHj
0;E�Þ

)
: ð3:4Þ

Sometimes it will be convenient to work with the equivalent representation

jðz;wÞ ¼
Xp

k¼1

Ke;k;kðz;wÞ �
Xp

k¼1

Xq

i;c�1

qikðzÞqckðwÞKe;i;cðz;wÞ

þ
Xn

j¼1

ð1 � e2zjwjÞGj;eðz;wÞ; ð3:5Þ

where Ke ¼ ½Ke;i;c�pi;c¼1 and Gj;e (j ¼ 1;y; n) are positive kernels; this equivalence

follows in the same way as the equivalence between (1.16) and (1.28) explained in
Remark 1.6.

Lemma 3.3. Assume that O is finite and that j : O	 O/LðE�Þ is in the cone Ce for

all e sufficiently small. Then jAC; i.e., j has a representation (3.1).

Proof. The assumption is that there are functions

He ¼ ½He;1 y He;p� : O/LðH0#Cp;E�Þ and gj;e : O/LðH0;E�Þ

so that j has the representation

jðz;wÞ ¼ HeðzÞðI � ð1 þ eÞ2
QðzÞQðwÞ�ÞHeðwÞ� þ

Xn

j¼1

ð1 � e2zjwjÞgj;eðzÞgj;eðwÞ�

for all e40 sufficiently small. One can adapt the proof of Lemma 3.1 to see that,
for each fixed zAO; HeðzÞ and gj;eðzÞ are bounded uniformly with respect to e for
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all 0oeod; where d40 is chosen so that jzjjo1=d for j ¼ 1;y; n for all zAO:
Hence also

Ke;i;cðz;wÞ :¼ He;iðzÞHe;cðwÞ� and Gj;eðz;wÞ :¼ gj;eðzÞgj;eðwÞ�

are uniformly bounded with respect to e for all 0oeod and give representation (3.5)
with Ke;i;c and Gj;e defined as above. We assume that E� is a separable Hilbert space,

and hence also the space of trace-class operators L1ðE�Þ (the pre-dual of LðE�Þ) is
separable. Then (see [27, Theorem 1, p. 426]) the unit ball of LðE�Þ in the weak-�
topology is metrizable. As the unit ball of LðE�Þ in the weak-� topology is also
compact by Alaoglu’s Theorem (see [27, Theorem 2, p. 424]), there is a subsequence
eN-0 as N-N such that KeN ;j;kðz;wÞ-Kj;kðz;wÞ and Gj;eN

ðz;wÞ-Gjðz;wÞ in the

weak-� topology for each z;wAO: Moreover, from characterization (1.5) of positive

kernels, we see that K ¼ ½Kj;k�pj;k¼1 and Gj (j ¼ 1;y; n) are again positive kernels. By

taking limits as N-N in (3.5) (with eN in place of e), we see that j has
representation (3.2). We conclude that jAC as asserted. &

Lemma 3.4. Assume that O is finite and choose e40 sufficiently small so that jzjjo1=e
for j ¼ 1;y; n and zAO: Then:

(1) Any positive kernel j is in Ce:
(2) If j is a positive kernel, then the kernel ð1 � e2zjwjÞjðz;wÞ is also in Ce for each

j ¼ 1;y; n:

Proof. For the first assertion, a simple adjustment of the proof of Lemma 3.2 gives
H : O/LðH0#Cp;E�Þ so that

jðz;wÞ ¼ HðzÞðI � ð1 þ eÞ2
QðzÞQðwÞ�ÞHðwÞ�:

But this is the special case of the form required for membership in Ce with gjðzÞ ¼ 0

for each j ¼ 1;y; n:
For the second assertion, use the defining form for membership in Ce with HðzÞ ¼

0; gjðzÞ chosen so that jðz;wÞ ¼ gjðzÞgjðwÞ� and gkðzÞ ¼ 0 for kaj: &

Lemma 3.5. Assume that O is a finite set and choose e40 as in Lemma 3.4. Consider

the cone Ce as a subset of the linear space X of LðE�Þ-valued functions on O;
endowed with the locally convex topology of pointwise weak-� convergence. Then Ce is

closed in X:

Proof. By the Kreı̆n–Šmulian Theorem (see [27, Theorem 7, p. 429]), it suffices
to show that the intersection of Ce with each bounded subset of X is closed
in X: As noted in the proof of Lemma 3.3, the weak-� topology restricted to
bounded sets is metrizable. Hence, to show that Ce is closed in X; it suffices to
show that, whenever a bounded sequence fjNg of elements of Ce converges weak-�
to an element j of X; then in fact jACe: By assumption, each jN has a
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representation as in (3.5)

jNðz;wÞ ¼
Xp

k¼1

KN;k;kðz;wÞ �
Xq

i;c¼1

ð1 þ eÞ2
qikðzÞqckðwÞKN;i;cðz;wÞ

þ
Xn

j¼1

ð1 � e2zjwjÞGj;Nðz;wÞ: ð3:6Þ

Since jNðz;wÞ is uniformly bounded in norm by assumption, by an argument as in
the proof of Lemma 3.1 we see that KN;i;cðz;wÞ and Gj;Nðz;wÞ are uniformly bounded

in norm as N-N for each z;wAO: By the weak-� compactness of the unit ball of
LðE�Þ; we may then drop down to a subsequence fjNK

gK¼1;2;y such that

KNK ;i;cðz;wÞ-Ki;cðz;wÞ and Gj;NK
ðz;wÞ-Gjðz;wÞ in the weak-� topology as

K-N: By the criterion (1.5) for positive kernels, we see that Kðz;wÞ ¼
½Ki;cðz;wÞ�pi;c¼1 and Gjðz;wÞ (j ¼ 1;y; n) are again positive kernels. Taking limits

in (3.6) (with NK in place of N) as K-N yields a representation for jðz;wÞ of the
form (3.5), and we conclude that jACe as claimed. &

Proof of (1)) (2) in Theorem 1.5. The proof is based on a Hahn–Banach separation
argument adapted from the proofs of various other versions of this result in [2,8,15].

Suppose that the function F : O/LðE;E�Þ extends to a function

SASAQðE;E�Þ: Our goal is to show that jF ðz;wÞ ¼ IE� � FðzÞFðwÞ� is in C:
Consider first the case where O is finite. By Lemma 3.3 it suffices to show that jF is
in Ce for any e40: By the Hahn–Banach separation principle (see part (b) of
Theorem 3.4 in [47]), it suffices to show: given e40 and a continuous linear functional

L : X/C such that RLðjÞX0 for all jACe; it follows that RLðjF ÞX0 where R

indicates ‘‘real part’’.
Fix e40 and let L be any weak-� continuous linear functional L : X/C such that

RLjCe
X0: Define L1 : X/C by

L1ðjÞ ¼ 1
2
ðLðjÞ þ Lð &jÞÞ;

where we have set
&jðz;wÞ ¼ jðw; zÞ�:

Note that L1ðjÞ ¼ RLðjÞ in case &j ¼ j:
Define a sesquilinear form /�; �SL on the linear space H0 of LðE�;CÞ-valued

functions on O by

/ f ; gSL ¼ L1ðgðzÞ�f ðwÞÞ:

Note that any function j of the form jðz;wÞ ¼ f ðzÞ�f ðwÞ has the property that
&j ¼ j and by part (1) of Lemma 3.4 any such j is in Ce: We conclude that

/ f ; fSL ¼ RLð f ðzÞ�f ðwÞÞX0 for all fAH0:
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We may thus identify elements of 0-norm and then take a completion in the L-norm
to get a Hilbert space HL:

We next attempt to define operators T1;y;Tn on HL with adjoints given by

T�
j : f ðwÞ/wj f ðwÞ for fAH0:

By part (2) of Lemma 3.4 we know that the kernel ð1 � e2zjwjÞf ðzÞ�f ðwÞ belongs to

Ce; and hence

jj f jj2HL
� e2jjT�

j f jj2HL
¼ RLðð1 � e2zjwjÞf ðzÞ�f ðwÞÞX0:

Thus Tj extends to a bounded operator defined on all of HL with jjTjjj ¼
jjT�

j jjp1=e:
Then the action of QðTÞ� : Cp#HL/Cq#HL is given simply as

QðTÞ� : f ðwÞ/QðwÞ�f ðwÞ for f ðwÞ ¼
f1ðwÞ
^

fpðwÞ

264
375AH0#CpCHL#Cp:

For f a block-column vector of the form f ¼ coli¼1;y;p fiAH0#Cp; note that for a

fixed wAO the value f ðwÞ can be viewed as an operator from E� into Cp (i.e.,
f ðwÞALðE�;C

pÞ), and

jj f jj2HL#Cp ¼
Xp

i¼1

jj fijj2H0
¼
Xp

i¼1

RLð fiðzÞ�fiðwÞÞ ¼ RLð f ðzÞ�f ðwÞÞ:

Similarly

jjQðTÞ�f jj2HL#Cp ¼ RLð f ðzÞ�QðzÞQðwÞ�f ðwÞÞ:

Hence

jj f jj2Cp#HL
� ð1 þ eÞ2jjQðTÞ�f jj2Cq#HL

¼ RLð f ðzÞ�ðICp � ð1 þ eÞ2
QðzÞQðwÞ�Þf ðwÞÞ: ð3:7Þ

Clearly, any function jðz;wÞ of the form

jðz;wÞ ¼ f ðzÞ�ðICp � ð1 þ eÞ2
QðzÞQðwÞ�Þf ðwÞ

is in Ce (simply take gjðzÞ ¼ 0 in the defining representation for Ce). Hence by

construction

RLð f ðzÞ�ðICp � ð1 þ eÞ2
QðzÞQðwÞ�Þf ðwÞÞX0
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and we see from (3.7) that

jjQðT1;y;TnÞjjp
1

1 þ e
o1:

Since by assumption SASAQðE;E�Þ; we therefore have that jjSðT1;y;TnÞjjp1

where SðT1;y;TdÞALðHL#E;HL#E�Þ:
If we are in the scalar case (E ¼ E� ¼ C), we can now finish the proof quite simply.

From the fact that T�
j is given by multiplication by %wj on XCHL; we see that

necessarily SðT1;y;TdÞ� is given by

SðT1;y;TnÞ� : f ðwÞ/SðwÞ�f ðwÞ for fAXCHL:

For the particular case where fAX is the constant function f ðwÞ ¼ 1; we compute

0p jj f jj2HL
� jjSðT1;y;TdÞf jj2HL

¼RLð f ðzÞf ðwÞ� � f ðzÞSðzÞSðwÞ�f ðwÞÞ

¼RLð1 � SðzÞSðwÞ�Þ

¼RLðjF ðz;wÞÞ ðsince S extends FÞ:

We have thus shown that RLðjF ðz;wÞÞX0 for any L : X/C with RLjCe
X0 as

desired.
For the general case we use a somewhat more indirect argument. For FALðE;E�Þ

and k ¼ ðk1;y; knÞAZn
þ a collection of nonnegative integers, the tensor product

operator T�k#F� acts on an element f ðwÞ#e� of HL#E�: We assume that the
function f has a constant value f ðwÞ ¼ c for an element c of LðE�;CÞ: We compute

the ðHL#EÞ-inner product of ðT�k#F�Þðc#e�Þ against another such object

ðT�k0
#F0�Þðc0#e0�Þ as follows:

/ðT�k#F�Þðc#e�Þ; ðT�k0
#F0�Þðc0#e0�ÞSHL#E

¼ / %wkc#F�e�; %w
k0
c0#F0�e0�SHL#E

¼ / %wkc; %wk0
c0SHL

�/F�e�;F0�e0�SE

¼ L1ðzk0
%w

kc0�cÞ �/F0F�e�; e0�SE�

¼ L1ðzk0
%w

kc0� �/F0F�e�; e0�SE� � cÞ

¼ L1ðc0�ðe0�Þ
�ðF0zkÞðF�

%wkÞe�cÞ: ð3:8Þ

Here we view the vector e0�AE� as the operator e0� : a/ae0� from C to E� with adjoint

operator ðe0�Þ
� : E�/C given by ðe0�Þ

� : e00�//e00� ; e0�SE�AC: In this way, the inner
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product /F0F�e�; e0�SE� ; when viewed as an operator on C; can be written as the

operator composition

/F0F�e�; e0�SE� ¼ ðe0�Þ
�F0F�e� : C/C:

By linearity we see that we can generalize (3.8) to

/G1ðTÞ�ðc#e�Þ;G2ðTÞ�ðc0#e0�ÞSHL#U ¼ L1ðc0�ðe0�Þ
�
G2ðzÞG1ðwÞ�e�cÞ

ð3:9Þ

for any polynomials G1ðzÞ and G2ðzÞ with coefficients in LðE;E�Þ: It is easily seen

that (3.9) continues to hold if GjðzÞ ¼ 1
qjðzÞ
eGGjðzÞ for j ¼ 1; 2; where qj is a rational

scalar function in z ¼ ðz1;y; znÞ with no zeros in DQ and eGGjðzÞ is a polynomial in z

with coefficients in LðE;E�Þ: By the continuity properties of the Taylor functional
calculus (see e.g. Theorem 5.20 in [24]) and the weak-� continuity of L; it follows that
(3.9) continues to hold for G1 and G2 equal to any LðE;E�Þ-valued functions
holomorphic on DQ:

We now apply (3.9) to the case where G1 ¼ G2 ¼ SASAQðE;E�Þ and c� ¼ e� ¼
e�j; ðc0Þ� ¼ e�

0 ¼ e�i where e�1; e�2;y; e�N ;y is an orthonormal basis for E�; to get

/SðTÞ�ðe��j#e�jÞ;SðTÞ�ðe��i#e�iÞSHL#E ¼ L1ðe�ie
�
�iSðzÞSðwÞ

�
e�je

�
�jÞ:

Summing over i; j ¼ 1;y;N then gives

SðTÞ�
XN

j¼1

e��j#e�j

 !�����
�����

�����
�����
2

HL#E

¼
XN

i; j¼1

L1ðe�ie
�
�iSðzÞSðwÞ

�
e�je

�
�jÞ

¼RLðPNSðzÞSðwÞ�PNÞ; ð3:10Þ

where PNALðE�Þ is the orthogonal projection onto the span of fe�1;y; e�Ng:
Moreover, we compute

/e��j#e�j ; e��i#e�iSHL#E� ¼ /e��j; e��iSHL
�/e�j; e�iSE� ¼ di; jL1ðe�ie

�
�jÞ:

Summing this over i; j ¼ 1;y;N gives

XN

j¼1

e��j#e�j

�����
�����

�����
�����
2

HL#E�

¼
XN

j¼1

L1ðe�je
�
�jÞ ¼ RLðPNÞ: ð3:11Þ

Using that SASAQðE;E�Þ and combining (3.10) and (3.11) now gives

0p
XN

j¼1

e��j#e�j

�����
�����

�����
�����
2

HL#E�

� SðTÞ�
XN

j¼1

e��j#e�j

 !�����
�����

�����
�����
2

HL#E

¼RLðPNðI � SðzÞSðwÞ�ÞPNÞ: ð3:12Þ
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By the pointwise weak-� continuity of L; upon letting N-N in (3.12) we see that

RLðjF ðz;wÞÞ ¼ RLðI � SðzÞSðwÞ�ÞX0:

as desired.
It remains only to remove the assumption that O is finite. This is done by

considering the net of all finite subsets o of O: For each of these finite subsets o we
have a representation of type (3.1) holding on o with associated coefficients Ho

depending on o: Without loss of generality we may assume that the auxiliary Hilbert
space H0 is independent of o: HoðzÞALðH0;E�Þ: From Lemma 3.1 we see that, for
each fixed z; jjHoðzÞjj is bounded independently of the finite set o for which zAo:
Then it follows that the associated positive kernel Koðz;wÞ ¼ HoðzÞHoðwÞ� is
bounded independently of the choice of finite subset o containing z and w; where the
positive kernel Koðz;wÞ gives a representation of j of the form (3.2). A compactness
argument can then be used to arrive at a pointwise weak-� limit point Kðz;wÞ for all
Koðz;wÞ: Since property (1.5) is preserved under such pointwise limits, we see that
Kðz;wÞ is again a positive kernel. Moreover, we see that the limiting process leads to
a representation for jðz;wÞ of the form (3.2) on all of O; and hence jAC as wanted.
This completes the proof of ð1Þ ) ð2Þ in Theorem 1.5. &

Proof of ð2Þ ) ð5Þ in Theorem 1.5. Assume that F : O/LðE;E�Þ is given such that
representation (1.16) holds for all z;wAO for some H : O/LðH0#Cp;EÞ: We
rewrite (1.16) in the form

HðzÞQðzÞQðwÞ�HðwÞ� þ IE� ¼ HðzÞHðwÞ� þ FðzÞFðwÞ�:

If we set

D ¼
_ QðwÞ�HðwÞ�

IE�

� �
e� : wAO; e�AE�

� �
;

R ¼
_ HðwÞ�

FðwÞ�
� �

e� : wAO; e�AE�

� �

(where
W

denotes ‘‘closed linear span’’), we see that the formula

V :
QðwÞ�HðwÞ�

IE�

� �
e�/

HðwÞ�

FðwÞ�
� �

e�

extends by linearity to define an isometry from D onto R: Extend V to a unitary
operator

U� ¼
A� C�

B� D�

� �
:

Cp#H

E�

� �
/

Cq#H

E

� �
;
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where H is a Hilbert space containing H0: Since U� extends V we have the operator
equation

A� C�

B� D�

� �
QðwÞ�HðwÞ�

IE�

� �
¼

HðwÞ�

FðwÞ�
� �

: ð3:13Þ

Since jjQðwÞjjo1 for wAO and jjA�jjp1 as U� is unitary, we can use the equation

from the first block row of (3.13) to solve for HðwÞ�:

HðwÞ� ¼ ðI � A�QðwÞ�Þ�1
C�:

From the second block row of (3.13) we then get

B�QðwÞ�ðI � A�QðwÞ�Þ�1
C� þ D� ¼ FðwÞ�:

Take adjoints and replace w by z to arrive at the representation (1.21) for F :
Given that FðzÞ has the form (1.21) for a unitary U; one computes

I � FðzÞFðwÞ�

¼ I � ½D þ CðI �QðzÞAÞ�1
QðzÞB�½D� þ B�QðwÞ�ðI � A�QðwÞ�Þ�1

C��

¼ I � DD� � DB�QðwÞ�ðI � A�QðwÞ�Þ�1
C� � CðI �QðzÞAÞ�1

QðzÞBD�

� CðI �QðzÞAÞ�1
QðzÞBB�QðwÞ�ðI � A�QðwÞ�Þ�1

C�: ð3:14Þ

From the fact that U is unitary we have the relations

I � DD� ¼ CC�; �DB� ¼ CA�; �BD� ¼ AC�; �BB� ¼ �I þ AA�:

Plugging this into (3.14) leaves us with

I � FðzÞFðwÞ�

¼ CC� þ CA�QðwÞ�ðI � A�QðwÞ�Þ�1
C� þ CðI �QðzÞAÞ�1

QðzÞAC�

þ CðI �QðzÞAÞ�1
QðzÞð�I þ AA�ÞQðwÞ�ðI � A�QðwÞ�Þ�1

C�

¼ CðI �QðzÞAÞ�1½ðI �QðzÞAÞðI � A�QðwÞ�Þ þ ðI �QðzÞAÞA�QðwÞ�

þ QðzÞAðI � A�QðwÞ�Þ �QðzÞQðwÞ� þQðzÞAA�QðwÞ��

� ðI � A�QðwÞ�Þ�1
C�

¼ CðI �QðzÞAÞ�1ðI �QðzÞQðwÞ�ÞðI � A�QðwÞ�Þ�1
C� ð3:15Þ
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and representation (1.16) holds with HðzÞ ¼ CðI �QðzÞAÞ�1: A similar argument

can be used to show that the representation (1.18) holds with GðzÞ ¼ ðI �
AQðzÞÞ�1

B and that (1.19) holds with this choice of HðzÞ and GðzÞ: Thus we have
also shown that ð5Þ ) ð2Þ; (3) and (4) in Theorem 1.5. &

Proof of ð5Þ ) ð1Þ in Theorem 1.5. Assume that F : O/LðE;E�Þ has realization
(1.21) for all zAO for some unitary U : As jjQðzÞjjo1 for zAO and jjAjjp1; the

inverse ðI �QðzÞAÞ�1 is well defined as the sum of the geometric series

ðI �QðzÞAÞ�1 ¼
XN
k¼0

ðQðzÞAÞk

and hence F has a natural extension to all of DQ given by

FðzÞ ¼ D þ CðI �QðzÞAÞ�1
QðzÞB ðzADQÞ:

Similarly, if T ¼ ðT1;y;TnÞ is an n-tuple of commuting operators on a Hilbert
space K for which QðTÞALðCq#K;Cp#KÞ has jjQðTÞjjo1; by the same
argument, the operator SðTÞALðK#E;K#E�Þ given by

SðTÞ ¼ ðIK#DÞ þ ðIK#CÞðICp#K#H � ðQðTÞ#IHÞðIK#AÞÞ�1

	 ðQðTÞ#IHÞðIK#BÞ

is well defined. Moreover we see that SðTÞ has the form

SðTÞ ¼ D0 þ C0ðI � XA0Þ�1
XB0;

where X ¼ QðTÞ#IH is a strict contraction and where

U 0 ¼
IK#A IK#B

IK#C IK#D

� �
:

Cq#K#H

K#E

� �
/

Cp#K#H

K#E�

� �
is unitary. As has been pointed out and used in [8] as well as many other places,
computation (3.14)–(3.15) is more general than noted there; what is actually shown

is: If U ¼ A
C

B
C

� �
: H"E/H0"E� is unitary and XALðH0;HÞ is a strict

contraction, then the operator

Y :¼ D þ CðIH � XAÞ�1
XBALðE;E�Þ ð3:16Þ

is well defined and satisfies

I � YY � ¼ CðI � XAÞ�1ðI � XX �ÞðI � A�X �Þ�1
C� ð3:17Þ

and hence, in particular, jjY jjp1:
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Applying this general principal with SðTÞ in place of X and U 0 in place of U ; we
arrive at the desired result that jjSðTÞjjp1:

This completes the proof of ð5Þ ) ð1Þ in Theorem 1.5. &

Completion of the proof of Theorem 1.5. We have now verified ð1Þ ) ð2Þ ) ð5Þ )
ð1Þ and along the way we have observed that ð5Þ ) ð2Þ–(4). Trivially ð4Þ ) ð2Þ; (3)
(simply focus on the diagonal block entries in (1.19)). It remains only to show
ð3Þ ) ð5Þ: This can be done by a parallel version of the ‘‘lurking isometry’’ argument
used in the proof of ð2Þ ) ð5Þ given above.

Finally, assume that SðzÞ has the form (1.22) for some unitary coupling matrix U
as in (1.20). Then, from the general principle (3.17) with Y of the form (3.16) with X

taken to be X ¼ QðzÞ; relation (1.23) follows. Relation (1.25) follows similarly (with

U� in place of U and with X ¼ QðzÞ�). Relation (1.24) is straightforward algebra:

SðzÞ � SðwÞ ¼CðI �QðzÞAÞ�1
QðzÞB � CðI �QðwÞAÞ�1

QðwÞB

¼CðI �QðzÞAÞ�1½QðzÞðI � AQðwÞÞ

� ðI �QðzÞAÞQðwÞ�ðI � AQðwÞÞ�1
B

¼ CðI �QðzÞAÞ�1½QðzÞ �QðwÞ�ðI � AQðwÞÞ�1
B:

This completes the proof of Theorem 1.5. &

4. The solvability criterion in Theorems 1.10 and 1.16

Solvability criteria for interpolation Problems 1.7–1.9 were given in Theorem 1.10
in terms of positive definite kernels satisfying certain Stein identities. However, these
solvability criteria can be formulated in terms similar to those in Theorem 1.5.
Moreover, in certain situations these alternative formulations are more convenient to
apply.

Theorem 4.1. Suppose that we are given subsets OL and OR of DQ and data functions

a; c; b; d as in (1.38) and (1.40). Then:

ð10Þ Problem 1.7 has a solution if and only if there exist a Hilbert space H and an

LðCp#H;ELÞ-valued function

RðzÞ ¼ ½R1ðzÞ ? RpðzÞ� ð4:1Þ

defined on OL so that

RðzÞ ICp#H �QðzÞQðwÞ�ð ÞRðwÞ� ¼ aðzÞ�aðwÞ � cðzÞ�cðwÞ ð4:2Þ

for z;wAOL:
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ð20Þ Problem 1.8 has a solution if and only if there exist a Hilbert space H and an

LðCq#H;ERÞ-valued function

DðzÞ ¼
D1ðzÞ
^

DqðzÞ

264
375 ð4:3Þ

defined on O so that

DðzÞ�ðICq#H �QðzÞ�QðwÞÞDðwÞ ¼ bðzÞ�bðwÞ � dðzÞ�dðwÞ ð4:4Þ

for z;wAOR:
ð30Þ Problem 1.9 has a solution if and only if there exist a Hilbert space H and

functions RðzÞ and DðzÞ as in (4.1) and (4.3), so that

RðxLÞ
DðxRÞ�QðxRÞ�
� �

RðmLÞ� QðmRÞDðmRÞ½ �

�
RðxLÞQðxLÞ

DðxRÞ�
� �

½QðmLÞ�RðmLÞ� DðmRÞ�

¼
aðxLÞ�

dðxRÞ�
� �

½aðmLÞ dðmRÞ� �
cðxLÞ�

bðxRÞ�
� �

½cðmLÞ bðmRÞ� ð4:5Þ

for all xL; mLAOL and xR; mRAOR:

Proof. The equivalence of the various statements in Theorem 4.1 to the respective
corresponding statements in Theorem 1.10 is based on a simple observation that
positive kernels KL; KR and K of the special form (1.53) with factorizations

KLðx; mÞ ¼
R1ðxÞ
^

RpðxÞ

264
375 R1ðmÞ� ? RpðmÞ�
� �

;

KRðx; mÞ ¼
D1ðxÞ�

^

DqðxÞ�

264
375½D1ðmÞ ? DqðmÞ� ð4:6Þ

and

KðxL; xR; mL; mRÞ ¼ TðxL; xRÞ�TðmL; mRÞ;

where

TðmL; mRÞ ¼ ½R1ðmLÞ� ? RpðmLÞ� D1ðmRÞ ? DqðmRÞ�
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satisfy Stein equations (1.50) (respectively, (1.51) and (1.52)) if and only if the RðzÞ
and DðzÞ constructed from these representation via formulas (4.1) and (4.3) are
subject to equalities (4.2) (respectively, (4.4) and (4.5)). &

Now we make explicit how the various parts of Theorems 1.10 and 1.16 can be
reduced to part (3) of Theorem 1.16 and then we will establish the solution criterion
for Problem 1.15 given in part (3) of Theorem 1.16.

As was observed in the Introduction, the left interpolation problem (Problem 1.7)
is the special case of the bitangential interpolation problem (Problem 1.9) where

OR ¼ | and the right interpolation problem (Problem 1.8) is the special case of the

bitangential interpolation problem (Problem 1.9) where OL ¼ |: From these
observations we see immediately that parts (1) and (2) of Theorem 1.10 are
specializations of part (3) of Theorem 1.10. Similarly, parts (1) and (2) of Theorem
1.16 are specializations of part (3) of Theorem 1.16 corresponding to the respective

cases OR ¼ | and OL ¼ |: Moreover, it is not difficult to see that part (3) of Theorem
1.10 is an immediate consequence of part (3) of Theorem 1.16. Indeed, given an
interpolation data set a; c; b and d for Problem 1.9 as in (1.38) and (1.40) and a
function SASAQðE;E�Þ; use (1.59)–(1.61) to define additional data functions

Cjcðx; mÞ; Ljcðx; mÞ and Fjcðx; mÞ and thereby generate a data set for Problem 1.15.

Then trivially, S solves Problem 1.9 if and only if S solves Problem 1.15. The
solution criterion for Problem 1.15 in part (3) of Theorem 1.16, with the extraneous
interpolation data Cjcðx; mÞ; Ljcðx; mÞ and Fjcðx; mÞ ignored, then gives the solution

criterion for solvability of Problem 1.9 in part (3) of Theorem 1.10. We conclude: to

prove all parts of Theorems 1.10 and 1.16, we need only to prove part (3) of Theorem

1.16.

Proof of Theorem 1.16. (3) We start with the necessity part. Let S be a solution of
Problem 1.15, that is let relations (1.38), (1.40) and (1.59)–(1.61) be in force, where
H1ðzÞ;y;HpðzÞ; G1ðzÞ;y;GqðzÞ are functions arising in representations (1.16) and

(1.18) (with S in place of F ) associated with S: By Theorem 1.5 and Remark 1.6, we
know that (1.49) holds (with S in place of F ) with the kernel K factored as in (1.36),
i.e., with

KðxL; xR; mL; mRÞ ¼ TðxL; xRÞ�TðmL; mRÞ; ð4:7Þ

where, according to (1.37),

TðmL; mRÞ ¼ ½H1ðmLÞ� ? HpðmLÞ� G1ðmRÞ ? GqðmRÞ�:

Let us now define a kernel

KðxL; xR; mL; mRÞ ¼
KLðxL; mLÞ KLRðxL; mRÞ

KLRðmL; xRÞ� KRðxR; mRÞ

� �
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on ðOL 	 ORÞ 	 ðOL 	 ORÞ by

KðxL; xR; mL; mRÞ ¼
aðxLÞ� 0

0 bðxRÞ�
� �

KðxL; xR; mL; mRÞ
aðmLÞ 0

0 bðmRÞ

� �
;

ð4:8Þ

or equivalently,

KðxL; xR; mL; mRÞ ¼ TðxL; xRÞ�TðmL; mRÞ; ð4:9Þ

where we have set

TðmL; mRÞ

¼ ½H1ðmLÞ�aðmLÞ ? HpðmLÞ�aðmLÞ G1ðmRÞbðmRÞ ? GqðmRÞbðmRÞ�:
ð4:10Þ

From the factored forms (4.8) and (4.7) of K and K we see that K is a positive. We
also read off from (4.8) together with (4.10) that KðxL; xR; mL; mRÞ is alternatively
given in terms of the interpolation data Cjc; Ljc and Fjc as in (1.55)–(1.57). Finally,

by restricting the Stein equation (1.49) (with S in place of F ) to xL; mLAOL and

xR; mRAOR and multiplying the result on the left by aðxLÞ�
0

0
bðxRÞ�

h i
and on the right by

aðmLÞ
0

0
bðmRÞ

h i
; we see that KðxL; xR; mL; mRÞ satisfies the Stein equation (1.52). In this

way we see the necessity of the solvability criterion in Theorem 1.10.
To prove the sufficiency part, we assume that the kernel K of the form (1.53) with

the block entries expressed in terms of interpolation data as in (1.55)–(1.57), is
positive on ðOL 	 ORÞ 	 ðOL 	 ORÞ and satisfies the Stein equation (1.52). We fix a
factorization

KðxL; xR; mL; mRÞ ¼ TðxL; xRÞ�TðmL; mRÞ ð4:11Þ

of K with an operator valued function T decomposed conformally with (4.10)

TðmL; mRÞ ¼ ½R1ðmLÞ� ? RpðmLÞ� D1ðmRÞ ? DqðmRÞ�;
ð4:12Þ

where

R1;y;Rp : OL/LðH0;ELÞ; D1;y;Dq : OR/LðER;H
0Þ

and H0 is an auxiliary Hilbert space, and define functions R and D via formulas (4.1)
and (4.3). As it was explained in the proof of Theorem 4.1, these functions satisfy
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identity (4.5), which can be written equivalently as

RðxLÞ cðxLÞ�

DðxRÞ�QðxRÞ� bðxRÞ�
� �

RðmLÞ� QðmRÞDðmRÞ
cðmLÞ bðmRÞ

� �

¼
RðxLÞQðxLÞ aðxLÞ�

DðxRÞ� dðxRÞ�
� �

QðmLÞ�RðmLÞ� DðmRÞ
aðmLÞ dðmRÞ

� �
: ð4:13Þ

If we set

D ¼
_ RðmLÞ

�
QðmRÞDðmRÞ

cðmLÞ bðmRÞ

� �
eL

eR

� �
; mLAOL; mRAOR; eLAEL; eRAER

� �
;

R ¼
_ QðmLÞ�RðmLÞ� DðmRÞ

aðmLÞ dðmRÞ

� �
eL

eR

� �
; mLAOL; mRAOR; eLAEL; eRAER

� �
;

we conclude from (4.13) that the formula

V :
RðmLÞ� QðmRÞDðmRÞ
cðmLÞ bðmRÞ

� �
eL

eR

� �
/

QðmLÞ�RðmLÞ� DðmRÞ
aðmLÞ dðmRÞ

� �
eL

eR

� �

extends by linearity to define an isometry from D onto R: Extend V to a unitary
operator

U ¼
A B

C D

� �
:

Cp#H

E

� �
/

Cq#H

E�

� �
;

where H is a Hilbert space containing H0: We will show that the characteristic
function of the unitary Q-colligation U

SðzÞ ¼ D þ C ICp#H �QðzÞAð Þ�1
QðzÞB ð4:14Þ

is a solution of Problem 1.15. By Theorem 1.5, S belongs to the class SAQðE;E�Þ
and thus, it remains to show that S satisfies interpolation conditions (1.39), (1.41)
and (1.59)–(1.61).

To this end, we note that since U extends V; we have

A B

C D

� �
RðmLÞ

�
QðmRÞDðmRÞ

cðmLÞ bðmRÞ

� �
¼

QðmLÞ
�
RðmLÞ

�
DðmRÞ

aðmLÞ dðmRÞ

� �
and since U is unitary, we have also

A� C�

B� D�

� �
QðmLÞ�RðmLÞ� DðmRÞ

aðmLÞ dðmRÞ

� �
¼

RðmLÞ� QðmRÞDðmRÞ
cðmLÞ bðmRÞ

� �
:
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Thus,

A�QðmLÞ�RðmLÞ� þ C�aðmLÞ ¼ RðmLÞ�; ð4:15Þ

B�QðmLÞ�RðmLÞ� þ D�aðmLÞ ¼ cðmLÞ; ð4:16Þ

AQðmRÞDðmRÞ þ BbðmLÞ ¼ DðmRÞ; ð4:17Þ

CQðmRÞDðmRÞ þ DbðmRÞ ¼ dðmRÞ: ð4:18Þ

It follows from (4.15) that

RðmLÞ
� ¼ ðICp#H � A�QðmLÞ

�Þ�1
C�aðmLÞ ð4:19Þ

which, when substituted into (4.16), gives

D�aðmLÞ þ B�QðmLÞ
�ðICp#H � A�QðmLÞ

�Þ�1
C�aðmLÞ ¼ cðmLÞ:

Since mL is an arbitrary point in OL; the latter equality coincides with (1.39), due to
(4.14). Furthermore, it follows from (4.17) that

DðmRÞ ¼ ðICq#H � AQðmRÞÞ�1
BbðmRÞ; ð4:20Þ

which being substituted into (4.18), leads to

DbðmRÞ þ CQðmRÞðICq#H � AQðxRÞÞ�1
BbðmRÞ ¼ dðmRÞ:

This equality coincides with (1.41), due to (4.14). It remains to show that it satisfies
also conditions (1.59)–(1.61). But it follows from (1.26), (4.19) and (4.20) that

RjðxLÞ ¼ HjðxLÞ�aðxLÞ ð j ¼ 1;y; pÞ;

DkðxRÞ ¼ GkðxRÞbðxRÞ ðk ¼ 1;y; qÞ

and these last relations together with factorization (4.9) imply (1.59)–(1.61).&

As an illustration of the solvability criterion, we now show how Corollary 1.11
follows from Theorem 1.10.

Proof of Corollary 1.11. We formulate the scalar problem as a left tangential
problem as follows. We take E ¼ E� ¼ EL ¼ C: We take OL to be the finite set

OL ¼ fz1;y; zNgCDQ:
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For i ¼ 1;y;N; set aðziÞ ¼ 1 and cðziÞ ¼ %wi: Then the interpolation conditions
(1.39) reduce to

SðziÞ ¼ wi for i ¼ 1;y;N:

The solution criterion in Theorem 1.10 calls for a positive kernel KL : OL 	
OL/LðCp#CÞDCp	p: Let us define numbers gk;c;k0;c0 by

gk;c;k0;c0 ¼ KL;k;k0 ðzc; zc
0 Þ:

Now it is straightforward to verify that the Stein equation (1.50) collapses to the
system of equations (1.54), and Corollary 1.11 follows immediately from Theorem
1.10. &

5. Toeplitz Corona theorem

Suppose that a1;y; ak are given functions in HNðDÞ: The corona problem asks
for conditions on fa1;y; akg so that there exist functions f1;y; fk analytic and
uniformly bounded on D so that

a1 f1 þ?þ akfk ¼ 1: ð5:1Þ

The Toeplitz corona theorem (see [46] and [31]) asserts that there exist such

f1;y; fkAHNðDÞ satisfying (5.1) with supzAD fj f1ðzÞj2 þ?þ jfkðzÞj2gp 1
d2 (i.e., with

F ¼ ½ f1 ? fk�?A1
dSDðC;CpÞ) if and only if

Ta1
T�

a1
þ?þ Tak

T�
ak
Xd2I40; ð5:2Þ

where Tai
: hðzÞ-aiðzÞhðzÞ is the analytic Toeplitz operator on the Hardy space

H2ðDÞ with symbol ai for i ¼ 1;y; k: Equivalently, by looking at the gramian of the
left-hand side of (5.2) with respect to an arbitrary finite collection of reproducing

kernel functions kzi
ðzÞ ¼ 1

1�z%zi
in H2ðDÞ; we see that condition (5.2) alternatively can

be expressed as

XN

i; j¼1

a1ðziÞa1ðzjÞ þ?þ akðziÞakðzjÞ � d2

1 � zi %zj
%cicjX0

for all complex scalars c1;y; cN and all points z1;y; zNAD for N ¼ 1; 2; 3;y; i.e.,
the function

kðz;wÞ ¼ a1ðzÞa1ðwÞ þ?þ anðzÞanðwÞ � d2

1 � z %w
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is a positive kernel on D	D: The Carleson corona theorem (see [23]), on the other
hand, asserts: there exists f1;y; fkAHNðDÞ with

max
1pipk

sup
jzjo1

jfiðzÞjpMðdÞoN

if and only if

inf
jzjo1

fja1ðzÞj þ?þ jakðzÞjgXd40:

Unlike as in the formulation of the Toeplitz corona theorem, the relation between d
and MðdÞ is rather complicated in the Carleson corona theorem.

As explained in the Introduction, for the case of the unit disk (D ¼ DQ with n ¼ 1

and Qðz1Þ ¼ z1), the Schur class SDðE;E�Þ and the Schur–Agler class SADðE;E�Þ
coincide. Thus the conclusion of the Toeplitz corona theorem can equivalently be

expressed as F ¼ ½ f1 ? fk�?A1
dSAD C;Cpð Þ:

In this section we present an extension of the Toeplitz corona theorem to the case
where the unit disk D is replaced by a domain of the general type DQ for a matrix

polynomial Q: The result is as follows.

Theorem 5.1. Suppose that we are given analytic functions a1;y; ak uniformly

bounded on a domain DQ; and a positive number d40: Then there exist bounded,

analytic functions f1;y; fk on DQ such that

a1ðzÞf1ðzÞ þ?þ akðzÞfkðzÞ ¼ 1 for all zADQ

and

F :¼ ½ f1 ? fk�?A1
dSAQðC;CkÞ

if and only if there is an auxiliary Hilbert space H and an analytic LðCp#H;CÞ-
valued function z/HðzÞ on DQ so that

a1ðzÞa1ðwÞ þ?þ akðzÞakðwÞ � d2 ¼ HðzÞðICp#H � ðQðzÞQðwÞ�Þ#IHÞHðwÞ�;

or, equivalently, there exists a positive kernel

K ¼
K11 ? K1p

^ ^

Kp1 ? Kpp

264
375 : DQ 	DQ/LðCpÞ

so that

a1ðzÞa1ðwÞ þ?þ akðzÞakðwÞ � d2 ¼
Xk

i¼1

Ki;iðz;wÞ �
Xq

c¼1

Xp

i; j¼1

½qicðzÞqjcðwÞKi; jðz;wÞ�:
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Proof. Take OL ¼ DQ; E� ¼ Ck; E ¼ EL ¼ ER ¼ C; aðzÞ ¼ ½a1ðzÞ ? akðzÞ��; cðzÞ ¼
d in Theorem 1.10 part (1). Note that SðzÞ ¼ ½s1ðzÞ ? skðzÞ�? is in the Schur–Agler

class SAQðC;CkÞ and satisfies the left interpolation condition (1.39) if and only if

FðzÞ ¼ ½ f1ðzÞ ? fkðzÞ�? is in the scaled Schur–Agler class 1
dSAQðC;CkÞ and

satisfies the corona condition

a1ðzÞf1ðzÞ þ?þ akðzÞfkðzÞ ¼ 1;

where we have set fiðzÞ :¼ 1
d siðzÞ for i ¼ 1;y; k: Thus Theorem 5.1 amounts to a

straightforward specialization of Theorem 1.10 part (1). &

Remark 5.2. For the case where DQ ¼ Dn as in Example 2.4, Theorem 5.1 appears in

[18]; the result also can be seen as an application of the commutant lifting theorem
for the polydisk obtained in [15] in a standard way (see [46]). For the case where
DQ ¼ Bn as in Example 2.1, the result does not appear explicitly in [19] but can be

derived from the commutant lifting theorem given there for multipliers for the
reproducing kernel Hilbert space associated with the positive kernel

kðz;wÞ ¼ 1

1 �/z;wSCn

on Bn: A parallel application of the commutant lifting theorem in [7] leads to an
alternative derivation of Theorem 5.1.

Remark 5.3. The Toeplitz Corona Theorem (also called the Operator Corona
Theorem) can be used as a stepping stone toward proving the Carleson corona
theorem; we refer to [49] and the references found there.
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pp. 47–66.

[3] J. Agler, J.E. McCarthy, Nevanlinna–Pick interpolation on the bidisk, J. Reine Angew. Math. 506

(1999) 191–204.

[4] J. Agler, J.E. McCarthy, Complete Nevanlinna–Pick kernels, J. Funct. Anal. 175 (2000) 111–124.

[5] D. Alpay, V. Bolotnikov, Two-sided Nevanlinna–Pick interpolation for a class of matrix-valued

functions, Z. Anal. Anwendungen 12 (2) (1993) 211–238.

[6] D. Alpay, H. Dym, On reproducing kernel spaces, the Schur algorithm, and interpolation in a general

class of domains, in: T. Ando, I. Gohberg (Eds.), Operator Theory and Complex Analysis (Sapporo,

1991), Operator Theory: Advances and Applications, Vol. OT 59, Birkhäuser-Verlag, Basel, 1992,
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