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Abstract

An interesting and recently much studied generalization of the classical Schur class is the class of contractive operator-valued
multipliers S(λ) for the reproducing kernel Hilbert space H(kd) on the unit ball Bd ⊂ Cd , where kd is the positive kernel
kd(λ, ζ ) = 1/(1 − 〈λ, ζ 〉) on B

d . The reproducing kernel space H(KS) associated with the positive kernel KS(λ, ζ ) = (I −
S(λ)S(ζ )∗) · kd(λ, ζ ) is a natural multivariable generalization of the classical de Branges–Rovnyak canonical model space. A spe-
cial feature appearing in the multivariable case is that the space H(KS) in general may not be invariant under the adjoints M∗

λj
of

the multiplication operators Mλj
:f (λ) �→ λj f (λ) on H(kd). We show that invariance of H(KS) under M∗

λj
for each j = 1, . . . , d

is equivalent to the existence of a realization for S(λ) of the form S(λ) = D + C(I − λ1A1 − · · · − λdAd)−1(λ1B1 + · · · + λdBd)

such that connecting operator U =
⎡⎢⎣

A1 B1

...
...

Ad Bd

C D

⎤⎥⎦ has adjoint U∗ which is isometric on a certain natural subspace (U is “weakly coiso-

metric”) and has the additional property that the state operators A1, . . . ,Ad pairwise commute; in this case one can take the state
space to be the functional-model space H(KS) and the state operators A1, . . . ,Ad to be given by Aj = M∗

λj
|H(KS) (a de Branges–

Rovnyak functional-model realization). We show that this special situation always occurs for the case of inner functions S (where
the associated multiplication operator MS is a partial isometry), and that inner multipliers are characterized by the existence of
such a realization such that the state operators A1, . . . ,Ad satisfy an additional stability property.
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1. Introduction

A multivariable generalization of the Szegő kernel k(λ, ζ ) = (1 − λζ̄ )−1 much studied of late is the positive kernel

kd(λ, ζ ) = 1

1 − 〈λ, ζ 〉
on B

d ×B
d where B

d = {λ = (λ1, . . . , λd) ∈ C
d : 〈λ,λ〉 < 1} is the unit ball of the d-dimensional Euclidean space C

d .
By 〈λ, ζ 〉 = ∑d

j=1 λj ζ̄j we mean the standard inner product in C
d . The reproducing kernel Hilbert space (RKHS)

H(kd) associated with kd via Aronszajn’s construction [3] is a natural multivariable analogue of the Hardy space H 2

of the unit disk and coincides with H 2 if d = 1.
For Y an auxiliary Hilbert space, we consider the tensor product Hilbert space HY (kd) := H(kd) ⊗ Y whose

elements can be viewed as Y-valued functions in H(kd). Then HY (kd) can be characterized as follows:

HY (kd) =
{
f (λ) =

∑
n∈Z

d+

fnλn: ‖f ‖2 =
∑

n∈Z
d+

n!
|n|! · ‖fn‖2

Y < ∞
}
. (1.1)

Here and in what follows, we use standard multivariable notations: for multi-integers n = (n1, . . . , nd) ∈ Z
d+ and

points λ = (λ1, . . . , λd) ∈ C
d we set

|n| = n1 + n2 + · · · + nd, n! = n1!n2! . . . nd !, λn = λ
n1
1 λ

n2
2 . . . λ

nd

d . (1.2)

By L(U,Y) we denote the space of all bounded linear operators between Hilbert spaces U and Y . The space of
multipliers Md(U,Y) is defined as the space of all L(U,Y)-valued analytic functions S on B

d such that the induced
multiplication operator

MS : f (λ) → S(λ) · f (λ) (1.3)

maps HU (kd) into HY (kd). It follows by the closed graph theorem that for every S ∈ Md(U,Y), the operator MS is
bounded. We shall pay particular attention to the unit ball of Md(U,Y), denoted by

Sd(U,Y) = {
S ∈Md(U,Y): ‖MS‖op � 1

}
.

Since S1(U,Y) collapses to the classical Schur class (of holomorphic, contractive L(U,Y)-valued functions on D),
we refer to Sd(U,Y) as a generalized (d-variable) Schur class. Characterizations of Sd(U,Y) in terms of realizations
originate to [1,11]. We recall this result in the form presented in [7].

Theorem 1.1. Let S be an L(U,Y)-valued function defined on B
d . The following are equivalent:

(1) S belongs to Sd(U,Y).
(2) The kernel

KS(λ, ζ ) = IY − S(λ)S(ζ )∗

1 − 〈λ, ζ 〉 (1.4)

is positive on B
d × B

d , i.e., there exists an operator-valued function H : B
d → L(H,Y) for an auxiliary Hilbert

space H so that KS(λ, ζ ) = H(λ)H(ζ )∗.
(3) There exist a Hilbert space X and a unitary connecting operator (or colligation) U of the form

U =
[

A B

C D

]
=

⎡⎢⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎥⎦ :
[X
U

]
→

[X d

Y

]
(1.5)

so that S(λ) can be realized in the form
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S(λ) = D + C(IX − λ1A1 − · · · − λdAd)−1(λ1B1 + · · · + λdBd)

= D + C
(
I − Z(λ)A

)−1
Z(λ)B (1.6)

where we set

Z(λ) = [λ1IX . . . λdIX ] , A =
⎡⎢⎣

A1

...

Ad

⎤⎥⎦ , B =
⎡⎢⎣

B1

...

Bd

⎤⎥⎦ . (1.7)

(4) There exist a Hilbert space X and a contractive connecting operator U of the form (1.5) so that S(λ) can be
realized in the form (1.6).

In analogy with the univariate case, a realization of the form (1.6) is called coisometric, isometric, unitary or
contractive if the operator U is respectively, coisometric, isometric, unitary or just contractive. It turns out that a more
useful analogue of “coisometric realization” appearing in the classical univariate case is not that the whole connecting
operator U∗ be isometric, but rather that U∗ be isometric on a certain subspace of X d ⊕Y .

Definition 1.2. A realization (1.6) of S ∈ Sd(U,Y) is called weakly coisometric if the adjoint U∗ :X d ⊕Y → X ⊕U
of the connecting operator is contractive and isometric on the subspace[D

Y

]
⊂
[X d

Y

]
where

D := span
{
Z(ζ )∗

(
IX − A∗Z(ζ )∗

)−1
C∗y: ζ ∈ B

d, y ∈ Y
}⊂ X d . (1.8)

Weakly coisometric realizations for S ∈ Sd(U,Y) can be constructed in certain canonical way as follows. Upon
applying Aronszajn’s construction to the kernel KS defined as in (1.4) (which is positive on B

d by Theorem 1.1),
one gets the de Branges–Rovnyak space H(KS). A weakly coisometric realization for S with the state space equal
to H(KS) (and output operator C equal to evaluation at zero on H(KS)) will be called a generalized functional-model
realization. Here we use the term generalized functional-model realization since it may be the case that the state space
H(KS) is not even invariant under the adjoints M∗

λ1
, . . . ,M∗

λd
of the multiplication operators Mλj

: f (λ) �→ λj · f (λ)

(j = 1, . . . , d) on HY (kd) and hence one cannot take the state operators A1, . . . ,Ad to be given by Aj = M∗
λj

as
one would expect from the classical case. As it was shown in [7], any function S ∈ Sd(U,Y) admits a generalized
functional-model realization. In the univariate case, this collapses to the well-known de Branges–Rovnyak functional-
model realization [17,18]. Another parallel to the univariate case is that any observable weakly coisometric realization
of a Schur-class function S ∈ Sd(U,Y) is unitarily equivalent to some generalized functional-model realization (ob-
servability is a minimality condition that is fulfilled automatically for every generalized functional-model realization).
However, in contrast to the univariate case, this realization is not unique in general (even up to unitary equivalence);
moreover, a function S ∈ Sd(U,Y) may admit generalized functional-model realizations with the same state space op-
erators A1, . . . ,Ad and different input operators Bj ’s. A curious fact is that none of the generalized functional-model
realizations for S may be coisometric.

In this paper we study another issue not present in the univariate classical case, namely the distinction between com-
mutative realizations (where the state space operators A1, . . . ,Ad in (1.6) commute with each other) versus general
realizations. Commutative realization is a natural notion that appears for example in model theory for commuting row
contractions [14]: the characteristic function of a commuting row contraction (T1, . . . , Td) is, by definition, a Schur-
class function that admits a unitary commutative realization with the state space operators T1, . . . , Td . It turns out
that not every S ∈ Sd(U,Y) can be identified as a characteristic function of a commutative row contraction; thus not
every S ∈ Sd(U,Y) admits a commutative unitary realization. Some more delicate arguments based on backward-
shift invariance in HY (kd) show that not every S ∈ Sd(U,Y) admits a commutative weakly coisometric realization
(see Theorem 3.5 below); more surprisingly, there are Schur-class functions that do not admit even contractive com-
mutative realizations (see Example 3.4 below). If the Schur-class function admits a commutative weakly coisometric
realization, then the associated de Branges–Rovnyak space H(KS) is invariant for the backward shift operators M∗
λj
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and one can arrange for a generalized functional-model realization with the additional property that the state opera-
tors A1, . . . ,Ad are given by Aj = M∗

λj
|H(KS) for j = 1, . . . , d ; we say that such a realization is a (non-generalized)

functional-model realization. The operators B1, . . . ,Bd are not defined uniquely by S(λ), A = (A1, . . . ,Ad) and C

(this is yet another distinction from the univariate case); however the nonuniqueness can be described in an explicit
way. Furthermore, any observable, commutative, weakly coisometric realization for a given S is unitarily equivalent
to exactly one functional-model realization (Theorem 3.6).

Inner functions, i.e., Schur-class multipliers S ∈ Sd(U,Y) for which the associated multiplication operator is a
partial isometry, are special in that an inner function necessarily has a commutative weakly coisometric realiza-
tion (see Theorem 3.5 below). Inner functions also play a special role as representers for (forward) shift-invariant
subspaces of HY (kd); for the case d = 1 this is the classical Beurling–Lax–Halmos theorem [13,21,22] while the
case for general d appears more recently in the work of Arveson [4,5] and of McCullough and Trent [23] (for the
general framework of a complete Nevanlinna–Pick kernel). Here we use our realization-theoretic characterization
of inner multipliers to present a new proof of the HY (kd)-Beurling–Lax theorem. The idea in this approach is to
represent the shift-invariant subspace M as the set of all HY (kd)-solutions of fairly general set of homogeneous
interpolation conditions, and then to construct a realization U = [

A B
C D

]
for S(λ) from the operators defining the ho-

mogeneous interpolation conditions. For the case d = 1, this approach can be found in [9] for the rational case and
in [10] for the non-rational case, done there in the more complicated context where the shift-invariant subspace M
is merely contained in the Y-valued L2 space over the unit circle T and is not necessarily contained in the Hardy
space HY (k1) = H 2

Y . We also use our analysis of the nonuniqueness of the input operator B in weakly coisometric
realizations to characterize the nonuniqueness in the choice of inner-function representer S for a given shift-invariant
subspace M (see Theorem 5.5).

A more general version of the HY (kd)-Beurling–Lax theorem, where the subspace M is only contractively in-
cluded in HY (kd) and the representer is not necessarily an inner Schur-class multiplier, appears in the work of
de Branges–Rovnyak [17,18] for the case d = 1 and of the authors [6] for the case of general d . The realization
produced by our approach here (working with M⊥ rather than directly with M) is more explicit for the situation
where M is presented as the solution set for a homogeneous interpolation problem. Extensions of these ideas to a
noncommutative-variable Fock-space setting appear in [8].

The paper is organized as follows. After the present introduction, Section 2 recalls needed preliminaries from our
earlier papers [6,7] concerning weakly coisometric realizations (see Definition 1.2 above). Section 3 collects the results
concerning such realizations where the collection of state operators A1, . . . ,Ad is commutative. Section 4 specializes
the general theory to the case of inner functions. The final Section 5 discusses connections with characteristic functions
and operator-model theory for commutative row contractions, a topic of recent work of Bhattacharyya, Eschmeier,
Sarkar and Popescu [14–16,27,28], where some extensions to more general settings are also addressed.

2. Weakly coisometric realizations

Weakly coisometric realizations of Schur-class functions are closely related to range spaces of observability opera-
tors appearing in the context of Fornasini–Marchesini-type linear systems with evolution along the integer lattice Z

d .
Let A = (A1, . . . ,Ad) be a d-tuple of operators in L(X ). If C ∈ L(X ,Y), then the pair (C,A) is said to be an output
pair. Such an output pair is said to be contractive if

A∗
1A1 + · · · + A∗

dAd + C∗C � IX , (2.1)

to be isometric if equality holds in the above relation, and to be output-stable if the associated observability operator

OC,A : x �→ C
(
IX − Z(λ)A

)−1
x = C(I − λ1A1 − · · · − λdAd)−1x (2.2)

(where Z(λ) and A are defined as in (1.7)) maps X into HY (kd). As it was shown in [6], any contractive pair (C,A) is
output stable and moreover, the corresponding observability operator OC,A :X → HY (kd) is a contraction. An output
stable pair (C,A) is called observable if the observability operator OC,A is injective, i.e.,

C
(
IX − Z(λ)A

)−1
x ≡ 0 ⇒ x = 0.

Given an output stable pair (C,A), the kernel
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KC,A(λ, ζ ) := C
(
IX − Z(λ)A

)−1(
IX − A∗Z(ζ )∗

)−1
C∗. (2.3)

is positive on B
d ×B

d ; let H(KC,A) denote the associated RKHS. We recall (see [3]) that any positive kernel (λ, ζ ) �→
K(λ, ζ ) ∈ L(Y) on a set Ω × Ω (so λ, ζ ∈ Ω) gives rise to a RKHS H(K) consisting of Y-valued functions on Ω

with the defining property: for each ζ ∈ Ω and y ∈ Y , the Y-valued function Kζ y(λ) := K(λ, ζ )y is in H(K) and has
the reproducing property

〈f,Kζ y〉H(K) = 〈
f (ζ ), y

〉
Y for all y ∈ Y, f ∈ H(K).

The following result from [6] gives the close connection between spaces of the form H(KC,A) and ranges of observ-
ability operators.

Theorem 2.1. (See [6, Theorem 3.20].) Let (C,A) be a contractive pair with C ∈ L(X ,Y) and with associated
positive kernel KC,A given by (2.3) and the observability operator OC,A given by (2.2). Then:

(1) The reproducing kernel Hilbert space H(KC,A) is characterized as

H(KC,A) = RanOC,A

with the lifted norm given by ‖OC,Ax‖H(KC,A) = ‖Qx‖X where Q is the orthogonal projection onto (KerOC,A)⊥.
(2) The operator OC,A is a contraction of X into H(KC,A). It is an isometry if and only if the pair (C,A) is observ-

able.
(3) The space H(KC,A) is contractively included in the Arveson space HY (kd); it is isometrically included in HY (kd)

if and only if OC,A (as an operator from X into HY (kd)) is a partial isometry.

If S is realized as in (1.6) and U is the connecting operator given by (1.5), then the associated kernels KS and KC,A
(defined in (1.4) and (2.3), respectively) are related by the following easily verified identity:

KS(λ, ζ ) =: KC,A(λ, ζ ) + [C(I − Z(λ)A)−1Z(λ) I ]
I − UU∗

1 − 〈λ, ζ 〉
[

Z(ζ )∗(IX − A∗Z(ζ )∗)−1C∗

I

]
(2.4)

and then it is easily shown (see Proposition 1.5 in [7] for details) that the second term on the right vanishes if and only
if U∗ is isometric on the space D⊕Y defined as in Definition 1.2. This observation leads us to the following intrinsic
kernel characterization as to when a given contractive realization is weakly coisometric.

Proposition 2.2. A contractive realization (1.6) of an S ∈ Sd(U,Y) is weakly coisometric if and only if the kernel
KS(λ, ζ ) associated with S via (1.4) can alternatively be written as

KS(λ, ζ ) = KC,A(λ, ζ ) (2.5)

where KC,A is given by (2.3).

Proposition 2.2 states that once a contractive realization U = [
A B
C D

]
of S is such that (2.5) holds, then this realization

is weakly coisometric. The next result asserts that equality (2.5) itself guarantees the existence of weakly coisometric
realizations for S with preassigned C and A = (A1, . . . ,Ad).

Theorem 2.3. (See [7, Theorem 2.4].) Suppose that a Schur-class function S ∈ Sd(U,Y) and a contractive pair (C,A)

are such that (2.5) holds and let D := S(0). Then there exists an operator B : U → X d so that the operator U of the
form (1.5) is weakly coisometric and S can be realized as in (1.6).

The pair (C,A) for a weakly coisometric realization can be constructed in a certain canonical way. Recall that
the de Branges–Rovnyak space H(KS) associated with S ∈ Sd(U,Y) is the reproducing kernel Hilbert space with
reproducing kernel KS defined as in (1.4).

Theorem 2.4. (See [7, Theorem 3.20].) Let S ∈ Sd(U,Y) and let H(KS) be the associated de Branges–Rovnyak
space. Then:
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(1) There exist bounded operators Aj : H(KS) →H(KS) such that

f (λ) − f (0) =
d∑

j=1

λj (Ajf )(λ) for every f ∈H(KS) and λ ∈ B
d, (2.6)

and

d∑
j=1

‖Ajf ‖2
H(KS) � ‖f ‖2

H(KS) − ∥∥f (0)
∥∥2
Y . (2.7)

(2) There is a weakly coisometric realization (1.6) for S with state space X equal to H(KS) with the state operators
A1, . . . ,Ad from part (1) and the operator C : H(KS) → Y defined by

Cf = f (0) for all f ∈ H(KS). (2.8)

Equality (2.6) means that the operator tuple A = (A1, . . . ,Ad) solves the Gleason problem [19] for H(KS). Let us
say that A is a contractive solution of the Gleason problem if in addition relation (2.7) holds for every f ∈ H(KS)

or, equivalently, if the pair (C,A) is contractive where C : H(KS) → Y is defined as in (2.8). Theorem 2.4 shows
that any contractive solution A = (A1, . . . ,Ad) of the Gleason problem for H(KS) gives rise to a weakly coisometric
realization for S ∈ Sd(U,Y) (not unique, in general). Let us call any such weakly coisometric realization a generalized
functional-model realization of S(λ). We note that any generalized functional-model realization of S is observable and
that the formula

KS(·, ζ )y = (
I − A∗Z(ζ )∗

)−1
C∗y

(
y ∈ Y, ζ ∈ B

d
)

(2.9)

is valid for any generalized functional-model realization. Furthermore, if

U =
[

A B

C D

]
:
[H(KS)

U

]
→

[H(KS)d

Y

]
(2.10)

is a generalized functional model realization for an S ∈ Sd(U,Y), then the space D introduced in (1.8) can be de-
scribed in the following explicit functional form:

D = span
{
Z(ζ )∗KS(·, ζ )y: ζ ∈ B

d , y ∈ Y
}
. (2.11)

Then a simple calculation shows that D⊥ = H(KS)d �D can be characterized in similar terms as

D⊥ = {
h ∈H(KS)d : Z(λ)h(λ) ≡ 0

}
. (2.12)

3. Realizations with commutative state-space operators

The class of Schur-class functions admitting unitary realizations of the form (1.6) with commutative state-space
tuple A = (A1, . . . ,Ad) is a natural object appearing in the model theory for commutative row contractions (see [14]):
the characteristic function of a commutative row contraction (see formula (6.1) below) is a Schur-class function of this
type (subject to an additional normalization). In the commutative context, a key role is played by the commuting d-
tuple Mλ := (Mλ1 , . . . ,Mλd

) consisting of operators of multiplication by the coordinate functions of C
d which will be

called the shift (operator-tuple) of HY (kd), whereas the commuting d-tuple M∗
λ := (M∗

λ1
, . . . ,M∗

λd
) consisting of the

adjoints of Mλj
’s (in the metric of HY (kd)) will be referred to as to the backward shift. By the characterization (1.1)

and in notation (1.2), the monomials n!
|n|!λ

n form an orthonormal basis in H(kd) and then a simple calculation shows
that

M∗
λj

λm = mj

|m|λ
m−ej (mj � 1) and M∗

λj
λm = 0 (mj = 0) (3.1)

where m = (m1, . . . ,md) and ej is the j th standard coordinate vector of C
d . Some properties of the shift tuple M∗

λ
needed in the sequel are listed below (for the proof, see e.g. [6, Proposition 3.12]). In the formulation and in what
follows, we use multivariable power notation
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An := A
n1
1 A

n2
2 . . .A

nd

d

for any d-tuple A = (A1, . . . ,Ad) of commuting operators on a space X and any n = (n1, . . . , nd) ∈ Z
d+.

Proposition 3.1. Let M∗
λ be the d-tuple of backward shifts on HY (kd) and let

G : f �→ f (0)
(
f ∈ HY (kd)

)
(3.2)

be the operator of evaluation at the origin. Then:

(1) For every f ∈HY (kd) and every λ ∈ B
d we have

f (λ) − f (0) =
d∑

j=1

λj

(
M∗

λj
f
)
(λ). (3.3)

(2) The pair (G,M∗
λ) is isometric and the associated observability operator is the identity operator

OG,M∗
λ
= IHY (kd ). (3.4)

(3) The d-tuple M∗
λ is strongly stable, that is,

lim
N→∞

∑
n∈Z

d+: |n|=N

N !
n!
∥∥(M∗

λ

)n
f
∥∥2
HY (kd )

= 0 for every f ∈ HY (kd). (3.5)

We will also need the commutative analogue of Theorem 2.1 (see [6, Theorem 3.15] for the proof).

Theorem 3.2. Let (C,A) be a contractive pair such that C ∈ L(X ,Y) and the d-tuple A = (A1, . . . ,Ad) ∈ L(X )d is
commutative. Let KC,A be the associated kernel given by (2.3). Then:

(1) The reproducing kernel Hilbert space H(KC,A) is invariant under M∗
λj

for j = 1, . . . , d (M∗
λ-invariant) and the

difference-quotient inequality

d∑
j=1

∥∥M∗
λj

f
∥∥2
H(KC,A)

� ‖f ‖2
H(KC,A) − ∥∥f (0)

∥∥2
Y

holds for every f ∈ H(KC,A).
(2) The space H(KC,A) is contractively included in HY (kd). The inclusion is isometric exactly when the pair (C,A)

is isometric

IX − A∗
1A1 − · · · − A∗

dAd = C∗C, (3.6)

and A is strongly stable

lim
N→∞

∑
n∈Z

d+: |n|=N

N

n!
∥∥Anx

∥∥2
X = 0 for all x ∈ X . (3.7)

If one drops the requirement of the connecting operator U being contractive, constructing a commutative realization
is not an issue not only for Schur-class functions, but even for functions from H(kd) ⊗ L(U,Y). Indeed, for an
S ∈ H(kd) ⊗L(U,Y), let

C = G, D = S(0), Aj = M∗
λj

, Bj = M∗
λj

MS |U (j = 1, . . . , d)

where MS |U : u �→ S(λ)u and G : HY (kd) → Y is given by (3.2). Pick a vector u ∈ U and note that an account of
equality (3.4) and equality (3.3) applied to f (λ) = S(λ)u,
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(
D + C

(
I − Z(λ)A

)−1
Z(λ)B

)
u = S(0)u +OG,M∗

λ

(
Z(λ)Bu

)
= S(0)u + Z(λ)Bu

= S(0)u +
d∑

j=1

λj

(
M∗

λj
Su
)
(λ)

= S(0)u + S(λ)u − S(0)u = S(λ)u

and thus, U = [
A B
C D

]
is a realization for S. This realization is commutative and observable. However, it is not contrac-

tive: a simple calculation based again on identity (3.3) shows that for U as above and

g =
[

f

u

]
∈
[HY (kd)

U

]
,

we have

‖g‖2 − ‖Ug‖2 = ‖f ‖2
HY (kd ) + ‖u‖2

U − ‖f + Su‖2
HY (kd )

which cannot be nonnegative for all f ∈HY (kd) and u ∈ U unless S(λ) ≡ 0.
Since our primary object of interest are Schur-class functions for which norm-constrained (contractive, unitary and

all intermediate) realizations do exist (by Theorem 1.1), it is natural to construct commutative realizations of the same
types. Note that Theorem 1.1 and the more specific Theorem 2.4 give no clue as to when and how one can achieve
such a realization of a given S ∈ Sd(U,Y). The next proposition shows that there are Schur-class functions which do
not have a commutative contractive realization.

Proposition 3.3. Let S ∈ Sd(U,U) be such that the associated de Branges–Rovnyak space H(KS) is finite-
dimensional and is not M∗

λ-invariant. Then S does not have a commutative contractive realization.

Proof. Assume that S admits a commutative realization (1.6) with a contractive U = [
A B
C D

]
. Since U is contractive,

the formula (2.4) for KS can be written in the form

KS(λ, ζ ) = KC,A(λ, ζ ) + S1(λ)S1(ζ )∗

1 − 〈λ, ζ 〉
where S1 ∈ Sd(F ,U) is a Schur-class function with an appropriately chosen coefficient space F (the explicit for-
mula for S1 is not that important). If S1 �≡ 0, then H(KS) contains the space S1HF (kd) and therefore is infinite
dimensional which contradicts one of the assumptions about H(KS). If S1 ≡ 0, then KS(λ, ζ ) = KC,A(λ, ζ ) and
therefore H(KS) = H(KC,A). Since the tuple A is commutative, the space H(KS) = H(KC,A) is M∗

λ-invariant (by
Theorem 3.2) which contradicts another assumption about H(KS). �
Example 3.4. For a concrete example of a Schur-class function satisfying the assumptions in Proposition 3.3, let

S(λ1, λ2) = 1

4 − λ1λ2

[
2
√

3λ1
√

3λ2
2 2 − 2λ1λ2 −3λ2√

3λ2
1 2

√
3λ2 −3λ1 2 − 2λ1λ2

]
.

A straightforward calculation gives

KS(λ, ζ ) := I2 − S(λ)S(ζ )∗

1 − λ1ζ̄1 − λ2ζ̄2
= 3

(4 − λ1λ2)(4 − ζ̄1ζ̄2)

[
2 λ2

λ1 2

][
2 ζ̄1

ζ̄2 2

]
.

Thus the kernel KS(λ, ζ ) is positive on B
2 × B

2 and S ∈ S2(C
4,C

2). The associated de Branges–Rovnyak space
H(KS) is spanned by rational functions

f1(λ) = 4

4 − λ1λ2

[
2

λ1

]
and f2(λ) = 4

4 − λ1λ2

[
λ2

2

]
.

Furthermore, since by (3.1) we have

M∗
λ1

(
λ

n1
1 λ

n2
2

)= n1
λ

n1−1
1 λ

n2
2 ,
n1 + n2
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it follows that

M∗
λ1

(
4λ1

4 − λ1λ2

)
= M∗

λ1

( ∞∑
j=0

λ
j+1
1 λ

j

2

4j

)
=

∞∑
j=0

j + 1

2j + 1

(
λ1λ2

4

)j

. (3.8)

The latter function is rational if and only if the single-variable function F(λ) =∑∞
j=0

j+1
2j+1λj is rational. By the

well-known Kronecker theorem, F in turn is rational if and only if the associated infinite Hankel matrix

H = [si+j ]∞i,j=0 where sk = k + 1

2k + 1

has finite rank. However one can check that the finite Hankel matrices Hn = [si+j ]ni,j=0 have full rank for all

n = 0,1,2, . . . and hence F(λ) is not rational. We conclude that the function on the right-hand side in (3.8) is not
rational. Now it follows that M∗

λ1
f1 does not belong to H(KS). Therefore H(KS) is not invariant under M∗

λ1
and since

dimH(KS) = 2 < ∞, the function S does not admit contractive commutative realizations by Proposition 3.3.

A characterization of which Schur-class functions do admit contractive commutative realizations will be given in
Theorem 3.10 below. The next result gives a characterization of Schur-class functions that admit weakly coisometric
commutative realizations.

Theorem 3.5. A Schur-class function S ∈ Sd(U,Y) admits a commutative weakly coisometric realization if and only
if the following conditions hold:

(1) the associated de Branges–Rovnyak space H(KS) is M∗
λ-invariant, and

(2) the inequality

d∑
j=1

∥∥M∗
λj

f
∥∥2
H(KS)

� ‖f ‖2
H(KS) − ∥∥f (0)

∥∥2
Y holds for all f ∈ H(KS). (3.9)

Proof. To prove necessity, suppose that S ∈ Sd(U,Y) admits a weakly coisometric realization (1.6). As noted in
Proposition 2.2, it follows that H(KS) = H(KC,A). Since A is commutative, Theorem 3.2 implies that the space
H(KS) = H(KC,A) is M∗

λ-invariant with inequality (3.9) holding.
To prove sufficiency, suppose that S ∈ Sd(U,Y) is such that H(KS) is M∗

λ-invariant with (3.9) holding. Define
operators A1, . . . ,Ad :H(KS) → H(KS), C :H(KS) → Y and D : U → Y by

Aj = M∗
λj

∣∣
H(KS)

(j = 1, . . . , d), C : f → f (0), D = S(0). (3.10)

Formula (3.3) tells us that the operators M∗
λ1

, . . . ,M∗
λd

solve the Gleason problem for HY (kd). In particular, the
restriction of this formula to f ∈ H(KS) can be written in terms of the operators (3.10) in the form (2.6), which
means that A1, . . . ,Ad solve the Gleason problem for H(KS). Then we apply Theorem 2.4 (part (2)) to conclude
that there is a choice of B : U → H(KS)d with U of the form (2.10) weakly coisometric so that S(λ) = D + C(I −
Z(λ)A)−1Z(λ)B . This completes the proof. �

Note that the proof of Theorem 3.5 obtains a realization for S ∈ Sd(U,Y) of a special form under the assumption
that H(KS) is M∗

λ-invariant: the state space X is taken to be the de Branges–Rovnyak space H(KS) and the operators
A = (A1, . . . ,Ad), C, D are given by (3.10); only the operators Bj : U → H(KS) remain to be determined. We shall
say that any contractive realization of a given Schur-class function S of this form (i.e., with X = H(KS) and A,C,D

given by (3.10)) is a functional-model realization of S. It is readily seen that any functional-model realization is also
a generalized functional-model realization; in particular, it is weakly coisometric and observable.

Let us recall that two colligations

U =
[

A B
]

: X ⊕ U → X d ⊕Y and Ũ =
[

Ã B̃˜ ˜
]

: X̃ ⊕ U → X̃ d ⊕Y

C D C D
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are said to be unitarily equivalent if there is a unitary operator U :X → X̃ such that[⊕d
k=1 U 0

0 IY

][
A B

C D

]
=
[

Ã B̃

C̃ D̃

][
U 0

0 IU

]
.

As it was shown in [7], any observable weakly coisometric realization of a Schur-class function S ∈ Sd(U,Y) is
unitarily equivalent to some generalized functional-model realization. An analogous result concerning the universality
of functional-model realizations among commutative realizations is more specific.

Theorem 3.6. Suppose that S(λ) ∈ Sd(U,Y) is a Schur-class function that admits functional-model realizations. Then
any commutative, observable, weakly coisometric realization of S is unitarily equivalent to exactly one functional-
model realization of S.

Proof. Let S(λ) = D + C̃(IX̃ − Z(λ)Ã)−1Z(λ)B̃ be a commutative, observable, weakly coisometric realization
of S. Then KS(λ, ζ ) = KC̃,Ã(λ, ζ ) by Proposition 2.2. Define operators Aj ’s and C as in (3.10). Since S admits
functional-model realizations (that contain Aj ’s and C and are weakly coisometric), then we have also KC,A(λ, ζ ) =
KS(λ, ζ ). Therefore KC,A = KC̃,Ã. Since the pairs (C̃, Ã) and (C,A) are observable, the latter equality implies (see
[6, Theorem 3.17]) that there exists a unitary operator U :H(KS) → X̃ such that

C = C̃U and Aj = U∗ÃjU for j = 1, . . . , d.

Now we let Bj := U∗B̃j : Y → H(KS) for j = 1, . . . , d which is the unique choice that guarantees the realization

U = [
A B
C D

]
(with A and B defined as in (1.7)) to be unitarily equivalent to the original realization Ũ = [

Ã B̃

C̃ D

]
and it is

functional-model realization due to the canonical choice of C and Aj ’s. �
Corollary 3.7. Let U′ = [

A′ B ′
C′ D

]
and U′′ = [

A′′ B ′′
C′′ D

]
be two observable commutative weakly coisometric realizations of

a Schur-class function S ∈ Sd(U,Y). Then the pairs (C′,A′) and (C′′,A′′) are unitarily equivalent.

Proof. By Theorem 3.6, the pairs (C′,A′) and (C′′,A′′) are both unitarily equivalent to the canonical pair (C,A)

with C and A = (A1, . . . ,Ad) defined as in (3.10). Hence (C′,A′) and (C′′,A′′) are unitarily equivalent to each
other. �
Remark 3.8. It was pointed out in [7] and justified by examples (e.g., [7, Example 3.5]) that a Schur-class function
may have many weakly coisometric observable realizations with associated output pairs (C,A) not unitarily equiva-
lent. Theorem 3.6 above shows that if S ∈ Sd(U,Y) admits a commutative weakly coisometric realization, then the
output pair (C,A) of any commutative weakly coisometric observable realization is uniquely defined up to unitary
equivalence. The example below shows that in the latter case, S may also admit many noncommutative observable
weakly coisometric realizations with output pairs not unitarily equivalent. This example is of certain interest because
of Theorem 4.4 below showing that this situation is not relevant if S is an inner multiplier.

Example 3.9. Take the matrices

C = [ 1
2 0 0 ] , A0,1 =

⎡⎣0 1 0

0 0 0

0 0 0

⎤⎦ , A0,2 =
⎡⎣0 0 1

0 0 0

0 0 0

⎤⎦ ,

B0,1 =
⎡⎣0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

⎤⎦ , B0,2 =
⎡⎣0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤⎦ , D = [
0 0 0 0

√
3

2

]
(3.11)

so that the 7 × 8 matrix U0 =
[

A0,1 B0,1
A0,2 B0,2
C D

]
is coisometric. Then the characteristic function of the colligation U0,

S(λ) = D + C(I − λ1A0,1 − λ2A0,2)
−1(λ1B0,1 + λ2B0,2) (3.12)

belongs to the Schur class S2(C
5,C). It is readily seen that
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C(I − λ1A0,1 − λ2A0,2)
−1 = 1

2
· [ 1 λ1 λ2 ] (3.13)

which being substituted along with (3.11) into (3.12) gives the explicit formula

S(λ) = 1

2
· [λ2

1 λ1λ2 λ1λ2 λ2
2

√
3 ] . (3.14)

It is readily seen that the pair (C,A0) is observable (where we let A0 = (A0,1,A0,2)) and thus, representation (3.12)
is a coisometric (and therefore, also weakly coisometric) observable realization of the function S ∈ S2(C

5,C) given
by (3.14). Then we also have

KS(λ, ζ ) = C(I − λ1A0,1 − λ2A0,2)
−1(I − ζ̄1A

∗
0,1 − ζ̄2A

∗
0,2

)−1
C∗ = KC,A0(λ, ζ ). (3.15)

Now let us consider the matrices Aγ,1 =
[

0 1 0
0 0 0
γ 0 0

]
and Aγ,2 =

[
0 0 1

−γ 0 0
0 0 0

]
where γ ∈ C is a parameter, and note that

C(I − λ1Aγ,1 − λ2Aγ,2)
−1 = 1

2
· [ 1 λ1 λ2 ]

for every γ . In particular, the pair (C,Aγ ) is observable for every γ . The latter equality together with (3.15) gives

KS(λ, ζ ) = KC,Aγ
(λ, ζ ). (3.16)

Now pick any γ so that |γ | <

√
3
8 . As it is easily seen, the latter inequality is equivalent to the pair (C,Aγ ) being

contractive. Thus, we have a Schur-class function S and a contractive pair (C,Aγ ) such that equality (3.16) holds.

Then by Theorem 2.3, there exist operators Bγ,1 and Bγ,2 so that the operator Uγ =
[

Aγ,1 Bγ,1

Aγ,2 Bγ,2

C D

]
is weakly coisometric

and S can be realized as

S(λ) = D + C(I − λ1Aγ,1 − λ2Aγ,2)
−1(λ1Bγ,1 + λ2Bγ,2).

It remains to note that the pairs (C,Aγ ) and (C,Aγ ′) are not unitarily equivalent (which is shown by another elemen-
tary calculation) unless γ = γ ′.

We conclude this section with characterizing Schur-class functions that admit contractive commutative realizations.

Theorem 3.10. A Schur-class function S ∈ Sd(U,Y) admits a contractive commutative realization if and only if it can
be extended to a Schur-class function

Ŝ(λ) = [S(λ) S̃(λ) ] ∈ Sd(U ⊕F ,Y) (3.17)

such that the de Branges–Rovnyak space H(KŜ) is M∗
λ-invariant and the inequality

d∑
j=1

∥∥M∗
λj

f
∥∥2
H(KŜ)

� ‖f ‖2
H(KŜ) − ∥∥f (0)

∥∥2
Y (3.18)

holds for every f ∈ H(KŜ).

Proof. Let S admit a contractive commutative realization of the form (1.6). Extend the connecting operator U of the
form (1.5) to a coisometric operator

Û =
[

A B B̃

C D D̃

]
:
[ X
U ⊕F

]
→

[X d

Y

]
. (3.19)

The function

Ŝ(λ) = [D D̃ ] + C
(
I − Z(λ)A

)−1
Z(λ) [B B̃ ] (3.20)

is an extension of S in the sense of (3.17). The latter realization is coisometric and commutative; thus M∗
λ-invariance

of H(Ŝ) and inequality (3.18) hold by Theorem 3.5.
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Conversely, if S can be extended to a Schur-class function Ŝ with associated de Branges–Rovnyak space H(KŜ)

invariant under M∗
λ and satisfying property (3.18), we consider a weakly coisometric commutative realization (3.20)

of Ŝ (which exists by Theorem 3.5) and restrict the input space to U . This gives a contractive commutative realization
for S. �
4. Realization for inner multipliers

The de Branges–Rovnyak space H(KS) defined for S ∈ Sd(U,Y) originally as the RKHS with reproducing ker-
nel KS of the form (1.4) can be alternatively characterized via general complementation theory as the range space
H(KS) = Ran(I − MSM∗

S )1/2 with the range norm∥∥(I − MSM∗
S

)1/2
f
∥∥
H(KS)

= ‖Q1f ‖HY (kd )

(
f ∈ HY (kd)

)
(4.1)

where MS : HU (kd) → HY (kd) is the multiplication operator defined in (1.3) and Q1 is the orthogonal projection
of HY (kd) onto (Ker(I − MSM∗

S )1/2)⊥. The space complementary to H(KS) is the space H(MS) with reproducing
kernel

MS(λ, ζ ) = S(λ)S(ζ )∗

1 − 〈λ, ζ 〉 = kd(λ, ζ )IY − KS(λ, ζ )

which, in turn, can be characterized as the range space H(MS) = RanMS with the lifted norm

‖MSg‖H(MS) = ‖Q2g‖HU (kd ) for all g ∈HU (kd) (4.2)

where Q2 is the orthogonal projection of HU (kd) onto (KerMS)⊥. The spaces H(KS) and H(MS) are contractively
included in HY (kd); the case when they are isometrically included in HY (kd) is of special interest. Let us recall that a
Schur-class function S ∈ Sd(U,Y) is said to be an inner multiplier (called inner sequence in [5]) if the multiplication
operator MS :HU (kd) →HY (kd) is a partial isometry.

Proposition 4.1. Let S ∈ Sd(U,Y). The following are equivalent:

(1) S is inner.
(2) H(KS) is contained in HY (kd) isometrically.
(3) H(KS) = (RanMS)⊥ isometrically.

In this case, MSM∗
S and IHY (kd ) − MSM∗

S are the orthogonal projections onto the closed subspaces RanMS and
(RanMS)⊥ of HY (kd), respectively.

Proof. The multiplier S being inner is equivalent to RanMS and Ran(I − MSM∗
S )1/2 being closed subspaces

of HY (kd) such that MSM∗
S and I − MSM∗

S = (I − MSM∗
S )1/2 are the orthogonal projections onto RanMS and

Ran(I − MSM∗
S ), respectively. In this case the lifted-norm formulas (4.1) and (4.2) lead to isometric inclusions

of H(KS) and of H(MS) in HY (kd). The fact that PH(KS) = I − PH(MS) tells us that H(KS) and H(MS) are or-
thogonal complements of each other. �

In this section we focus on realization theory for inner multipliers. First we will show that an inner multiplier
always admits a commutative weakly coisometric realization (Theorem 4.2). Then we show that, in contrast to gen-
eral contractive multipliers (see Example 3.9), an inner multiplier cannot have a noncommutative observable weakly
coisometric realization (Theorem 4.4). Finally, Theorem 4.7 discusses coisometric and unitary functional-model real-
izations for an inner multiplier. We start with a realization characterization of inner multipliers.

Theorem 4.2. An L(U,Y)-valued function S defined on B
d is an inner multiplier if and only if it admits a weakly

coisometric realization (1.6) where
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(1) the d-tuple A = (A1, . . . ,Ad) of the state space operators is commutative and is strongly stable (i.e., (3.7) holds),
and

(2) the output pair (C,A) is isometric.

Proof. Suppose that S admits a realization (1.6) with U = [
A B
C D

]
weakly coisometric with A commutative and

strongly stable and with (3.6) holding. By Proposition 2.2 we know that KS(λ, ζ ) = KC,A(λ, ζ ). Combining this
equality with Theorem 3.2 (part (2)), we conclude that the space H(KS) = H(KC,A) is included isometrically
in HY (kd). Therefore S is inner by Proposition 4.1.

Conversely, suppose that S is inner. Then, according to Proposition 4.1, H(KS) is isometrically equal to the orthog-
onal complement of RanMS . As RanMS is invariant under Mλ, it follows that H(KS) = (RanMS)⊥ is M∗

λ-invariant.
Hence Theorem 3.5 applies; we let U = [

A B
C D

]
be any weakly coisometric functional-model realization for S, that is

with A = (A1, . . . ,Ad), C and D defined as in (3.10). Then A is commutative since M∗
λ is commutative. As has been

already observed, H(KS) = (RanMS)⊥ is contained in HY (kd) isometrically. Therefore A = M∗
λ|H(KS) is strongly

stable since M∗
λ is strongly stable on HY (kd) by Proposition 3.1 (part (3)). By part (2) in the same proposition, the

pair (G,M∗
λ) is isometric, i.e.,

IHY (kd ) − Mλ1M
∗
λ1

− · · · − Mλd
M∗

λd
= G∗G. (4.3)

Since G and C are the operators of evaluation at the origin on HY (kd) and on H(KS), respectively, we have C =
G|H(KS). Then the restriction operator equality (4.3) to H(KS) can be expressed in terms of A and C as

IH(KS) − A∗
1A1 − · · · − A∗

dAd = C∗C

which means that the pair (C,A) is isometric. �
The next theorem is a variant of Theorem 3.10 for the inner case; the proof is much the same as that of Theorem 3.10

and hence will be omitted.

Theorem 4.3. A Schur-class function S ∈ Sd(U,Y) admits a contractive, commutative realization of the form (1.6)
with A = (A1, . . . ,Ad) strongly stable and (C,A) isometric if and only if S can be extended to an inner multiplier

Ŝ(λ) = [S(λ) S̃(λ) ] ∈ Sd(U ⊕F ,Y).

If S is inner, then, as we have seen in the proof of Theorem 4.2, any functional-model realization for S yields a
commutative observable weakly coisometric realization for S. We now show the converse.

Theorem 4.4. If S ∈ Sd(U,Y) is inner, then any observable weakly coisometric realization of S is commutative.

Proof. Let (1.6) be an observable weakly coisometric realization of the inner function S. Then KS = KC,A (by Propo-
sition 2.2) and therefore, since S is inner, the space H(KC,A) is isometrically included into HY (kd). By Theorem 2.1
(part (3)), the observability operator OC,A : X → HY (kd) is a partial isometry. Since the pair (C,A) is observable,
OC,A is in fact an isometry. As H(KC,A) is isometrically included in HY (kd), it follows that OC,A is unitary when
considered as an operator from X to H(KC,A) = H(KS). Define the operators T1, . . . , Td on H(KC,A) and the oper-
ator G : H(KC,A) → Y by

TjOC,Ax = OC,AAjx (j = 1, . . . , d), GOC,Ax = Cx for x ∈ X . (4.4)

Then for the generic element f = OC,Ax of H(KS) = H(KC,A) = RanOC,A, we have

f (λ) = C
(
I − Z(λ)A

)−1
x, f (0) = Cx = GOC,Ax = Gf

and therefore,

f (λ) − f (0) = C
(
I − Z(λ)A

)−1
x − Cx

= C
(
I − Z(λ)A

)−1
Z(λ)Ax
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= C
(
I − Z(λ)A

)−1

(
d∑

j=1

λjAjx

)

=
d∑

j=1

λj · (OC,AAjx)(λ)

=
d∑

j=1

λj · (TjOC,Ax)(λ) =
d∑

j=1

λj · (Tjf )(λ)

which means that the d-tuple T = (T1, . . . , Td) solves the Gleason problem on H(KC,A) and that G is simply the
operator of evaluation at the origin. Since the pair (C,A) is contractive and OC,A is isometric, it follows from (4.4) that
the pair (G,T) is also contractive. Now we recall a uniqueness result from [6, Theorem 3.22]: if M is a backward-shift
invariant subspace of HY (kd) isometrically included in HY (kd), then the d-tuple M∗

λ|M = (M∗
λ1

|M, . . . ,M∗
λd

|M)

is the only contractive solution of the Gleason problem on M. By this result applied to M = H(KC,A) = H(KS) =
(S ·HU (kd))⊥ (which is backward-shift invariant and isometrically included in HY (kd) since S is inner) we conclude
that Tj = M∗

λj
|H(KC,A) for j = 1, . . . , d . In particular, the tuple T is commutative and therefore the original state space

tuple A is necessarily commutative. �
By the result of [20], any inner function S ∈ Sd(U,Y) has nontangential boundary values S(ω) which are partial

isometries of some fixed rank for almost all ω on the (2d − 1)-dimensional sphere S
2d−1 := ∂B

d . Let us say that the
inner function S is a full-range inner function if the boundary-value function S(ω) has coisometric values for almost
all ω ∈ S

2d−1. Then we have the following extension of Theorem 4.4 to contractive realizations.

Theorem 4.5. If S ∈ Sd(U,Y) is a full-range inner function (in particular, if S is a nonzero inner function in
Sd(U,C)), then any contractive realization of S is commutative.

Proof. Assume that S(λ) is a full-range inner function of the form S(λ) = D + C(I − Z(λ)A)−1Z(λ)B for a con-
tractive connecting operator U = [

A B
C D

] : X ⊕ U → X d ⊕ Y . Extend U to a coisometric operator Û as in (3.19) and

consider its characteristic function Ŝ (see (3.20)) which extends S in the sense of (3.17). Since Û is a contraction, Ŝ is
in Sd(U ⊕F ,Y). By (3.17),

IY − Ŝ(ω)Ŝ(ω)∗ = IY − S(ω)S(ω)∗ − S̃(ω)S̃(ω)∗ � 0

for almost all ω ∈ S
2d−1. Since by assumption S is a full-range inner, its boundary values are coisometries and hence

S̃(ω) = 0 for almost all ω ∈ S
2d−1. Therefore S̃ ≡ 0 and hence Ŝ = [S 0 ] is also inner. The formula (3.20) then

gives an observable coisometric (and therefore also weakly coisometric) realization of the inner function Ŝ(λ). By
Theorem 4.4 it follows that this realization is necessarily commutative, i.e., A = (A1, . . . ,Ad) is commutative. Hence
the original realization U for S(λ) is commutative as asserted. �
Remark 4.6. In general it is difficult to tell from the boundary values alone when a given Schur-class function S ∈
Sd(U,Y) is inner. The result of the preceding paragraph suggests the following open question: If S ∈ Sd(U,Y) is such
that (1) the boundary values of S on S

2d−1 are partially isometric of fixed rank (or, as a special case, coisometric) a.e.,
and (2) every observable contractive realization of S is commutative, does it then follow that S is an inner function?

Theorems 4.4 and 4.5 combined with Theorem 3.6 imply that any observable weakly coisometric realization of S

if S is inner, or even any observable contractive realization of S if S is full-range inner, of the form (1.6) is commu-
tative with operators A1, . . . ,Ad,C uniquely defined (up to simultaneous unitary equivalence) and with D given by
formula (3.10). The nonuniqueness caused by possible different choices of B1, . . . ,Bd : U �→H(KS) can be described
explicitly. This was done in [7, Theorem 2.7] in the context of general contractive multipliers. For inner multipliers
the corresponding results are much more explicit.



J.A. Ball et al. / J. Math. Anal. Appl. 341 (2008) 519–539 533
Theorem 4.7. Let S ∈ Sd(U,Y) be inner, let A = (A1, . . . ,Ad), C, D be given as in (3.10), let

U0
S := {

u ∈ U : S(λ)u ≡ 0
}⊂ U (4.5)

and let the subspaces D and D⊥ ⊂ H(KS)d be defined as in (2.11) and (2.12), respectively. Let N : D → U be the
operator defined by

N : Z(ζ )∗KS(·, ζ )y → S(ζ )∗y − S(0)∗y. (4.6)

Then

(1) A realization U = [A B
C S(0)

]
of S is weakly coisometric if and only if B is of the form

B∗ = [X N ] (4.7)

where N is given by (4.6) and X is a contraction from D⊥ into U0
S .

(2) S admits a coisometric (unitary) functional-model realization if and only if dimD⊥ � dimU0
S (respectively

dimD⊥ = dimU0
S ). In this case, a realization U = [A B

C S(0)

]
of S is coisometric (unitary) if and only if B is of

the form (4.7) for some isometric (respectively unitary) X : D⊥ → U0
S .

(3) S admits a unique weakly coisometric functional-model realization if and only if U0
S = {0}. In this case, the

operator B is defined by

B∗∣∣
D : Z(ζ )∗KS(·, ζ )y → S(ζ )∗y − S(0)∗y and B∗∣∣

D⊥ = 0.

This unique weakly coisometric functional-model realization is never coisometric.

Proof. Let S ∈ Sd(U,Y) be inner, let A = (A1, . . . ,Ad), C, D be given as in (3.10) and let B : U → (H(KS))d be
any operator so that S can be realized in the form (1.6) and U as in (1.5) is contractive. Then taking adjoints in (1.6)
gives

B∗Z(ζ )∗
(
I − A∗Z(ζ )∗

)−1
C∗ = S(ζ )∗ − D∗

which, on account of (2.9), can be written equivalently as

B∗Z(ζ )∗KS(·, ζ )y = S(ζ )∗y − S(0)∗y
(
ζ ∈ B

d , y ∈ Y
)
.

Comparing the latter formula with (4.6) gives B∗|D = N . Write B∗ in the form (4.7) with X = B∗|D⊥ : D⊥ → U .
Next we note the explicit formulas for the adjoints A∗

j ’s

A∗
j = PH(KS)Mλj

|H(KS) (j = 1, . . . , d) (4.8)

(where PH(KS) stands for the orthogonal projection of HY (kd) onto H(KS)) which are not available in the case of
general (noninner) Schur-class functions. Indeed, since H(KS) is isometrically included in HY (kd), we have for every
h,g ∈H(KS),〈

h,A∗
j g
〉
H(KS)

= 〈Ajh,g〉H(KS)

= 〈
M∗

λj
h, g

〉
H(KS)

= 〈
M∗

λj
h, g

〉
HY (kd )

= 〈h,Mλj
g〉HY (kd ) = 〈h,PH(KS)Mλj

g〉H(KS)

and (4.8) follows. As a consequence of (4.8) we get

A∗∣∣
D⊥ = 0. (4.9)

Indeed, if h =
[ h1

...
hd

]
∈D⊥, it holds that Z(λ)h(λ) ≡ 0 (by the characterization of D⊥ in (2.12)) and then

A∗h =
d∑

A∗
j hj = PH(KS)Mλj

hj = PH(KS)(Zh) = 0.
j=1
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Now we define the operators T1 :D ⊕Y → H(KS) and T2 :D ⊕Y → U by

T1 = [A∗|D C∗ ] and T2 = [B∗|D S(0)∗ ] (4.10)

and combining the two latter formulas with (4.7) and (4.9), we may write the adjoint of the connecting operator
U = [

A B
C D

]
as

U∗ =
[

0 T1

X T2

]
:
[ D⊥

D ⊕Y

]
→

[H(KS)

U

]
. (4.11)

In the latter formula we have identified
[ D⊥
D⊕Y

]
with

[H(KS)d

Y
]
. Every X such that the matrix in (4.11) is contrac-

tive leads to a contractive functional-model realization for S (due to canonical choice (3.10) of C and A) which is
automatically weakly coisometric. Therefore, the restriction of U∗ to the space D ⊕ Y (that is, the operator

[ T1
T2

]
) is

isometric

T ∗
1 T1 + T ∗

2 T2 = ID⊕Y . (4.12)

Since the pair (C,A) is isometric, it follows from (4.9) and the formula for T1 in (4.10) that T1 is coisometric

T1T
∗
1 = A∗A + C∗C = IH(KS). (4.13)

Then we also have T1T
∗
2 T2T

∗
1 = T1(I − T ∗

1 T1)T
∗

1 = I − I = 0, so that

T1T
∗
2 = 0. (4.14)

Now we invoke (4.11) and make use of (4.12)–(4.14) to write the block-matrix formulas

I − UU∗ =
[

I − X∗X −X∗T2

−T ∗
2 X 0

]
(4.15)

and

I − U∗U =
[

0 0

0 I − XX∗ − T2T
∗
2

]
. (4.16)

From the formula for T2 in (4.10) combined with the formula (4.6) for the action of B∗|D on a generic generator of D,
we see that

RanT2 = span
{
S(ζ )∗y: ζ ∈ B

d , y ∈ Y
}

and hence

KerT ∗
2 = (RanT2)

⊥ = {
u ∈ U : S(λ)u ≡ 0

}=: U0
S . (4.17)

Now it follows from (4.15) that U∗ of the form (4.11) is contractive (isometric) if and only if X is a contraction
(an isometry) from D⊥ into (onto) U0

S . Then (4.16) implies that U is unitary if and only if X : D⊥ → U0
S is unitary.

The corresponding B of the form (4.7) leads to weakly coisometric, coisometric and unitary realizations for S. This
completes the proof. �
5. Beurling–Lax representation theorem for shift-invariant subspaces

The Beurling–Lax theorem for the context of the Arveson space HY (kd) asserts that any closed Mλ-invariant
subspace M of HY (kd) can be represented in the form

M = S ·HU (kd) (5.1)

for some inner multiplier S ∈ Sd(U,Y) and an appropriately chosen coefficient space U (see [13,21,22] for the classi-
cal case d = 1 and [5,6,23] for the case of general d). We shall call any such S a representer of M. Here we present a
realization-theoretic proof of the HY (kd)-Beurling–Lax theorem as an application of Theorem 4.2 (see [9,10] for an
illustration of this approach for the case d = 1). We first need some preliminaries.
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Suppose that A = (A1, . . . ,Ad) is a commutative d-tuple of bounded, linear operators on the Hilbert space X and
that (C,A) is an output stable pair. We define a left-tangential functional calculus f → (C∗f )∧L(A∗) on HY (kd) by(

C∗f
)∧L(A∗)=

∑
n∈Z

d+

A∗nC∗fn if f =
∑

n∈Z
d+

fnλn ∈HY (kd). (5.2)

The computation〈 ∑
n∈Z

d+

A∗nC∗fn, x

〉
X

=
∑

n∈Z
d+

〈
fn,CAnx

〉
Y =

∑
n∈Z

d+

n!
|n|!

〈
fn,

|n|!
n! CAnx

〉
Y

= 〈f,OC,Ax〉HY (kd )

shows that the output-stability of the pair (C,A) is exactly what is needed to verify that the infinite series in the
definition (5.2) of (C∗f )∧L(A∗) converges in the weak topology on X . In fact the left-tangential evaluation with
operator argument f → (C∗f )∧(A∗) amounts to the adjoint of the observability operator(

C∗f
)∧L(A∗)= (OC,A)∗f for f ∈HY (kd). (5.3)

Given an output-stable pair (C,A), define a subspace MA∗,C∗ ⊂ HY (kd) by

MA∗,C∗ = {
f ∈ HY (kd):

(
C∗f

)∧L(A∗)= 0
}
. (5.4)

An easy computation (using that A is commutative) shows that(
C∗[Mλj

f ])∧L(A∗)= A∗
j

(
C∗f

)∧L(A∗).
Hence any subspace M ⊂ HY (kd) of the form M = MA∗,C∗ as in (5.4) is Mλ-invariant. We now obtain the converse.

Theorem 5.1. Suppose that M is a closed subspace of HY (kd) which is Mλ-invariant (i.e., M is invariant under
Mλj

: f (λ) �→ λjf (λ) for j = 1, . . . , d). Then there are a Hilbert space X , a commutative d-tuple of operators
A = (A1, . . . ,Ad) on X and an operator C :X → Y so that

(1) A is commutative, i.e., AiAj = AjAi for 1 � i, j � d ,
(2) A is strongly stable, i.e., A satisfies (3.7), and
(3) the subspace M has the form MA∗,C∗ as in (5.4).

Moreover, one choice of state space X and operators Aj : X →X and C :X → Y is

X = M⊥, Aj = M∗
λj

∣∣
M⊥ for j = 1, . . . , d, C : f → f (0) for f ∈ M⊥. (5.5)

Proof. Define X , A = (A1, . . . ,Ad) and C as in (5.5). We note that M⊥ is contained in HY (kd) isometrically and
that C = G|M⊥ , Aj = M∗

λj
|M⊥ where OG,M∗

λ
is the identity on HY (kd) (see part (2) of Proposition 3.1). Hence, in

particular, RanOC,A = M⊥. Taking orthogonal complements then gives

Ker(OC,A)∗ = (
M⊥)⊥ = M

which in turn is equivalent to the characterization (5.4) for M. �
We now construct an inner multiplier solving a homogeneous interpolation problem via realization theory.

Theorem 5.2. Suppose that (C,A) is an isometric output-stable pair, with A commutative and strongly stable. Let
M = MA∗,C∗ ⊂ HY (kd) be given by (5.4). Then there is an input space U and an inner Schur multiplier S ∈ Sd(U,Y)

so that M = RanMS . One such S is given by

S(λ) = D + C
(
I − Z(λ)A

)−1
Z(λ)B
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where A1, . . . ,Ad and C come from the given output pair (C,A), and where B1, . . . ,Bd,D are chosen so that the
colligation U = [

A B
C D

] : [XU ]→ [X d

Y
]

is weakly coisometric. In particular, one achieves a coisometric realization U

by choosing the input space U and
[

B
D

]
so as to solve the Cholesky factorization problem:[

B

D

]
[B∗ D∗ ] =

[
IX d 0

0 IY

]
−
[

A

C

]
[A∗ C∗ ] . (5.6)

Remark 5.3. Note that the model output pair (C,A) (5.5) appearing in Theorem 5.1 is an isometric pair. In practice,
however, one may be given a subspace of the form MA∗,C with A commutative and strongly stable but without the pair
(C,A) being isometric. If however it is the case that (C,A) is exactly observable in the sense that the observability
gramian

GC,A = O∗
C,AOC,A =

∑
n∈Z

d+

|n|!
n! An∗C∗CAn

is strictly positive definite, then the adjusted output pair (C̃, Ã) given by

Ãj = H 1/2AjH
−1/2 for j = 1, . . . , d, C̃ = CH−1/2 where H := GC,A

is isometric and has all the other properties of the original output pair (C,A), namely: Ã is strongly stable and
M = MÃ∗,C̃∗ . Hence in practice the requirement that the pair (C,A) be isometric in Theorem 5.2 can be replaced by
the condition that (C,A) is exactly observable. A more complete discussion of this point can be found in [6].

Proof of Theorem 5.2. Define S(λ) as in the statement of the theorem. By Theorem 4.2, S is inner. By Proposi-
tion 4.1, (RanMS)⊥ = H(KS) isometrically. As U is weakly coisometric, we also know that H(KS) = H(KC,A) by
Proposition 2.2. The space H(KC,A) can in turn be identified as a set with RanOC,A (see [6, Theorem 3.14]). By hy-
pothesis, M = Ker(OC,A)∗; hence RanOC,A = M⊥. Putting all this together gives (RanMS)⊥ = M⊥ and therefore
RanMS = M as wanted. �
Remark 5.4. The choice (A∗,C∗) = (a, (1 − a∗a)1/2) in Theorem 5.2 (with B,D chosen to solve the Cholesky
factorization problem (5.6)) leads to the Blaschke factor based on the point a = (a1, . . . , ad) ∈ B

d appearing in [2].
These Blaschke factors are also important in the characterization of the automorphisms of the ball mapping the origin
to a given point (see [29, Theorem 2.2.2]).

We next show how our analysis can be used to give a description of all Beurling–Lax representers for a given
shift-invariant subspace of HY (kd).

Theorem 5.5. Let M be a closed Mλ-invariant subspace of HY (kd), let N = M⊥ = HY (kd) �M and let

Aj = M∗
λj

∣∣
N (j = 1, . . . , d), C : f → f (0) (f ∈N ).

Let D be the subspace of N d given by (1.8) and let

T := [A∗|D C∗ ] :D ⊕Y → N .

Then:

(1) Given a Hilbert space U , there exists an inner multiplier S ∈ Sd(U,Y) satisfying (5.1) if and only if

dimU � dim Ran
(
I − T ∗T

) 1
2 . (5.7)

(2) If (5.7) is satisfied, then all S ∈ Sd(U,Y) for which (5.1) holds are described by the formula

S(λ) = [C(I − Z(λ)A)−1Z(λ) IY ]
(
I − T ∗T

) 1
2 G∗ (5.8)

where G is an isometry from Ran(I − T ∗T )
1
2 onto RanG ⊂ U .
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(3) If dimU = dim Ran(I − T ∗T )1/2, then the function S ∈ Sd(U,Y) such that (5.1) holds is defined uniquely up to
a constant unitary factor on the right.

Proof. If M is a closed Mλ-invariant subspace of HY (kd), then M⊥ is isometrically included in HY (kd) and is
isometrically equal to H(KC,A) where (C,A) are the model operators on M⊥ as in (5.5). On the other hand, as a
consequence of Proposition 4.1, we see that the Schur multiplier S is an inner-multiplier representer for M if and
only if H(KS) = M⊥ isometrically. Thus the problem of describing all inner-multiplier representers S for the given
Mλ-invariant subspace M is equivalent to the problem: describe all Schur-class multipliers S such that H(KS) =
H(KC,A) isometrically, where (C,A) is given by (5.5). The various conclusions of Theorem 5.5 now follow as an
application of Theorem 2.11 from [7] to the more special situation here (where A is strongly stable and H(KC,A) is
contained in HY (kd) isometrically). �
6. Characteristic functions of commutative row contractions

In the operator model theory for commutative row contractions (see [14,15]), one is given a d-tuple of operators
T = (T1, . . . , Td) on a Hilbert space X for which the associated block-row matrix is contractive

‖T ‖ � 1 where T = [T1 · · · Td ] : X d →X .

Under certain conditions (that T be completely non-coisometric—see [15,28]), the associated characteristic function
θT(λ) is a complete unitary invariant for T; recently extensions of the theory to still more general settings have ap-
peared (see [16,27,28]) while the fully noncommutative setting is older (see [25,26]). All this theory can be viewed as
multivariable analogues of the well-known now classical operator model theory of Sz.-Nagy and Foias [24]. However,
unlike the fully developed theory in [24] for the classical case and unlike the case for the fully noncommutative theory
(see [12,25,26]), none of the work for the multivariable commutative setting provides a characterization of which
Schur-class functions arise as characteristic functions.

To define θT, we set A = [T1 . . . Td ]∗ and let U = [
A B
C D

] : X ⊕ DT → X d ⊕ DT ∗ be the Halmos unitary
dilation of A,

B = DT |DT
:DT → X d, C = DT ∗ : X →DT ∗ , D = −T |DT

: DT →DT ∗ ,

where

DT = (
IX d − T ∗T

)1/2
, DT = RanDT ⊂ X d,

DT ∗ = (
IX − T T ∗)1/2

, DT ∗ = RanDT ∗ ⊂ X ,

and then θT(λ) is the transfer function associated with the colligation U,

θT(λ) = [−T + DT ∗
(
I − Z(λ)T ∗)−1

Z(λ)DT

]∣∣
DT

:DT → DT ∗ . (6.1)

Since U is unitary, it follows that θT is in the Schur class Sd(DT ,DT ∗). More generally, a Schur-class function
S ∈ Sd(U .Y) is said to coincide with the characteristic function θT(λ) if there are unitary identification operators

α : DT ∗ → Y, β :DT → U
so that

S(λ) = αθT(λ)β∗.

From our point of view, what is special about a Schur-class function S ∈ Sd(U,Y) which coincides with a charac-
teristic function θT is that it is required to have a commutative unitary realization. An additional constraint follows
from the fact that the unitary colligation in the construction of a characteristic function comes via the Halmos-dilation
construction. The following proposition summarizes the situation. In general let us say that the Schur-class function
S ∈ Sd(U,Y) is pure if∥∥S(0)u

∥∥= ‖u‖ for some u ∈ U ⇒ u = 0. (6.2)

For the role of this notion in the characterization of characteristic functions for the classical case, see [24, p. 188].
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Proposition 6.1. A Schur-class function S ∈ Sd(U,Y) coincides with a characteristic function θT if and only if

(1) S has a realization (1.6) with U unitary and A commutative, and
(2) S is pure, i.e., S satisfies (6.2).

Proof. We first note the following general fact: if U = [
A B
C D

] : X ⊕ U → X d ⊕ Y is unitary, then the following are
equivalent:

(i) B is injective,
(ii) C∗ is injective,

(iii) u ∈ U with ‖Du‖ = ‖u‖ implies that u = 0.

To see this, note that the unitary property of U means that[
A∗A + C∗C A∗B + C∗D
B∗A + D∗C B∗B + D∗D

]
=
[

IX 0

0 IU

]
,[

AA∗ + BB∗ AC∗ + BD∗

CA∗ + DB∗ CC∗ + DD∗

]
=
[

IX d 0

0 IY

]
. (6.3)

From all these relations we read off

Bu = 0 ⇒ ‖Du‖ = ‖u‖ and C∗Du = 0,

‖Du‖ = ‖u‖ ⇒ Bu = 0 and C∗Du = 0,

C∗y = 0 ⇒ ∥∥D∗y
∥∥= ‖y‖ = ∥∥D(D∗y

)∥∥ and BD∗y = 0.

Hence any one of the conditions (i), (ii) or (iii) implies the remaining ones.
Suppose now that S ∈ Sd(U,Y) coincides with a characteristic function θT. Then S has a realization as in (1.6)

and (1.5) for a connecting operator U of the form

U =
[

A B

C D

]
=
[

IX d 0

0 α

][
T ∗ DT

DT ∗ −T

][
IX 0

0 β∗

]
(6.4)

for a commutative row-contraction T = {T1, . . . , Td} where α : DT ∗ → Y and β : DT → U are unitary, and where[ T ∗ DT

DT ∗ −T

] : X ⊕ DT → X d ⊕ DT ∗ is the Halmos dilation of T ∗ discussed above. It is then obvious that U gives a
commutative, unitary realization for S. We also read off that any one (and hence all) of the conditions (i), (ii) and (iii)
hold for U. As D = S(0), the validity of condition (iii) implies that S is pure.

Conversely suppose that S ∈ Sd(U,Y) has a commutative, unitary realization U = [
A B
C D

] : X ⊕ U → X d ⊕Y and
is pure. As D = S(0) and S is pure, we read off that condition (iii) above holds, and hence also conditions (i) and (ii)
hold for U. From the relations (6.3) we have, in particular,

C∗C = IX − A∗A, BB∗ = IX d − AA∗.

Hence we can define unitary operators

α :DA → RanC = Y, β :DA∗ → RanB∗ = U

so that

αDA = C and βDA∗ = B∗.

Then we also have

α∗DβDA∗ = α∗DB∗ = −α∗CA∗ = −DAA∗ = −A∗DA∗

from which we get

D = −αA∗β∗.
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We conclude that U has the form (6.4) with T = (A∗
1, . . . ,A

∗
d), and hence S coincides with the characteristic func-

tion θT. �
For the inner case, we can use the results on functional-model realizations obtained above to give a more intrinsic

sufficient condition for a Schur-class function to be a characteristic function.

Theorem 6.2. Suppose that S ∈ Sd(U,Y) is inner, dimD⊥ = dimU0
S (where the subspaces U0

S ⊂ U and D⊥ ⊂
H(KS)d are defined in (4.17) and (1.8)), and that S is pure. Then S coincides with the characteristic function of
a ∗-strongly stable, commutative row-contraction.

Proof. Given S as in the hypotheses, we see from Theorem 4.7 that S has a functional-model realization U = [
A B
C D

] :
H(KS) ⊕ U → H(KS)d ⊕ Y such that U is unitary, A is commutative and A is strongly stable. Since by assumption
S is pure, we can apply Proposition 6.1 to conclude that S coincides with θT, where T = (A∗

1, . . . ,A
∗
d). As observed

above, A is strongly stable, i.e., T is ∗-strongly stable, and the theorem follows. �
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